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Improving Inter-Helix Contact Prediction With
Local 2D Topological Information

Jiefu Li, Aman Sawhney, Jung-Youn Lee, and Li Liao *

Abstract—Inter-helix contact prediction is to identify residue contact across different helices in α-helical integral membrane proteins.
Despite the progress made by various computational methods, contact prediction remains as a challenging task, and there is no
method to our knowledge that directly tap into the contact map in an alignment free manner. We build 2D contact models from an
independent dataset to capture the topological patterns in the neighborhood of a residue pair depending it is a contact or not, and
apply the models to the state-of-art method’s predictions to extract the features reflecting 2D inter-helix contact patterns. A secondary
classifier is trained on such features. Realizing that the achievable improvement is intrinsically hinged on the quality of original
predictions, we devise a mechanism to deal with the issue by introducing, 1) hybrid-cutoffs, which partially discretizing original
predictions to leverage the usefulness of the existing information 2) fuzzy score, which assesses the quality of the original prediction,
and selecting the residue pairs where improvement is more achievable. The cross-validation results show that the prediction from our
method outperforms other methods including the state-of-the-art method (DeepHelicon) by a notable degree even without using the
refinement selection scheme. By applying the refinement selection scheme, our method outperforms the state-of-the-art method
significantly in these selected sequences.

Index Terms—Inter-helix contact prediction, Refinement selection, 2D contact model, Fuzzy score.
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1 INTRODUCTION

1 INTER-HELIX contact prediction is to identify residue con-2

tact across different helices in α-helical integral mem-3

brane proteins. Knowing the residue contact is an im-4

portant step toward better understanding the topology of5

membrane proteins and their cellular functions [1], [2], [3].6

However, membrane proteins’ structures are very difficult7

to be verified through X-ray crystallography [4]. As reported8

in [5], only 2% to 3% integral membrane proteins have been9

verified experimentally, which has motivated development10

of computational methods for predicting residue contact.11

Currently, the state-of-art method is DeepHelicon [6]. Like12

AlphaFold2 [7], which is an end-to-end learning and pre-13

dicts accurate 3D models of globular proteins, DeepHeli-14

con is also a deep learning based method that takes co-15

evolutionary features [8], [9], [10] as input to the neural16

network and outputs a 2D contact matrix of a membrane17

protein. While deep learning based methods have achieved18

remarkable success in many bioinformatics applications19

[11], not limited to protein structure prediction, the com-20

putational costs of deep learning have also increased dra-21

matically [12]. As reported in [13], disregarding the model’s22

training, making accurate predictions takes roughly $1K23

per sequence for AlphaFold. With all these success using24

deep learning techniques for protein structure prediction,25

computational cost will become a future challenge at some26
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point, and the computational barrier for the research groups 27

with limited computational power has already been noticed 28

[13]. 29

To mitigate the computational barrier issue, we here 30

proposed a method to improve residue contact prediction by 31

leveraging the existing state-of-art method’s predictions and 32

exploiting features that are not fully captured by the existing 33

method with a simple hybrid-cutoffs technology and a novel 34

refinement selection scheme. While DeepHelicon and other 35

methods [14], [15], [16], [17] gather contact patterns based on 36

sequence alignments to extract useful information, such as 37

co-evolutionary features and evolutionary couplings, there 38

is no method to our knowledge that directly tap into the 39

contact map in an alignment free manner, despite it is 40

obvious that, because of the periodic nature of helix turn, the 41

neighborhood of a residue pair in a contact map can provide 42

strong clue regarding whether the pair is a contact pair or 43

not. So we proposed to exploit the 2D topological patterns 44

in the neighborhood of any residue pair in order to improve 45

the contact prediction. Specifically, using the ground truth, 46

we build 2D contact models to extract the features reflecting 47

2D inter-helix contact patterns in the neighborhood of any 48

residue pair. Concatenating these features with the predic- 49

tion from an existing methods (we use DeepHelicon) as 50

input to a secondary classifier (we use Random Forest), 51

significant improvement is achieved (up to 14 percentage 52

points in the top-L precision) over DeepHelicon’s, indicating 53

that the 2D contact models indeed capture valuable informa- 54

tion for accurately predicting residue contact. Of course, in 55

real world applications, the ground truth of residue contact 56

is not available, instead it is exactly what the prediction is 57

aimed at. To overcome this chicken-egg issue, we proposed 58

to use other methods’ prediction with applying partially 59

discretization techqniue as surrogate to the ground truth, 60
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and the results showed that we still outperformed these61

