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Abstract
In ecology, it is common for processes to be bounded based on physical constraints 
of the system. One common example is the positivity constraint, which applies to 
phenomena such as duration times, population sizes, and total stock of a system’s 
commodity. In this paper, we propose a novel method for parameterizing Lognor-
mal state space models using an approach based on moment matching. Our method 
enforces the positivity constraint, allows for arbitrary mean evolution and variance 
structure, and has a closed-form Markov transition density which allows for more 
flexibility in fitting techniques. We discuss two existing Lognormal state space mod-
els and examine how they differ from the method presented here. We use 180 syn-
thetic datasets to compare the forecasting performance under model misspecification 
and assess the estimation of precision parameters between our method and existing 
methods. We find that our models perform well under misspecification, and that fix-
ing the observation variance both helps to improve estimation of the process vari-
ance and improves forecast performance. To test our method on a difficult problem, 
we compare the predictive performance of two Lognormal state space models in 
predicting the Leaf Area Index over a 151 day horizon by using a process-based eco-
system model to describe the temporal dynamics. We find that our moment match-
ing model performs better than its competitor, and is better suited for intermedi-
ate predictive horizons. Overall, our study helps to inform practitioners about the 
importance of incorporating sensible dynamics when using models of complex sys-
tems to predict out-of-sample.

Keywords  Bayesian statistics · Forecasting · MCMC · Particle filter · State space 
model

Handling Editor: Luiz Duczmal.

R. Quinn Thomas and Leah R.Johnson have contributed equally to this work.

Extended author information available on the last page of the article

http://crossmark.crossref.org/dialog/?doi=10.1007/s10651-023-00570-x&domain=pdf


	 Environmental and Ecological Statistics

1 3

1  Introduction

Process-based models are mathematical representations of the evolution of bio-
logical or physical systems (Buck-Sorlin 2013). These models are often com-
prised of systems of ordinary or partial differential equations in time and space, 
or are discretizations of such systems. Because they encapsulate known or 
hypothesized mechanisms of physical or biological systems, process-based mod-
eling approaches have advantages over empirical or phenomenological modeling 
approaches, particularly when low data availability limit the ability of empiri-
cal models to accurately represent complex processes. As a result, process-based 
models remain common in ecological forecasting applications (Lewis et al. 2022). 
However, process-based modeling approaches have their own set of challenges. 
For example, quantification of uncertainty in both model dynamics and structure 
is difficult, as is assessing over-parameterization (Luo et al. 2009).

Quantifying uncertainty in process-based models is one of the most challeng-
ing tasks when using them for forecasting applications that involve uncertainty 
propagation. Uncertainty comes from a wide variety of sources, including but not 
limited to: process, measurement, initial conditions, driver data, and parameter 
estimation (Dietze et  al. 2018). Process uncertainty (or process stochasticity) is 
particularly important to address, as it acknowledges that the modeling frame-
work may contain unknown errors that are best represented stochastically or con-
tain elements that are known to be non-deterministic and that affect the dynamics 
of the biological process. For this reason, the state space modeling (SSM) frame-
work (Durbin and Koopman 2012; Petris et  al. 2009; Auger-Méthé et  al. 2021) 
has been used frequently in ecological applications (see Thomas et  al. 2017; 
Dowd and Meyer 2003; Dennis et  al. 2006, for examples). State space models 
provide a flexible framework that is able to handle missing data and partition mul-
tiple sources of uncertainty (Dietze et al. 2018). Many existing fitting methods for 
ecosystem process-based models already account for initial condition, parameter, 
and observation uncertainty. These models can also add an uncertainty structure 
to describe stochastic elements in the process dynamics. This allows them to be 
analyzed as state space models.

One of the nuances of including uncertainty/stochasticity in the process model 
is the trade-off between complexity and ecological coherence. For example, in for-
est carbon modeling, Gaussian error, with its positive to negative infinity bounds, is 
commonly assumed for carbon stocks (pools) (Thomas et al. 2017; Jiang et al. 2018), 
despite the biophysical impossibility of an ecosystem having a negative amount of 
carbon. In general, biological processes may have well defined lower bounds (and 
potentially upper bounds) that are not accurately captured by error structures that 
have support over the entire real line. Consequently, models that have biophysi-
cally inadequate error structures can produce nonsensical predictions as the states 
approach these well defined bounds, or if the observations have large measurement 
error which can allow for predictions with negative values as the modeled states 
approach the lower bounds. This is especially relevant in forecasting applications, 
where the uncertainty compounds as the forecast horizon increases.
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A wealth of probability distributions are available for modeling non-negative 
processes. In particular, the Lognormal distribution has a rich history in ecology 
(Dennis and Patil 1988), and is frequently used in state space modeling of popula-
tions (e.g., Buckland et al. 2004; Dennis et al. 2006; Knape et al. 2011) and species 
abundance (e.g, Maunder et al. 2015; Mäntyniemi et al. 2015). Two common formu-
lations for Lognormal state space models (LN-SSMs) are the stochastic Gompertz 
SSM (Gompertz 1825) and the stochastic Moran-Ricker SSM (Ricker 1954; Dennis 
et al. 2006). In their simplest forms, these models include assumptions that may not 
accurately describe some ecological processes—namely the assumption of density 
dependent variance (Dennis et al. 2006) and systematic bias in the process evolu-
tion and observation functions. When these assumptions are not appropriate for an 
application, we need a mechanism to insert more appropriate assumptions about the 
process evolution, observation, and variance dynamics. To incorporate ecologically 
coherent error structures into state space models, we propose a novel Lognormal 
moment matching approach that allows users to specify the mean and variance of 
their process evolution and observation models.

Here, we fit our Lognormal moment matching models from a Bayesian perspec-
tive using Markov Chain Monte Carlo (MCMC) and Particle Markov Chain Monte 
Carlo (pMCMC; Andrieu et al. 2010). The Bayesian paradigm provides a flexible 
framework for fitting complex models, and the moment matching approach we intro-
duce here offers a closed form Markov transition density. This closed form transition 
density provides the option to fit these models using MCMC, while still supporting 
access to particle filter (Cappe et al. 2007; Doucet and Johansen 2011) methods such 
as pMCMC. Both MCMC and pMCMC also provide a rigorous framework for quan-
tifying parameter uncertainty and assessing forecast performance. MCMC methods 
generate samples from the posterior distribution, allowing practitioners to generate 
parameter estimates and build empirical density functions for their forecasts (Krüger 
et al. 2021). We can then validate our models by combining out-of-sample forecasts 
with MCMC output and evaluating them with proper scoring rules (Gneiting and 
Raftery 2007), such as the Continuous Ranked Probability Score (CRPS; Matheson 
and Winkler 1976) and the Ignorance Score (IGN; Good 1952; Roulston and Smith 
2002).

We create four different models using the Lognormal moment matching tech-
nique developed here. The four models are all based off of the Gompertz and 
Moran-Ricker models (Gompertz 1825; Dennis et al. 2006; Ricker 1954), and are 
parameterized to have unbiased process evolution. We explore two different variance 
structures: a density dependent variance (Dennis et al. 2006) for the evolution and 
observations, and a constant variance for the evolution and observations.

First, we discuss interpretations of the Gompertz and Moran-Ricker SSMs and 
contrast them with interpretations of the models we present here. Next, we design 
and conduct simulation studies to compare forecast performance under model mis-
specification, and assess estimation of precision parameters. In particular, we follow 
the approach of Auger-Méthé et al. (2016) and investigate how the forecast perfor-
mance and precision estimates change when the observation precision is fixed ver-
sus when it is estimated. Finally, we create a Lognormal State Space model that uses 
a two-dimensional process-based ecosystem model of Bloom and Williams (2015) 
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to model the state dynamics, and use it to predict the Leaf Area Index (LAI) at a 
focal forest site (University of Notre Dame Environmental Research Center; UNDE) 
in Wisconsin, USA. We parameterize our models in two different ways: once using 
a parameterization that assumes biased process evolution and observations with a 
density dependent variance structure, and once using a parameterization obtained 
using our moment matching method with a density dependent variance structure. 
We design and perform an analysis to test the viability of using a state space mod-
eling framework to predict out-of-sample LAI, and to identify similarities and dif-
ferences between our moment matching parameterization and the parameterization 
that assumes biased process dynamics and observations.

2 � Motivating examples

In this section, we motivate the use of biologically coherent error structures in 
applications by demonstrating problems that may occur when modeling positive 
processes with error distributions that have mass over the entire real line. In par-
ticular we demonstrate how process models produce nonsensical predictions as they 
approach or exceed well defined biophysical bounds. First, we consider the follow-
ing toy dynamical system in time:

where logN(�, �2) represents a Lognormal distribution with parameters � and �2 . 
Since the stochastic evolution function is Lognormally distributed, the process is 
positive, i.e. Xt ∈ (0,∞),∀t = 1,… , T  . Further, the conditional mean and variance 
are given by �[Xt|Xt−1] = Xt−1 and � [Xt|Xt−1] = �2∗.

