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Abstract

The recent emergence of low-power high-throughput programmable
storage platforms—SmartNIC JBOF (just-a-bunch-of-flash)-motivates
us to rethink the cluster architecture and system stack for energy-
efficient large-scale data-intensive workloads. Unlike conventional
systems that use an array of server JBOFs or embedded storage
nodes, the introduction of SmartNIC JBOFs has drastically changed
the cluster compute, memory, and I/O configurations. Such an ex-
tremely imbalanced architecture makes prior system design philoso-
phies and techniques either ineffective or invalid.

This paper presents LEED, a distributed, replicated, and persis-
tent key-value store over an array of SmartNIC JBOFs. Our key
ideas to tackle the unique challenges induced by a SmartNIC JBOF
are: trading excessive I/O bandwidth for scarce SmartNIC core com-
puting cycles and memory capacity; making scheduling decisions
as early as possible to streamline the request execution flow. LEED
systematically revamps the software stack and proposes techniques
across per-SSD, intra-JBOF, and inter-JBOF levels. Our prototyped
system based on Broadcom Stingray outperforms existing solutions
that use beefy server JBOFs and wimpy embedded storage nodes
by 4.2x/3.8% and 17.5X/19.1X in terms of requests per Joule for
256B/1KB key-value objects.
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1 Introduction

Persistent key-value storage systems have become a crucial dis-
tributed infrastructure system component, serving as the basis for
a variety of data-intensive applications: web indexing [39, 41, 85],
e-commerce platforms [38, 50], social networking [37, 89, 90], photo
store [36, 88, 91], IoT sensing [63, 64], and more. It is of paramount
importance for the clusters that house these workloads to provide
both high performance and low power draw, thereby improving
the energy and cost efficiency of data center computing facilities.

People have deployed these workloads over two types of plat-
forms. One is a power-hungry server JBOF [3, 6, 18] that is equipped
with beefy server-grade processors based on a sophisticated mi-
croarchitecture, multi-channel big memory, massive I/O bandwidth,
and tens of terabytes of storage capacity. Server JBOF-based per-
sistent key-value stores [24, 25, 62, 66, 70, 79] can indeed deliver
millions of requests per second throughput but come at the cost of
extremely high power consumption. The other one is an ultra-low
power embedded storage node [12, 13, 20], which has been explored
by early pioneering systems like FAWN [34]. It uses an array of
such wimpy nodes coupling with an efficient software stack, signif-
icantly reducing the cluster power draw and improving the overall
system energy efficiency.

However, FAWN-like approaches present drawbacks under scaled
deployment. One fundamental reason is that each wimpy data node
applies a well-balanced CPU-DRAM-IO architectural design, match-
ing its storage capacity and bandwidth with the constrained com-
puting capacity of an embedded CPU. When deploying at larger
scales (e.g., 100+GbE), one needs to add a large number of back-end
storage nodes, which would consume a similar amount of power
(e.g., 400-500W) as a single server platform or even more. Worse
yet, the extra system management complexity as well as the prohib-
itive capital/operational cost of networking fabric (rack switches)
and power distribution units make the solution unattractive and
prevent it from practical deployment.

Lately, a new type of low-power high-throughput SoC-based
(system-on-a-chip) programmable storage platforms (i.e., SmartNIC
JBOFs) [2, 5, 8, 9, 11] have emerged in the market. They consist of
either an embedded multi-core processor or an FPGA, an array of
domain-specific accelerators, a small amount of onboard DRAM
(8-16GB), a server-grade NIC (e.g., 100+GbE), a PCle switch, and
a collection of NVMe SSDs. Such a platform, operating similarly
to a server JBOF, consumes at least one order of magnitude lower
power (e.g., 52.5W for the Broadcom Stingray PS1100R [2]). It uses
a slightly upgraded CPU than the one in an embedded storage
node, but presents a significant increase in network/storage I/O
bandwidth and storage capacity. This not only suggests us a new



platform to build low-power and high-performance persistent key-
value store, but also motivates us to rethink the system architecture
for energy-efficient data-intensive computing.

However, translating these intuitive opportunities into energy
efficiency gains entails challenges. We start with porting FAWN [34]
and other software stacks over an array of SmartNIC JBOFs, and
find out that many of the prior proposed techniques become ei-
ther invalid or inefficient. This is mainly because SmartNIC JBOFs
apply an extremely imbalanced architectural design in terms of
compute, memory, and I/O, contradicting the platform assumptions
that previous systems based on server JBOFs or embedded stor-
age nodes held before. First, flash density scales much faster than
DRAM, resulting in a highly skewed storage hierarchy. This indi-
cates that each key-value object can use much less than one byte
of in-memory space for indexing. Second, the network and storage
I/O throughput that a core should drive (i.e., computing density)
has increased by one or two orders of magnitude, meaning that (1)
there is little computing room left for each I/O; (2) any execution
waiting or stall (e.g., due to head-of-line blocking) would jeopar-
dize performance significantly. Third, uneven load distribution has
emerged as a serious issue that can easily cause system overloading,
given that the computing cycles of a SmartNIC JBOF are scarce.
This requires careful cluster-level traffic control and judicious I/O
scheduling.

This paper presents the design and implementation of LEED, a
distributed and replicated key-value store that runs over an array
of SmartNIC JBOFs to combat these challenges. Our key ideas to
tackle the unbalanced nature of a SmartNIC JBOF are: (1) trading
excessive I/0 bandwidth for scarce SmartNIC core cycles and mem-
ory capacity; (2) making scheduling decisions as early as possible
to streamline the request execution flow. LEED represents a careful
synthesis of conventional networking and system techniques along
with novel data structures and algorithms proposed across three
different levels, i.e., per-SSD, intra-JBOF, and inter-JBOFs.

e First, LEED designs a specialized key-value store using a circular
log data structure and a DRAM/Flash hybrid indexing scheme to
remedy the skewed storage hierarchy;

e Second, to maximize the SmartNIC core usage, LEED stream-
lines key-value command processing and optimizes bookkeeping
compactions with prefetching and pipeline parallelism. It further
applies a token-based intra-JBOF I/O engine and inter-JBOF re-
quest scheduler that adapt client issuing rates to the SSD serving
capability;

e Third, to mitigate the I/O imbalance, LEED develops an intra-
JBOF data swapping mechanism that temporarily redirects over-
loaded writes to unloaded SSDs; enhances the inter-JBOF chain
replication with the request shipping capability to expand the
system read serving throughput;

We prototype LEED using Broadcom Stingray PS1100R boards
and compare it with other persistent key-value stores deployed
atop two traditional platforms: FAWN [34] over embedded storage
nodes (using Raspberry Pi 3 Model B+) and KVell [62] over Intel
Xeon-based server JBOFs. Our evaluations using YCSB workloads
show that LEED outperforms KVell by 4.2x/3.8x and FAWN by
17.5%/19.1x in terms of requests per Joule for 256B/1KB key-value
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Figure 1: Energy efficiency comparison among three platforms when
performing persistent I/Os. We increase storage capacity by first
maxing out NVMe drives on a node (only for Server/SmartNIC JBOFs)
and then adding more nodes.

object cases. We further demonstrate the efficacy of proposed tech-
niques under various controlled experiments and measure system
performance under failures.

2 Motivation

This section introduces the SmartNIC JBOF platform and its poten-
tial, discusses prior low-power and high-performance data store
solutions, and illustrates the challenges of using SmartNIC JBOFs
for building a persistent key-value store.

