
ImaGen: A General Framework for Generating Memory- and
Power-E�icient Image Processing Accelerators

Nisarg Ujjainkar
nujjaink@ur.rochester.edu
University of Rochester
Rochester, NY, USA

Jingwen Leng
Shanghai Jiaotong University

Shanghai, China
leng-jw@sjtu.edu.cn

Yuhao Zhu
University of Rochester
Rochester, NY, USA
yzhu@rochester.edu

ABSTRACT
Image processing algorithms are prime targets for hardware accel-
eration as they are commonly used in resource- and power-limited
applications. Today’s image processing accelerator designs make
rigid assumptions about the algorithm structures and/or on-chip
memory resources. As a result, they either have narrow applicability
or result in ine�cient designs.

This paper presents a compiler framework that automatically
generates memory- and power-e�cient image processing accel-
erators. We allow programmers to describe generic image pro-
cessing algorithms (in a domain speci�c language) and specify
on-chip memory structures available. Our framework then formu-
lates a constrained optimization problem that minimizes on-chip
memory usage while maintaining theoretical maximum through-
put. The key challenge we address is to analytically express the
throughput bottleneck, on-chip memory contention, to enable a
lightweight compilation. FPGA prototyping and ASIC synthesis
show that, compared to existing approaches, accelerators gener-
ated by our framework reduce the on-chip memory usage and/or
power consumption by double digits. ImaGen code is available at:
https://github.com/horizon-research/imagen.

CCS CONCEPTS
• Computer systems organization! Architectures; • Hard-
ware! Power and energy.

KEYWORDS
Accelerator, Line Bu�er, Image Processing, Constrained Optimiza-
tion, Synthesis, Compiler

ACM Reference Format:
Nisarg Ujjainkar, Jingwen Leng, and Yuhao Zhu. 2023. ImaGen: A General
Framework for Generating Memory- and Power-E�cient Image Processing
Accelerators. In Proceedings of the 50th Annual International Symposium on
Computer Architecture (ISCA ’23), June 17–21, 2023, Orlando, FL, USA. ACM,
New York, NY, USA, 13 pages. https://doi.org/10.1145/3579371.3589076

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for pro�t or commercial advantage and that copies bear this notice and the full citation
on the �rst page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior speci�c permission
and/or a fee. Request permissions from permissions@acm.org.
ISCA ’23, June 17–21, 2023, Orlando, FL, USA
© 2023 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 979-8-4007-0095-8/23/06. . . $15.00
https://doi.org/10.1145/3579371.3589076

1 INTRODUCTION
Image processing has become ever more important with a plethora
of emerging visual computing domains such as Augmented/Virtual
Reality, computational photography, and smart cameras. These
application domains all present stringent resource and power con-
straints, leading to many research e�orts in building specialized
accelerators for image processing [6, 12, 17, 30, 31, 35]. Manually
building accelerators, however, is not only time-consuming, error-
prone, but also relies heavily on empirical heuristics that do not
always deliver optimal designs.

A recent trend is automatically generating accelerators from
high-level algorithm descriptions [7, 16, 38]. Prior approaches to
generating image processing accelerators either have narrow ap-
plicability or yield ine�cient designs — for two main reasons
(Sec. 3). First, they optimize for simple, single-consumer algorithms
where each producer stage has only one consumer. When facing
multiple-consumer algorithms such as unsharp �ltering [16] and
denoising [7], they either have to arti�cially transform the multiple-
consumer algorithm to a single-consumer arrangement, which in-
creases the on-chip memory usage, or increase the total on-chip
memory accesses, which increases the power consumption.

Second, there is a large, algorithm-dependent trade-o� space
between on-chip memory requirement and power consumption
that prior work fails to explore. This is because prior work assumes
one single memory structure and, critically, use the same memory
structure for all algorithms and for all stages in an algorithm. For
instance, FixyNN [38] could generate designs using only single-port
SRAMs, and SODA [7] could generate designs using only FIFOs
(dual-port SRAMs). The actual design space is much larger: given an
algorithm with # stages and " memory structures, there are "#

design points, each providing a unique power-vs-area trade-o�.
This paper proposes a compiler framework that generatesmemory-

and power-e�cient accelerators (in the form of synthesizable RTL)
for image processing (Sec. 4). Instead of arti�cially restricting al-
gorithm and/or on-chip memory structures, we allow specifying
generic algorithms and memory con�gurations (in terms of size and
number of ports). Given the algorithm and hardware speci�cations,
our compiler formulates a constrained optimization problem that,
while maintaining theoretically maximum throughput, minimizes
the on-chip memory usage and reduces total power consumption.

A key challenge we address is to generate accelerators that con-
sistently deliver theoretically maximum throughput (frame rate)
for every frame; after all, saving on-chip area and power consump-
tion is of little use when an image processing accelerator has a
low frame rate. The central di�culty is to analytically express the
throughput bottleneck, i.e., on-chip memory contention, which

https://github.com/horizon-research/imagen
https://doi.org/10.1145/3579371.3589076
https://doi.org/10.1145/3579371.3589076

ISCA ’23, June 17–21, 2023, Orlando, FL, USA Nisarg Ujjainkar, Jingwen Leng, and Yuhao Zhu

involves set counting and is incompatible with numerical optimiza-
tions. We leverage the data access pattern of stencil operations to
transform set counting into equivalent, arithmetic operations that
are amenable to numerical optimizations (Sec. 5).

Building on top of the optimization formulation, we propose
to judiciously coalesce multiple lines in a line bu�er into a single
memory block to further reduce on-chip memory consumption.
We show that this technique amounts to a static rewriting of the
algorithm Directed Acyclic Graph (DAG) and is naturally integrated
into our compiler framework (Sec. 6).

We show that our optimization problem is an Integer Linear
Programming (ILP), which has e�cient solvers. As a result, our
compiler is lightweight; it generates synthesizable RTL for common
image processing algorithms inmilliseconds.We use our framework
to generate a wide variety of image processing accelerators, which
we evaluate using both an ASIC �ow and a Xilinx Spartan-7 FPGA
board. Across di�erent input sizes, accelerators generated by our
framework reduce on-chip memory usage and power by up to 86.0%
and 62.9%, respectively, when compared to designs generated by
prior methods, including Darkroom [16], SODA [7], FixyNN [38].

We use our framework to perform a Design Space Exploration
(DSE) that explores diverse memory con�gurations to generate
Pareto-optimal designs. We show that the area-vs-power trade-o�
varies with algorithms, an algorithm-speci�c design space explo-
ration that our framework uniquely enables.

In summary, this paper makes the following contributions:

• We propose a compiler framework that generates memory-
and power-e�cient image processing accelerators given
generic algorithm and on-chip memory speci�cations. The
accelerators guarantee theoretically maximum throughput
through constrained optimization.

• We propose a line-coalescing algorithm that coalesces multi-
ple line-bu�er lines into one memory block to further reduce
on-chip memory usages.

• Accelerators generated by our compiler consume less on-
chip memory and power compared to those generated using
existing tools. Our compiler is integrated into a DSE process,
which reveals algorithmic-dependent area-vs-power trade-
o�s that prior tools are unable to explore.

2 BACKGROUND
Image processing pipelines consist of computation stages that op-
erate on regular 2D pixel arrays. Each stage performs a stencil
operation, which operates on a window of input pixels to generate
an output pixel. The stencil window moves in a raster scan order.
An end-to-end algorithm usually cascades multiple stages. Each
stage generates an intermediate 2D image read by (potentially mul-
tiple) consumer(s). Common image processing algorithms include
in-camera image signal processing [16] and High Dynamic Range
imaging using burst photography [15].

Scope. Our goal is not a generic stencil accelerator that runs
multiple algorithms. Rather, we focus on accelerators that are spe-
cialized for a given algorithm. This is common in both 1) FPGA-
based acceleration systems, where the FPGA can be re-programmed
for a given algorithm, and 2) low-power ASICs as demonstrated
in Image Signal Processors in modern cameras (e.g., Arm Mali [3]

.�.�

.� .� .�/%.�/%.�

/LQH�EXIIHU

E�

E�

E�

�[��6KLIW�5HJLVWHU�$UUD\

F�F�F�F�F�F�F�F�

,EXII 2EXII

(a) Cycle t.

.�.�
E�

E�

E�

F�F�F�F�F�F�F�F�

(b) Cycle t+1.

.�.�
E�

E�

E�

F�F�F�F�F�F�F�F�

(c) Cycle t+2.

.�.�
E�

E�

E�

F�F�F�F�F�F�F�F�

(d) Cycle t+7.

Fig. 1: A line-bu�ered accelerator. Every stage has a dedicated
line bu�er (and the associated shift register array) to write
to. We use the line bu�er after stage 1 to illustrate the line-
bu�ering operations. The line bu�er stores three-pixel rows,
each stored in a two-port SRAM. As the producer writes the
second element in b3, pixels in column c1 are moved to the
shift register array. After three cycles the shift register array
contains the data from a 3 ⇥ 3 stencil window and 2 starts.
When 1 �nishes writing to b3, it writes to b1, since pixels
there will no longer be needed by the consumer.

and Qualcomm Spectra [4]), embedded computer vision proces-
sors [11, 24, 38, 40], and robotics accelerators [25, 32, 34], where
extreme e�ciency requires algorithm-speci�c accelerators.