Suppose that the positivity of the dynamical system is ignored, and instead the 
process is modeled as simple a Gaussian random walk:

where N(�, �2) represents a Gaussian distribution with parameters � and �2 . To 
showcase the differences in forecast performance when the positivity constraint is 
ignored, we simulated two sample trajectories of length 50 from the Lognormal 
dynamical system in Eq. 1. Then, we simulate forward in time using the Lognormal 
model (Eq. 1) and the Gaussian model (Eq. 2) 10,000 times each. We used these 
10,000 simulations to compute the median forecasts and 95% credible intervals for 
each model. When the system starts sufficiently far from zero the two models are 
indistinguishable from each other, producing nearly identical forecasts in terms of 
median estimates and 95% credible intervals (Fig.  1, top two panels). When the 
starting value X0 is chosen to be close to the biological lower bound, however, the 
differences in forecasts become more apparent. The Lognormal model forecast inter-
vals are now asymmetric and bounded below at zero, and quickly reach zero as the 

(1)Xt�Xt−1 ∼ logN
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forecast horizon increases. The random walk model forecast intervals retain their 
symmetry and continue to put considerable forecast mass below zero as the forecast 
horizon increases (Fig. 1, bottom two panels).

In this simple example, the negative forecasts are not causing any issues in the 
process model, thus only producing unrealistic forecasts. To illustrate an exam-
ple where issues arise in the process model, consider the following dynamical 
system:

We note that, formally, absolute values are unnecessary for the evolution of the true 
model (since Xt is positive for all t). However, they will become necessary when we 
attempt to find an analogous Gaussian model with which to forecast.

Computing the conditional mean and variance of the Lognormal distribution 
with the given values of � and �2 and using them as the conditional mean and 
variance of a Gaussian distribution results in:

(3)Xt|Xt−1 ∼ logN

(
� = log(|Xt−1|) − a, �2 = log

(
1 +

�2∗

|Xt−1|
)2

)
.
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Fig. 1   Two sample trajectories (black lines) from the Lognormal dynamical system in Eq.  1. The top 
panels start from X

0
= 50 and the bottom panels start from X

0
= 2 . Medians and 95 % credible intervals 

for 10 day forecast horizons (dotted lines) are created by simulating forward using the Lognormal model 
(Eq. 1) and the Gaussian model (Eq. 2) 10,000 times
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To compare the differences between our Lognormal and Gaussian models, we 
simulated two sample trajectories of length 50 from the Lognormal dynamical sys-
tem in Eq. 3. The first trajectory was simulated with parameters X0 = 100 , �2 = 5 , 
a = 0.01 . The second trajectory was simulated with parameters with X0 = 0.8 , 
�2 = 0.1 , a = 0.2 . To generate forecast summaries, we simulate forward in time 
using the Lognormal model (Eq. 3) and the Gaussian model (Eq. 4) 10,000 times 
each. We used these 10,000 simulations to compute the median forecasts and 95% 
credible intervals for each model. For initial values sufficiently far from zero, the 
forecast medians and 95% credible intervals from the Lognormal model are nearly 
identical to the forecast medians and 95% credible intervals from the Gaussian 
model (Fig. 2, top two panels). When the initial values are close to zero, the Log-
normal model (bottom left panel, Fig.  2) enforces the lower bound and produces 
asymmetric credible intervals. However, the Gaussian forecasts when the system 
approaches zero (bottom right panel, Fig. 2) produce credible intervals that put mass 

(4)Xt|Xt−1 ∼ N

(
exp

(
� +

�2

2

)
,
(
exp(�2) − 1

)
exp

(
2� + �2

))
.
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Fig. 2   Two sample trajectories from the Lognormal dynamical system in Eq. 3. The top panels starting 
from X

0
= 100 and the bottom panels starting from X

0
= 0.8 . Medians and 95% credible intervals for 5 

day forecast horizons (dotted lines) are created by simulating forward using the Lognormal model (Eq. 3) 
and the Gaussian model (Eq. 4) 10,000 times
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below the biological lower bound. Moreover, the credible intervals for the Gaussian 
model are considerably wider than the credible intervals for the Lognormal model. 
When working on specific applications, predictions like these may be challenging 
to analyze because it is easy to associate the dynamics with an inadequate process 
model. In reality, the problem may be a consequence of having an error structure 
that can put probability mass on regions outside of the well defined upper and lower 
bounds of our ecological process.

3 � Methods

3.1 � Lognormal SSMs

State Space Models, sometimes referred to as Hidden Markov Models (HMMs), are 
a broad class of models used to track the states of a model (some unobserved process 
X1∶T ) through a set of observations, Y1∶T (Durbin and Koopman 2012; Petris et al. 
2009). A state space model has three components—the state component, the obser-
vation component, and additional parameters. The state component consists of an 
(unobserved) Markov process, Xt , being moved through time by an evolution func-
tion (or process function) f (Xt|Xt−1,Θ) . The implication of X1∶T following a Markov 
process is that the past and the future are independent conditional on the state at the 
current time, Xt (Shumway and Stoffer 2011). The observation component consists 
of noisy observations of the latent process, Y1∶T , that are governed by an observation 
density function, g(Yt|Xt,Θ) . These observations are assumed to be independent of 
one another conditional on the latent states X1∶T . The additional parameter compo-
nent, Θ , contains the parameters that govern the evolution function and observation 
function.

The Gompertz (1825) and Moran-Ricker (Ricker 1954) SSMs are simple discrete 
density-dependent state space models with Lognormally distributed process and 
measurement error (Dennis et  al. 2006). The Gompertz and Moran-Ricker SSMs 
are popular choices for Lognormal state space models because they can be easily 
transformed into Normal Dynamic Models (NDMs), and can then take advantage of 
a suite of well studied fitting methods, including Kalman filtering (Kalman 1960), 
extended Kalman filtering (Julier and Uhlmann 1997), and Gibbs sampling (Geman 
and Geman 1984; Carter and Kohn 1994), alleviating computational difficulties 
associated with fitting SSMs.

The latent process models for the Gompertz model can be written as:

The latent process model for the Moran-Ricker model can be written as:

For both the Gompertz and Moran-Ricker models, the error terms �t are assumed 
to be: (a) independent and identically distributed and (b) independent of the initial 
latent state X0 (Shumway and Stoffer 2011).

(5)Xt = Xt−1 exp(a + b log(Xt−1) + �t), �t ∼ N(0,�)

(6)Xt = Xt−1 exp(a + bXt−1 + �t), �t ∼ N(0,�)
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Letting A = exp(a) , we can rewrite Eqs. 5 and 6, the Gompertz and Moran-Ricker 
process equations (respectively), in the form:

More generally, we can think of both the Gompertz and Moran-Ricker process mod-
els as belonging to a class of Lognormally distributed process models that we intro-
duce in this work. These models have the form:

where f ∗(Xt−1|�) is the model of choice for the non-negative physical process, and 
the process error is governed by a multiplicative zero mean Lognormal distribution. 
The conditional mean ( �[Xt|Xt−1] ), conditional variance ( � [Xt|Xt−1] ) and condi-
tional median ( M[Xt|Xt−1] ) are given by:

Examining the conditional expected value, we see that this class of models is biased 
in terms of mean process evolution, but unbiased in terms of median process evolu-
tion. Further, the variance of the latent state is controlled by the value of the process 
model f ∗(⋅) , with larger values of the process assumed to have larger variation than 
smaller ones. Therefore, in the class of process models that describe the Gompertz 
and Moran-Ricker models, the density dependent relationship of the latent process 
variance is assumed to scale quadratically with the predicted value of the process 
model.

The generalization of the Gompertz and Moran-Ricker process models also holds 
true for the observation model. For example, for continuous responses Yt , the assumed 
relationship between an arbitrary observation Yt and the corresponding latent state Xt 
for the Gompertz model may be given by:

Similar to the �t sequence, �t are independent, identically distributed, and independ-
ent of the initial latent state X0.

Broadly, the Gompertz and Moran-Ricker observation models also belong to the 
same class of Lognormally distributed observation models in Eq. 13 that have the form:

(7)Xt = A(Xt−1)
b+1 exp(�t), �t ∼ N(0,�)

(8)Xt = AXt−1 exp(bXt−1) exp(�t), �t ∼ N(0,�)

(9)Xt = f ∗(Xt−1|Θ) exp(𝜖t), 𝜖t ∼ N(0,𝜙), f ∗(Xt−1|Θ) > 0,

(10)�[Xt|Xt−1] = f ∗(Xt−1|Θ) exp((2�)−1),

(11)� [Xt|Xt−1] = f ∗(Xt−1|Θ)2 exp(�−1),
(
exp(�−1) − 1

)

(12)M[Xt|Xt−1] = f ∗(Xt−1|Θ).

(13)Yt = Xt exp(�t), �t ∼ N(0, �)

(14)Yt = g∗(Xt|Θ) exp(𝜂t), 𝜂t ∼ N(0, 𝜏), g∗(Xt|Θ) > 0,
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where g∗(Xt|Θ) is now interpreted as the model used to link our observations to their 
respective latent states, and the measurement error is dictated by a multiplicative 
zero mean Lognormal distribution. The conditional mean, conditional variance, and 
conditional median of this class of observation models are given by:

Importantly, while this class of observation models assumes that observations are 
unbiased in log space, they assume there is systematic observation bias in their 
measurement process, which is given by B(Yt|Xt) = g∗(Xt|Θ)(1 − exp((2�)−1)).