2.1 SmartNIC JBOF: a Promising Platform

SmartNIC-based JBOFs [2, 5, 8, 9] are a new type of programmable
storage platform, offering significantly lower power and higher
cost efficiency than traditional server-based solutions. Hardware
vendors couple a Multicore-SoC or FPGA-based SmartNIC with
NVMe drives, connecting them via an onboard or standalone PCle
switch. Take the Broadcom Stingray [2] as an example (which is
our prototyped testbed). It encloses a PS1100R SmartNIC, a PCle
carrier board (containing a PCle switch), up to 4 NVMe SSDs, and
a standalone power supply. The SmartNIC has an 8-core ARM A72
CPU running at 3.0GHz, 8GB DDR4-2400 DRAM (along with 16MB
L2 cache), FlexSPARX [1] acceleration engines, 100Gb NetXtreme
Ethernet NIC, and a PCIe Gen3 root complex controller. The PCle
switch offers x16 PClIe 3.0 lanes (15.75GB/s theoretical peak band-
width) and allows either 2 X8 or 4 x4 PCle bifurcation. A Stingray
storage box with four Samsung DCT983 960GB SSDs is listed as
roughly one-third of a server JBOF with similar I/O configurations.

The SmartNIC JBOF is a promising platform and offers us an
opportunity to drastically reduce overall power draw and improve



energy efficiency when running data-intensive workloads. We mea-
sure the wall power of a Stingray JBOF via a Watts Up Pro me-
ter [21] and find out that its maximum active power (when driving
all SSDs) is up to 52.5W, nearly one-fifth to one-fourth of a typical
server JBOF. We also consider another storage platform-an ultra-
low power embedded node (e.g., PCEngine Alix [20] and Raspberry
Pi [12, 13]) used by previous systems [34, 77]. Take the Raspberry
Pi 3 Model B+ as an example. Its active power is around 3.9-4.2W
but with a much smaller storage capacity (32GB) and lower I/O
bandwidth (60-80MB/s). Hence, when building a data store clus-
ter using SmartNIC JBOFs, server JBOFs, or embedded storage
nodes, SmartNIC JBOFs would deliver the best energy efficiency
in terms of IOPS per Joule regardless of capacity. As shown in Fig-
ure 1, considering the 16TB case and system configurations of our
testbeds, SmartNIC JBOFs outperform server JBOFs by 4.8x/4.7X
and Raspberry Pi nodes by 56.5%/26.4X when performing 4KB ran-
dom read/sequential writes across the entire capacity, respectively.

2.2 Prior Solutions

Researchers have built various high-performance and low-power
persistent key-value stores over either server JBOF or embedded
storage node platforms.

2.2.1 Server JBOF. LevelDB [24] and RocksDB [25] are two
widely-used key-value stores based on log-structured merge trees
(LSMs). SILT [66] develops compact indexing data structures us-
ing partial-key cuckoo hashing and entropy-coded tries to reduce
the DRAM footprint when serving small key-value objects. Wis-
cKey [70] designs a new data layout (i.e., separating keys and val-
ues) for these LSM-tree-based data stores such that it decouples key
sorting and garbage collection phases. PebblesDB [79] proposes
the fragmented log-structured merge tree data structure to reduce
data rewrites. KVell [62], a recent key-value store for NVMe SSDs,
applies a shared-nothing architecture to avoid synchronization
overheads and uses efficient device access batching to max out the
SSD read/write bandwidth.

Limitations: Server JBOFs are indeed a high-performance plat-
form to build persistent key-value stores. Prior systems have ex-
plored different approaches to fully utilize their massive I/O band-
width. However, as discussed above, its power draw is much higher
than a SmartNIC JBOF or embedded node, making it unattractive
to explore a low-power design. Further, high power consumption
also increases the capital cost for operating enterprise clusters and
data centers [27, 32].

2.2.2 Embedded Storage Node. FAWN [34] is the primary sys-
tem that exploits the use of such nodes for serving persistent key-
value requests. It uses an array of wimpy storage nodes to reduce
the power draw and achieve high energy efficiency. A FAWN cluster
consists of front-end servers and back-end FAWN-KV nodes. The
front-end node takes client requests, forwards them to a back-end
datastore node based on the key hash, and returns the results back.
Each back-end node is divided into a series of non-overlapping
virtual partitions for load balancing and failover acceleration. Its
software system comprises four components: a log-structured key-
value store that harnesses flash access properties, a consistent hash-
ing scheme for efficient item placement and lookup, a chain repli-
cation mechanism to achieve per-key strong consistency, and a

Embedded Server SmartNIC
Node JBOF JBOF

Storage hierarchy skewness: the
size ratio between Flash and DRAM 16 64 1024
Computing density (for network):
the bandwidth a core should deliver 025 GbE 32 GbE 125 GbE
Computing density (for storage):
the IOPS a core should drive K 125K S00K
Maximum load: the request demand 0.01m + 0.33m + 0.33m +
that a node receives with high prob. 0(v0.02m) | ©(v0.16m)| O(v0.16m)

Table 1: Data store node comparison among embedded, server JBOF,
and SmartNIC JBOF. We use our testbeds as an example, i.e., Rasp-
berry Pi 3 Model B+, Supermicro 2U server, and Stingray PS1100R.
The computing density for storage considers the IOPS of 4KB ran-
dom read. m is the client request rate. When calculating the maxi-
mum load, we assume a 100-node embedded cluster and a 3-node
Server/SmartNIC JBOFs.

load adaption scheme via continuously adding/removing back-end
nodes.

Limitations: FAWN achieves both low power and high perfor-
mance at a small and modest scale. However, it presents diminishing
returns under scaled deployment and even becomes cost-inefficient.
This is because each back-end node presents a well-balanced CPU-
DRAM-IO architectural design, which matches storage capacity and
throughput with the limited computing capacity of an embedded
CPU. To handle a rising demand, one has to increase the number of
back-end nodes significantly. This would bring in two issues. First,
the aggregated power and cost would outweigh a server-based solu-
tion. For example, supporting 100GbE bandwidth requires 1000 low-
end 100Mbits PCEngine Alix [20] (used by FAWN) or 100 high-end
1Gbits Raspberry Pi [12, 13] boards, consuming around 3000-5000W
and 400-500W, respectively. Meanwhile, the cluster further needs a
couple of rack switches for physical connectivity which also con-
sumes power. Second, the infrastructure managing complexity has
increased exponentially, including cabling, space planning, pack-
aging, power management, and failure diagnostics. This prevents
FAWN from wide adoption and makes it less favorable than server
JBOFs under today’s I/O requirements.

2.3 Challenges

Even though SmartNIC JBOFs are promising to achieve low power
and high performance simultaneously, translating these intuitive
opportunities into efficiency gains entails great challenges. Funda-
mentally, a SmartNIC JBOF is a significantly imbalanced comput-
ing system in terms of compute, memory, and network/storage I/O.
In comparison, a server JBOF or embedded node is much more bal-
anced, where the platform couples just the right amount of DRAM,
network, and flash with its CPU’s computing capability. As a result,
the highly-skewed storage hierarchy, limited per-IO computing
cycles, and high-probability load imbalance induced by SmartNIC
JBOFs make prior techniques either invalid or inefficient.
Challenge #1: data indexing under a highly-skewed stor-
age hierarchy (C1). Compared with the other two platforms, the
size ratio between Flash and DRAM of a SmartNIC JBOF has in-
creased by two orders of magnitude (Table 1), indicating that a
DRAM-only indexing mechanism would become infeasible. For
example, the FAWN datastore uses 1GB DRAM to index up to 16GB
of persistent data. Even though it takes the constrained memory
capacity into consideration, each key-value object still requires 6



bytes in-memory hash index, including a 15-bit key fragment, a
valid bit, and a 4-byte pointer to the location of the data log. Suppose
a SmartNIC JBOF holds 8TB flash space with at most 8GB DRAM
(like our testbed). Using FAWN’s approach, indexing 256B objects
would require 192GB DRAM (to store the metadata), significantly
exceeding the SmartNIC JBOF DRAM capacity. An effective design
should use less than half a byte per object. Hence, one should re-
think how to design an indexing mechanism that adapts to such a
skewed storage hierarchy. This might even require revamping the
data store architecture and key-value processing path.