Image Processing Accelerators. Fig. 1 shows a typical image
processing accelerator using a simple pipeline as an example. Each
algorithm stage is mapped to a dedicated hardware stage. The input
and output stages (0 and 2 here) interface with input/output
bu�ers that communicate with o�-chip memory. As extensively

ImaGen: A General Framework for Generating Memory- and Power-E�icient Image Processing Accelerators ISCA ’23, June 17–21, 2023, Orlando, FL, USA

studied before, those bu�ers are usually doubled bu�ered with high
access bandwidth, and are not the focus of this paper.

Stages communicate intermediate data through another set of on-
chip bu�ers, which make up the majority of the on-chip memory
usage. In particular, each producer stage has a dedicated bu�er
to write its intermediate data to; all its consumers read from that
bu�er. This is consistent with all image processing accelerator
designs [5, 7, 16, 38].

Ideally, all the inter-stage data communication tra�c should
be ful�lled entire on-chip; otherwise, o�-chip memory accesses
would stall the pipeline, which requires complicated hardware logic
for dynamic scheduling, introduces non-deterministic frame rates,
compromises peak throughput, and consumes high power. A naive
approach is to bu�er all the intermediate data between stages on-
chip. This comes with two downsides. First, the intermediate data
could be large in size and exceeds a typical on-chip memory capac-
ity. For instance, each 1080? image passed around between stages
consume 6 MB of data. Second, it arti�cially forces the consumer
to wait until the producer �nishes generating an entire image.

Line Bu�er. A common strategy to address these issues is to
use a special on-chip bu�er structure called “line bu�er”. The key
observation is that each pipeline stage, at any time, operates only on
data in a small, local window. Therefore, a consumer stage can start
as soon as the data in a stencil window is available, essentially con-
suming pixels incrementally as they are generated by the producer.
A pixel in the bu�er can be over-written when it is no longer needed
by the consumer (i.e., the stencil window has gone completely past
the pixel), reducing the on-chip memory requirement.

Consider the producer-consumer pair 1 and 2 in Fig. 1, where
 2 operates on a 3⇥3 stencil window from the output of 1 in every
cycle. To support this data communication pattern, the hardware
uses a line bu�er that stores three rows of pixels generated by 1;
the line bu�er is connected to a 3 ⇥ 3 shift register array, which
holds the data in a stencil window and is read by 2.

The producer starts writing from the �rst row, one pixel at a
cycle. As soon as the producer �nishes producing two rows plus
one element (Fig. 1a), the consumer can move the �rst column of
pixels (c1 here) from the line bu�er to the shift register array. In the
next cycle (Fig. 1b), as the producer writes to the third element of
b3, pixels in column c2 are moved to the shift register array. After
three cycles (Fig. 1c), the shift register array contains the data from
a stencil window, at which point 2 can start to produce its output.
Once 1 �nishes writing to b3, it will write to, instead of a new row,
the �rst row in the line bu�er (b1), overwriting data in b1, because
pixels there are no longer needed by the consumer (Fig. 1d). As a
result, the line bu�er has to store only three rows of pixels.

Implementation. In the actual hardware implementation of a
line bu�er, one would use 3 separate SRAMs, each storing one row
of pixels. At any give cycle, all three SRAMs are being read from and
there is one SRAM that is also being written to. The SRAM being
written to will rotate. As a result, all the SRAMs must have at least
two ports in this example. Note that when an image row is larger
than SRAM block size, the row can be split into multiple SRAM
blocks without changing the operating principle of line bu�ers.

.� .�.�

E�

E�

E�

F�F�F�F�F�F�F�F�

Fig. 2: Illustration of a line bu�er with multiple consumers.
 0 is the producer who is writing to cell c4 in block b3. 1 and
 2 are consumers that are reading columns c3 and c1 respec-
tively. Each line is in an SRAM block. Assuming the common
setting where each SRAM has two ports, the pipeline stalls
since b3 has to serve three accesses.

Table 1: Prior work makes rigid assumptions about the mem-
ory structures, which leads to sub-optimal designs, and/or
applies to only speci�c forms of algorithms.

Darkroom [16] FixyNN [38] SODA [7] Ours

On-chip memory
assumption

Dual port Single port
Dual port
(FIFO)

Generic

Algorithm
applicability

Single consumer Single consumer Generic Generic

3 MOTIVATION
Accelerator design decisions must be made according to the speci�c
algorithm pipeline and the memory resources available. Prior work
makes rigid assumptions about the algorithm structures and/or
memory resources available. As a result, they either have narrow
applicability or result in ine�cient designs. We summarize prior
work in Tbl. 1 and elaborate next.

3.1 Algorithmic Limitations
The basic design in Sec. 2 assumes dual-port SRAMs and “single-
consumer” pipelines, where each producer has only one consumer.
Multiple-consumer pipelines such as unsharp mask [16] and de-
noise2D [7], where multiples consumers read the output from a
producer, challenge the simple design. With multiple consumers,
one line is accessed by multiple hardware stages. As a result, there
could be more accesses to an SRAM block than there are ports,
leading to pipeline stalls.

Consider the algorithm in Fig. 1, where 0 has two consumers
 1 and 2. The line bu�er after 0 is simultaneously accessed
by three stages (the producer 0 and the two consumers). Fig. 2
shows a naive line bu�er design, where 0 is writing to (b3, c4),
and 1 and 2 are reading columns c3 and c1, respectively. As a
result, three di�erent stages are accessing the block b3. If there
are only two ports in each SRAM block, b3 will not be able to
handle all three accesses. Simply increasing the number of SRAM
ports is area-ine�cient as SRAM area increases quadratically with
the number of ports [37]. Prior work attempts to support multi-
consumer pipelines in primarily two ways, each coming with its
own downsides, which we explain next.

ISCA ’23, June 17–21, 2023, Orlando, FL, USA Nisarg Ujjainkar, Jingwen Leng, and Yuhao Zhu

.� .� .� .�
.�

.�
.��

/LQHDUL]HG�$OJRULWKP2ULJLQDO�$OJRULWKP

/LQHDUL]DWLRQ

Fig. 3: An example of algorithm linearization. We need an
additional line bu�er after 11. Note that even though 1
and 11 are both consumers of 0, they consume data in
exactly the same pattern and act e�ectively as one consumer.

.�

.�

(a) An FIFO implementation to support a single consumer (1)

.�

.�

.�

(b) An FIFO implementation to support multiple consumers (1 and 2).

Fig. 4: Line bu�er implementation using FIFO. Figure (a)
shows the single consumer case and (b) shows a multiple
consumer case, assuming each memory block has two ports.
In the multiple consumer case, to accommodate both con-
sumers each FIFO is split into two smaller FIFOs. A FIFO is
usually implemented as a dual-port SRAM block. The line
being written to by the producer usually holds only a few
elements (2 here) and, thus, can be implemented as a shift
register using DFFs to save on-chip memory usage.

Algorithm linearization. One can transform an algorithm
that has multiple-consumer stages into another functionally identi-
cal algorithm with only single-consumer stages, a process dubbed
“linearization” by Darkroom [16].

We use Fig. 3 to illustrate linearization. To linearize the pipeline,
we add a dummy stage 11 between 0 and 2. Each cycle, 11
reads data from 0 in exactly the same pattern as 1 but performs
no computation on the data. Essentially, the sole purpose of 11 is
to simply relay data from 0 to 2. As a result, 2 reads data from
 11 instead of directly reading from 0. Critically, even though 0
still has two consumes 1 and 11, the two consumers read data
from 0 in exactly the same pattern every cycle, so they e�ectively
act as a single consumer without requiring additional memory port.

The downside of this approach is that the linearized algorithm
increases on-chip memory usage than the original algorithm, be-
cause each dummy stage requires a dedicated line bu�er. In this
case, the additional line bu�er associated with 11 bu�ers the same
data that 1 does and is redundant.

Splitting line bu�er. Alternatively, one can split a line bu�er
that has multiple consumers into several smaller line bu�ers, each

serving only one consumer. An implication of this approach is that
data from one line bu�er must be transferred to another, which
requires each line bu�er to be realized as a FIFO. This approach is
exempli�ed by SODA [7] and line-bu�ered designs from Xilinx [5].

Fig. 4a shows FIFO-based line bu�er implementation when there
is only a single consumer. Usually a FIFO is implemented using a
dual-port SRAM/BRAM block. Therefore, every cycle there is one
read and one write access to every memory block. When two con-
sumers are trying to access the line bu�er, each FIFO must be split
into two FIFOs, each in a separate memory block, to accommodate
both accesses; this is illustrated in Fig. 4b. Note that if a FIFO be-
comes very small (e.g., a few elements), which is typically the case
for the line that the producer is writing to, it can be implemented
as a shift register using DFFs to reduce memory usage.

The downside of FIFOs is high energy consumption, because the
nature of FIFO dictates that every cycle there would always be two
accesses to each SRAMblock, whereas in the classic implementation
only one of three lines have to serve two accesses; other lines have
only one access each cycle. In our FPGA measurement (see Sec. 7
for details), BRAMs with two accesses per cycle consume about
35% more power than BRAMs with only one access per cycle.