methods, though significantly less than using the ground62

truth contact in the neighborhood. Note that these other63

methods may be based on MSA, although the 2D contact64

models are alignment-free. Realizing that the achievable65

improvement is intrinsically hinged on how well the ground66

truth can be approximated by the surrogate, we devise a67

mechanism to deal with the issue by introducing i) hybrid-68

cutoffs, which partially discretize prediction scores to 0 or69

1 or remain unchanged, and ii) fuzzy score, which can70

assess the quality of the current prediction, and selecting71

the residue pairs where improvement is more achievable.72

The cross-validation results show that the prediction from73

our method outperforms the state-of-the-art method Deep-74

Helicon and other two methods by a notable degree even75

without using the refinement selection scheme. By applying76

our refinement selection scheme, which selects a subset77

of sequences to refine, our method outperforms the base78

method significantly in these selected sequences.79

The rest of this paper is organized as the following.80

First, the proposed method will be described in details81

by introducing (i) hybrid-cutoffs technology, (ii) 2D contact82

model with its feature calculations, (iii) improve inter-helix83

prediction with its refinement selection scheme. Second,84

with the understanding of the proposed method, results85

from three experiments will be given. The first is a vali-86

dation experiment which shows the usefulness of 2D con-87

tact models’ feature for the task of inter-helix prediction88

refinement. The second experiment examines the idea of89

fuzzy score as a tool to assess original prediction’s quality.90

The third experiment will demonstrate the refinement of91

prediction from DeepHelicon [6], DeepMetaPSICOV [18],92

and MetaPSICOV [16] with and without refinement selec-93

tion scheme, and comparing them with only using original94

predictions’ simple neighbourhood feature. Last, discussion95

and conclusion are given at the end.96

2 METHOD97

The proposed method is a framework designed to improve98

inter-helix contact predictions from some other existing99

method in order to achieve better performance as measured100

by the widely accepted top-L metric, via 2D contact models,101

hybrid-cutoffs, and refinement selection scheme. As such,102

the success of this method relies on three key ideas: (1)103

A prediction score partially discretizing method, which104

give upper and lower cutoffs to original prediction scores105

to round them into 1 or 0 or unchanged. (2) The usage106

of 2D contact models, which are used to generate useful107

refined features to capture inter-helix contact patterns. (3)108

A selection scheme based on the idea of fuzzy score, which109

assesses the quality of current predictions and helps select110

proper residue pairs/sequences most likely to benefit from111

the refined features.112

Before getting into the details of the method, it is helpful113

to define the major notations used throughout this section.114

Our dataset contains N sequences. For the kth sequence in115

the dataset, we use a square binary matrix Ck to denote the116

contact matrix of the sequence. Each element Ck(i, j) can be117

either 0 representing non-contact or 1 representing contact118

for the residue pair < i, j > in the folding of sequence k.119

Note that Ck and Ck(i, j) are always referred to the ground 120

truth information, i.e., their values are either 0 or 1, based 121

on experimental data. In contrast, we use C̃k and C̃k(i, j) 122

to refer to the contact prediction made by inter-helix contact 123

prediction methods, and their values are a real number from 124

0 to 1. 125

Now, for each inter-helix residue pair < i, j > in se- 126

quence k, we extract a (2n + 1) × (2n + 1) neighbor block 127

from the matrix Ck centered at position < i, j >, where 128

n defines the farthest neighboring residue from the center 129

on either side, and we denote this block as Fn
k (i, j), whose 130

elements are Ck(a, b), where |i− a| ≤ n and |j − b| ≤ n. In 131

the cases where a or b out of the boundary or < a, b > 132

is not an inter-helix pair, 0 values are assigned. Again, 133

since Fn
k (i, j) is extracted from Ck, it is a binary matrix. 134

Similarly, such a matrix can be extracted for each position 135

< i, j > from a predicted contact map, and we denote it as 136

F̃n
k (i, j). When building the 2D structure model, calculating 137

its features, and applying the refinement selection scheme, 138

the center of Fn
k (i, j) and F̃n

k (i, j) needs to be excluded, and 139

we use En
k (i, j) and Ẽn

k (i, j) to denote such center excluded 140

neighbor block in the ground truth and predicted contact 141

matrix respectively. When used in features calculation or as 142

feature directly, these matrices are flattened row by row into 143

an array of size (2n+1)2−1. A graphical representation with 144

n = 1 (i.e., 3 x 3 neighborhood block) of above procedure 145

is shown in Figure 1. For readers reference, the summary of 146

the notations introduced above and several others appeared 147

later are shown in Table 1. 148

2.1 Hybrid Cutoffs 149

First, it is worthy to mention that the simple neighbor fea- 150

ture, i.e. ẼS
k (i, j) has already contained useful information; a 151

classifier trained on such simple feature can make improve- 152

ments over original inter-helix contact prediction in most 153

cases already. The improvement can be further enhanced by 154

partially discretizing original predictions as follows: 155

CT (score, lower, upper) =1 if score > upper

=0 if score < lower

=score otherwise

With CT (score, lower, upper) defined as such, finding 156

the optimal lower and upper cutoffs is simply by grid search 157

in defined cutoff searching space (0 ≤ lower ≤ upper ≤ 1), 158

and can be expressed by the following mathematical for- 159

mula with original predictions denoted by Ỹ , and ground 160

truth label denoted by Y in training set. 161

(lower∗, upper∗) = argmax corr(CT (Ỹ , lower, upper), Y )

After finding the optimal cutoffs via a training set, apply- 162

ing CT (score, lower∗, upper∗) to ẼS
k (i, j) to have a hybrid- 163

discretized neighbor features, such feature is denoted by 164

⌜ẼS
k (i, j)⌟. These hybrid-discretized features will be part 165

of our whole feature, and we will show that such partially 166

discretized feature alone will better than simply applying 167

ẼS
k (i, j). 168
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Fig. 1. Diagram of Fn
k (i, j), F̃n

k (i, j), En
k (i, j), Ẽ

n
k (i, j) extraction from Ck (contact map from ground truth) and C̃k (contact map from prediction)

with n = 1

TABLE 1
Notations

Symbols Explanations
Ck A square binary matrix represents the kth sequence’s 2D contact map

Ck(i, j) Ck’s element, which represents contact/non-contact of residue pair < i, j > in sequence k.
C̃k A square matrix represents the kth sequence’s predicted 2D contact map, values are from 0 to 1.