Challenge #2: request execution under high I/0O density
and small computing headroom (C2). The computing density,
defined as how much IOs a core should handle, is also increased by
two orders of magnitude (Table 1). Computing power is a scarce
resource on a SmartNIC JBOF, and the amount of cycles that a
core spends on an I/O request is limited. Taking the Stingray as an
example, its 3.0GHz 8-core ARM processor has to handle 100Gbps
networking and up to 4M NVMe IOPS, whereas an embedded node
in FAWN only needs to drive at most 1Gbps and 20K IOPS, respec-
tively. When saturating the I/O bandwidth, a back-of-the-envelop
calculation indicates that the maximum tolerable latency for pro-
cessing a MTU-sized packet and a 4KB I/O is just 0.96ps and 5pus
on the SmartNIC JBOF, where a FAWN node has much more head-
room (i.e., 48us and 400us). The server JBOF resolves this issue by
employing high-end manycore server CPUs, making today’s stor-
age servers much beefier [28, 31]. Therefore, we should carefully
orchestrate I/Os along the datapath between the network interface
and NVMe drives to avoid unnecessary execution synchronization
or blocking. At the cluster scale, we should also consider harvesting
as many cross-node available computing cycles as possible.

Challenge #3: 1/0 scheduling in case of a propensity of
uneven load distribution (C3). A JBOF holds a much larger data
storage capacity than an embedded node. Given the same key range,
a JBOF cluster requires fewer nodes, where each node would ob-
serve a much higher maximum load than the embedded case. This
can be corroborated by the balls into bins problem. Theoretical
analyses [35, 78] show that the maximum load per-server will be
m/n + ©(y/mlogn/n) with high probability when m > nlogn, where
m and n refer to the client request rate and the number of storage
nodes, respectively. A smaller node quantity will cause a larger max-
imum load (Table 1). FAWN effectively balances traffic based on key
access randomness and fast node adaption. But for server/SmartNIC
JBOFs, one would easily experience system overloading, I/O band-
width over-subscription, and tail latency increase. Researchers have
developed a series of overloading control techniques [44, 76, 93].
What makes the SmartNIC JBOF unique and difficult is its limited
computing resources can hardly tolerate ephemeral request bursts.
This requires us to design a streamlined and controlled request ex-
ecution path either within or across a JBOF. The problem is further
exacerbated in that NVMe drives present a considerable discrepancy
in bandwidth between reads and writes.

3 Design and Implementation

This section presents LEED and discusses how we address the above
challenges. Our system design goals are:

Challenges Level Pgsi}f:lles Proposed Techniques
A data store w/ circular log and
c1 SSD r1 hybrid index (§3.2, §3.§)
C2 Intra-JBOF P2 A streamlined I/O executor (§3.4)
Inter-JBOF P2 A fctl-based req. scheduler (§3.5)
C3 Intra-JBOF P1 A data swapping mechanism (§3.6)
Inter-JBOF P2 A CRRS replication protocol (§3.7)

Table 2: A summary of proposed techniques in LEED.

e Maximize NVMe storage utilization. A SmartNIC JBOF em-
bodies similar storage density as a server JBOF. To demonstrate
its potential for holding key-value objects, LEED should fully
use the device capacity with little waste;

e High performance under arbitrary access distribution. Stor-
age I/O stall due to skewed load distributions is the culprit causing
latency increases. Tail latency has become a pivotal metric for
evaluating data-intensive workloads [48, 51, 65]. LEED should
maximize the I/O throughput of a SmartNIC JBOF and ameliorate
both average and tail latencies;

e High availability. The SmartNIC JBOF has a standalone power
supply. Upon failures, due to the large storage density, much more
keys are affected than in the FAWN scenario. We design LEED
to provide small downtime and little performance interference
during the cluster change.

3.1 Key Ideas and System Overview

3.1.1 Key Ideas. SmartNIC core is the most scarce computing
resource, followed by memory and I/O bandwidth. Given such
inherent unbalanced nature, when building LEED over an array
of SmartNIC JBOFs, one should ensure a key-value request can be
served immediately whenever there are available core cycles in
the cluster. A fundamental challenge is that application demands
and key access distributions are unpredictable. Hence, we must
achieve this goal in a combined reactive and proactive manner. This
yields our two design principles. First, we trade excessive storage
I/0 bandwidth for other SmartNIC computing resources, e.g., core
cycles and memory capacity (P1). Such a reactive approach would
sometimes hurt the per-request latency since the system issues
more I/Os, but it leads to increased overall throughput. Second,
we strive to make scheduling decisions as early as possible along
the data path to streamline the request execution flow (P2). This
proactive regulation tries to distribute the right amount of request
loads to each JBOF and its SmartNIC cores, avoiding unnecessary
/O stalls at any hardware entities.

3.1.2 LEED Architecture. Figure 2-a depicts a LEED cluster,
consisting of clients and back-end SmartNIC JBOFs, connected via
ToR Ethernet switches. Clients issue requests to back-end storage
nodes via a co-located front-end library. A SmartNIC JBOF (Figure 2-
c) holds several NVMe SSDs, where each has multiple partitions
or virtual nodes (similar to FAWN [34]). A (virtual) storage node
runs a LEED data store and is responsible for a specific key range.
LEED divides the whole key space into different partitions and uses
consistent hashing to decide the subspace-node mapping.

Table 2 summarizes our proposed core techniques and associ-
ated challenges. LEED uses the RDMA networking stack. Within
a JBOF, the SmartNIC core (Figure 2-b) schedules requests among
NVMe drives based on their bandwidth availability; redirects over-
loaded writes to an unloaded SSD. Cross JBOFs, LEED applies an
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Figure 2: An Overview of LEED system architecture.

end-to-end flow control to regulate incoming traffic loads; handles
imbalanced reads using an optimized chain replication protocol. In
tandem, these techniques aim to fully reap available computing cy-
cles in the cluster to serve key-value requests, maximize bandwidth
utilization, and elude I/O blocking due to over-subscription. Our
control-plane manager is backed by the etcd service [4], running
over a quorum group of nodes. It maintains the mapping between
data store partitions and virtual nodes, monitors the SmartNIC
JBOF health and detects failures via periodic heartbeat messages,
performs membership management when a node joins/leaves, and
configures the replication factor based on workload requirements.

3.2 LEED Data Store

We first consider designing a compacted in-memory index scheme
to tackle the skewed storage hierarchy. However, as discussed be-
fore (§2.3), for 256B or even smaller key-value objects, addressing
the full SmartNIC JBOF flash space under its DRAM capacity con-
straint indicates that one could use at most 1/4 byte in-memory
index to locate a KV pair, significantly exceeding the capability of
today’s memory-only indexing approaches (e.g., FAWN [34] taking
6 bytes, SkimpyStash [49] requiring 1 byte in the best case, SILT [66]
using 0.7 bytes). Worse yet, the size ratio between an NVMe drive
and the SmartNIC SoC memory would increase exponentially as
QLC/PLC devices become available [26, 30]. Therefore, we propose
a new key-value store that uses a specialized data structure based
on a DRAM-Flash hybrid indexing scheme. Our design, driven by
the first principle (P1), sacrifices storage I/O bandwidth, meaning
that a key-value request would require 2+ NVMe accesses: one for
retrieving metadata index and one for reading/writing data objects.