3.2 Hardware Limitations
A fundamental limitation of prior approaches is that they use the
same form of memory for all the algorithms and for all the line
bu�ers in an algorithm, e.g., dual-port SRAM in Darkroom [16] or
single-port SRAM in FixyNN [38]. The actual design space, how-
ever, is much larger. For an algorithm with # stages where a line
bu�er has" implementation options, there are"# design points.
Navigating a large design space governed by memory resources is
especially important in ASIC designs, where, unlike FPGAs where
memory resources are �xed, one has the �exibility to customize
memories (e.g., size and ports) given area and/or power targets.

Critically, there exists a power-vs-area trade-o�when navigating
such a large design space. For instance, increasing the number of
memory ports increases the per-SRAM area and power consump-
tion but also reduces the number of SRAM blocks needed. As we
will show in Sec. 8.5, the exact Pareto-optimal frontier varies across
algorithms, a design space exploration that is not possible with
existing approaches.

Finally, it is worth noting that prior approaches could not gener-
ate any hardware design at all when the available memory resource
does not meet their requirement. For instance, the FIFO approach
by SODA [7] assumes dual-port memories. It thus does not work
when only single-port memories are available, further highlighting
the need to consider arbitrary memory con�gurations, which our
framework o�ers.

4 FRAMEWORK OVERVIEW
Fig. 5 shows the overall work�ow of our framework, which takes an
image processing pipeline described in a Domain Speci�c Language
(DSL) and the description of available memory resources (i.e., sizes
and number of ports) and generates synthesizable Verilog code.

Front End. Literature is rich with DSLs that express image
processing pipelines [16, 29], which is not the focus of this paper.
For simplicity, we use a DSL similar to Darkroom [16]. The code

ImaGen: A General Framework for Generating Memory- and Power-E�icient Image Processing Accelerators ISCA ’23, June 17–21, 2023, Orlando, FL, USA

Compiler Framework

Front End

Optimizer

RTL Code Gen

Line Coalescing

Constraint
Formulation

ILP Solver

DAG

On-chip Memory
Specification

Algorithm
Description

Rewritten DAG

Constraints

Pipeline
Schedule

Line Buffer
Config.

RTL

D
es

ig
n

Sp
ac

e
Ex

pl
or

at
io

n

Fig. 5: Compiler framework, which generates synthesizable
Verilog code given an image processing algorithm and on-
chip memory speci�cations. The framework can be inte-
grated into a DSE tool to generate Pareto-optimal designs.

below shows the algorithm in Fig. 1. Each stage is de�ned inside
the im block. input and output denote input and output stages
of the pipeline, for which o�-chip memory accesses are permitted.
The front-end parses an algorithm to a DAG as the intermediate
representation. Each DAG node is a pipeline stage, and each edge
connects a producer-consumer pair. The stencil window sizes are
encoded in DAG nodes.

LQSXW�.��
��.��UHDGV��[��ZLQGRZ�IURP�.��
.�� �LP�[�\�.��[���\��������.��[���\����HQG�
��.��UHDGV��[��ZLQGRZ�IURP�.��DQG��[��ZLQGRZ�IURP�.��
RXWSXW�.�� �LP�[�\�.��[�\������.��[���\�����
��������������.��[���\��������.��[���\����HQG

Optimizer. The core contribution of our work is the optimizer,
which takes a DAG and the memory resource speci�cations to
generate accelerator pipeline schedule and on-chip memory con-
�gurations, which are then used in generating synthesizable RTL
code for by the code generator.

The optimizer forms a constrained optimization problem that
minimizes the on-chip memory usage (Sec. 5). Unlike conventional
line bu�er synthesizers [7, 16, 38], the compiler exploits opportuni-
ties to coalesce image rows into the same bu�er through a simple
DAG re-writing, further reducing on-chip memory usage (Sec. 6).

RTL Code Generation. Given the pipeline schedule and the
line bu�er con�guration, the code generator generates synthesiz-
able RTL. The generated code has compute units that execute the
stencil operations, memory blocks that implement line bu�ers, and
control logic to sequence the hardware.

It is worth noting that the code geeneration is largely a mechan-
ical translation of arithmetic operations in each pipeline stage to
RTL code and, thus, is not a contribution of this paper. In fact, any

Table 2: List of symbols used in our formulation. Subscripts
8, 9, ?, 2 are used in denoting pipeline stages; ? and 2, in
particular, denote a producer and consumer, respectively.
Blackboard-bold symbols N,C,A denote sets.

Symbols Meaning

Total number of stages in the pipeline
!⌫8 Size of the line bu�er associated with stage 8
(8 Start cycle of a stage 8
N8 Set of stages accessing the line bu�er of stage 8
(�8 Stencil height of stage 81

⌫;,C Total number of accesses to a line ; at cycle C
% Number of SRAM ports
, Width of the input image to each stage2

C? Set of consumer stages of a producer stage ?
A8,C Set of lines stage 8 is accessing at cycle C3

!8,C The �rst line that a stage 8 is accessing at cycle C

existing HLS tool (e.g., Vivado HLS) can be used for code genera-
tion: one can use our optimizer to generate the optimal line bu�er
con�guration, which is then used in the HLS code to annotate the
memory sizes. To our best knowledge, today’s HLS tools such as
Vivado HLS require programmers to explicitly specify line bu�er
sizes, which our optimizer automatically generates.

5 GENERATING LINE-BUFFERED PIPELINES
We �rst describe the intuition behind our general idea (Sec. 5.1),
followed by a rigorous optimization formulation (Sec. 5.2). We then
discuss how on-chip memory contention, the key to our optimiza-
tion formulation, is modeled (Sec. 5.3), followed by a technique to
eliminate redundant hardware constraints (Sec. 5.4). In the end, we
show that our formulation amounts of an ILP problem (Sec. 5.5).

5.1 General Idea and Intuition
Objective. Our goal is to minimize the total on-chip memory size
while maintaining the theoretically maximum throughput, which is
quanti�ed by the number of pixels generated per cycle. The theoreti-
cally maximum throughput is fundamentally limited by the amount
of functional units the hardware can a�ord to have. Like virtually
all prior work [7, 16, 38], we assume that the theoretically maxi-
mum throughput is one pixel per cycle. Improving the throughput
simply amounts to increasing the compute resources, which is not
the focus of this paper. Note, however, that the one-pixel-per-cycle
assumption is reasonable for real-world applications. Assuming a

1A consumer stage can access data frommultiple producers and, thus, can havemultiple
stencil heights. We omit the producer stage from the symbol for simplicity, but the
producer stage is evident in each context where ⌘8 appears.
2Our current system, as is, can deal with stages without padding, in which case the
input image size is di�erent across stages and is trivially calculated given the stencil
window size. For the simplicity of the exposition we assume padding and use the same
, in the paper.
3Similar to (�8 , A8,C here is tied to a particular producer of 8 , which could have
multiple producers. The producer is omitted in the symbol for simplicity, but should
be evident given the context.

ISCA ’23, June 17–21, 2023, Orlando, FL, USA Nisarg Ujjainkar, Jingwen Leng, and Yuhao Zhu

100 MHz clock frequency, producing one pixel per cycle is equiva-
lent to providing a 50 frames per second (FPS) frame rate for 1080?
images, su�cient for real-time operations.

We emphasize that the accelerator must consistently deliver the
prescribed throughput across frames. It is unacceptable if some
frames are lower that others even if the average frame rate is desir-
able, because a varying frame rate presents a sluggish user experi-
ence. To ensure a consistent throughput, the accelerator pipeline
must not stall (once a pipeline starts it never stalls until all the input
pixels �nish), which translates to meeting three requirements:

'1 Data dependency (causality): any pixel, before can be read by a
consumer, must already be generated by the producer and is available
in the line bu�er ;

'2 No intermediate o�-chip memory access: a pixel is evicted from
a line bu�er only when it is no longer needed by any of its consumers
(to avoid DRAM accesses later);

'3 No on-chip memory access stall: at any cycle, the number of ac-
cesses to any on-chip memory block must be no more than the number
of ports.

Solution Intuition. Intuitively, a generic solution to meeting
bothmemory requirements is to delay the start of certain consumers.
For instance, when two consumers of the same producer are allowed
to start at the same cycle, each memory block has to serve two
simultaneous read accesses. Now if one consumer is delayed by,
cycles where, is the width of an image, the two consumers will be
reading from two di�erent memory blocks (image rows), avoiding
memory-port contention. Delaying the start of a consumer also
providing more time for the producer to generate intermediate data.

Delaying consumers, however, increases the line bu�er size,
because an element is evicted from the line bu�er only when it is no
longer needed by any consumer; delaying a consumer would mean
that data will have to stay in the line bu�er for longer, increasing
the line bu�er size. Thus, the central challenge is how to optimally
shift: how to schedule di�erent pipeline stages to minimize total
line bu�er size while meeting the data and hardware constraints.

5.2 Optimization Formulation
Formally, the job of our hardware generator can be described in a
constrained optimization formulation:

min
q

!⌫(q) =
#�1’
8=0

!⌫8 (q),

F⌘4A4 q = {(8 }, 8 2 [0, 1, · · · ,# � 1] (1a)
B .C . 8(?, 2) (2 � (? � ((�2 � 1) ⇥, + 1, (1b)

8;8C ⌫;,C (q)  % . (1c)

OptimizationObjective. Equ. 1a states the optimization objective.
q , the schedule, denotes the collection of the start cycles of all the
stages {(8 } (8 is an integer between 0 and # � 1, where # is the
number of pipeline stages). !⌫(q) denotes the total line bu�er size,
which is the sum of the # individual line bu�er sizes. Recall from
Fig. 1 that each stage is associated with a line bu�er, so the number
of line bu�ers is the same as the number of pipeline stages, # .