C̃k(i, j) C̃k’s element, which represents contact estimation of residue pair < i, j > in sequence k.
Fn
k (i, j) (2n+ 1)× (2n+ 1) matrix extracted from Ck , centered at < i, j >.

En
k (i, j) A flattened vector in size of (2n+ 1)2 − 1 from Fn

k (i, j) by excluding the center.
F̃n
k (i, j) (2n+ 1)× (2n+ 1) matrix extracted from C̃k , centered at < i, j >.

Ẽn
k (i, j) A flattened vector in size of (2n+ 1)2 − 1 from F̃n

k (i, j) by excluding the center.
Mn(+/−) 2D contact model with parameter n.
fzScore(∗) Fuzzy score, which defines the fuzzy level of ∗.

feature
n+/−
k (i, j) 2D contact model’s feature of sequence k residue pair < i, j > with parameter n.

2.2 2D Contact Models169

To build 2D contact models, a separate training set with170

ground truth label is needed. Given N number of train-171

ing sequences, Fn
k (i, j) can be extracted for all inter-helix172

residue pairs < i, j > of sequence k from Ck for all k ∈ N .173

A 2D contact model has one parameter n, which determines174

the size of the neighborhood block centering at any residue175

pair in the contact map: (2n + 1) × (2n + 1). The key idea176

of the 2D contact model is to capture the general contact177

patterns in the contact map surrounding any given residue178

pair. To avoid sequence alignment and other details such as179

residue identities, we just calculate the probability of each180

position within the (2n+1)× (2n+1) neighborhood block181

of any residue pair to be a contact. As we believe such a182

probability distribution across the neighborhood of a contact183

residue pair is likely different from that of a non-contact184

residue pair, we build two 2D contact models: one for inter-185

helix contact residue pairs, and the other one for inter-helix186

non-contact residue pairs, and are denoted by Mn(+) and187

Mn(−) respectively. The 2D contact models can be built 188

by approximating the probability with frequency using the 189

training data. To build Mn(+), which is a (2n+1)×(2n+1) 190

matrix, we go through the 2D ground truth contact map of 191

training sequence k, for each contact point < i, j > in se- 192

quence k, namely Ck(i, j) = 1, we collect its neighborhood 193

block En
k (i, j) and sum these (2n + 1) × (2n + 1) matrix 194

blocks, element-wise, over all contact points in sequence 195

k, and then over all N training sequences in the dateset. 196

This way, each element in the summed matrix block gives 197

the count of contact points at the corresponding position 198

in the neighborhood of contact residue pairs, which, after 199

normalized by the total number of contact residue pairs, 200

gives the frequency (thus probability) of the corresponding 201

neighbor of a contact residue pair also to be a contact 202

point. In a similar way, we can build Mn(−), which is a 203

(2n + 1) × (2n + 1) matrix, each element is the probability 204

of the corresponding neighbor of a non-contact residue 205

pair to be a contact point. The mathematical formulas for 206
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calculating the 2D contact structure models Mn(+) and207

Mn(−) are given as follows.208

Mn(+) =

∑N
k=1

∑
i,j E

n
k (i, j) · Ck(i, j)∑N

k=1

∑
i,j Ck(i, j)

Mn(−) =

∑K
k=1

∑
i,j E

n
k (i, j) · (1− Ck(i, j))∑K

k=1

∑
i,j(1− Ck(i, j))

(1)