3.2.1 Data Structure. Our data store revolves around a key data
structure—circular buffer or circular log. It is a fixed-sized con-
tinuous space on the SSD, where its head/tail points to the begin-
ning/end of the used region. A circular log supports three types
of operations: read from a specified offset within the valid range;
append to the end of the log (which increments the tail pointer);
compact, reclaiming fragmented and outdated data entries and gen-
erating space to serve future writes. As in-place updates are inef-
ficient on an SSD, overwritten data entries are appended to the
log tail whose previous value becomes invalid. Compaction is a
central operation that ensures the SSD capacity is fully utilized. It is
a batched operation and is triggered when the gap between the tail
and head has reached a threshold. We choose this data structure

because (1) it leverages the fast random read and sequential write
characteristics of NVMe drives [7, 14, 15]; (2) it consumes fewer
CPU cycles on reads/writes, unlike the sorting or synchronization
phase in an LSM-based or B tree-based implementation.

3.2.2 Data Layout. We separate the keys and values and use
different circular logs to store them (Figure 3-a). Similar ideas have
been explored in the WiscKey [70] and TerarkDB [19]. In addition
to reducing the write implication, this also minimizes the memory
footprint and saves the NVMe bandwidth during the item lookup
phase. We co-locate keys and their indexes and place them into a
circular key log. The whole key space of a (virtual) node consists of
multiple segments, where each includes up to M chained overflow
buckets. A bucket then contains N keys as well as metadata fields
(described below), whose size is limited to the SSD block size (e.g.,
512B/4KB). Each bucket is appended to the key log. The data struc-
ture of a segment is changed to an array of buckets when writing
to the SSD. Note that each segment only belongs to one data store
and can be accessed by a single core. We simply use one lock bit
in the segment table for concurrency control. Values are directly
appended to a circular value log. Hence, LEED divides one SSD
partition into a key and a value log and persistently saves their
partition addresses.

3.2.3 Metadata and In-memory Index There are three types
of metadata in our KV store. First, a segment index contains K-bits
to indicate the chain length and 4B offset pointing to the location
of the key log. Second, a bucket consists of a 4B bucket index for
key hash matching, K-bits to capture the chain length, K-bits to
indicate the position of this bucket within the chain (segment), 4B
head/tail fields (used for recovery), and a sequence of key items.
Third, a key item encompasses four fields: key, key length, value
length, and value offset (pointing to the value log). We only place
segment indexes in the SmartNIC DRAM and organize them via
a hashtable (called SegTbl). This allows us to drastically support
large NVMe capacity with little memory usage.

3.3 Command Processing

Our data store supports three basic operations (Figure 3-b). A GET
firstly looks up the SegTbl (in SmartNIC’s DRAM) based on the key
hash to locate the data segment position, fetches the segment from
the key log (SSD) to memory, traverses the chain to find the key item,
and reads the value based on the offset from the value log (SSD). A
PUT also fetches the data segment via the SegTbl and locates the



Domans . (=] [ rmemey []  [[assoi]]
! GET In-memory [®-5SPe——| Key log
SegTbl | —> K()rRead prefetched seg. -
l SegTbl H®-ssD-— Value log ron (wite vaiid seg. Ko |
H ommit seg.———>] ey lo
Segment [] | Move the head pt.—»] v109
| 5D @-vafelch seg:
=& ! DRAM H®-SSD—»-
Bucket E evs : Tail PUT Q—’i In-memory ——@)SSDwr» Key log [[ core ]| [T mn-memory T [] Log(ssp) ]
H al SegTbl H@-SSDur—| Value log -@—Read bucket ids&vals—p|
Tail | —@-Lock bucket ids—p»]
Head | = | @-Head locked Seg.—p
ead) | 1:)— ompact vals——
1 —(®-Update buckest— Value log
' (@ DRAMr In-memory K®-SSDe—»| Key log (B)write busketsavals—»]
1 Head — peL SegTbIry F—@)SsDw{ Value | ®.Um°°
Wi alue log Move the head
[ Key log | Value log | (§)ove he head i {(9)-Prefetch bucket idsavals—|

(a). Key/Value data structure and layout

(b). GET/PUT/DEL execution procedures

(c). Key/Value log compaction

Figure 3: LEED data store architecture and GET/PUT/DEL/Compact operation procedure.

bucket for insertion. It then appends the updated bucket and value
to the key log and value log, respectively. PUTs move the tail pointer
of both circular logs and no in-place updates happen. We also
parallelize value log write and key log operations for latency saving.
A DEL performs similarly as a PUT but only manipulates the key log,
updating the corresponding value length field to zero as a deletion
marker. Overall, the GET/PUT/DEL triggers 2/3/2 NVMe accesses.
Since NVMe reads/writes take tens of microseconds, instead of
busy polling the I/O completion word through PCle that wastes
core cycles (principle P1), we develop an event-based asynchronous
execution framework. Each store maintains a waiting event queue,
where an event describes the segment index command, as well as
execution status for an operation. We then use a per-command
state machine to track their running phases.

3.3.1 Compaction and Optimization. LEED reclaims outdated
entries using compactions. The operation is heavyweight, not only
consuming computing and storage I/O bandwidth but also stalling
the ongoing request execution when it manipulates the same bucket.
PUTs would be served slowly if the new log entry generation speed
cannot catch up with the PUT rate. LEED introduces two optimiza-
tions: (1) prefetching future segments. When executing the Nth
compaction, LEED prefetches compacted segments for the N + 1th
one such that it can obviate loading data from an SSD; (2) dividing
one compaction into S sub-compactions for parallel execution and
co-scheduling them concurrently, where each sub-compaction can
prefetch data logs concurrently.

Figure 3-c depicts the compaction process. For the key log, after
task splitting, sub-compactions start concurrently in the following
steps: reading and verifying prefetched segments, appending valid
buckets to the key log, updating the offsets of the segments that
are still valid in SegTbl, and moving the head pointer of the key log.
Prefetching happens in the background. The value log compaction is
more complicated since it might change the value offset and update
the key log. Similarly, multiple parallel sub-compactions work as
follows. First, it reads the prefetched bucket IDs (which are stored in
a small dedicated circular log), prefetches values, and locks related
segments in SegTbl. Second, it fetches the buckets from the key log,
collects all valid values, and updates their corresponding buckets.
Third, it writes the compacted values and updated buckets to their
corresponding logs, unlocks all the buckets, and moves the head
pointer of the value log. Our log structure ensures that the old value
is still valid before committing. The key log compaction process
would skip the segment when it is locked by PUT/DEL/value log

compaction operations. Value log compactions use locks to ensure
consistency.

3.4 Intra-JBOF I/O Execution

When a request enters a JBOF, the SmartNIC core fetches packets
from the RDMA stack and delivers them to the data store engine.
There are two general design strategies: one is employing a ded-
icated dispatcher that buffers incoming requests and distributes
them in a load-aware fashion, which would waste SmartNIC cores
and incur head-of-line blocking; the other one is using a designated
load-agnostic processing pipeline and compensating it with either
admission control or work stealing/offloading mechanisms. LEED
takes the latter one (following the principle P2) because it operates
in a DRAM constraint (or low memory footprint) mode and tries
to maximize core utilization for key-value processing. We discuss
how to integrate load awareness in §3.5.

Our intra-JBOF I/O execution engine works as follows. First,
we partition the computing resources and create a static mapping
between cores and I/O devices to avoid execution contention. For
example, our prototype uses cores 0-3 to handle NVMe drives 0-3
and cores 4-6 to poll the 100GbE RDMA receiving queue, respec-
tively. The rest unallocated one (core 7) is mainly responsible for
control-plane tasks instead of data-plane ones. Our design cen-
ters around NVMe I/O processing and ensures that a storage I/O
can be served immediately when a core is available. Second, we
use a lockless concurrent queue everywhere in the system (e.g.,
the NIC/SSD ring buffer) for inter-core communication. The basic
queueing discipline is first-come first-serve (FCFS).