The size of each line bu�er is dictated by the start cycles of
the producer stage and the consumer stages. For instance, given a
producer-consumer pair (?, 2) in the pipeline and their start cycles
(? and (2 , there is a ((2�(?)-cycle delay between the consumer and
the producer. According to '2 above, the line bu�er must have
the ability to bu�er at least ((2 � (?) pixels before the consumer
starts, because each pixel can be removed from the line bu�er only
after it has been consumed.

Considering that there could be multiple consumers of the same
producer and any element can be removed from the line bu�er only
after the last consumer �nishes reading it, the line bu�er size of a
particular stage ? is:

!⌫? =

&
max

�
(2 � (?

,

'
⇥, , 82 2 C? , (2)

where 2 is one of ?’s consumers, denoted by C? . The ceiling opera-
tion is to enforce that a line bu�er always stores multiples of a line
and, thus, the actual line bu�er size must be multiples of, , where
, is the image width.

Data Dependency. Equ. 1b states the data dependency require-
ment '1 : an element must be in the line bu�er before it can be read
by its consumer(s). Due to the nature of stencil computations, the
data a consumer reads might span multiple image rows. Therefore,
a consumer must wait before the line bu�er has certain number
of pixels. For instance, if we have a consumer whose stencil size
is 3 ⇥ 3, the consumer must wait until the line bu�er contains two
full rows of pixels and one pixel from the third row (see Fig. 1a).

Generally, for any producer-consumer pair (?, 2), the consumer
start cycle must be delayed ((�2 � 1) ⇥, + 1 cycles after the
producer has started, where (�2 is the height of the stencil window
read by the consumer.

Equ. 1c states the on-chip memory constraint '3 , which is far
more complicated to express, which we discuss next.

5.3 Modeling On-chip Memory Contention
Equ. 1c states that ⌫;,C , the number of accesses to any line ; in the
line bu�er at any given cycle C , must be no more than the number
of ports (%) of the SRAM block that contains line ;4. The key is to
mathematically express ⌫;,C . To that end, we �rst express the set of
lines that a stage accesses at each cycle.

Consider a pipeline stage 8 accessing a line bu�er at cycle C . The
�rst line accessed by stage 8 at C , denoted by !8,C , is:

!8,C =
⇠
C � (8
,

⇡
. (3)

Thus, the Access Set of stage 8 , i.e., the set of lines that stage 8
accesses, at cycle C is5:

A8,C =
�
!8,C , !8,C + 1, · · · , !8,C + (�8 � 1

. (4)

To satisfy the hardware constraint, no line can belong to the
intersection of more than % sets. This is equivalent to saying that
4In theory % should be represented as %; to indicate that each SRAM could have a
di�erent number of ports. For simplicity purpose we assume that all the SRAMs in the
hardware have the same number of ports. Our formulation, nevertheless, can be easily
extended to support di�erent port counts.
5A subtlety here is that the stencil height for the stage that writes to the line bu�er is
always 1.

ImaGen: A General Framework for Generating Memory- and Power-E�icient Image Processing Accelerators ISCA ’23, June 17–21, 2023, Orlando, FL, USA

.� .�

E�

E�

E�

/%.�

/%.� .�

Fig. 6: Example illustrating how to calculate Access Sets. At
the current cycle C shown in the �gure, 0’s Access Set is
�0,C=(b3), 1’s Access Set is �1,C=(b1,b2,b3), and 2’s Access
Set is �2,C=(b1,b2). Assuming each line stores in a dual-port
SRAM, the hardware constraint would be�0,C \�1,C \�2,C = ;
(Equ. 6), which after constraint pruning is reduced to �0,C \
�2,C = ; (Sec. 5.4).

the intersection of any (% + 1)-combination is always an empty set.
Hence, the hardware constraint at each stage 8 can be expressed
mathematically as:

8C 8T 2
✓
N8
% + 1

◆ Ÿ
82T
A8,C = ;, (5)

where
� N8
%+1

�
denotes the set of all (% + 1)-combinations of N8 , which

itself is the set of all the stages that access the line bu�er of stage 8 .
To concretize Equ. 5, consider the example in Fig. 6, where the

line bu�er !⌫ 0 is accessed by one producer (0) and two con-
sumers (1 and 2). Assuming the SRAM has two ports, a common
con�guration in SRAM/BRAM blocks, the hardware constraint for
!⌫ 0 is expressed as:

8C A0,C \ A1,C \ A2,C = ; (6)

where A0,C , A1,C , and A2,C are the Access Sets of stages 0, 1, and
 2, respectively, at cycle C .

To enforce this constraint, one would enforce any of the follow-
ing three constraints, the intuition being if the intersection of any
two sets is empty the intersection of all three sets is necessarily
empty:

8C A0,C \ A1,C = ;, (7a)
8C A0,C \ A2,C = ;, (7b)
8C A1,C \ A2,C = ;. (7c)

Equ. 7a – Equ. 7c involve calculating set intersections (or, equiv-
alently, counting), not amenable to usual numerical optimizations.
We must transform them to equivalent numerical expressions.

Without losing generality, consider the constraint8C A8,C\A9,C =
;. Enforcing it is equivalent to enforcing that the last line written
by B8 (at any cycle C) must be above the �rst line read by B 9 . That is:

8C !8,C + (�8 � 1 < !9,C , (8)
which, after applying Equ. 3, becomes:

8C
⇠
C � (8
,

⇡
+ (�8 � 1 <

⇠
C � (9
,

⇡
. (9)

Equ. 9 depends on C , which does not have an upper bound. There-
fore, C must be eliminated for the constraint to be usable. Our strat-
egy is to (somehow) remove the ceiling operator (d e), which would

allow C to be canceled out from both sides of Equ. 9. To that end,
observe that:

G  dGe < G + 1, (10)

from which we can derive:

⇠
C � (8
,

⇡
<

✓
C � (8
,

◆
+ 1, 0=3

✓
C � (9
,

◆

⇠
C � (9
,

⇡
. (11)

Combining Equ. 11 with Equ. 9, we can transform Equ. 9 into
the following constraint:

8C
✓
C � (8
,

◆
+ 1 + (�8 � 1 

✓
C � (9
,

◆

⌘ (8 � (9 �, ⇥ (� 9 . (12)

Equ. 12 is now independent of C . Note that Equ. 12 is a stricter
constraint than Equ. 96, which means the solutions obtained with
Equ. 12 is a subset of those obtained with Equ. 9, sacri�cing the
solution optimality. The desirable trade-o�, however, is that the
constraint is independent of C . Equ. 12 is then applied to re-write
Equ. 7a, Equ. 7b, and Equ. 7c.

5.4 Constraint Pruning
One potential issue is that the constraints in Equ. 7a, Equ. 7b, and
Equ. 7c are to be “OR-ed”; that is, only one of the three constraints
needs to be satis�ed. Normally, this would require us to formulate
three di�erent sub-optimization problems, each of which considers
one of the constraints individually. When a pipeline has multiple
stages, each of which has constraints that are to be “OR-ed”, the
total number of sub-problems grows combinatorially.

To reduce the optimization time, we observe that constraints
in Equ. 7a, Equ. 7b, and Equ. 7c are not mutually exclusive, which
allows us to prune some of them. We use the example in Fig. 6 to
provide the intuition of constraint pruning, and then discuss how
it is extended to general cases.

An Example. Observe that the constraint in Equ. 7b is more
relaxed than that of Equ. 7a and Equ. 7c. That is, if Equ. 7a (or
Equ. 7c) holds, Equ. 7b necessarily holds:

8C A0,C \ A1,C = ; =) 8C A0,C \ A2,C = ;, (13a)
8C A1,C \ A2,C = ; =) 8C A0,C \ A2,C = ; (13b)

where � =) ⌫ reads “� implies ⌫.”
Intuitively, Equ. 13a holds because stage 2 data-depends on

stage 1, which implies that 2 must start after 1. Therefore, at
any time the �rst line 2 writes to must be below the �rst line 1
writes to (Equ. 14a), which in turn must be below the last line 0
writes to (Equ. 14b) given 8C A0,C \A1,C = ;. Therefore, transitivity
dictates that the �rst line 2 writes to is below the last line 0

6The proof is a simple application of the transitivity of the “less than” (<) relation,
which we omit here due to space limit.

ISCA ’23, June 17–21, 2023, Orlando, FL, USA Nisarg Ujjainkar, Jingwen Leng, and Yuhao Zhu

.�.�
���
���
���

E�
E�
E�

(a) Without line coalescing.

.�
������

���

.�� .��

.��

.��
E�

E�

(b) With line coalescing.

Fig. 7: Illustration of line coalescing optimization. Figure (a) shows the implementation with line combination and (b) shows
that with line combination, assuming each memory block has two ports. In line combination, we place two consecutive lines in
the same memory block. E�ectively, the consumer stage 2 in the DAG is replaced with two “virtual” stages, 21 and 22, each
of which has a stencil height of 2 and 1, respectively.

writes to (Equ. 14c), hence 8C A0,C \ A2,C = ;.