Note that Mn(+), Mn(−), and En
k (i, j) in the above209

equations can be viewed as (2n+1)×(2n+1) matrices with210

empty center as a whole (so that there are (2n+1)2−1 total211

elements), the summation is element-wise matrix addition,212

and · represents that the matrix is multiplied by a single213

value Ck(i, j). It is critical to note that, En
k (i, j) instead214

of Fn
k (i, j) is being used because to build Mn(+) and215

Mn(−), the corresponding centers of Fn
k (i, j) are either all216

contact or non-contact, which have been captured by contact217

or non-contact models already. In sum, the 2D contact218

models Mn(+) and Mn(−) have the same dimension as219

Ek
n and consist of contact frequencies position-wise in the220

(2n + 1) × (2n + 1) neighborhood centering a contact or221

non-contact residue pair respectively.222

We hypothesize that, the 2D contact models built from223

a decently large training set capture general patterns and224

therefore can be generalized to other protein sequences,225

not only those present in the training set, but also those226

in a separate test set. In a test sequence k, for each inter-227

helix residue pair < i, j >, we compare the ground truth228

contact in the neighborhood to the 2D contact models;229

intuitively, if its neighborhood En
k (i, j) is more similar to230

the Mn(+) than to Mn(−), then < i, j > is more likely to be231

a contact point. Consider them respectively as probability232

distribution of contacts in the neighborhood of < i, j >233

and collectively in the training data, the similarity can be234

measured by using the KL divergence. Instead of relying235

on one neighborhood of a big size, which can give just236

two KL divergence scores, we use a set of neighborhoods237

with increasing size n = 1, .., S to get 2S KL divergence238

scores as features to train a secondary classifier. Because a239

smaller neighborhood is enclosed in a bigger neighborhood,240

to avoid redundant information due to overlap, for each241

neighborhood we calculate the KL divergence between the242

perimeters of the neighborhood block En
k (i, j) and contact243

model block Mn(+/−)T . Here, we denote the perimeter of244

En
k (i, j) and of Mn(+/−)T 1 by En

k (i, j) and Mn(+/−)T245

respectively, and with normalization so that all elements on246

the perimeter sum to be 1.247

featuren+k (i, j) =
∑

En
k (i, j)log(E

n
k (i, j)/Mn(+)T )

featuren−k (i, j) =
∑

En
k (i, j)log(E

n
k (i, j)/Mn(−)T )

(2)

For above computation, all operations are element-wise.248

Therefore, the final results of these vectors generates a single249

number, featuren+k (i, j) or featuren−k (i, j). The values of250

featuren+k (i, j) and featuren−k (i, j) can be interpreted as a251

distance score, which indicates how likely Ck(i, j) = 1 or 0252

respectively, given the perimeters of 2D contact models253

Mn(+/−) and inter-helix residue pair < i, j > ’s neigh-254

bours contact En
k (i, j).255

By stacking a set of neighborhoods with increasing size 256

n = 1 to S, using the perimeter of each, we effectively cover 257

the neighborhood of size S with more details (i.e., 2S KL 258

scores) than a single neighborhood of size S can provide 259

(i.e., just 2 KL scores). In the next subsection, we show how 260

to use such 2S KL scores as features to train a secondary 261

classifier to predict residue contact, and the results in Table 262

2 show great improvement as compared to DeepHelicon, 263

and hence strongly support our hypothesis about the 2D 264

contact models. 265

However, the above definition of featuren+k (i, j) or 266

featuren−k (i, j) requires knowing the ground truth contact 267

in the neighborhood of < i, j >, which is not available but 268

rather what a prediction method is aimed at in a real world 269

scenario. To overcome this ”chicken-egg” issue, we propose 270

to use the predicted contact map from a method with good 271

performance (e.g., DeepHelicon) as the surrogate to the 272

ground truth contact map. That is, we can use 2D contact 273

models to calculate KL divergence from other method’s 274

prediction about the inter-helix of residue pairs, and treat 275

these divergence as refined features for a secondary classi- 276

fier. Specifically, the calculation is done as follows: 277

˜featurek
n+

(i, j) =
∑

Ẽn
k (i, j)log(Ẽ

n
k (i, j)/Mn(+)T )

˜featurek
n−

(i, j) =
∑

Ẽn
k (i, j)log(Ẽ

n
k (i, j)/Mn(−)T )

(3)

Here, Ẽn
k (i, j) is built from the predicated contact map 278

C̃k for test sequence k by an existing computational method. 279

In our case, such existing methods include DeepHelicon, 280

DeepMetaPSICOV, and MetaPSICOV. 281

2.3 Inter-helix Prediction 282

Now we are ready to describe the procedure for improved 283

inter-helix prediction with a secondary classifier (Random 284

Forest), consisting the following steps: applying hybrid- 285

cutoffs to simple neighbourhood feature, contact model fea- 286

ture preparation, model training and testing, and refinement 287

selection. 288

Second, using the an independent training dataset and
the formulas in Eq 1, we build multiple 2D contact mod-
els Mn(+) and Mn(−) with different sizes: n = 1...S,
and then use Eq 2 to generate the refined features for
inter-helix residue pair< i, j > in sequence k, denoted as
RF featureSk (i, j) in the following form:

RF featureSk (i, j) = concat[

feature1+k (i, j), feature1−k (i, j),

feature2+k (i, j), feature2−k (i, j),

......

featureS+
k (i, j), featureS−

k (i, j),

⌜ẼS
k (i, j)⌟, C̃k(i, j)]

(4)

Note that, this refined feature set consists of scores 289

calculated according to Eq 2 with 2D contact models of 290

different sizes from 1 to S, in order to capture hidden 291

contact patterns in a wide range of neighborhood. This 292

is more advantageous than using just models of size S, 293

because although neighborhood of size S encompasses all 294
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neighborhoods of size smaller than S, a single score over a295