Third, since the SSD available bandwidth and per-storage IO
execution cost is varied unpredictably (based on SSD internal condi-
tions and workload profiles) [33, 42, 45, 52, 73], we need an adaptive
mechanism to limit the number of I/Os issued to an SSD to elude
1/0O stalls. LEED equips each SSD partition (Figure 2-b) with (1) an
active queue, maintaining ongoing data store commands that wait
for completion signals; (2) a waiting queue, storing runnable re-
quests received from clients. The size of an active queue represents
the SSD’s current I/O serving capability. We then translate its queue
capacity to N tokens using the measured per-IO latency following
the prior work [61, 73, 82]. The token quantity of command, repre-
senting its execution cost, is empirically decided offline. When a
request is retired from the active queue, the scheduler picks the next
command for execution if its token requirement is satisfied. The
waiting queue captures the SSD overloading status. Both queues



Algorithm 1 Load-aware scheduling based on flow-control.

1: procedure REQ_scHED()

2 while true do

3 for T in AllTenants do

4: req = T.req_queue.dequeue()

5: if req.token < MappedSSDs(req.target).tokens then
6 MappedSSDs(req.target).tokens -= req.token

7 rpc_send(req); Break

8

9

else
if OutReqs(req.target) > 1 then

10: T.req_queue.enqueue(req)
11: else
12: MappedSSDs(req.target).tokens = 0
13: rpc_send(req); Break
14: if timeout is true then
15: Break

are shallow, whose size hinges on the SSD queue depth and I/O
read/write rate.

3.5 Inter-JBOF Scheduler based on Flow Control

Our intra-JBOF I/O engine alone is inadequate to address system
overloading. Ideally, a key-value request should be issued from
a client only if its target JBOF has a serving capacity. Otherwise,
one would observe tail latency increases. Driven by our design
principle (P2), we aim to develop such a scheduler at the cluster
level that can make a judicious decision before submitting requests
to a SmartNIC JBOF. LEED envisions this via an end-to-end flow
control mechanism that informs clients of the data store’s serving
availability.

Our design is inspired by prior work on system overloading
control [44, 87, 92]. Each back-end SSD allocates available tokens
based on its waiting queue among co-located tenants in a weighted
fashion and distributes them via a piggyback response. LEED then
builds a load-aware scheduler using this information. For an up-
coming scheduling round, the front-end traverses each active client
in a round-robin manner, picks the next request, and submits it
only if (1) its target SSD offers enough tokens (Alg1 L5-7); or (2)
there are no outstanding commands being issued (Alg1 L9-13). This
behaves similarly to the Nagle’s algorithm [10, 74, 75]. We update
the token amount after submitting a request successfully, or when
receiving a response that piggybacks the allocated available token
amount from the target SSD.

Our cross-node communications use RPCs [53, 58, 59] and exploit
a hybrid use of one-sided/two-sided RDMA verbs. Akin to the
NVMe-over-RDMA implementation, the sender takes advantage
of a two-sided RDMA SEND verb to pass the command, while the
receiver uses the one-sided RDMA WRITE because we pre-allocate
the response memory when preparing the request. This streamlines
the I/O processing and enables efficient memory management at
the sender. Further, we use the 32-bit immediate (IMM) field to
directly write into the remote node’s completion queue to identify
the corresponding request, reducing RDMA WRITEs messages.

3.6 Intra-JBOF Write Imbalance Handling

A SmartNIC JBOF holds multiple NVMe drives, where each has
one or several partitions. When one partition receives more re-
quests than its serving capacity, its waiting queue would become

full (§3.4), where no available tokens are generated and backprop-
agated, finally stalling clients. However, given the uneven load
distribution (§2.3), other SSDs either within or across the JBOF,
might still have available bandwidth. Motivated by this, LEED in-
troduces techniques to outsource requests to other available SSDs
at intra-/inter-JBOF levels. For write imbalance, we develop a data
swap mechanism to temporarily redirect PUT requests to other
co-located SSDs. This technique follows our first design principle
(P1), trading storage I/O bandwidth for computing cycles. Note that
read imbalance can hardly be handled within a JBOF because the
key-value pair location has been decided.

The SmartNIC core continuously detects if its mapped NVMe
drive is over-subscribed. Upon overloading, LEED redirects over-
loaded PUT requests to other available SSDs that are not the home
of the current data store. One can simply view it as if we create
a swapping data region from another SSD to absorb burst writes.
The swapping region will then be merged back during future com-
pactions (when the home SSD has available bandwidth). Thanks
to our flexible circular log data structure, LEED only makes two
unobtrusive changes to enable this technique. First, it extends the
metadata field of each log entry with an SSD identifier so that one
can locate the correct key log position. Second, it makes the sched-
uler route requests from one SSD’s waiting queue to another one’s
active queue (when the queueing occupancy gap is larger than a
threshold). All subsequent GETs to this region will then be redi-
rected before swapping back. When there are multiple temporary
store candidates, LEED chooses the one with the most available
bandwidth.

3.7 Cross-JBOF Read Imbalance Handling: CRRS

Similar to prior works [34, 56, 60], LEED uses the chain replica-
tion [80] to achieve per-key strong consistency. PUTs/DELs are
sent to the head of a chain and then propagated to each replica
along with its successors in the ring space. GETs are directly served
by the tail. Assuming a replication factor R, each (virtual) node is
part of R different chains: it is the "head" for one chain, a "mid"
node in R — 2 chains, and the "tail" for one. Write imbalance cannot
be addressed because all replicas would receive the request. But
read imbalance is possible if we enable more replicas to serve GETs.

Inspired by prior efforts [83] and following our second design
principle (P2), we propose an optimized chain replication scheme
that tailors to our setting, called CRRS (Chain Replication with
Request Shipping). Our goal is to allow more replicas to serve GETs
without hurting the consistency guarantee. LEED augments every
data store with a hash map to mark all dirty keys. PUTs/DELs are
performed in the same way as before with slightly more operations
on the attribute (Figure 4). Upon receiving a new object update, if a
node is not the tail, it will set the dirty bit and forward the request
to the next replica as the default protocol. The tail then clears the
dirty bit (commitment point), executes the command, replies back
to the front-end, and sends an acknowledgment backward through
the chain to notify data commitment. A replica will then unset the
dirty bit when receiving the acknowledgment.

GET processing differs from the original chain replication in that
requests can be served by more replicas (not only the tail). This is
because: when receiving a GET operation, a replica can use the dirty
bit to decide whether it has the latest data copy. If its dirty bit is clear,
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Figure 4: Request execution under CRRS. Writes (blue) are propa-
gated across the chain. Reads to the tail (brown) are clean. Reads
to a replica with a dirty bit (green) are shipped. Dotted lines are
acknowledgments or client responses.

the replica executes the command and sends back the fetched object.
Otherwise, LEED will ship this request directly to the tail node
since it always commits the latest write and holds the latest value.
LEED does not violate the consistency model because all operations
are serialized by the tail during this read/write interleaving phase.
Another design option is to ask the intermediate node to issue a
version query message (similar to CRAQ [83]) to implicitly serialize
command processing. We find that this approach generates more
internal traffic across JBOFs and perturbs the traffic pattern. With
this, LEED allows more replicas to handle reads and chooses the
target data store with the maximum amount of available tokens,
mitigating the read imbalance issue. CRRS complicates our failure
handling procedure and we will discuss it next (§3.8).

3.8 Node Join, Leave, and Failure Handling

LEED handles cluster changes and unplanned failures. To facilitate
node join/leave, we propose a new primitive called COPY using
PUT and GET operations. A COPY, interacting with DRAM/SSDs,
locks the source data segments in the SegTbl, reads corresponding
key-value items from key/value logs, and then copies them to the
destination SSD via PUTs. The lock is released when the process
is finished. The COPY is mutually exclusive with PUTs/DELs, and
thereby, copied key-value pairs are immutable during its execution.
Further, we introduce three node states (i.e., JOINING, RUNNING,
LEAVING) to capture different execution phases.