�8ABC (A2,C) > �8ABC (A1,C), (14a)
�8ABC (A1,C) > !0BC (A0,C) (14b)

=) �8ABC (A2,C) > !0BC (A0,C) (14c)

The validity of Equ. 13b can be similarly reasoned about using
the fact that 1 data-depends on 0.

In general, given two constraints � and ⌫ that are to be “OR-
ed”, if � is more relaxed than ⌫, it is safe to eliminate ⌫ without
sacri�cing optimality, because any solution that satis�es ⌫ must
also satisfy �. Therefore, in the example above we could eliminate
constraints in Equ. 7a and Equ. 7c.

Generalization. The example above shows that data depen-
dency is key in eliminating redundant constraints. In particular,
data dependencies allow us to form partial orders 4 between stages.
If there is a path in the DAG from stage 8 to stage 9 , i.e., stage 9
(directly or indirectly) depends on stage 8 , we have a partial order
8 4 9 . Re�ectivity holds for partial order relation: 8 4 8 . We have
the following theorem.

T������. Given two generic constraints ⇠1 and ⇠2:

⇠1 : 8C AG,C \ A~,C = ; (15)
⇠2 : 8C AI,C \ AF,C = ; (16)

⇠1 is more relaxed than ⇠2 (i.e., ⇠2 implies ⇠1) if G 4 I,F 4 ~, and
(�G  (�I .

P����. G 4 I leads to Equ. 17a, which combinedwith (�G  (�I
gives Equ. 17b;F 4 ~ gives Equ. 17c;⇠2 gives Equ. 17d; transitivity
thus yields Equ. 17e, which leads to ⇠1. Thus, ⇠2 implies ⇠1 and
can be eliminated given ⇠1.

�8ABC (AG,C) < �8ABC (AI,C), (17a)
!0BC (AG,C) < !0BC (AI,C), (17b)
�8ABC (AF,C) < �8ABC (A~,C), (17c)
!0BC (AI,C) < �8ABC (AF,C), (17d)

=) !0BC (AG,C) < �8ABC (A~,C) (17e)

The theorem is a pruning rule: we examine each pair of con-
straints and eliminate the stricter one, if it exists, using the pruning
rule. Note that given two constraints it is possible that one can not
make a judgment as to which is more relax/stricter, because there
might not always be a partial order between two stages in a DAG.

5.5 Problem Structure and Solver
The optimization problem we formulate is an Integer Linear Pro-
gramming problem: the optimization variables are the start cycles
of each stage—all integers; the objective function (Equ. 1a) and the
constraints (Equ. 1b and Equ. 12) are all linear. Note that the ceiling
operations in the sub-terms of the objective function (Equ. 2) can
be removed without compromising the solution optimality, because
minimizing 5 (dGe) is equivalent to minimizing 5 (G) given 5 is
monotonically increasingly 7. The ILP formulation let us use well-
established solvers to quickly derive optimal line bu�er designs.

6 LINE-COALESCING OPTIMIZATION
So far, we have assumed that each memory (e.g., SRAM/BRAM)
block contains one line. It is possible, however, that the capacity of
a memory block is large enough to hold multiple lines, in which
case combining multiple lines into one single memory block would
further reduce the memory requirement. The challenge is how to
generate the line-bu�ered pipeline under line coalescing. We show
that our optimization formulation above can be naturally extended
to support optimal line coalescing.

Consider the example in Fig. 7, where there are two stages, a
producer 1 and a consumer 2; the consumer operates on a stencil
height of 3. Assume for now that each memory block has two ports.
Fig. 7a and Fig. 7b show the line bu�er implementation without and
with line coalescing, respectively. Since each memory block has two
ports, we could coalesce up to two lines into one memory block,
which is shown in Fig. 7b. The three elements that 2 accesses
are now spread across two, rather than three, memory blocks, as
elements (0, 0) and (1, 0) are in the same memory block.

To express the line-coalesced pipeline to the optimizer, our ob-
servation is that line coalescing is equivalent to a transformation
of the DAG, where the original stage 2 is replaced with two new
“virtual” stages 21 and 22. In this example, b1 is accessed simul-
taneously by the two virtual stages, whereas b2 is accessed by only
 21 (along with the producer 1). Thus, the virtual stage 21 now
has an e�ective stencil height of 2, and the virtual stage 22 has an
e�ective stencil height of 1. Both virtual stages inherit the producer
and consumers of the original stage 2.

7More rigorously, we have: argmin 5 (G) 2 argmin 5 (dG e) . That is, the solution that
minimizes 5 (G) is necessarily a solution that minimizes 5 (dG e) for any monotonically
increasing function 5 . To prove this, let G0 = argmin 5 (G) ; then 8G 5 (G) � 5 (G0) ,
so 8G G � G0 (since 5 is monotonically increasing). Thus, 8G dG e � dG0 e, which
means 8G 5 (dG e) � 5 (dG0 e) , i.e., G0 2 argmin 5 (dG e) .

ImaGen: A General Framework for Generating Memory- and Power-E�icient Image Processing Accelerators ISCA ’23, June 17–21, 2023, Orlando, FL, USA

We can generalize line coalescing to memory blocks with % ports,
where we can coalesce at most % lines in one block and replace the
original consumer stage with % virtual stages. This transformation
can be done o�ine, since it depends only on the algorithm DAG and
stencil sizes. Algo. 1 describes the general transformation algorithm.

Algorithm 1: Line coalescing algorithm through DAG
rewriting. Notation: % is the number of ports, (�8 is the
stencil height read by stage 8 .
Data: The original DAG
Result: The transformed DAG
i = input node of the original DAG;
while i is not an empty node do

if i is not the input node then
 = min(%, (�8);
split 8 into virtual stages;
for each virtual stage E split from 8 do

set E ’s producer to 8’s producer;
set E ’s consumers to 8’s consumers;

end
end
8 = next node through breath-�rst search;

end
return the new DAG;

From the optimizer’s perspective, the transformed DAG is noth-
ing more than another pipeline except all the virtual stages be-
longing to the same physical stage must share the same start cycle,
because logically they must act synchronously. Using the optimiza-
tion formulation in Equ. 1, the optimizer generates the optimal
start cycles for every stage in the new DAG. One special care the
code generator takes is that virtual stages that belong to the same
physical stage read from a di�erent, but o�ine-determined o�set.
For instance in Fig. 7, 22 will always read from an o�set of,
(image width) from b1, where 21 and 1 have an o�set of 0.

Remarks. We note that the line coalescing optimization is
fundamentally incompatible with the FIFO-based approach [7] or
designs that assume single-port memories [38]—simply observe the
data access behaviors in Fig. 7b.

Line coalescing bene�ts both an FPGA and an ASIC backend.
On FPGAs, BRAM block sizes are �xed on any particular board;
forcing each block to hold only one line could result in internal
fragmentation of BRAM blocks. ASICs designers could customize
the memory for an algorithm; they could properly size the memory
blocks to permit line coalescing to reduce the overall area (Sec. 8.5).

7 EXPERIMENTAL METHODOLOGY
Compiler Implementation. We implement our compiler in Python
with about 1,500 lines of code. We use Google’s optimization library
“or-tools” [2] for solving the ILP problem.

Hardware Platform. We evaluate both an ASIC �ow and an
FPGA �ow.We use a Xilinx Spartan-7 FPGA board (xa7s100fgga488-
2I) for evaluation. The board has 120 BRAM blocks and each block
is of size 36 Kbits. Each block can be con�gured as either a single-
port or a dual-port memory block. We assume SRAM blocks are

Table 3: Evaluation algorithms. -s or -m indicates if an al-
gorithm has only single-consumer stages or has at least
one multiple-consumer stage, respectively. The last column
shows the number of multiple-consumer (MC) stages.

Algorithm Description # Stages # of MC Stages

Canny-s Canny edge detection 9 0
Canny-m 10 1
Harris-s Harris corner detection 7 0
Harris-m 7 1
Unsharp-m Unsharp masking 5 1
Xcorr-m Cross correlation 3 1
Denoise-m Image denoise 5 2

available at 64 KB for line bu�ers in the ASIC backend. We evaluate
two image resolutions: 320? (480 ⇥ 320) and 1080? (1920 ⇥ 1080).
The SRAM and BRAM block sizes make sure line coalescing applies
to 320? but not 1080? , since the block size is not large enough to
hold multiple rows in an 1080? image.

For the FPGA backend the generated Verilog code goes through
the FPGA synthesis and layout �ow using Vivado Design Suite
2021.1. We use Vivado’s resource monitor to report the BRAM us-
age. The FPGA communicates with the host through AXI DMA.
Through DMA, we �rst load the input image to the BRAM from
the host memory. The frame rate reported (1 pixel per cycle) is
the throughput after the accelerator has started, i.e., steady-state
throughput. For each design, we perform post-implementation func-
tional simulation to obtain the switching activity, which is then
used by Vivado’s power analysis tool to obtain power consumption.

For the ASIC backendwe build a cycle-level simulator to simulate
the line-bu�ered pipelines. We use the open-source memory com-
piler OpenRAM[14] with FreePDK45 [1] to estimate the per-access
SRAM power, which is then combined with the number of accesses
given by our simulator to estimate the total memory power.