large neighborhood may hide detailed variations within it.296

On the other hand, by stacking features calculated from 2D297

contact models of various sizes we can ”expose” the detailed298

and nuanced patterns for the secondary classifier to learn.299

With RF featureSk (i, j) ready for each inter-helix300

residue pair of each sequence, the training and testing301

procedures in a cross-validation setting are standard: we302

randomly split the dataset into 10 subsets, merge 9 subsets303

to train the random forest classifier and test the trained304

classifier on the reserved subset, and rotate to use each of305

the 10 subset once as test set. Since the proposed method306

is designed to improve predictions made by some existing307

computational methods, it is reasonable to assume that308

the predictions are significantly better than random tossup.309

Therefore, in practice, users may choose to only improve310

top ranked inter-helix residue pairs, instead of all inter-311

helix residue pairs, to save computational cost. In our312

experiments, we chose to improve top 3L ranked residue313

pairs from DeepHelicon, where L is the total length of the314

helices in a particular sequence. The results, listed in Table 2,315

show that our method achieves significant improvement316

(e.g., up to 14% in top-L precision and 9% in top-L recall)317

over DeepHelicon’s. This is clearly a very strong support of318

our hypothesis that contact patterns in the neighborhood319

of a residue pair contain valuable information that can320

help, when properly used, significantly improve contact321

prediction.322

Of course, the construction of the refined features in Eq 2323

requires knowing the ground truth contact map, which is324

not available in a real world scenario, actually the contact325

map is what the prediction method is aimed at predicting.326

To overcome this ”chicken-egg” issue, we propose to use the327

predicted contact map from a decently performing method328

(e.g., DeepHelicon) as the surrogate to the ground truth329

contact map. Specifically,330

RF featureSk (i, j) = concat[

˜feature
1+

k (i, j), ˜feature
1−
k (i, j),

˜feature
2+

k (i, j), ˜feature
2−
k (i, j),

......

˜feature
S+

k (i, j), ˜feature
S−
k (i, j),

⌜ẼS
k (i, j)⌟, C̃k(i, j)]

(5)

Here everything is the same as Eq 4, except that331

feature1−k (i, j) is replaced with ˜feature
1−
k (i, j).332

Due to the use of predicted contact map in calculating333

the refined features, it is expected that the achievable im-334

provement is intrinsically hinged on how well the ground335

truth can be approximated by the surrogate. Even though336

we select a state-of-the-art method with a good overall per-337

formance, the quality of prediction in the predicted contact338

map can vary from position to position. We devise a mech-339

anism to deal with this issue by introducing a fuzzy score,340

which can assess the quality of the current prediction, and341

selecting the residue pairs/sequences where improvement342

from the refined features is more achievable.343

Let us assume that the prediction by the existing method
(e.g., DeepHelicon) for a residue pair is a score in the range
from 0 to 1, which can be interpreted as the likelihood
that the pair is a contact, with 0.5 being a tossup, or most
uncertain prediction. The fuzzy score for a given position
< i, j > in a predicted contact map C̃∗(i, j) is calculated as
follows:

fzScore(C̃∗(i, j)) = min(1− C̃∗(i, j), C̃∗(i, j)) (6)

When C̃∗(i, j) = 0.5, then fzScore(C̃∗(i, j)) = 0.5, indi- 344

cating the highest fuzzy (uncertain) level. When C̃∗(i, j) = 345

1 or 0, fzScore(C̃∗(i, j)) = 0, indicating the lowest fuzzy 346

(uncertain) level. 347

Our rationale for using such fuzzy scores is that, given 348

predictions of a residue pair C̃k(i, j) in sequence k and 349

its neighborhood Ẽn
k (i, j), only when the fuzzy score of 350

Ẽn
k (i, j) is on average less than the fuzzy score of C̃k(i, j) 351

by a certain degree, then the prediction of neighborhood 352

contact is significantly better off than random tossup and 353

hence can be used as good surrogate to the ground truth 354

so that the refined feature featuren+k (i, j) can be better ap- 355

proximated as ˜featurek
n+

(i, j). So, based on this rationale, 356

we define the fuzzy score of Ẽn
k (i, j) as just the average of 357

each element’s fuzzy score as follows. 358

fzScore(Ẽn
k (i, j)) =∑
0<|a−i|≤n,0<|b−j|≤n fzScore(C̃k(a, b))

(2n− 1)2 − 1

For each inter-helix residue pair < i, j > and its neigh- 359

bours bounded by a (2n+1)× (2n+1) box, we have a pair 360

fuzzy scores that measure the fuzzy level of C̃k(i, j) and 361

Ẽn
k (i, j). Their difference is denoted by ∂fzScorenk (i, j) and 362

calculated as: 363

∂fzScorenk (i, j) = fzScore(C̃k(i, j))− fzScore(Ẽn
k (i, j))

The key idea of using the fuzzy score is: when 364

∂fzScorenk (i, j) is higher than a threshold, it indicates that 365

C̃k(i, j) is more fuzzy than Ẽn
k (i, j), and applying the 2D 366

contact model onto the neighbours of < i, j > to produce 367

refined features is more likely to give rise to better predic- 368

tion at < i, j >. In practice, an empirical procedure can 369

be used to optimize the threshold of ∂fzScorenk (i, j), by 370

maximizing the performance gain from the refined features, 371

using an independent dataset. In this dataset, each residue 372

pair < i, j >’s fuzzy score difference ∂fzScore(i, j) is 373

computed, here the sequence index k and the neighborhood 374

size n are omitted for simplicity. We like to know which 375

residue pair’s fuzzy score difference, if used as a threshold, 376

can lead to maximal performance gain. Let’s say < i, j > is 377

that residue pair. Then for all other residue pairs < i′, j′ > 378

whose fuzzy score difference larger than ∂fzScore(i, j) 379

we will assess the collective performance difference from 380

applying the refinement versus not applying the refinement 381

as L1(i, j) =
∑

i’,j’: ∂fzScore(i′,j′)>∂fzScore(i,j)[err1(i
′, j′) − 382

err2(i
′, j′), where err1(i

′, j′) is the prediction error when 383
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refined features are used, and err2(i
′, j′) the predic-384