3.8.1 Node Join and Leave. A JBOF has multiple virtual nodes
with different key ranges. When a JBOF joins, each virtual node
splits the key range of a chosen partition into two and divides
the data store by inserting a new virtual node. It receives a new
virtual ID whose state is set to JOINING and takes the selected key
range. Upon receiving membership updates from the control plane,
tails of R hash chains start to issue COPY to the newly joining
virtual node and move the stipulated data range. During this phase,
incoming PUTs and DELs might be forwarded to the new virtual
node depending on if their keys are copied. After all the tails finish
copying and notify the control plane, the newly joined node changes
to RUNNING. Finally, clients can start issuing requests to this node.
All the tails stop forwarding requests and free the data ranges that
they are no longer responsible for.

Since all the nodes in the system receive membership updates
from the control plane asynchronously, a request may traverse the
hash chain with different views. For instance, a PUT/DEL might skip
the newly joined node, while a GET would read from the former tail
that contains outdated values. Thus, to ensure data consistency, an

operation can be performed if and only if all the nodes participating
in the operation have the same view. We achieve this by adding a
hop counter in a request, which increases by one when the request
is being forwarded. Upon receiving a request, a node can fetch
a local copy from its hash ring first, and then compare the hop
counter to verify if the request has entered the correct position
along the chain. If a violation happens, a NACK would be issued
back to the client for retrying.

Node leave works similarly to the joining process except that
tail nodes are responsible for copying data ranges to the next node
down the hash ring. When a (virtual) node leaves on demand or
involuntarily, the state of the virtual node in the control-plane man-
ager changes to LEAVING after a heartbeat timeout. The number
of replicas of this virtual node would become R-1 temporarily and
change back to R after the leaving process completes. Clients stop
issuing requests to this virtual node immediately upon receiving the
state update. The tails begin to copy to the next node. After the data
copy is completed from all tails, the virtual node is permanently
deleted from the control plane.

3.8.2 Failure Handling. LEED assumes that each node operates
under the fail-stop mode and node-node communications use a
reliable transport protocol. We use the heartbeat message for failure
detection and trigger a node leave if a JBOF is inactive for a certain
period. Next, we discuss how a failed node interacts with our CRRS
chain replication.

e Failed head: Reads are still served by the rest of a chain. For
ongoing writes, the dirty bit of associated objects is set. As these
requests are finally committed at the tail, the dirty bit will be
cleaned when receiving the response. The former second node
along the chain keeps sending responses to the failed head until it
becomes the head and starts to serve requests. During the joining
process, this node will discard all uncommitted changes and data,
and obtain the latest and consistent copy from the tail node;

e Failed mid-node: Writes cannot be propagated until the control
plane updates the neighbor. After that, dirty bits are cleared by
the tail. Similarly, the failed mid-node will receive a data copy
during rejoining. Reads are unaffected;

e Failed tail: For committed writes, dirty bits are cleared for the
rest of a chain. Reads to these objects are handled by other repli-
cas. However, for uncommitted writes, an unsuccessful acknowl-
edgment is back-propagated to clients, rolling back to the pre-
vious old value and clearing the dirty bit simultaneously. Reads
will return the old value. A subtle scenario-the write commit-
ment is invisible to other nodes-would happen, e.g., due to an
unexpected power failure. In this case, the penultimate node of a
chain will keep the dirty bit until it becomes the tail, which then
commits the write and propagates the response.

4 Evaluation

4.1 Experimental Methodology

Testbed setup. Our testbed comprises an RDMA-capable rack with
x86 servers and Stingray PS1100R storage nodes, connected to a
100Gbps Arista 716032-CQ switch. The Server JBOF has two Intel
Xeon Gold 5218 processors, 96GB memory, and a 100Gbps dual-port
Mellanox ConnectX-5 NIC. The SmartNIC JBOF configuration is
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Figure 5: Energy efficiency (Queries per Joule) comparison among three platforms: FAWN over embedded storage nodes, KVell over server
JBOFs, and LEED over SmartNIC JBOFs under 6 YCSB workloads. y-axis is log scale.

described in §2.1. We equip both with 4-8 Samsung DCT983 960GB
NVMe SSDs. We run Ubuntu 20.04 on Intel machines and Ubuntu
16.04 on Stingray nodes. The embedded node is a Raspberry Pi 3
Model B+, consisting of one 1.4GHz 64-bit quad-core ARM Cortex
A53 processor, 1GB DRAM, 1 Gigabit Ethernet over USB 2.0, and a
32GB Sandisk drive. Its idle power is 3.6W. Our emulated FAWN
cluster uses a Dell 1GbE switch and a PowerEdge R7525 as clients.
We use a Watts Up Pro meter and a HOBO Plug Load Data Logger to
measure the power of Server/SmartNIC JBOF and FAWN cluster,
respectively.

Implementation details. We develop LEED based on the SPDK
reactor framework [17] (version 19.10). Polling on the SmartNIC
JBOF incurs only a little power consumption. For example, we ob-
served 7.5W higher power with eight polled cores than the idle case
(45W). Each SSD could hold 32 virtual partitions. We empirically de-
termine the number of tokens for GET/PUT/DEL. The ETCD (used
by our control-plane) version is 3.5. We have released the source
code of LEED on our GitHub repository (https://github.com/netlab-
wisconsin/LEED).

Comparison schemes and workloads. We compare LEED
with two other platforms: (1) server JBOFs that run a recently devel-
oped fast persistent key-value store (i.e., KVell [62]) as the backend;
(2) embedded storage nodes that run the FAWN [34] storage stack.
Instead of using the deprecated PCEngine Alix board, we choose
Raspberry PI nodes with similar power consumption but better
performance. Our workload generator is based on the YCSB [46].
Similar to prior studies [34, 36, 37, 49, 88], we mainly consider small
key-value objects (i.e., 256B and 1KB). Our experiments use both
random and Zipf [22] distributions with different skewness factors.
Each data store holds around 1.6 billion objects during the test. We
disable front-end caching and focus on measuring the persistent
key-value processing performance.

4.2 LEED v.s. Other Data Stores on SmartNIC JBOF

We ported FAWN [34] and KVell [62] which were originally de-
signed for embedded and server storage nodes onto a SmartNIC
JBOF and compared with LEED (Table 3). We use a hybrid DRAM/Flash
indexing scheme to address the skewed storage hierarchy and can
support nearly the entire 4x960GB NVMe space. It incurs some
storage overheads due to key/value logs (less than 5%). Regarding
the other two, FAWN uses a log-structured design and requires
6 bytes in-memory hash index for each object. Given the limited
DRAM capacity, it can only use 7.7%/24.1% of the whole capacity
for 256B/1KB objects. KVell requires an in-memory B-tree index,

FAWN-JBOF | KVell-JBOF LEED

1KB 256B| 1KB | 256B| 1KB | 256B
Max. Capacity 241%| 7.7% | 2.6% | 0.9% | 97.3%| 95.4%
RND RD Lat. (us) 54.0 65.4 | 445.0| 416.0| 133.1| 116.5
RND WR Lat. (us) 44.8 61.4 | 810.0| 764.0| 84.0 | 83.9
RND RD Thr. (KQPS) 74.0 61.2 | 289.1| 299.9| 855.9| 860.0
RND WR Thr. (KQPS) || 88.4 64.8 | 156.1| 160.7 | 608.6 | 576.7

Table 3: Single-node performance comparison among FAWN-JBOF,
KVell-JBOF, and LEED. FAWN/KVell-JBOF is measured under their
maximum capacity. RND=random.

partial in-memory free lists, and a page cache, yielding even less
used space, i.e., 33GB/100GB for 256B/1KB objects.