Though we have only examined the Gompertz and Moran-Ricker models when 
discussing the class of Lognormal process and observation models presented here, 
there are many examples of Lognormal modeling frameworks in the animal popula-
tion modeling literature (see Buckland et al. 2004; Knape et al. 2011, for examples) 
and fisheries modeling literature (see Maunder et al. 2015; Mäntyniemi et al. 2015, 
for examples) that fall into the classes we discuss here. Including a term to correct 
the bias is a common method used in applications to rectify assumptions of biased 
process evolution and biased observations (Knape et al. 2011; Maunder et al. 2015; 
Mäntyniemi et al. 2015) but this bias correction term changes the variance structure, 
as the Lognormal variance is a function of both � and �2 . In particular this bias cor-
rection term can lead to an increase in variance, a consequence of the bias-variance 
trade-off (Casella and Berger 2002).

3.2 � Lognormal moment matching models

Instead of assuming an unbiased median process evolution and a density dependent 
variance structure, a modeler developing a Lognormal SSM for their application 
may want to specify the mean evolution and the variance structure of the stochastic 
Lognormal process model. That is, we desire a Lognormally distributed stochastic 
evolution function such that �[Xt|Xt−1] = f ∗(Xt−1|Θ) and � [Xt|Xt−1] = �∗

t
−1 . We 

can create a process model with these characteristics by using a moment matching 
transformation on the mean and precision, specifically:

This approach provides a stochastic Lognormal process model with the desired 
properties (see Appendix 7.1 for derivation):

�[Yt|Xt] = g∗(Xt|Θ) exp((2�)−1),
� [Yt|Xt] = g∗(Xt|Θ)2 exp(�−1)

(
exp(�−1) − 1

)
,

M[Yt|Xt] = g∗(Xt|Θ).

(15)�t = log
( f ∗(Xt−1|Θ)2√

f ∗(Xt−1|Θ)2 + �∗
t
−1

)
,

(16)�t = log
(
1 + (f ∗(Xt−1|Θ)2�∗

t
)−1

)−1

.
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Thus, our framework allows for us to parameterize the process model such that the 
temporal evolution is unbiased, and that allows for a flexible way to model the vari-
ance of the process through time. For example, we can choose �t = � to model con-
stant variance through time, �t = �∕f ∗(Xt−1|Θ)2 to model density dependent vari-
ance, or �t = � exp(−t−1) to model variance that dissipates over time.

The Lognormal moment matching approach can be similarly applied to the 
observation model to produce a Lognormally distributed observation density 
with the properties �[Yt|Xt] = g∗(Xt|Θ) , � [Yt|Xt] = �∗

t
−1 by choosing parameters 

mt and � to be:

With the forms of both the process model and observation model fully specified in 
this manner, it is possible to write a likelihood equation for a model that includes 
both components, that we call the Lognormal Moment Matching model (LNM3). 
Suppose that we have observations at a subset of time points I ⊂ {1,… , T} . We 
denote these observations by Y = (Yi1 , ..., Yin) such that (i1, ..., in) ∈ I . Then the like-
lihood for the LNM3 is given by

where logN  denotes the Lognormal density function. �t , �t , mi , and �i denote the 
moment matching parameterizations for the process and observations models from 
Eqs. 15–18.

The moment matching method can be used to parameterize our stochastic 
Lognormal model to describe any positive process or observation model and 
any variance structure, and thus helps to maintain biophysical coherence when 
modeling positive processes. Fitting these models as state space models further 
allows them to easily handle missing data and partition between process and 
measurement error. Thus the LNM3 approach provides a framework that is flex-
ible, biophysically adequate, and statistically coherent.

Xt|Xt−1 ∼ logN(� = �t, �
2 = �−1

t
),

�[Xt|Xt−1] = f ∗(Xt−1|Θ),
� [Xt|Xt−1] = �∗

t

−1
.

(17)mt = log
( g∗(Xt|Θ)2√

g∗(Xt|Θ)2 + �∗t
−1

)
,

(18)�t = log
(
1 + (g∗(Xt|Θ)2�∗t )−1

)−1

.

(19)
L(X1∶T ,Θ|Y) =

T∏
t=1

logN(Xt|� = �t, �
2 = �−1

t
)

×
∏
i∈I

logN(Yi|� = mi, �
2 = �−1

i
),
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3.3 � Model fitting

Our analysis focused on comparing and contrasting the LNM3 approach to the 
Gompertz and Moran-Ricker approaches, two common Lognormal SSMs. We 
estimate the latent states, precisions, and model parameters for six different 
models presented here using Bayesian inference via Markov Chain Monte Carlo 
(MCMC; Robert and Casella 2005) and Particle Markov Chain Monte Carlo 
(pMCMC; Andrieu et al. 2010). The six different models include the Gompertz 
SSM, the Moran-Ricker SSM, and four different SSM formulations using the 
Lognormal Moment Matching (LNM3) method presented in Eqs. 15–18. Model 
parameters, latent states, and precisions were estimated via Markov Chain 
Monte Carlo (MCMC). MCMC is an estimation method that generates samples 
of parameters from their posterior distributions using Markov chains. Parameter 
uncertainty can be quantified using posterior samples from these Markov chains. 
All models were fit using JAGS (Plummer 2003) using the rjags package 
(Plummer 2019) in R version 4.1.0 (R Core Team 2016).

3.3.1 � Gompertz SSM fitting

We fit the Gompertz model in log-space, by taking the logarithm of the latent 
states (X1∶T ) and observations ( Yi∈I ). We define these as Dt = log(Xt) and 
F = (Fi1

, ...,Fin
) = (log(Yi1 ), ..., log(Yin )) such that (i1, ..., in) ∈ I . Under this trans-

formation, the process model and observation model can be written as a Normal 
Dynamic Linear Model (NDLM) (West and Harrison 1997):

If the log-observations ( F ) are available at a subset of time points, I ⊂ {1,… , T} , 
the likelihood for the Gompertz model can be written as:

Prior choices for the parameters a, b, D0 , � , and � used during our MCMC estima-
tion of the Gompertz SSM are detailed in Sect. 7.2 of the Appendix.

The full conditional distributions for D1∶T in the Gompertz model are analyti-
cally tractable, allowing for Gibbs sampling (Geman and Geman 1984). For inte-
rior latent states ( k = 1, 2,… , T − 1 ) the Gibbs updates are given by:

(20)Dt = a + (1 + b)Dt−1 + �t, �t ∼ N(0,�)

(21)Yi = Di + �obs,i, �obs,i ∼ N(0, �)

(22)
L(D1∶T , a, b, �,��F) ∝

T�
t=1

√
� exp

�
−
�

2
(Dt − a − (1 + b)Dt−1)

2

�

×
�
i∈I

√
� exp

�
−
�

2
(Fi − Di)

2
�
.
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The Gibbs updates for the initial latent state and the final latent state are given by

where the function 1i∈I is an indicator function that returns 1i∈I = 1 if a log-observa-
tion Fi is available at time i, and 1i∈I = 0 otherwise.

We ran the MCMC for the Gompertz model for a total of 10,000 iterations, with 
a burn-in of 2000 iterations, and an adaptation period (n.adapt in JAGS) of 1000.

3.3.2 � Moran‑Ricker SSM fitting

We also fit the Moran-Ricker model in log-space by taking the logarithm of the 
latent states (X1∶T ) and observations ( Yi∈I ), Dt = log(Xt) , Fi = log(Yi) . Under this log 
transformation, the process model and observation model can be written as:

Assuming that log observations ( F ) are available at a subset of time points, 
I ⊂ {1,… , T} , the likelihood for the Moran-Ricker model fit in log-space is given 
by:

Prior choices for the parameters a, b, D0 , � , and � used during our MCMC estima-
tion of the Gompertz SSM are detailed in Sect. 7.3 of the Appendix.

We ran the MC for  the Moran-Ricker model for a total of 10,000 iterations, 
with a burn-in of 2000 iterations and an adaptation period (n.adapt in JAGS) 
of 1000.

(23)
�(Dk|⋅) ∼ N

(
�∗ =

�((1 + b)Dk−1 + a + (1 + b)(Dk+1 − a)) + �Fk1k∈I

�(1 + (1 + b)2) + �1k∈I

,

�∗ = �(1 + (1 + b)2) + �1k∈I

)
.

(24)�(DT |⋅) ∼ N

(
�(1 + (1 + b)DT−1 + a) + �FT1T∈I)

� + �1T∈I

,� + �1T∈I

)
,

(25)�(D0|⋅) ∼ N

(
�0�0 + �(1 + b)(D1 − a)

�(1 + (1 + b)2) + �0

,�(1 + (1 + b)2) + �0

)
,

(26)Dt = a + Dt−1 + exp(bDt−1) + �t, �t ∼ N(0,�),

(27)Yi = Di + �obs,i, �obs,i ∼ N(0, �).