tion error when refined features are not used for each385

residue pair < i′, j′ >. The smaller the L1 is, the more386

benefit we get from applying the refinement. Similarly,387

for all other residue pairs < i”, j” > whose fuzzy388

score difference smaller than ∂fzScore(i, j) we also as-389

sess the performance difference from applying the re-390

finement versus not applying the refinement L2(i, j) =391 ∑
i”,j”: ∂fzScore(i”,j”)<∂fzScore(i,j)[err1(i”, j”)−err2(i”, j”),392

where err1(i”, j”) is the prediction error when refined fea-393

tures are used, and err2(i”, j”) the prediction error when394

refined features are not used for residue pair < i”, j” >.395

The smaller the L2 is, the more benefit we get from396

applying the refinement; reversely the larger the L2 is,397

the less benefit we get from applying the refinement. So,398

L(i, j) = L1(i, j) − L2(i, j) tells us the net effect of using399

residue pair < i, j >’s fuzzy score difference as the cutoff:400

the lower the L is, the more benefit we get from applying the401

refinement to these < i′, j′ > and not applying refinement402

to these < i”, j” >. We calculate L(i, j) for all residue pairs403

< i, j > and choose the one that has the minimal L.404

Specifically,405

1) Calculate the prediction error: err1(i, j) when re-406

fined features are used, and the prediction error:407

err2(i, j) when refined features are not used for408

each residue pair < i, j >.409

2) Calculate the difference between these two errors:410

∂err(i, j) = err1(i, j) − err2(i, j) for each residue411

pair.412

3) With a given fuzzy score cutoff (arbitrarily413

indexed by < ∗, ∗ >) ∂fzScore(∗, ∗), calculate the414

corresponding refinement loss defined as: L(∗, ∗) =415 ∑
i’,j’: ∂fzScore(i′,j′)>∂fzScore(∗,∗) ∂err(i