Since the goal of this paper is to reduce on-chip memory size
and energy, we primarily report results related to the on-chip mem-
ory but will also show savings for the entire accelerator. Note
that the memory area dominates the accelerator area, so the mem-
ory area/power savings are expected to translate to similar total
area/power savings. In the ASIC backend, the SRAM area con-
tributes to, on average, 79.8% and 92.7% of the total accelerator area
across all algorithms on 320? and 1080? images, respectively. The
reason memory area dominates is that there are very few PEs in
line-bu�ered accelerators: to execute a 3⇥3 convolution, regardless
of the input, we require only 3 ⇥ 3MAC units (see Fig. 1). The total
area, on average, is 0.65<<2 and 1.84<<2, for the two resolutions,
respectively, and the total average power is 72.9<, and 98.3<, ,
for the two resolutions, respectively.

Algorithms. We evaluate common image processing algorithms
listed in Tbl. 3, where each algorithm either ends with an “-s”, indi-
cating it has only single-consumer stages or with an “-m”, indicating
it has at least one multiple-consumer stage. Both Canny and Harris
has two versions depending on the implementation details.

Baselines and Variants. We compare with three common
line-bu�ered image processing accelerators.

ISCA ’23, June 17–21, 2023, Orlando, FL, USA Nisarg Ujjainkar, Jingwen Leng, and Yuhao Zhu

• FixyNN [38], which is based on the same design described
in Sec. 2 but uses only single-port SRAMs.

• SODA [7], which uses FIFO to implement line bu�ers and
splits FIFOs to support multiple-consumer stages (Sec. 3).
The FIFOs are implemented using dual-port SRAMs (rather
than shift registers).

• Darkroom [16], which linearizesmultiple-consumer pipelines
(Sec. 3) and uses two-port SRAMs.

We consider two variants of our framework:O��� andO���+LC.
The latter adds line-coalescing to the former.

8 EVALUATION RESULTS
We �rst show that our compiler maintains the theoretical maximum
throughput (Sec. 8.1) and is fast to execute (Sec. 8.2). We then
show that the hardware generated by our framework consumes
less memory resource (Sec. 8.3) and lower power (Sec. 8.4) compared
to existing methods. Finally, we show that our framework can help
customize memory modules for individual algorithms (Sec. 8.5).

8.1 Throughput and Latency
Across all algorithms, hardware generated by our compiler main-
tains a constant throughput of one pixel per cycle, the target laid
out and justi�ed in Sec. 5.1. O��� increases the average end-to-end
latency by only 0.01% over Darkroom and SODA. Thus, the memory
and power savings shown later come with no speed degradation.

8.2 Compilation Speed
On average, our compiler takes 14.5 ms to generate the Verilog
code across all the algorithms. For multiple-consumer algorithms,
constraint pruning (Sec. 5.4) speeds up the compilation time by
4⇥ on average. This is achieved by pruning redundant constraints
that would have led to many sub-optimization problems. Compared
to Darkroom’s linearization compiler, our compiler, on an aver-
age, compiles 37.4% faster. This is because linearization adds adds
dummy stages, which adds more constraints to the ILP.

Scalability. We also sweep across di�erent pipelines of varying
length from 9 to 60. In each algorithm a third of the stages had
multiple consumers. It took 8.7 ms for our compiler to compile 9
stage pipeline and 8.1 s to compile the 60 stage pipeline, showing
the scalability of our compiler.

8.3 On-Chip Memory Requirement Reduction
Accelerators generated by our framework reduce the on-chip mem-
ory size signi�cantly. Fig. 8a compares the SRAM size of the hard-
ware generated by our framework and the three baselines on 320?
images. Averaging over all the algorithms, O��� reduces the SRAM
size by 28.0% and 10.2% compared to FixyNN and Darkroom, respec-
tively. After the line-coalescing optimization is applied, the SRAM
savings over the baselines increase to 86.0% and 56.8%, respectively.

The SRAM saving onmultiple-consumer algorithms is noticeably
higher than that on single-consumer algorithms, highlighting the
bene�ts of our framework on the former. On multiple-consumer al-
gorithms, algorithm linearization adds dummy stages and increases
line bu�er size. FixyNN always has a higher SRAM requirement
than O���, even on single-consumer algorithms, because it uses
only single-port memory blocks, where no two stages are allowed

(a) SRAM size.

(b) Power consumption.

Fig. 8: SRAM and power comparison on 320? images.

(a) SRAM size.

(b) Power consumption.

Fig. 9: SRAM and power consumption comparison on 1080?
images. Note that O���+LC is not shown, since the SRAM
size is not large enough to hold more than one lines.

to overlap. The SRAM saving is particularly signi�cant on Xcorr-m.
This is because when linearizing Xcorr-m, one of the stages that
are replicated operates on a tall stencil window (18⇥1); replicating
that stage adds a lot of additional SRAM blocks.

The SRAM requirement of O��� is 31.0% higher than SODA,
because SODA, being a FIFO-based approach, is able to implement
the last line in the line bu�er (the line being written to by the
producer) as DFFs (Fig. 4a). With line coalescing, O���+LC reduces
the SRAM requirement by 28.5% compared to SODA.

ImaGen: A General Framework for Generating Memory- and Power-E�icient Image Processing Accelerators ISCA ’23, June 17–21, 2023, Orlando, FL, USA

Fig. 9a shows that the SRAM saving trend on 1080? inputs is
similar to that on 320? inputs, except that the line coalescing op-
timization could not be applied to 1080? images, since the SRAM
block size is not large enough to hold more than one line, as dis-
cussed in Sec. 7.

Accelerator Results. Memory area dominates the accelerator
area, as discussed in Sec. 7. Thus, the memory size saving translates
to similar total accelerator area saving. For instance, compared to
FixyNN and Darkroom on 320? images, O���+LC saving the total
area by 51.2% and 41.9%, respectively. The savings are 27.9% and
12.9% on 1080? images.

FPGA Results. Due to the space limit we summarize the main
results from the FPGA implementation. On 1080? images, O���
reduces the BRAM size by 28.1% and 10.2% compared to FixyNN and
Darkroom, respectively, and increase the BRAMusage by 22.8% over
SODA, for the same reason described above. On our FPGA, O���
uses 37.5% of the BRAM blocks as opposed to 41.8% by Darkroom.

Multiple Algorithms. Our goal is not a generic stencil acceler-
ator that runs multiple algorithms. Rather, we focus on accelerators
that are specialized for a given algorithm. Nevertheless, by reducing
memory usage our compiler can also help generic stencil acceler-
ators that has one single memory system — by accommodating
more algorithms simultaneously. For instance, on our FPGA with
120 BRAM blocks, FixyNN and Darkroom could not simultane-
ously execute all six algorithms even in the 320? resolution because
of the BRAM constraint. With O���+LC, however, the FPGA can
accommodate all six algorithms using only 84 BRAM blocks.

8.4 Power Consumption Reduction
We also generate accelerators that consume lower memory power
compared to all baselines. Fig. 8b compares the power consumption
on 320? images. On average, O��� consumes 7.8%, 13.8%, and 56.0%
less power than FixyNN, Darkroom, and SODA respectively. Line
coalescing does not change the power by much, since the total
memory accesses remain roughly the same. The power savings
over Darkroom and FixyNN come from the SRAM size reduction.
For instance, while FixyNN, which uses only single-port memories,
has lower per-access power, using single-port memories results in
more SRAMs, increasing the total power.

It is interesting to observe that O��� has lower power compared
to SODA even though O��� require more SRAM arrays than SODA
(Fig. 8a). This is because SODA uses FIFOs, which have to serve two
accesses every cycle. In our design, all but one SRAM array serve
only one access per cycle, leading to an overall power reduction. The
power saving of O���+LC over SODA comes from both reducing
the SRAM requirement and avoiding power-hungry FIFOs.

Fig. 9b compares the power consumption using 1080? images.
O��� consumes 7.8%, 13.8%, and 56.0% less power than FixyNN,
Darkroom, and SODA, respectively. Again, even though O��� uses
more SRAM than SODA, it has lower power consumption because
it avoids power-hungry FIFOs.

Accelerator Results. Memory power savings translate to simi-
lar accelerator-level savings. On 320? imagesO��� consumes 11.7%
and 15.2% less power compared to Darkroom and SODA, respec-
tively; on 1080? images the savings are 11.9% and 18.3%.

(a) Canny-m. (b) Denoise-m.

Fig. 10: Representative power-vs-area trade-o�s under 320?
for Canny-m and Denoise-m. For each algorithm, we sweep
the memory con�guration for each stage and generate a cor-
responding optimal design. Each stage is allowed to use either
double-port memory (DP) or DP with line coalescing (DPLC).
The Pareto-optimal designs vary with algorithms.

FPGA Results. The power saving trend on the FPGA is similar.
On 1080? inputs, O��� consumes 19.7%, 5.8%, and 17.7% less power
than FixyNN, Darkroom, and SODA, respectively. The FPGA power
saving is lower, because FPGAs consume non-trivial static power.

8.5 Design Space Exploration
Evaluation so far assumes that one type of line bu�er is used for
all the stages in all algorithms, which is the only option in prior
work [7, 16, 38]. Since our framework permits specifying arbitrary
memory con�gurations, it can be used (by ASIC designers) to create
custom memory modules to explore the power-vs-area trade-o� in
an algorithm-speci�c manner. Speci�cally, we allow each line bu�er
in an algorithm to be implemented as either a double-port memory
(DP) or DP with line coalescing (DPLC). For each algorithm, we
then sweep all the possiblememory con�guration combinations and
generate the corresponding optimal design for each combination.
For example, if there are four stages in an algorithm, we would end
up with 16 di�erent designs.