(28)

L(X1∶T , a, b, �,��YI) ∝
T�
t=1

√
� exp

�
−
�

2
(Dt − a − Dt−1 − exp(bDt−1))

2

�
,

�
i∈I

√
� exp

�
−
�

2
(Fi − Di)

2
�
.
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3.3.3 � Lognormal moment match SSM fitting

We explored four different Lognormal models using the moment matching 
approach. These models include: the Gompertz process model parameterized for 
unbiased mean process evolution and unbiased observation model with constant 
variances (LGC), the Moran-Ricker process model parameterized for unbiased 
mean process evolution and unbiased observation model with constant variances 
(LMRC), the Gompertz process model parameterized for unbiased mean process 
evolution and unbiased observation model with density dependent variances that 
scale quadratically with the process (LGD), and the Moran-Ricker process model 
parameterized for unbiased mean process evolution and unbiased observation 
model with density dependent variances that scale quadratically with the process 
(LMRD). For the remainder of this paper, we will be referring to the first two 
models (LGC, LMRC) as the constant variance models. The term density depend-
ent models will be used to describe the second two models (LGD, LMRD) as well 
as the classical Gompertz and Moran-Ricker models. We carefully chose these 
four models to describe common assumptions for different SSM formulations. 
The unbiased mean process evolution, unbiased observation density function, and 
constant variance models (LGC, LMRC) were chosen to mimic the assumptions 
of homoskedastic Gaussian SSMs, which are not frequently used in Lognormal 
SSMs. The parameterizations for the LGD and LMRD models were chosen to 
mimic the variance structure of the Gompertz and Moran-Ricker models while 
maintaining an unbiased process evolution function and unbiased observation 
density function.

The likelihood for the constant variance models is obtained by substituting the 
values for f ∗(Xt−1|Θ),�t, g

∗(Xi|Θ) and �i from Table 1 into the LNM3 likelihood 
(Eq. 19).

The density dependent moment matching models were fit in log-space, by tak-
ing the log of the latent states and observations; Dt = log(Xt),Fi = log(Yi) . The 
model likelihood in log-space for the LGD model can be written as:

Table 1   Process evolution functions, process error structure, observation density function, and observa-
tion error structure for the four types of Lognormal moment matching SSMs used

LGC and LMRC represent the Gompertz and Moran-Ricker process functions and observation functions 
with constant process and measurement variance. LGD and LMRD represent the Gompertz and Moran-
Ricker process functions and observation functions with density dependent process and measurement 
variance

Model name f ∗(Xt−1|Θ) �t g∗(Xi|Θ) �i

LGC exp(a)(Xt−1)
b+1 � Xi �

LMRC Xt−1 exp(a + bXt−1) � Xi �

LGD exp(a)(Xt−1)
b+1 �(exp(a)(Xt−1)

b+1)−2 Xi �X−2
i

LMRD Xt−1 exp(a + bXt−1) �(Xt−1 exp(a + bXt−1))
−2 Xi �X−2

i
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Similarly, the model likelihood in log-space for the LMRD model can be written as:

Prior choices for the parameters a, b, D0 , X0 � , and � used during our MCMC esti-
mation for each of the four moment matching SSMs are detailed in Sect. 7.4 of the 
Appendix.

We also note that the specification of the density dependent variance as 
�t = �f ∗(Xt−1|Θ)2 and the log-linear nature of the Gompertz curve lead to closed 
form full conditional distributions for the latent states in the LGD model. Similar to 
the Gompertz model, this allows for Gibbs sampling to be used to update the latent 
states, which helps decrease computation time.

We ran the MC for each of the four moment matching models for a total of 10,000 
iterations, with a burn-in period of 2000 iterations, and an adaptation period (n.
adapt in JAGS) of 1000.

3.4 � Simulation study

We designed a simulation study to assess the forecasting performance of the six 
models presented here, both under the cases where they are the true generating 
models and where the models are misspecified. Our three primary objectives for the 
simulation study were: (1) assess forecasting performance of each model when it is 
the true generating model and when it is misspecified, when observation precision is 
being estimated (2) assess forecasting performance of each model when it is the true 
generating model and when it is misspecified, with fixed observation precision; (3) 
analyze the estimation of precisions for the models considered in this manuscript.

To assess the forecast performance of our models, we used proper scoring rules 
(Gneiting and Raftery 2007). Broadly, proper scoring rules use information about 
the predictive distribution coupled with observations to assign a measure of agree-
ment of the forecast and the observations (Krüger et al. 2021). Specifically, Gneiting 

(29)

L(D1∶T , a, b, �,��F) ∝
T�
t=1

exp
�
−

log(1+�−1)−1

2
(Dt − (a + (1 + b)Dt−1 − .5 log(1 + �−1)))2

�
√
log(1 + �−1)

�
i∈I

exp
�
−

log(1+�−1)−1

2
(Fi − (Di − .5 log(1 + �−1)))2

�
√
log(1 + �−1)

.

(30)

L(D1∶T , a, b, �,��F) ∝
T�
t=1

exp
�
−

log(1+�−1)−1

2
(Dt − (a + Dt−1 + b exp(Dt−1) − .5 log(1 + �−1)))2

�
√
log(1 + �−1)

�
i∈I

exp
�
−

log(1+�−1)−1

2
(Fi − (Di − .5 log(1 + �−1)))2

�
√
log(1 + �−1)

.
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and Raftery (2007) define a scoring rule to be proper if the expected value of the 
score is maximized by a draw from the true forecast distribution, and show that both 
the Continuous Ranked Probability Score (CRPS; Matheson and Winkler 1976) and 
the Ignorance Score (IGN; Good 1952; Roulston and Smith 2002) score are proper 
scoring rules. The IGN and CRPS are expressed in terms of a forecast probability 
density function f (⋅) and a forecast cumulative distribution function F(⋅) . Given an 
observation y, the IGN and CRPS are defined as:

For our simulation studies, we consider both the CRPS and IGN scores, so that we 
have one scoring rule defined in terms of the probability density function (IGN) and 
one scoring rule defined in terms of the cumulative distribution function (CRPS). 
We use the IGN and CRPS scores to quantitatively compare forecasts, with lower 
scores within a scoring rule indicating a better performance. CRPS has support over 
the positive real line, [0,∞) , while IGN can take values between [− log(f (y∗)),∞) , 
where y∗ = argmaxy∈ℝf (y).

To analyze the estimation of precision parameters in each of our six models, 
we used the empirical coverage rate of the 95% highest posterior density credible 
intervals for the precision parameters. Auger-Méthé et al. (2016) show that SSMs 
can have difficulty recovering the process and observation precisions even when the 
models are linear and Gaussian. To perform a thorough analysis on the estimation 
of the precision parameters, we fit each model under two different scenarios. In 
the first scenario, we fixed the observation precision and estimated the process 
precision for each model. In the second scenario, we estimated both the observation 
precision and the process precision for each model. This approach allowed us to 
assess the estimation by looking at the increase in empirical coverage rate for the 
process precision when the observation precision is fixed compared to when the 
observation precision is estimated. By choosing to use coverage and proper scoring 
rules to quantify our model performance, we follow a common approach used in the 
literature—using frequentist concepts to assess Bayesian models (Box 1980; Rubin 
1984; Little 2006, 2012).

To quantify our three objectives, we performed the simulation study as follows: 
for each of the six models, thirty different synthetic datasets of length 575 were gen-
erated by simulating from the underlying process model and observation model, 
with parameter values taken from Table 2. Parameter values for each model were 
chosen so that the systems had similar mean dynamics for each generating model. 
Each of the six models discussed here was fit to each synthetic dataset. Models were 
initially fit with the first 365 days of data, and then forecasts were computed for days 
366–372, a seven day forecast horizon. The average IGN and CRPS for the seven 
day forecasts horizons were computed using the logs_sample and crps_sam-
ple function from the scoringRules R package (Jordan et al. 2017). We also 
saved the highest posterior density credible intervals for the estimated precisions. 

(31)IGN(y) = − log(f (y));

(32)CRPS(y) = �
ℝ

(F(z) − 1z≥y)2dz.
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We then re-fit the models with the first 372 days of data, and forecasts were com-
puted for days 373–379. This process was repeated until the synthetic data was 
exhausted. Overall, 12 models were fit to each individual synthetic data set—once 
by each model with observation precision known and once by each model with 
observation precision estimated, for a total of 2,160 simulations. By using the same 
synthetic datasets, we were able to isolate the differences in forecast performance 
for each precision scenario and quantify the difference using paired Wilcoxon tests 
(Wilcoxon 1945) with a Holm-Bonferroni adjustment (Holm 1979).

3.5 � Application: Leaf Area Index predictions

We examined the differences in predictive performance between two different LN-
SSM formulations by modeling Leaf Area Index (LAI) at University of Notre Dame 
Environmental Research Center (UNDE), a National Ecological Observatory Net-
work (NEON) site. LAI is the total surface of leaves per area of ground and is a 
metric of the photosynthetic capacity of an ecosystem. We obtained estimates LAI 
at UNDE from Oak Ridge National Laboratory Distributed Active Archive Center 
using their fixed subsets feature (DAAC 2018). The dataset contains estimates of 
LAI at four day intervals, computed using reflectance estimates from the Moderate 
Resolution Imaging Spectroradiometers (MODIS) satellite as inputs to a phenologi-
cal model that predicts LAI (Yang et al. 2006). The two statistical models that we 
considered were a biased LN-SSM, based on Eqs. 9 and 14, and a moment match-
ing LN-SSM, based on Eqs.  15, 16, 17, and 18. Our analysis was designed with 
two primary questions in mind: (1) can we construct accurate out-of-sample predic-
tions of LAI for intermediate horizons (e.g., multiple seasons) using a Lognormal 
state space model?; (2) do the moment matching and biased formulations show dif-
ferences in out-of-sample predictive performance for intermediate horizons, when 
measured by CRPS and IGN?