Regarding latency, FAWN-JBOF performs the best as it only re-
quires one SSD access per request. LEED needs 2+ NVMe accesses to
process each command (§3.3), whose read/write latencies are nearly
double the ones of FAWN-JBOF, i.e., 116.54/83.9u and 133.11/84.0u
for 256B and 1KB object, respectively. We further break down the la-
tency of each individual command to demonstrate this (Figure 11 in
Appendix). Even though PUT issues one more SSD access compared
with the other two, LEED overlaps the first two accesses and only
adds 10.5us more latencies. KVell-JBOF performs the worse, even
though it also needs 1 SSD access. For example, its 1KB/256B ran-
dom read takes 445us/416ps, 3.3X/3.6X slower than the LEED case.
This is mainly because its B-tree indexing is computation-heavy
and its performance is limited by the SmartNIC processor.

In terms of throughput, LEED outperforms the other two sig-
nificantly (which also yields the best energy efficiency in terms
of requests per Joule) because it supports the entire flash capacity,
harnessing all the I/O parallelism of the PCIe lanes and NVMe in-
ternals. For 256B random read/write, LEED achieves 2.9X/3.6X and
14.1X/8.9X higher throughput than KVell-JBOF and FAWN-JBOF,
respectively. The 1KB case is similar.

We further look into the FAWN-JBOF and find out that its log
compaction process can be further improved. In particular, LEED
applies execution parallelism by dividing one compaction into mul-
tiple independent sub-compactions and running them in paral-
lel (i.e., intra-parallelism). On average across three workloads, we
observe 1.9x throughput improvement when using 8 threads (Fig-
ure 13a in Appendix). More threads are helpful when invalid entries
are distributed non-uniformly since it uses more core cycles for
chaining. Similarly, co-scheduling multiple compactions (i.e., inter-
parallelism) also improves the throughput by 17.9% (Figure 13b in
Appendix).
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4.3 Power and Energy Efficiency: Three Platforms

We compare the power and energy efficiency of three persistent key-
value systems: FAWN over embedded storage nodes (Embedded-
FAWN), KVell over server JBOFs (Server-KVell), and LEED over
SmartNIC JBOFs (SmartNIC-LEED). The replication factor of each
data store is 3. We run the YCSB workloads with the default skew-

ness. When maxing out their storage utilization, on average, Embedded-

FAWN, Server-KVell, and SmartNIC JBOFs consume 42.0W, 756.0W,
and 157.5W, respectively. This translates to 0.13W, 0.065W, and
0.014W per Gigabyte of key-value pairs across these three plat-
forms. The Raspberry Pi cluster has the least power draw, but the
system is unable to hold large-capacity NVMe drives. Server JBOFs
consume the most power, while each socket can support up to 48
PCle Gen3 lanes, leading to high-density storage nodes. SmartNIC
JBOFs instead combine the benefits of these two.

In terms of energy efficiency, on average across 6 workloads
(Figure 5), SmartNIC-LEED outperforms Server-KVell by 4.2x/3.8X
for the 256B/1KB cases. This corroborates our motivation (Figure 1).
LEED can drive most of the NVMe bandwidth using constrained
CPU and memory. It further achieves 17.5%/19.1x higher energy
efficiency for 256B/1KB objects than the Embedded-FAWN as a
Pi node is bounded by the I/O throughput of its SanDisk. There
are some high-end embedded boards (such as HiKey970 [29]) that
offer slightly improved I/O performance (UFS 2.1 standard, 2-3x
better bandwidth than Pi), but still much worse than SmartNIC
JBOFs. We observe that Server-KVell achieves higher (e.g., 7 v.s. 5
KQueries/Joule for 1KB object) energy efficiency than the SmartNIC-
LEED case when running YCSB-C (read-only). This is mainly be-
cause KVell achieves higher throughput than LEED by employing a
parallelized shared-nothing I/O and an in-memory sorted indexing
design, which operates best under the read-only mode. Instead, each
read in LEED requires two NVMe accesses to read the key/value
log.

4.4 Latency and Throughput: Three Platforms

We measure the latency-throughput behavior by varying the client
request issuing rate for six workloads. In addition to the setups in
§4.3, we also consider an artificial 100-node FAWN cluster to match
the networking bandwidth as the JBOF ones. We assume an ideal
linear scaling case where the throughput of FAWN(100) achieves
10x IOPS as FAWN(10), without latency increases. As shown in
Figure 6, in the case of 1KB, Server-KVell achieves the best through-
put, outperforming SmartNIC-LEED and Embedded-FAWN(100) by
2.9% and 22.2X on average across six workloads, respectively. When
approaching the maximum throughput, SmartNIC-LEED delivers
lower average latencies. For example, compared with Embedded-
FAWN(100) and Server-KVell, it reduces their average latencies
by 47.9% and 28.5% on average across all workloads, respectively.
This is mainly due to the intra-/inter-JBOF techniques that tackle
the unbalanced loads and control the overloading. LEED uses a
data swapping mechanism and an optimized replication scheme to
improve the read/write throughput. The end-to-end storage flow
control allows LEED to choose a less loaded replica and throttles
the client when obtaining no tokens, yielding latency savings. The
256B case performs similarly (Figure 14 in Appendix).

4.5 LEED Achieves Load-aware Scheduling

LEED schedules key-value requests in a load-aware fashion via a
token-based streamlined intra-JBOF I/O engine and a flow control-
based inter-JBOF scheduler. It exposes the serving capability of
each SSD partition and propagates it to the front-end. A request
can only be issued and executed when the target SSD provides
enough tokens. In the case of YCSB-B (Figure 8), it improves 52.2%
throughput, and reduces average/99.9th latencies by 34.4%/33.7%.
We observe similar benefits for YCSB-C. However, LEED requires
at least one round-trip to backpropagate the token information to
the client. When a severe incast scenario happens (e.g., the YCSB-C
case with zipf skewness equals to 0.95/0.99), one would still observe
the active and waiting queue quickly built up, jeopardizing both
average and tail latencies.
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4.6 Imbalanced Load Handling in LEED

Write Imbalance. LEED tackles the issue within a JBOF via the
data swapping mechanism. It chooses an unloaded SSD to absorb
overloaded writes. The higher the skewness is, the more benefits
one would observe (Figure 10). Under 0.99 skewness, our mecha-
nism yields 15.4%/17.2% higher throughput for the 256B/1KB cases.
Data sapping also ameliorates tail latency because requests could
be served by another SSD without waiting in the queue. On aver-
age across all skewed scenarios, we obtain 28.6%/32.1% avg./99.9th
latency savings.

Read Imbalance. LEED handles the read imbalance at the clus-
ter level via CRRS. Instead of forwarding requests to the tail, it
allows each replica to serve reads when the dirty bit of an object is
unset. When the request load is evenly distributed and the replica
is not overloaded, CRRS has little effect. However, when the client
demand exceeds the serving capability of the tail, with CRRS, one
can forward traffic to other replicas and obtain considerable perfor-
mance improvement. For example, for the YCSB-C (Figure 7), when
the Zipf skewness is 0.9, 0.95, 0.99, CRRS helps improve the through-
put by 7.3%, 5.1%, and 4.2X, reduce the average/99.9th latencies by
86.6%/94.0%, 80.8%/96.0%, and 76.4%/63.7%, respectively.

4.7 Performance under Node Failures

We set up a 3-nodes LEED cluster (w/ three replicas) and measure
the throughput when running YCSB-A/YCSB-B workloads (value
size is 1KB). We start the joining/leaving process when the cluster
becomes stable. As shown in Figure 9, we observe 49.1%/15.9%
throughput drop after join started and 66.0%/43.9% after leave
started for the YCSB-A and the YCSB-B, respectively. This is mainly
because of the COPY-induced extra cost. The leave process expe-
riences more degradation as the node receives COPY writes and
also serves ongoing requests. Our control-plane manager issues
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Figure 9: Throughput variation during a node join/leave.

membership updates to all the nodes when a node joined the cluster
or started to leave or finished the leaving process. A node might
actively reject client requests when they observe inconsistent views,
adding up to 29.7% extra degradation within a few seconds at the
end of the joining process (i.e., YCSB-B).