We observe that the Pareto-optimal designs vary with algorithm.
Using 320? as an example, Fig. 10a shows the power-vs-area com-
parison for Canny-m, where there are three Pareto-optimal designs.
P1 uses the DP con�guration for all the stages; in P2, one stage
uses the DPLC con�guration, and in P3 two stages use the DPLC
con�guration. In contrast, Fig. 10b shows another trade-o� pattern
possessed by Denoise-m, where there are only two Pareto optimal
con�gurations. In this case, P1 uses only DP for all the stages and
P2 uses only DPLC for all the stages.

We particularly note that forCanny-m the design that uses DPLC
for all stages is P4 in Fig. 10a, which is far worse than the three
Pareto-optimal designs of Canny-m. DPLC reduces the number
of SRAM arrays and the total area, but the per access power also
increases. Thus, the total power depends on the total memory ac-
cesses, which is necessarily algorithm-speci�c, an exploration that
is uniquely enabled by our tool.

9 RELATEDWORK
Agile accelerator design has received considerable attention. A
recent theme is languages that close the gap between high-level
algorithm semantics and hardware design [20, 21, 26, 33]. These
languages allow high-level descriptions of an algorithm and expose

ISCA ’23, June 17–21, 2023, Orlando, FL, USA Nisarg Ujjainkar, Jingwen Leng, and Yuhao Zhu

the hardware as a set of primitive components. Our work focuses
on one particular kind of algorithm domain (image processing),
and one particular aspect of hardware components: line-bu�ered
on-chip memory.

Dahlia [26] uses a type system to reject programs that could
have unpredictable behaviors in hardware — memory contention
being one of them. Our work encodes memory-port contention as
a constraint and generates (resource-optimal) hardware that avoids
contention. Aetherling [8] is a DSL that compiles high-level im-
age processing algorithms to hardware with the focus of exploring
resource-vs-throughput trade-o�s. It does not guarantee minimiz-
ingmemory resource consumption, which we do. HeteroHalide [22]
and HeteroCL [21] synthesize hardware accelerators and rely on
SODA [7] to generate the on-chip memory system. HalideHLS [28]
generates accelerators for image processing algorithms, but rely
on the user to optimize the on-chip memory. DSAGEN [36] anno-
tates algorithms using pragmas and automatically searches a large
architecture design space for a range of algorithms.

An orthogonal e�ort is mapping/scheduling an algorithm onto
a �xed hardware substrate. Prior work uses constrained optimiza-
tion methods [11, 19, 27], targeting mostly deep learing workloads.
They leverage the fact that the accelerator design space can usually
be parameterized and behaviors of algorithms of interest can be
mechanically modeled, two traits that our work leverages, too.

10 CONCLUSION AND FUTUREWORK
This paper presents a framework that automatically synthesizes
accelerators for image processing. The key is an optimization for-
mulation that permits expressing memory contention as a generic
constraint. The explicit memory-constrained optimization allows us
to avoid manual heuristics and customize designs in an application-
speci�c way. We show that accelerators generated by our frame-
work reduce on-chip memory usage and power by up to 86.0% and
62.9%, respectively, when compared to state-of-the-art methods.

We demonstrate our framework on image processing because it
is central to emerging applications such as autonomous machines.
Fundamentally, however, our framework is not limited to image
processing; rather, it generalizes to all stencil algorithms, which are
central to scienti�c computing, many of which operate on generic
meshes rather than images [18]. Our main technical novelty, i.e.,
expressing on-chip memory contention in a way that is amenable
to numerical optimization, generalizes to any regular algorithm
accessing arbitrary on-chip memories, not just line bu�ers.

Interesting lines of future work include automatically synthesiz-
ing sparse image processing accelerators [13, 23] and accelerators
that operate on irregular visual data such as meshes and point
clouds [9, 10, 39]. These are application domains where accelera-
tors are almost exclusively manually designed.

11 ACKNOWLEDGEMENTS
We thank the anonymous reviewers from HPCA 2023 and ISCA
2023 for their valuable feedback. Jingwen Leng and Yuhao Zhu are
the corresponding co-authors. The work was supported, in part, by
NSF under grants #2044963 and #2126642.

REFERENCES
[1] [n. d.]. FreePDK45. https://eda.ncsu.edu/freepdk/freepdk45/.

[2] [n. d.]. Google OR-Tools. https://developers.google.com/optimization.
[3] [n. d.]. Mali-C55. https://developer.arm.com/Processors/Mali-C55.
[4] [n. d.]. Snapdragon Makes Signi�cant Leap for Mobile Cameras with

Qualcomm Spectra Image Signal Processor and Snapdragon Sight.
https://futurumresearch.com/snapdragon-makes-signi�cant-leap-for-mobile-
cameras-with-qualcomm-spectra-image-signal-processor-and-snapdragon-
sight/.

[5] Daniele Bagni, Pari Kannan, and Stephen Neuendor�er. 2017. Demystifying the
Lucas-Kanade optical �ow algorithm with Vivado HLS. Tech. note XAPP1300.
Xilinx (2017).

[6] Nanchini Chandramoorthy, Giuseppe Tagliavini, Kevin Irick, Antonio Pullini,
Siddharth Advani, Sulaiman Al Habsi, Matthew Cotter, John Sampson, Vijaykr-
ishnan Narayanan, and Luca Benini. 2015. Exploring Architectural Heterogeneity
in Intelligent Vision Systems. In Proc. of HPCA.

[7] Yuze Chi, Jason Cong, Peng Wei, and Peipei Zhou. 2018. SODA: Stencil with
optimized data�ow architecture. In 2018 IEEE/ACM International Conference on
Computer-Aided Design (ICCAD). IEEE, 1–8.

[8] David Durst, Matthew Feldman, Dillon Hu�, David Akeley, Ross Daly,
Gilbert Louis Bernstein, Marco Patrignani, Kayvon Fatahalian, and Pat Han-
rahan. 2020. Type-directed scheduling of streaming accelerators. In Proceedings
of the 41st ACM SIGPLAN Conference on Programming Language Design and
Implementation. 408–422.

[9] Yu Feng, Gunnar Hammonds, Yiming Gan, and Yuhao Zhu. 2022. Crescent:
taming memory irregularities for accelerating deep point cloud analytics. In
Proceedings of the 49th Annual International Symposium on Computer Architecture.
962–977.

[10] Yu Feng, Boyuan Tian, Tiancheng Xu, Paul Whatmough, and Yuhao Zhu. 2020.
Mesorasi: Architecture support for point cloud analytics via delayed-aggregation.
In 2020 53rd Annual IEEE/ACM International Symposium on Microarchitecture
(MICRO). IEEE, 1037–1050.

[11] Yu Feng, Paul Whatmough, and Yuhao Zhu. 2019. Asv: Accelerated stereo vision
system. In Proceedings of the 52nd Annual IEEE/ACM International Symposium on
Microarchitecture. 643–656.

[12] Yiming Gan, Yu Bo, Boyuan Tian, Leimeng Xu, Wei Hu, Shaoshan Liu, Qiang
Liu, Yanjun Zhang, Jie Tang, and Yuhao Zhu. 2021. Eudoxus: Characterizing
and accelerating localization in autonomous machines industry track paper. In
2021 IEEE International Symposium on High-Performance Computer Architecture
(HPCA). IEEE, 827–840.

[13] Cong Guo, Bo Yang Hsueh, Jingwen Leng, Yuxian Qiu, Yue Guan, Zehuan Wang,
Xiaoying Jia, Xipeng Li, Minyi Guo, and Yuhao Zhu. 2020. Accelerating sparse dnn
models without hardware-support via tile-wise sparsity. In SC20: International
Conference for High Performance Computing, Networking, Storage and Analysis.
IEEE, 1–15.

[14] Matthew R. Guthaus, James E. Stine, Samira Ataei, Brian Chen, Bin Wu, and
Mehedi Sarwar. 2016. OpenRAM: An open-source memory compiler. In 2016
IEEE/ACM International Conference on Computer-Aided Design (ICCAD). 1–6.
https://doi.org/10.1145/2966986.2980098

[15] Samuel W Hasino�, Dillon Sharlet, Ryan Geiss, Andrew Adams, Jonathan T
Barron, Florian Kainz, Jiawen Chen, and Marc Levoy. 2016. Burst photography for
high dynamic range and low-light imaging on mobile cameras. ACM Transactions
on Graphics (ToG) 35, 6 (2016), 1–12.

[16] James Hegarty, John Brunhaver, Zachary DeVito, Jonathan Ragan-Kelley, Noy
Cohen, Steven Bell, Artem Vasilyev, Mark Horowitz, and Pat Hanrahan. 2014.
Darkroom: compiling high-level image processing code into hardware pipelines.
ACM Trans. Graph. 33, 4 (2014), 144–1.

[17] James Hegarty, Ross Daly, Zachary DeVito, Jonathan Ragan-Kelley, Mark
Horowitz, and Pat Hanrahan. 2016. Rigel: Flexible Multi-Rate Image Processing
Hardware. In Proc. of SIGGRAPH.