To fit the LAI data, we used a reduced version of the Data Assimilation Linked 
Ecosystem Carbon Model, Version 2 (DALEC2; Bloom and Williams 2015). In 
DALEC2, the LAI is modeled as a function of the carbon stored in foliage. Rather 
than fitting the full model (a six dimensional dynamical system with 23 process 
parameters) we only considered the interaction between foliage carbon ( Cf  ) and the 
labile carbon ( Clab ). This reduced the model to a two dimensional dynamical system 
with eight process parameters. Descriptions and units for DALEC2 process param-
eters can be found in Table 7. The form of the reduced process model is given as:

Table 2   Parameter values used 
for the six different model 
formulations to create thirty 
synthetic datasets for each 
generating model

Param. Gomp MR LGC LMRC LGD LMRD

exp(a) 0.82 1.26 1.21 1.11 1.21 1.11
b − 0.658 − 0.034 − 0.099 − 0.014 − 0.099 − 0.014
� 70.2 51.9 4 4 70.2 70.2
� 188.7 188.7 4 4 188.7 188.7



1 3

Environmental and Ecological Statistics	

where s = 365.25∕� and �f = −

�
W0

��
2� log(1 − clf )

2
�−1�

∕
√
2 , where W0 is the 

principal branch of the Lambert W function (Lambert 1758), and G(D(

t), clma, ceff ) is 
the output of the Aggregated Canopy Model (ACM) for gross photosynthetic 
production (Williams et al. 1997). D(t) represents meteorological driver variables for 
day t that include: daily minimum and maximum temperatures ( ◦C), daily incoming 
shortwave radiation (g Cm−1 ), and atmospheric carbon (CO2 ppm). Minimum tem-
peratures, maximum temperatures, and daily shortwave radiation were obtained 
from the National Ecological Observatory Network (NEON; National Ecological 
Observatory Network 2020; National Ecological Observatory Network (NEON) 
2022b, a). We imputed any missing NEON observations using a piece-wise linear 
interpolation. We took monthly measurements of atmospheric carbon from the 
Scripps Project (Keeling et  al. 2005), and interpolated daily measurements by 
assigning the monthly values to each day within the month.

To fit the reduced DALEC2 as a LN-SSM, we used the process-based model 
(Eq. 33) as the state component and the LAI equation (Eq. 34) as the observation 
component. To model the variance structure of the process evolution function and 
observation function, we used a density dependent variance. We chose a density 
dependent variance structure (Dennis et al. 2006) because we expect more process 
variation and measurement error for foliage carbon when it is large during the early 
spring and summer months, and less when it is low in the winter months. We con-
sidered two different LN-SSM formulations with density dependent variance struc-
tures. The first model, the biased model, parameterizes the process and observation 
components in a biased manner using Eqs. 9 and 14. The second model that we con-
sider parameterizes the process and observation components in an unbiased man-
ner using our moment matching approach. The process evolution function and the 
observation function for the biased model are given by:

(33)C
(t) = MtC

(t−1) + pt, where

(34)

Mt =

[
1 − Φ

(t)

f
Φ(t)

o

0 1 − Φ(t)
o

]
,C(t−1) =

[
C
(t−1)

f

C
(t−1)

lab

]
, pt =

[
G(�(�), clma, ceff )ff
G(�(�), clma, ceff )flab

]

LAI(t) =
C
(t)

f

clma

(35)

Φf (t, df , cr, clf ) =

�
2

�
⋅

− log(1 − clf )

crf
exp

⎛
⎜⎜⎝
−

�
sin

�
t − df + �f

s

�√
2s
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�2⎞
⎟⎟⎠
,

(36)
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where MV logN  represents the multivariate Lognormal density, Mt, pt and C(t) take 
on the same values from Eq. 33, Ω = Diag(�2

f
,�2

lab
) , and the log in the process evo-

lution mean represents the componentwise logarithm of each element of the vector.
The process evolution function and observation function for the moment match-

ing model are given by:

where 1 represents a 2 × 1 vector of ones, Ω = Diag(�2
f
,�2

lab
) , and the log once again 

represents a componentwise logarithm. Additional information on expected values 
and variances for the two different DALEC2 LN-SSM formulations can be found in 
Table 6 in the Appendix.

The equations above that we use to define our LN-SSM also highlight an 
interesting difficulty of our analysis: we are fitting a two state dynamical system, 
but we only have observations for one of the states, ( Cf  ). Although we are primarily 
interested in predicting LAI, which is a function of Cf  , we still need to estimate labile 
carbon so that we can model its contribution to foliage during the period of leaf 
regrowth. This also highlights an advantage of our state space modeling approach: 
the uncertainty from our lack of labile carbon measurements is propagated through 
time, giving us a more complete picture of the uncertainty in the foliage carbon.

We treated two model parameters as fixed: the Leaf Mass per Area ( clma ) and the 
density dependent observation precision parameter ( � ). We fixed clma to avoid identifi-
ability issues with the canopy efficiency parameter ( ceff  ), as the two parameters appear 
exclusively together in the ACM (Williams et al. 1997). For both models, we fixed clma 
to a value of 75, based on empirical results from Serbin et al. (2019) that were cali-
brated specifically at UNDE. We estimated the density dependent observation precision 
parameter using historical data from MODIS, which reports both the standard devia-
tion and the mean of the LAI estimates. For the moment matching model, we took the 
median value of the means divided by the standard deviations. This gave us a value of 
𝜏 ≈ 4 . For the standard Lognormal SSM formulation, we used the form of the variance 
for the Lognormal distribution (Eq.  10) to obtain 𝜏≈4.18 . For the DALEC2 process 
parameters, we used uniform prior distributions over the range of acceptable values 
taken from Bloom and Williams (2015). For the density dependent process variance 
components, we used a Uniform(0, 1) distribution as the prior. We chose this because 

(37)C
(t)|C(t−1) ∼ MV logN

(
log

(
MtC

(t−1) + p(t)
)
,Ω

)
,

(38)LAI(i)�C(i) ∼ logN

⎛
⎜⎜⎝
log

⎛
⎜⎜⎝
C
(i)

f
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⎞
⎟⎟⎠
, �−1

⎞
⎟⎟⎠
,

(39)
C
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MtC
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)
− .5 log(11T + Ω)1, log(11T + Ω)
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,
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⎟⎟⎠
,



1 3

Environmental and Ecological Statistics	

the � parameters for the biased and moment matching parameters have the interpreta-
tion that they roughly control the average proportion of process error at each time point. 
All prior distributions for parameters were identical for the moment matching model 
and the biased model. A full table detailing prior distributions and fixed parameters can 
be found in Appendix 7.6.

We fit both of the models using particle MCMC (pMCMC; Andrieu et al. 2010). 
We ran each model for a total of 881 days, from September 5th, 2019 to February 
2nd, 2022. We used four day MODIS LAI measurements from September 5th, 2019 
to September 6th, 2021 to fit each model, and we used the remaining MODIS LAI 
measurements from September 7th, 2021 to February 2nd, 2022 to assess out-of-
sample prediction. To assess out-of-sample predictions, we used the pMCMC sam-
ples of the latent states to generate samples from the posterior predictive distribution 
for the observations. We then used these samples to validate against the out-of-sam-
ple MODIS LAI measurements using CRPS and IGN using the scoringRules 
package (Jordan et al. 2017) in the R programming language (R Core Team 2016). 
By doing this, we are scoring on Y|X rather than directly on the observation Y, and 
acknowledge that the LAI observations that we are using for validation have meas-
urement error (Ferro 2017; Bessac and Naveau 2021). We implemented pMCMC 
using the pmcmc function in the R package pomp (King et al. 2016). The pmcmc 
function implements the Particle Marginal Metropolis Hastings (PMMH) algorithm 
of Andrieu et al. (2010), using a boostrap particle filter (Gordon et al. 1993). We ran 
each model for a total of 100,000 iterations, with a burn in of 50,000 iterations, 500 
particles, and an adaptive multivariate normal proposal distribution (Andrieu and 
Thoms 2008; Rosenthal 2009) that began using a scaled empirical covariance matrix 
after 1000 samples are accepted. To obtain initial parameter estimates that start in a 
region of high posterior density, we used a Gaussian process surrogate model opti-
mization (Gramacy 2020) using TRBO (Eriksson et al. 2019), with the particle filter 
marginal log-likelihood as the objective function.

LAI is ubiquitous for forecasting changes in carbon stored in different compo-
nents of a terrestrial ecosystem under different projections of climate. For our analy-
sis, we chose to predict over multiple seasons, in an attempt to emulate a forecasting 
scenario of LAI response to predicted changes in climate, such as a particularly hot 
or cold winter. Our analysis also serves as an efficacy test for predictive modeling of 
LAI using a state space framework. While much work has been done on LAI predic-
tion using ecosystem process-based models (see Mahowald et al. 2016; Ercanli et al. 
2018, for examples), to our knowledge there has been little work done on predicting 
LAI by using a mechanistic process-based ecosystem model as the process compo-
nent of a statistical state space model.

4 � Results

4.1 � Simulation study

The first objective of our simulation study was to assess the forecasting perfor-
mance of each model under model misspecification when observation precision is 
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estimated. We expected that the true generating model would perform best on aver-
age for its thirty synthetic datasets, using the average IGN and CRPS scores over 
each seven day forecast horizon. For the case where both the process precision, � , 
and the observation precision, � , were estimated, the Gompertz model (Gomp in 
Table 3) had the best forecasting performance among the density dependent models 
(MR, Gomp, LMRD, LGD) for both CRPS and IGN. The unbiased moment match-
ing analog to the Gompertz, LGD, also had a strong performance, scoring second 
highest for IGN on all four density dependent variance models, and scoring second 
highest for CRPS on three out of the four. For the constant variance models (LMRC, 
LGC), the constant variance Moran-Ricker model (LMRC) had the best forecasting 
performance for both CRPS and IGN.