4.8 Discussion

Based on our development experience in building LEED, we’d like
to discuss some design trade-offs, limitations of existing SmartNIC
JBOFs, and potential improvements for next-generation platforms.

First, LEED is a throughput-oriented system that tries to execute
a storage I/O whenever possible. Without sacrificing the NVMe
bandwidth, one would observe some CPU stalls (§ 3.6) or memory
constraints (§3.2). Second, the earliest scheduling decision can be
made when a key-value request is issued from the client. This is
useful for our inter-JBOF execution (§3.5), where we employ an end-
to-end flow control. But it helps little for the intra-JBOF execution
because of the fast-changing environment (e.g., computing avail-
ability and storage bandwidth). In this case, we instruct the request
scheduling when it arrives at the target JBOF. Third, our Stingray
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Figure 10: LEED employs an intra-JBOF data swapping mechanism to handle temporarily imbalanced writes. We consider a write-only workload
under Zipf distribution varying the skewness and measure the application throughput and latency.

node encloses 4 Samsung DCT983 SSDs, where each provides up
to 400K 4KB IOPS. The data store of LEED consumes at least 2 SSD
accesses for each command, translating to up to 200KIOPS per SSD
and 800K per JBOF. Our microbenchmarks demonstrate that we can
fully use the storage bandwidth. However, to saturate the network
bandwidth, especially for small key-value objects, one can either
reduce the number of SSD access for each command or increase
the platform throughput. Given the limited DRAM capacity, we
think the latter would be more practical. Hence, we believe future
SmartNIC JBOFs should be equipped with a big PCle switch (with
more lanes) or upgraded to PCle Gen4. Fourth, in addition to the
DRAM capacity, we find that another system limitation is onboard
memory bandwidth (which is 4390MB/s on Stingray), which bounds
the max number of concurrent operations (such as data segment
table manipulation, concurrent queue access) and hurt the through-
put. We expect next-generation devices would further increase the
bandwidth or even use HBM as the Silicom N5010 card [16]. Finally,
we find out that our system still has some available CPU cycles
(even running at a modest load), where we can use it for other opti-
mizations. For example, we can further increase the entry size of
the segment table to further reduce the in-memory metadata. The
trade-off here is that each look-up phase might need more probing
cycles. So with better SmartNIC execution engines, one can explore
more such system optimizations. In sum, SmartNIC JBOFs deliver
extremely high I/O throughput with ultra-low, allowing us to ex-
plore a low-power and high-performance, high energy-efficient
solutions, where Xeon-based or FAWN-like systems could hardly
achieve.

5 Related Work

Energy-efficient computing. Energy efficiency has become a
key factor driving the design and implementation of data center
systems. Researchers have proposed various specialized hardware
architectures and software optimizations. FAWN [34] applies a log-
structured based key-value store over an array of winpy nodes.
Gordon [40] develops a low-power storage array using embedded
processors and programmable SSDs. Lake [84] is a power-efficient
key-value store built with NetFPGA and conflates multiple cache
layers with processing cores. E3 [68] exploits the use of Smart-
NICs for energy-efficient executions of microservice-based appli-
cations. Andrew et al. [47] harness cheap single-board computers
(e.g., Raspberry Pi 3B+) to execute in-memory OLAP workloads for
cost and energy savings. People also strive to improve the energy
efficiency of an external sort benchmark (i.e., JouleSort [81]) for
years [54, 57, 69, 71, 77]. We are exploiting the use of SmartNIC
JBOFs for energy-efficient persistent key-value processing.

Key-value caching service. Researchers have built many opti-
mized flash-base cache systems. Honeycomb [67] stores a B-Tree
in host memory and executes SCAN and GET on an FPGA-based
SmartNIC to improve the throughput. SkimpyStash [49] moves the
key-value pointers from the RAM to the Flash and resolves hash
table collisions using linear chaining. HiKV [86] builds the persis-
tence hash index in NVM and B+-Tree index in DRAM to avoid long
NVM writes for maintaining consistency. Flashshield [55] leverages
the host DRAM as a filter to minimize data rewrites., requiring 20
bits per object for indexing. CacheLib [37] reduces the memory
footprint for object indexing via a set-associative design. Kanga-
roo [72] proposes a hybrid caching architecture that combines a
small log-structured cache with a large set-associate one. Our work
targets a special setting where (1) the DRAM/Flash storage hier-
archy is extremely skewed; (2) each I/O has limited computation
availability.

Cluster-level overloading control. LEED benefits from prior
work on system overload prevention. For example, Huamin Chen
et al. [43] conducts capacity planning and request scheduling for
web servers by analyzing the dependency among session-based
requests. CoDel [76] regulates the queueing delay to elude network
overloading. Doorman [23] requires manually configuring the client
and server capacity before deployment. DAGOR [93] detects the
microservice loading status in realtime and adjusts its load-shedding
thresholds adaptively. Breakwater [44] proposes an overload control
scheme based on credits and server-side admission control. LEED
captures the NVMe bandwidth availability and translates it into
tokens.

6 Conclusion

This paper revisits the design and implementation of a low-power
high-performance distributed key-value store using emerging Smart-
NIC JBOFs. We find that conventional system design philosophies
and techniques become either invalid or ineffective due to the im-
balanced architectural design of a SmartNIC JBOF. We propose
new techniques at the SSD/intra-JBOF/inter-JBOF levels to address
the unique challenges. Our prototyped system on the Boradcom
Stingray demonstrates energy efficiency improvements over prior
solutions. This work does not raise any ethical issues.
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Appendix A Additional Evaluations

This section presents more evaluation results about different aspects
of LEED. We use the same setup as described in §4.1.

A.1 LEED Data Store

A.1.1 Latencybreakdown. Figure 11 provides the latency break-
down of GET/PUT/DEL operations. Apparently, SSD accesses domi-
nate the request execution, i.e., 97.4% and 97.6% for the 256 and 1KB
cases on average across three commands. Even though PUT issues
one more NVMe access compared with the other two, it only adds
10.5p more latencies since the first two SSD reads are overlapping.
A.1.2 Throughput Varying with Read/Write Ratio. We mea-
sure the single node throughput by varying the GET/PUT ratio.

As shown in Figure 12, LEED throughput drops by 3.3% and 2.9%
on average when adding 10% PUT for the 256B/1KB cases. FAWN
(running over Raspberry PI) behaves differently since its data store
uses a log-structured design where PUT runs faster than GET.
A.1.3 Compaction Optimization Results Figures 13aand 13b
present the impact of parallelism on compaction. We consider three
workloads: random write only (WR-ONLY), random mixed 50/50
read/write (MIX-50), mixed 50/50 read/write under Zip distribution
(MIX-50-Zip) where skewness is 0.99.

A.2 LEED Cluster

A.2.1 Latency and Throughput under 256B Object Figure 14
presents the latency v.s. throughput of three platforms running
with six YCSB workloads and 256B objects. The results are similar
as the 1KB case.
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Figure 11: GET/PUT/DEL command latency breakdown for 1KB/256B
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Figure 13: The impact of execution parallelism on compaction performance.
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Figure 14: Latency v.s. throughput for 6 YCSB workloads under the 256B case. FAWN(10) and FAWN(100) represent the number of nodes in the
cluster is 10 and 100, respectively. X-axis is log scale for all scenarios. The y-axis of YCSB-WR is log scale.
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