[18] Justin Holewinski, Louis-Noël Pouchet, and Ponnuswamy Sadayappan. 2012.
High-performance code generation for stencil computations on GPU architec-
tures. In Proceedings of the 26th ACM international conference on Supercomputing.
311–320.

[19] Qijing Huang, Aravind Kalaiah, Minwoo Kang, James Demmel, Grace Dinh, John
Wawrzynek, Thomas Norell, and Yakun Sophia Shao. 2021. Cosa: Scheduling by
constrained optimization for spatial accelerators. In 2021 ACM/IEEE 48th Annual
International Symposium on Computer Architecture (ISCA). IEEE, 554–566.

[20] David Koeplinger, Matthew Feldman, Raghu Prabhakar, Yaqi Zhang, StefanHadjis,
Ruben Fiszel, Tian Zhao, Luigi Nardi, Ardavan Pedram, Christos Kozyrakis, et al.
2018. Spatial: A language and compiler for application accelerators. In Proceedings
of the 39th ACM SIGPLAN Conference on Programming Language Design and
Implementation. 296–311.

[21] Yi-Hsiang Lai, Yuze Chi, Yuwei Hu, Jie Wang, Cody Hao Yu, Yuan Zhou, Jason
Cong, and Zhiru Zhang. 2019. HeteroCL: A multi-paradigm programming in-
frastructure for software-de�ned recon�gurable computing. In Proceedings of the
2019 ACM/SIGDA International Symposium on Field-Programmable Gate Arrays.
242–251.

https://eda.ncsu.edu/freepdk/freepdk45/
https://developers.google.com/optimization
https://developer.arm.com/Processors/Mali-C55
https://futurumresearch.com/snapdragon-makes-significant-leap-for-mobile-cameras-with-qualcomm-spectra-image-signal-processor-and-snapdragon-sight/
https://futurumresearch.com/snapdragon-makes-significant-leap-for-mobile-cameras-with-qualcomm-spectra-image-signal-processor-and-snapdragon-sight/
https://futurumresearch.com/snapdragon-makes-significant-leap-for-mobile-cameras-with-qualcomm-spectra-image-signal-processor-and-snapdragon-sight/
https://doi.org/10.1145/2966986.2980098

ImaGen: A General Framework for Generating Memory- and Power-E�icient Image Processing Accelerators ISCA ’23, June 17–21, 2023, Orlando, FL, USA

[22] Jiajie Li, Yuze Chi, and Jason Cong. 2020. HeteroHalide: From image process-
ing DSL to e�cient FPGA acceleration. In Proceedings of the 2020 ACM/SIGDA
International Symposium on Field-Programmable Gate Arrays. 51–57.

[23] Zhi-Gang Liu, Paul N Whatmough, Yuhao Zhu, and Matthew Mattina. 2022. S2ta:
Exploiting structured sparsity for energy-e�cient mobile cnn acceleration. In
2022 IEEE International Symposium on High-Performance Computer Architecture
(HPCA). IEEE, 573–586.

[24] Mostafa Mahmoud, Bojian Zheng, Alberto Delmás Lascorz, Felix Heide, Jonathan
Assouline, Paul Boucher, Emmanuel Onzon, and Andreas Moshovos. 2017. IDEAL:
Image denoising accelerator. In 2017 50th Annual IEEE/ACM International Sympo-
sium on Microarchitecture (MICRO). IEEE, 82–95.

[25] Sean Murray, William Floyd-Jones, Ying Qi, George Konidaris, and Daniel J Sorin.
2016. The microarchitecture of a real-time robot motion planning accelerator. In
The 49th Annual IEEE/ACM International Symposium on Microarchitecture. IEEE
Press, 45.

[26] Rachit Nigam, Sachille Atapattu, Samuel Thomas, Zhijing Li, Theodore Bauer,
Yuwei Ye, Apurva Koti, Adrian Sampson, and Zhiru Zhang. 2020. Predictable
accelerator design with time-sensitive a�ne types. In Proceedings of the 41st
ACM SIGPLAN Conference on Programming Language Design and Implementation.
393–407.

[27] Tony Nowatzki, Michael Sartin-Tarm, Lorenzo De Carli, Karthikeyan Sankar-
alingam, Cristian Estan, and Behnam Robatmili. 2013. A general constraint-
centric scheduling framework for spatial architectures. ACM SIGPLAN Notices
48, 6 (2013), 495–506.

[28] Jing Pu, Steven Bell, Xuan Yang, Je� Setter, Stephen Richardson, Jonathan Ragan-
Kelley, and Mark Horowitz. 2017. Programming heterogeneous systems from an
image processing DSL. ACM Transactions on Architecture and Code Optimization
(TACO) 14, 3 (2017), 1–25.

[29] Jonathan Ragan-Kelley, Connelly Barnes, Andrew Adams, Sylvain Paris, Frédo
Durand, and Saman Amarasinghe. 2013. Halide: a language and compiler for
optimizing parallelism, locality, and recomputation in image processing pipelines.
Acm Sigplan Notices 48, 6 (2013), 519–530.

[30] Parthasarathy Ranganathan, Daniel Stodolsky, Je� Calow, Jeremy Dorfman,
Marisabel Guevara, Clinton Wills Smullen IV, Aki Kuusela, Raghu Balasubra-
manian, Sandeep Bhatia, Prakash Chauhan, et al. 2021. Warehouse-scale video
acceleration: co-design and deployment in thewild. In Proceedings of the 26th ACM
International Conference on Architectural Support for Programming Languages and

Operating Systems. 600–615.
[31] Jason Redgrave, Albert Meixner, Nathan Goulding-Hotta, Artem Vasilyev, and

Ofer Shacham. 2018. Pixel Visual Core: Google’s Fully ProgrammableImage,
Vision, and AI Processor For Mobile Devices. In Proc. IEEE Hot Chips Symp.(HCS).
1–18.

[32] Jacob Sacks, Divya Mahajan, Richard C Lawson, and Hadi Esmaeilzadeh. 2018.
Robox: an end-to-end solution to accelerate autonomous control in robotics. In
Proceedings of the 45th Annual International Symposium on Computer Architecture.
IEEE Press, 479–490.

[33] Robert Stewart, Kirsty Duncan, Greg Michaelson, Paulo Garcia, Deepayan
Bhowmik, and AndrewWallace. 2018. RIPL: A parallel image processing language
for FPGAs. ACM Transactions on Recon�gurable Technology and Systems (TRETS)
11, 1 (2018), 1–24.

[34] Amr Suleiman, Zhengdong Zhang, Luca Carlone, Sertac Karaman, and Vivienne
Sze. 2019. Navion: A 2-mW Fully Integrated Real-Time Visual-Inertial Odometry
Accelerator for Autonomous Navigation of Nano Drones. IEEE Journal of Solid-
State Circuits 54, 4 (2019), 1106–1119.

[35] Artem Vasilyev, Nikhil Bhagdikar, Ardavan Pedram, Stephen Richardson, Shahar
Kvatinsky, and Mark Horowitz. 2016. Evaluating Programmable Architectures
for Imaging and Vision Applications. In Proc. of MICRO.

[36] Jian Weng, Sihao Liu, Vidushi Dadu, Zhengrong Wang, Preyas Shah, and Tony
Nowatzki. 2020. Dsagen: Synthesizing programmable spatial accelerators. In
2020 ACM/IEEE 47th Annual International Symposium on Computer Architecture
(ISCA). IEEE, 268–281.

[37] Neil HE Weste and David Harris. 2015. CMOS VLSI design: a circuits and systems
perspective. Pearson Education India.

[38] Paul N Whatmough, Chuteng Zhou, Patrick Hansen, Shreyas Kolala Venkatara-
manaiah, Jae-sun Seo, and Matthew Mattina. 2019. Fixynn: E�cient hardware
for mobile computer vision via transfer learning. arXiv preprint arXiv:1902.11128
(2019).

[39] Tiancheng Xu, Boyuan Tian, and Yuhao Zhu. 2019. Tigris: Architecture and
algorithms for 3d perception in point clouds. In Proceedings of the 52nd Annual
IEEE/ACM International Symposium on Microarchitecture. 629–642.

[40] Yuhao Zhu, Anand Samajdar, Matthew Mattina, and Paul Whatmough. 2018.
Euphrates: Algorithm-SoC Co-Design for Low-Power Mobile Continuous Vision.
In Proceedings of the 45th ACM/IEEE Annual International Symposium on Computer
Architecture.

	Abstract
	1 Introduction
	2 Background
	3 Motivation
	3.1 Algorithmic Limitations
	3.2 Hardware Limitations

	4 Framework Overview
	5 Generating Line-Buffered Pipelines
	5.1 General Idea and Intuition
	5.2 Optimization Formulation
	5.3 Modeling On-chip Memory Contention
	5.4 Constraint Pruning
	5.5 Problem Structure and Solver

	6 Line-Coalescing Optimization
	7 Experimental Methodology
	8 Evaluation Results
	8.1 Throughput and Latency
	8.2 Compilation Speed
	8.3 On-Chip Memory Requirement Reduction
	8.4 Power Consumption Reduction
	8.5 Design Space Exploration

	9 Related Work
	10 Conclusion and Future Work
	11 Acknowledgements
	References