The second objective of our simulation study was to assess the forecasting per-
formance of each model under model misspecification when observation precision 
was fixed. For the simulations where the observation precision, � , was fixed and the 
process precision, � , was estimated, we found higher consistency between our scor-
ing rules and the generating model. For the simulations that estimated both preci-
sion parameters (Table 3), the Gomp and LGD models consistently outperformed 
the other density dependent variance models for both scoring rules. In contrast, 
the simulations where � was fixed and � was estimated (Table 4) showed a more 
equal representation among the density dependent models. For the four density 
dependent generating models, the Moran-Ricker and its unbiased moment matching 

Table 3   Average CRPS and 
IGN scores for the simulations 
where both � and � are 
estimated

Columns represent the generating model for the synthetic datasets 
and rows represent the models used to fit the datasets. Scores are 
averaged over thirty different synthetic datasets and thirty different 7 
day forecast horizons for each combination of generating model and 
model used to fit the data. Bold entries represent the lowest score for 
a given generating model, and italicized entries represent the second 
lowest score

Generating model

 Model MR Gomp LMRC LGC LMRD LGD

Average CRPS
 MR 0.8587 0.8027 0.6496 0.6362 0.8752 0.8970
 Gomp 0.8344 0.7773 0.5997 0.5952 0.8279 0.8500
 LMRC 0.8356 0.7810 0.5913 0.5889 0.8411 0.8672
 LGC 0.8375 0.7809 0.5927 0.5900 0.8440 0.8672
 LMRD 0.8380 0.7872 0.6181 0.6100 0.8357 0.8585
 LGD 0.8357 0.7789 0.6080 0.6016 0.8310 0.8517

Average IGN Score
 MR 1.816 1.744 1.595 1.557 1.806 1.830
 Gomp 1.785 1.710 1.514 1.494 1.751 1.774
 LMRC 1.812 1.757 1.456 1.452 1.858 1.915
 LGC 1.806 1.750 1.458 1.454 1.840 1.882
 LMRD 1.793 1.723 1.537 1.507 1.762 1.790
 LGD 1.792 1.714 1.530 1.500 1.755 1.778
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counterpart scored the best for CRPS, with each model producing the lowest score 
twice. When measuring performance with IGN, the Moran-Ricker and Gompertz 
models each scored lowest twice. The density dependent models all scored similarly, 
regardless of the choice of true generating model, both for CRPS (max difference 
≈ 0.0052 ) and for IGN (max difference ≈ 0.006).

Our third objective was to analyze the estimation of precisions for each of the six 
models we used. Our first investigation for the estimation of the precision param-
eters was to quantify the differences in IGN and CRPS scores between the simula-
tions where the observation, � was fixed and the simulations where � was estimated. 
This investigation is also intimately related to the performance of the models under 
model misspecification, and therefore provides insight for all three of our objec-
tives. To evaluate the impacts statistically, we used a paired Wilcoxon test (Wil-
coxon 1945). To do this, we took the average IGN and CRPS scores over each seven 
day forecast horizon for the two different scenarios, treating them as "before" and 
"after". We justify this by noting that each precision scenario was fit using identical 
synthetic datasets, with the only difference being whether � was estimated or not. A 
paired Wilcoxon test was chosen over a paired t-test after finding that the normality 
assumption of the paired t-test was not satisfied. Unsurprisingly, we found that fix-
ing the observation precision helped to improve forecasting performance for nearly 
all models. The LGD model performed significantly better in terms of IGN when 
� was fixed (LGD: p = 0.023 ), but did not perform significantly better in terms of 

Table 4   Average CRPS and 
IGN scores for the simulations 
where � is estimated and � is 
known

Columns represent the generating model for the synthetic datasets 
and rows represent the models used to fit the datasets. Scores are 
averaged over thirty different synthetic datasets and thirty different 
7 day forecast horizon for each combination of generating model and 
model used to fit the data. Bold entries represent the lowest score for 
a given generating model, and italicized entries represent the second 
lowest score

Generating model

 Model MR Gomp LMRC LGC LMRD LGD

Average CRPS
 MR 0.8332 0.7770 0.5968 0.5945 0.8230 0.8492
 Gomp 0.8358 0.7774 0.6000 0.5954 0.8276 0.8508
 LMRC 0.8357 0.7813 0.5911 0.5891 0.8337 0.8619
 LGC 0.8362 0.7805 0.5929 0.5897 0.8349 0.8603
 LMRD 0.8332 0.7766 0.5971 0.5937 0.8233 0.8495
 LGD 0.8359 0.7777 0.5999 0.5959 0.8282 0.8510

Average IGN Score
 MR 1.785 1.711 1.502 1.487 1.748 1.775
 Gomp 1.788 1.710 1.515 1.494 1.752 1.774
 LMRC 1.819 1.764 1.455 1.453 1.848 1.905
 LGC 1.813 1.750 1.458 1.453 1.834 1.887
 LMRD 1.786 1.712 1.505 1.486 1.752 1.780
 LGD 1.788 1.710 1.513 1.494 1.752 1.776
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CRPS (LGD: p = 0.14 ). The Moran-Ricker, LMRD, LGC, and LMRC models all 
had statistically significant decreases in IGN (MR: p < 2e-16 ; LMRD: p = 1.6e-07 ; 
LGC: 4.3e-07 ; LMRC: p = 7.3e-08 ) as well as CRPS (MR: p < 2e-16 ; LMRD: 
p = 1.6e-07 ; LGC: 1.8e-08 ; LMRC: p = 1.1e-05 ) when � was fixed. Fixing the 
observation precision did not significantly impact the performance of the Gompertz 
model for IGN ( p = 0.74 ) or CRPS ( p = 0.75).

Our second investigation for the estimation of the precision parameters was based 
on the empirical coverage rate of the HPD intervals. The empirical coverage of the 
highest posterior density (HPD) credible intervals for � increased for every simulation 
where � was fixed, and all six models had empirical coverage that fell within 1.5% of 
the nominal rate. For the simulations where both � and � are estimated, Table 5 shows 
that the Gompertz model and LGD models produce the best empirical coverage for the 
precision parameters. This is likely to be related to their excellent performance in these 
simulations, where other models struggled to consistently produce precision estimates 
that contained the ground truth in their 95% HPD intervals. The empirical undercover-
age of the Moran-Ricker (MR) model for both � and � may also explain its poor per-
formance in the forecast results from Table 3, where it came in last place for CRPS for 
all six generating models and last place for IGN for three out of six generating models, 
including the case where it was itself the true generating model.

4.2 � Leaf Area Index predictions at UNDE

We found that both the moment matching LN-SSM and the biased LN-SSM pro-
duced predictive distributions that captured the dynamics of both the in-sample and 
the out-of-sample LAI observations. Both models showed similar fits for the in-sam-
ple LAI observations when looking at medians (Fig. 3) and 90% highest posterior 
density intervals (Fig.  3). This was not surprising to us, as both models used an 
identical process model and prior distributions, and only differed slightly in the for-
mulation of process evolution and observation functions.

For the out-of-sample LAI predictive distributions, the models behaved differ-
ently. The biased model (Fig.  3, top panel) had lower variance at the start of the 
predictive horizon, and then began to tail off at the end of the horizon. The moment 
matching model (Fig.  3, bottom panel) had larger predictive variance at first, but 

Table 5   Average empirical 
HPD credible interval coverage 
for the precisions of each 
generating model, under the 
scenarios where both � and � 
are estimated and when � is 
fixed

The nominal expected coverage rate is 95%. Coverage rates are aver-
aged over all synthetic datasets and forecast horizons, for a total of 
900 samples

Generating model

 Parameter MR Gomp LMRC LGC LMRD LGD

Scenario 1: Both � and � estimated
 � 72.3% 89.1% 89.2% 86.9% 85.8% 89%
 � 74.7% 96.4% 92.1% 91.8% 91.7% 95.3%

Scenario 2: � Estimated, � Fixed
 � 95.2% 94.8% 94.1% 93.6% 94.2% 94.9%
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then leveled off and accumulated slowly at the end of the horizon. The median pre-
dicted values for the moment matching model are slightly larger than the median 
predicted values for the biased model over the entire horizon. This is an interesting 
result: for identical process parameter values, the median of the moment matching 
models should be strictly smaller than the median of the biased model. This tells us 
that there is some mismatch between the parameters being estimated for the biased 
model and the moment matching model. This is something that we must be cautious 
about when we are using parameters that have physical interpretations. Modeling 
the ecosystem dynamics using a biased state process evolution may lead to biased 
parameter estimates and incorrect inferences for our interpretable parameters.

We also found differences in performance between the two models when 
measured by IGN and CRPS. When measured by mean IGN across the 32 out-
of-sample LAI measurements, the two models had similar performance, with the 
moment matching model performing slightly better (mean IGNmm = 0.3566 ; mean 
IGNbiased = 0.3850 ). The moment matching model had marginally better IGN scores 
for the observations where neither model performed well (e.g. out-of-sample meas-
urements two, three, and four, Fig. 4, top panel), and the models had similar IGN 
score performance otherwise. When measured by mean CRPS across the 32 out-of-
sample LAI measurements, the moment matching model showed a much better per-
formance (mean CRPSmm = 0.2389 ; mean CRPSbiased = 179.93 ). Towards the end 
of the prediction horizon the CRPS for the biased model quickly increases, while the 
CRPS for the moment matching model stays comparatively small. We believe that 
this happens because of an accumulation of bias in the biased model combined with 
the heavy tails of the Lognormal distribution.
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Fig. 3   Model fits for the biased model (top panel) and moment matching model (bottom panel). Medi-
ans (solid line) and 90% highest posterior density intervals (dashed lines) were computed using 50,000 
post burn-in samples of the latent states generated by pMCMC. Blue triangles denote LAI measurements 
that were used to train the model, and red triangles denote LAI measurements that were not seen by 
the model and used only for validation purposes. The vertical black represents the time value where the 
model began predicting out-of-sample
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5 � Discussion

Although the Gaussian distribution is a common choice in modeling applications, 
many ecological processes have strict lower bounds that are not adequately captured 
by Gaussian models. This mismatch becomes especially problematic in forecast-
ing applications, where uncertainty grows as the forecast horizon increases. How-
ever, incorportating assumptions about the evolution of the latent process and vari-
ance dynamics into non-Gaussian SSM frameworks can be challenging. To remedy 
this, we proposed a method for incorportating non-negative process and observa-
tion models with arbitrary variance structures into Lognormal SSMs using moment 
matching (LNM3). The primary advantage of our method is flexibility: it allows 
practitioners to create stochastic processes and measurement components that are 
unbiased in terms of their mean evolution, have a flexible variance that can change 
through time, and offer a closed form Markov transition density that allows models 
to be fit with standard MCMC software such as JAGS (Plummer 2003).

We used Monte Carlo simulations to assess the forecasting performance of the 
six models discussed here, using a total of 180 synthetic datasets that were fit twelve 
times each: once by each model with the observation precision estimated, and once 
by each model with the observation precision fixed. We found that the forecast-
ing performance of our models under misspecification was heavily dependent on 
whether or not the observation precision was fixed, and also dependent on the metric 
used for evaluation: CRPS or IGN. With the observation precision estimated, the 
Gompertz model had the best average CRPS and IGN scores across all of the syn-
thetic datasets for four out of the six generating models. With the observation preci-
sions fixed at the true values, we found that every model except for the Gompertz 
model had a significant increase in forecast performance when measured by average 

Sep Nov Jan

0.
0

1.
0

2.
0

3.
0

IG
N

 S
co

re
s

MM Model

Biased Model

Sep Nov Jan

−2
0

2
4

6
8

Lo
g 

C
R

P
S
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line denotes the moment matching model, and the dashed and dotted red line denotes the biased model. 
Triangles along these lines represent points where there were out-of-sample LAI measurements for vali-
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CRPS or average IGN. For these simulations, no model dominated the others in 
terms of forecast performance for either metric. The Gompertz model outperforming 
the true generating models identifies one of the difficulties of using proper scoring 
rules to evaluate forecast performance, especially if using forecasting performance 
as a way to guide model choice. Although it is usually expected that the CRPS and 
IGN scores should favor the generating model, we are unlikely to have access to the 
true parameter values that underlie the generating model and instead have to rely on 
estimates of parameter values from our MCMC.

Even simple linear Gaussian SSMs can be prone to estimation problems, espe-
cially for parameters that govern the variance structure of the process and observations 
(Auger-Méthé et al. 2016). We found that our models were no exception to this: when 
both the process precision and observation precision were estimated, no model came 
within 5% of the nominal 95% coverage rate for the process precision HPDs. We also 
found that estimation of the precision parameters was closely related to forecasting 
performance. For the simulation where both observation and process precision param-
eters were estimated, the two models with the best performance (Gompertz and LGD) 
were also the models that had empirical coverage rates closest to 95% for the precision 
parameters. Similarly, the Moran-Ricker model was 20% below the nominal coverage 
rate for both the observation and process precision parameters, and had the worst aver-
age CRPS scores for every generating model, including itself. For the simulation stud-
ies where the observation precision was fixed, we found that coverage rates for each of 
the six models were close to the nominal 95% coverage rate, with the empirical cover-
age rates ranging from 93.6% to 95.2%. This supports the findings from Auger-Méthé 
et al. (2016), who show that fixing the measurement error in linear Gaussian SSMs 
can help to alleviate estimation problems.

We tested the efficacy of our method when applied to a challenging problem by 
using a two-dimensional process-based ecosystem model to describe the state pro-
cess dynamics in a LN-SSM and using it to predict the Leaf Area Index (LAI). 
Overall, we found that both models performed well in reconstructing latent states 
that had good agreement with the LAI measurements while adequately capturing 
the dynamics of the out-of-sample measurements that we used for validation. Both 
models showed similar fits for the in-sample LAI measurements, but showed dif-
ferences in out-of-sample predictive performance. The moment matching model, 
developed using the methodology we present here, had a superior performance for 
the out-of-sample LAI when assessed using both IGN scores and CRPS. This sup-
ports our idea that having a flexible mechanism for adjusting the process evolution, 
observation function, and variance structure can help to better capture out-of-sample 
dynamics and improve predictive performance. Towards the end of the predictive 
horizon, the biased model begins to perform very poorly when measured by CRPS, 
and the moment matching model continues to perform well. This indicates that the 
moment matching framework used here may be better for applications that have pre-
dictive horizons of intermediate length.

Though we saw better performance using our moment matching technique, the 
analysis that we did here serves mainly as proof-of-concept for state space mod-
eling of LAI, and there is much room for improvement in future work. The largest 
improvement would be to integrate additional data streams, and to include weather 
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drivers that are forecast. For example, including data on litterfall accumulation from 
the National Ecological Observatory Network (NEON) would help to further con-
strain process parameters, process variance, and potentially improve out-of-sample 
prediction performance, and including forecasted weather drivers adds an addi-
tional level of uncertainty to our model predictions. Similarly, in future work we 
can consider additional methods for constraining parameters in the absence of direct 
observations, such as the ecological data constraints described in Bloom and Wil-
liams (2015). Finally, in future work we can study the performance of the biased and 
moment matching DALEC2 model formulations over longer predictive horizons, 
such as multi-year projections of LAI under different climate scenarios.

Though the methods presented here use the Lognormal distribution to represent 
stochasticity, the moment matching approach broadly applies to other distributions 
as well, and provides opportunities for future directions. For example, the gamma 
distribution has been considered for state space modeling (Smith and Miller 1986) 
and stochastic differential equation modeling (Dennis and Patil 1984) applications, 
has non-negative support, can be parameterized in terms of its mean and variance 
using a moment matching approach, and has lighter tail behavior than the Lognor-
mal distribution. The beta distribution, which has previously been used in SSMs 
(see Osthus et al. 2017; Deo and Grover 2021, for examples), has adequate support 
for modeling proportions and can also be parameterized in terms of its mean and 
variance to allow for moment matching approaches.

In conclusion, to address biological non-coherence in models of physical sys-
tems, we proposed a novel Lognormal state space modeling framework that pre-
serves the positivity of the latent process and observations. The methods presented 
here allow practitioners to incorporate complex process models and error dynam-
ics into state space models while ensuring that the forecasts produced by the model 
agree with the constraints of the system. The flexibility of the moment matching 
method for representing complex systems along with the variance partitioning of the 
state space model provide a coherent statistical framework for forecasting, in terms 
of biophysical adequacy, forecast assessment, and uncertainty quantification.

Appendix

Lognormal moment matching

In this section, we derive the moment matching transformation that we use through-
out this work to specify the dynamics of the process and observation models. 
Suppose that we are interested in finding a transformation for random variable 
X ∼ Lognormal(�, �2) , such that �[X] = �∗,� [X] = �2∗ . The Lognormal probability 
density function is given by:

f (x�𝜇, 𝜎) = 1

𝜇𝜎
√
2𝜋

exp

�
−
(log(x) − 𝜇)2

2𝜎2

�
,𝜇 ∈ ℝ, 𝜎 > 0, x ∈ (0,∞)
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Then, we have the following equations for the mean and variance:

By taking the logarithm on both sides, we can rewrite Eq. 41 as: �2 = 2(log(�∗) − �) . 
We can substitute this into Eq. 42 to get �∗ written in terms of known constants,

Then, rewriting Eq. 43 in terms of exp(−2�∗) , we have:

We can then solve Eq. 44 for � . This yields:

where the final step comes from the property that a log(b) = log(ba) . Then, we can 
substitute our expression for � back into the Equation �2 = 2(log(�∗) − �) . This 
gives us:

(41)�[X] = �∗ = exp

(
� +

�2

2

)

(42)� [X] = �2∗ =
(
exp(�2) − 1

)
exp(2� + �2)

(43)

�2∗ =
(
exp(2 log(�∗) − 2�) − 1

)
exp(2� + 2 log(�∗) − 2�)

=
(
exp(2 log(�∗) − 2�) − 1

)
exp(2 log(�∗))

= (�∗2 exp(−2�) − 1)�∗2

(44)exp(−2�) =
�2∗ + �∗2

�∗4

(45)

− 2� = log
�
�2∗ + �∗2

�∗4

�

� = −
1

2
log

�
�2∗ + �∗2

�∗4

�

� = log
�

�∗2

√
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Thus our desired transformations for our moment matching approach are given by 
� = log

�
�∗2√

�∗2+�2∗

�
 and �2 = log

(
1 +

�2∗

�∗2

)
.

Gompertz SSM priors

In this section, we detail and justify our choice of prior distributions for the 
Gompertz SSM. Based on the likelihood for the Gompertz SSM in Eq.  22, we 
require prior distributions for a, b,�, � , and the initial log-latent state D0 . Given the 
interpretation of a and b as the multiplicative constant and the growth rate in the 
Gompertz model (Eq. 7), we used Uniform(−10, 10) priors for both a and b. There 
are important considerations when choosing the prior distributions for � and �.

Though the likelihood in Eq. 22 can exploit conjugacy and use improper Jeffreys 
priors (Jeffreys 1946) for both � and � , Gelman (2006) shows that the posterior is 
sensitive to the choice of � when using a Gamma(�, � ) prior in JAGS to emulate 
the improper Jeffreys prior. Following the advice of Gelman (2006) and Polson 
and Scott (2012), we use a central Half-Cauchy prior distribution for the precision 
parameters. We note that though these studies recommend central Half-Cauchy pri-
ors on variance parameters, under this choice of prior the inverse variance (preci-
sion) is also implied to have a central Half-Cauchy prior (see Appendix 7.5 for a 
derivation). We chose the initial condition prior, �(D0) , to be normally distributed, 
with an initial mean of �0 , and an initial precision of �0 . Thus the priors are given 
by:

with �0 = 4 , and �0 = 100 both fixed.

Moran‑Ricker SSM

In this section, we detail and justify our choice of prior distributions for the 
Moran-Ricker SSM. In particular, we must specify priors for parameters a, b, � , 
� , and the initial log-latent state D0 . Prior distributions for the Moran-Ricker are 
identical to those chosen for the Gompertz model (Eqs.  47–51). a and b were 
given Uniform(−10, 10 ), � and � were given diffuse Half-Cauchy priors following 
recommendations by Gelman (2006) and Polson and Scott (2012), and the initial 

(47)a ∼ Uniform(−10, 10),

(48)b ∼ Uniform(−10, 10),

(49)� ∼ Half-Cauchy(� = 100),

(50)� ∼ Half-Cauchy(� = 100),

(51)D0 ∼ N(� = �0, �
2 = �−1

0
),
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latent state D0 was given a normal prior centered at an initial mean �0 with initial 
precision �0 . Altogether, the prior equations for the Moran-Ricker SSM are:

with �0 = 4 , and �0 = 100 both fixed.

Lognormal moment matching SSM

In this section, we detail and justify our choice of prior distributions for our Log-
normal Moment Matching SSMs. We considered four different SSMs based on the 
Gompertz and Moran-Ricker models. These included two models with unbiased 
process evolution and constant variance (LGC and LMRC) and two models with 
unbiased process evolution and density dependent variance (LGD and LMRD).

For the constant variance models, two of the prior choices were modified from the 
priors used for the Gompertz and Moran-Ricker models. First, the prior distribution 
on a was modified to a strictly positive uniform distribution, to reflect the non-neg-
ativity of the latent process X1∶T . Second, the prior on the initial condition, X0 , was 
changed from a N(� = �0, �

2 = �−1
0
) to logN(� = �0, �

2 = �−1
0
) since the constant 

variance models are not being fit in log-space. Priors for b,�, and � (Eqs. 48–50) 
were not changed. Altogether, the priors for the constant variance models are

with �0 = log 4 ≈ 1.38 , and �0 = 100 both fixed.
Priors for these two density dependent moment matching models were chosen to 

be identical to those chosen for the Gompertz and Moran-Ricker models (Eqs. 47–51). 
We justify this by noting that the interpretations of the parameters for the LGD and 
Gompertz model and the LMRD and Moran-Ricker model are identical for a, b, and 
X0 . � and � were given Half-Cauchy priors based on previous work done by Gelman 
(2006) and Polson and Scott (2012).

a ∼ Uniform(−10, 10),

b ∼ Uniform(−10, 10),

� ∼ Half-Cauchy(� = 100),

� ∼ Half-Cauchy(� = 100),

D0 ∼ N(� = �0, �
2 = �−1

0
),

(52)a ∼ Uniform(0, 10),

(53)b ∼ Uniform(−10, 10),

(54)� ∼ Half-Cauchy(� = 100),

(55)� ∼ Half-Cauchy(� = 100),

(56)X0 ∼ logN(� = �0, �
2 = �−1

0
),
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Half‑Cauchy precision prior

In this section, we justify our choice of prior distribution on the precision parameters 
for the Gompertz, Moran-Ricker, and LNM3 models. Gelman (2006) and Polson and 
Scott (2012) both recommend a central Half-Cauchy for variance parameters in hierar-
chical models. Then, we would like to investigate the implied prior on � = �−2.

Suppose that �2 ∼ Half-Cauchy(� = 0, a = �) . Then, the probability density func-
tion for our prior distribution is given by:

Now we let � = �−2 . The Jacobian of our transformation of variables is given by 
|J| = �−2 . Using this, we can write the probability density function for the implied 
prior on �:

This is the probability density function for another central Half-Cauchy distribution, 
with a = �−1.Thus if the prior for �2 is �2 ∼ Half-Cauchy(� = 0, a = �) , then the 
implied prior on � is � ∼ Half-Cauchy(� = 0, a = �−1).

Reduced DALEC2 details

In this section we provide additional details on the moments and prior distributions 
for the reduced DALEC2 model that we use based on the DALEC2 model of Bloom 
and Williams (2015). Table 6 contains the conditional means and variance for the 
process evolution and observation components of the LN-SSMs that we consid-
ered. These models were: a biased formulation using the reduced DALEC2 model 
(Column Biased) and an unbiased formulation using the reduced DALEC2 model 
obtained using our moment matching framework (Column MM).

Table 7 contains information on parameter descriptions, units, and the prior dis-
tribution used for model parameters estimated during our analysis. Information for 
parameter descriptions and units are taken from Bloom and Williams (2015). Prior 
distributions for process parameters ( flab through crf  ) used Uniform priors over the 
range of acceptable values from Table 1 of Bloom and Williams (2015). �f  and �lab , 

(57)𝜋(𝜎2) =
2

𝜋𝛾(1 + (
𝜎2

𝛾
)2)

, 𝜎2 > 0

(58)𝜋(𝜙) =
2

𝜋𝛾(1 + (
1

𝜙𝛾
)2)

1

𝜙2
, 𝜙 > 0

(59)=
2

𝜋𝛾(𝜙2 + (
1

𝛾
)2)

𝜙 > 0

(60)=
2

𝜋
1

𝛾
(1 + (𝜙𝛾)2)

𝜙 > 0
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the parameters that govern the percentage of density dependent process variance in 
our reduced DALEC2 LN-SSMs, were given Uniform(0,1) priors.

Author contributions  JWS wrote the main manuscript text and prepared figures. LRJ and RQT super-
vised research and contributed ideas to improve the manuscript. All authors reviewed the manuscript.

Declarations 

Conflict of interest  The authors declare no competing interests.

Open Access   This article is licensed under a Creative Commons Attribution 4.0 International License, 
which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as 
you give appropriate credit to the original author(s) and the source, provide a link to the Creative Com-
mons licence, and indicate if changes were made. The images or other third party material in this article 
are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the 
material. If material is not included in the article’s Creative Commons licence and your intended use is 
not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission 
directly from the copyright holder. To view a copy of this licence, visit http://​creat​iveco​mmons.​org/​licen​
ses/​by/4.​0/.

Table 6   Expected values 
and variances for the process 
evolution functions and 
observation functions for the 
moment matching LN-SSM and 
biased LN-SSM used to model 
LAI data at UNDE

Model MM Biased

�[C(t)|C(t−1),Θ)] MtC
(t−1) + pt (MtC

(t−1) + pt) exp((2�)
−1)

� [C(t)|C(t−1),Θ] �−1(MtC
(t−1) + pt) �
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obs
|C(i),Θ] C
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) �(Xt−1 exp(a + bXt−1))
−2

Table 7   Information on the 10 parameters estimated in our reduced DALEC2 model (Bloom and Wil-
liams 2015)

This information includes notation, interpretations of the parameters, units, and the prior distribution 
used in our Bayesian Lognormal SSM. Upper and lower bounds for process parameters ( flab through crf  ) 
are taken from the table of upper and lower bounds in Bloom and Williams (2015)

Param Description Units Prior

flab Proportion of GPP allocated to labile carbon Unitless Unif(0.01, 0.5)
ff Proportion of GPP allocated to foliage carbon Unitless Unif(0.01, 0.5)
do Start day of leaf regrowth onset Unitless Unif(1, 365)
df Start day of leaf fall Unitless Unif(1, 365)
ceff Canopy efficiency Unitless Unif(10, 100)
clf Proportion of leaves lost annually Unitless Unif(0.125, 1)
cro Length of labile carbon release period Day Unif(10, 100)
crf Length of leaf fall period Day Unif(20, 150)
�f Density dependent variance parameter g.5C.5m−1 Unif(0, 1)

�lab Density dependent variance parameter g.5C.5m−1 Unif(0, 1)
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