′, j′) −416 ∑
i”,j”: ∂fzScore(i”,j”)<∂fzScore(∗,∗) ∂err(i”, j”).417

4) Repeat above step for all possible fuzzy score cut-418

offs.419

5) Find the minimal value of L, and its corresponds420

fuzzy score ∂fzmin is the final threshold to deter-421

mine when refinement method applied.422

It is optional to do selection more aggressively, i.e. select423

the ones with larger level of improvements, by only a424

small modification of the 2nd step: ∂err(i, j) = err1(i, j) −425

[err2(i, j) − C], where C is a positive constant to make the426

original prediction error err2(i, j) artificially smaller and427

hence only when the refinement error is even smaller , i.e.,428

err1(i, j) < err2(i, j)− C , then ∂err(i, j) < 0 is satisfied.429

Note that, the specifics of this procedure may vary,430

mainly for lower computational costs and/or better per-431

formance, via alternative metric, such as per residue pair432

or per sequence. Validation experiment of this procedure is433

demonstrated in Results section.434

3 RESULTS435

In this section, we first describe in details the datasets436

used for this study, and the results from four experiments.437

The first experiment is served to demonstrate the utility of438

2D contact structure model and establish the upper bound439

of this refinement method. The second experiment is to440

validate the hypothesis that 2D contact model without441

the ground truth can still lead to improved prediction, 442

with the help of fuzzy score and refinement selection 443

scheme, as compared with DeepHelicon’s results. The 444

third experiment is to compare the results of using 2D 445

contact model, with and without refinement selection tech- 446

nique with three different methods: DeepHelicon, Deep- 447

MetaPSICOV, and MetaPSICOV. Finally, last experiment is 448

to compare the improvements over original predictions of 449

three different features: i) simple neighbor feature alone ii) 450

simple neighbor feature with applying hybrid-cutoffs, and 451

iii) the main feature used here as shown in Eq 5, which 452

consists contact models feature, simple neighbor feature 453

with applying hybrid-cutoffs, to show the usefulness of 454

hybrid-cutoffs technique and the contact model features. 455

3.1 Dataset 456

Since our method mainly refines the predictions from Deep- 457

Helicon [6], the same datasets are adopted. There are three 458

different datasets: TRAIN, TEST, and PREVIOUS. They con- 459

tain 165, 57, and 44 bitopic or polytopic α-helical trans- 460

membrane proteins respectively. TRAIN and TEST datasets 461

were extracted from PDBTM database [19] by DeepHelicon 462

group. PREVIOUS is a combined dataset from TMhhcp [20] 463

and MemConP [21]. 464

Here, we use the TRAIN as an independent dataset to 465

build 2D contact structure model with different values of 466

the parameter n. And combining the TEST and PREVIOUS 467

datasets (101 sequences in total) to evaluate the proposed 468

method by 10 fold cross validation. The combined dataset is 469

called DATA(101) hereafter. 470

3.2 2D Contact Model Validation 471

In this experiment, the main goal is to demonstrate the 472

usefulness of the 2D contact structure model and its features 473

in task of inter-helix prediction. In addition to the purpose of 474

validation, this experiment also computes the upper bound 475

with the given data. 476

This experiment and later two used TRAIN dataset to 477

build the 2D contact models, and DATA(101) to perform 10- 478

fold cross validation. The classifier used is random forests 479

with 500 trees. The hyper-parameter S in Eq 4 is chosen to 480

be 7. 481

The results are shown in Table 2. The performance of
inter-helix predictions is evaluated using the metric of top-L
precision and recall, adopted from [6] and commonly used
in the community. The term L refers to the total length of a
particular sequence’s α-helix. Instead of setting a particular
cutoff on the prediction score, top L/1, L/2, L/5, or L/10
in the list of residue pairs ranked by the prediction score
are chosen as decision boundary’s cutoff, namely predicted
as positive. For example, with a given bitopic or polytopic
transmembrane protein, the total length of its α-helices is X ,
the top-L/5 evaluation means ranking prediction scores in
descending order, and considering the top X/5 predictions
as predicted contact inter-helix residue pairs, remaining as
predicted non-contact inter-helix residue pairs. For com-
parison purpose, we adopt top-L evaluation with L/1, L2,
L/5, L/10 to evaluate precision, recall, F1 score, F0.35 score,
and Matthews correlation coefficient (MCC). With multiple
sequences in the testing set, average of precision, recall,
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TABLE 2
Top-L Comparisons of the refinement method denoted as RM(with 2D
contact model features calculated from ground truth contact map) and

DeepHelicon (DH) without refinement selection on DATA(101)

L Method Precision Recall F1 F0.35 MCC

L/1 RM 74.36% 53.13% 59.70% 70.15% 60.80%
DH 62.55% 44.49% 50.13% 58.99% 50.68%

L/2 RM 89.60% 33.81% 47.05% 73.73% 53.14%
DH 76.30% 27.92% 39.39% 62.49% 44.41%

L/5 RM 96.65% 15.10% 25.21% 57.82% 36.70%
DH 85.40% 12.75% 21.63% 50.57% 31.76%

L/10 RM 98.28% 7.83% 14.14% 40.96% 26.57%
DH 89.09% 6.68% 12.25% 36.43% 23.50%

F1-scores, and MCC are computed as final results. The
definition of F -scores and MCC is given as follows.

Fβ = (1 + β)2
precision · recall

β2 · precision+ recall

MCC =
tp · tn+ fp · fn√

(tp+ fp)(tp+ fn)(tn+ fp)(tn+ fn)

where tp is the number of true positive, tn is the number of482

true negative, fp is the number of false positive, and fn is483

the number of false negative.484

It is clear from Table 2 that, with 2D contact structure485

model’s feature calculated from the ground truth contact486

map, all top-L performances are strictly better than the orig-487

inal results across different L’s. This validates our hypothesis488

and the utility of applying 2D contact topological model in489

the neighborhood of a residue pair for improved contact490

prediction. This ground-truth based 2D model established491

the upper bound for performance gain from leveraging the492

neighborhood information in our proposed method. In real493

world applications, the ground truth contact map is not494

available and only an estimation of it is given. In such495

cases, as shown later, the performance drops from the upper496

bound but is still better off than the original inter-helix497

contact prediction made by DeepHelicon.498

3.3 Fuzzy Score Validation499

The goal of this second experiment is to evaluate the fuzzy500

score and test the 5-step procedure for optimizing a fuzzy501

score cutoff used by the refinement selection scheme. The502

overall setting of this experiment is the same as the previous503

one expect that the evaluation criterion is absolute error,504

which measure performance per residue pair, instead of505

top-L, which measures performance per sequence, and the506

features used here are all calculated from DeepHelicon’s507

predictions.508

Let X denote the collection of original prediction results
from DeepHelicon, Xr denote the collection of inter-helix
prediction refinement results, and Y denote the ground
truth label. X , Xr , Y are arrays with length equal to total
inter-helix residue pairs in DATA(101). Then, define:

Error = |X − Y |
Errorr = |Xr − Y |
∂Error = Error − Errorr

Let ∂e be an element of ∂Error. When ∂e is greater than 0, 509

original error is greater than the refinement’s, which is our 510

favourable case. Otherwise, it indicates refinement model 511

should not be used for the residue pair. Equivalent to the 5- 512

step procedure in refinement selection scheme, we plot the 513

curve for cutoff ∂fzScore vs cumulative error with sorting 514

∂fzScore in ascending order, and the result is shown in 515

Figure 2. The curve is almost perfectly convex, and the red 516

”X” indicates the minimum point of the curve, which is 517

to be used as the threshold or cutoff of ∂fzScore by the 518

refinement selection scheme to decide whether the refined 519

features from applying 2D contact model should be used 520

or not. The left region of the threshold goes down almost 521

monotonically indicating majority ∂e is less than 0. The right 522

region of the threshold goes up almost monotonically indi- 523

cating majority ∂e is greater than 0. This result validates our 524

hypothesis, and supports the 5-step procedure for finding a 525

cutoff used by the refinement selection scheme. It is worthy 526

to note that ∂fzScore is plotting against the cumulative 527

error not individual errors, in order to identify a cutoff on 528

the L(∂fzmin) computed per the 5-step procedure as the 529

minimum point of the cumulative error curve. 530

3.4 Inter-Helix Prediction Refinement and Refinement 531

Selection Scheme 532

This third experiment contains four parts. The first part is to 533

test the performance of contact prediction using the refined 534

features indiscriminatively for all sequences. The second 535

part is to test the performance of contact prediction when 536

the refined features are used selectively by both the normal 537

and aggressive settings of refinement selection scheme. In 538

aggressive setting, the constant C is picked as the average 539

of err2(i)−err1(i), which is a positive value. The third part 540

is the complement results of the second part, namely, the 541

performance of the sequences that are not selected in the sec- 542

ond part. The last part is a comparison of the improvements 543

in first and second part. This comparison highlights our 544

method’s overall performance gain, which is enhanced with 545

the refinement selection scheme. As mentioned, we tested 546

this refinement method on three different other methods. 547

Detailed results are only shown for DeepHelicon; for other 548

two methods DeepMetaPSICOV and MetaPSICOV, only the 549

third part is shown, which is enough for demonstrating the 550

performance of refinement and the selection scheme. 551

For our dataset, with normal selection setting, the 552

scheme selects 92, 100 out of 101 sequences to refine 553

for DeepHelicon and MetaPSICOV respectively. For Deep- 554

MetaPSICOV, 56 out of 89 are selected as it failed to output 555

results for the remaining 12 sequences. With our aggressive 556

setting of selection, 33, 5, 40 are selected for DeepHelicon, 557

MetaPSICOV, and DeepMetaPSICOV correspondingly. 558

The experiments used random forests with 500 tress, 559

training and testing in 10 fold cross validation fashion. 560

Here, the performance metric described in the refinement 561

selection scheme is the AUC-ROC. Moreover, as we found 562

there is no direct link from refinement per residue pair to 563

refinement per sequence, empirical, in 5-step procedures, 564

∂fzScorenk (i, j) is replaced by fzScore(Ẽn
k (i, j)). Since this 565

experiment is more complex than the early two, the overall 566

pipeline is shown in Figure 3 to readers’ convenience. 567
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Fig. 2. Fuzzy Score Validation.

TABLE 3
Top-L comparisons of the refinement method (RM) and DeepHelicon

(DH) without refinement selection on DATA(101)

L Method Precision Recall F1 F0.35 MCC

L/1 RM 64.45% 45.67% 51.53% 60.75% 52.17%
DH 62.55% 44.49% 50.13% 58.99% 50.68%

L/2 RM 77.93% 28.92% 40.48% 63.92% 45.63%
DH 76.30% 27.92% 39.39% 62.49% 44.41%

L/5 RM 87.94% 13.69% 22.83% 52.47% 33.21%
DH 85.40% 12.75% 21.63% 50.57% 31.76%

L/10 RM 90.54% 6.90% 12.63% 37.32% 24.07%
DH 89.09% 6.68% 12.25% 36.43% 23.50%

The results for all four parts are shown in Table 3 to Table568

10 respectively. In Table 3, our method gains around 1%−3%569

improvements in precision and around 1% improvements570

in recall, without using the refinement selection scheme. In571

Table 4 and Table 5, for the selected sequences, the improve-572

ments of our method are higher. Moreover, even for the573

sequences unlisted by the refinement scheme, our method574

perform almost as same as DeepHelicon as shown in Table575

6 and Table 7. In Table 8 to Table 10, the comparison results576

highlight that both first and second parts of this experiment577

gain improvements in precision, recall, F1, F0.35, MCC cross578

different Ls, and show the differences of improvements579

between the true improvements and diluted improvements580

of our method for all three different methods considered.581

3.5 Feature Comparison582

In this experiment, we will compare the performance,583

measured by improvements over original prediction (in584

this case, DeepHelicon), of three different features: i) the585

simple neighbor feature: F̃S
k (i, j) = [ẼS

k (i, j), C̃k](i, j),586

ii) simple neighbor feature with applying hybrid-cutoffs:587

TABLE 4
Top-L comparisons of the refinement method (RM) and DeepHelicon

(DH) with refinement selection (92 out of 101) on DATA(101).

L Method Precision Recall F1 F0.35 MCC

L/1 RM 65.09% 45.03% 51.38% 61.17% 52.09%
DH 62.99% 43.75% 49.84% 59.22% 50.46%

L/2 RM 77.91% 28.20% 39.74% 63.54% 45.04%
DH 76.17% 27.12% 38.58% 62.01% 43.74%

L/5 RM 88.13% 13.46% 22.47% 52.09% 32.94%
DH 85.46% 12.44% 21.19% 50.09% 31.39%

L/10 RM 90.68% 6.76% 12.39% 36.89% 23.85%
DH 88.78% 6.49% 11.92% 35.78% 23.13%

TABLE 5
Top-L comparisons of the refinement method (RM) and DeepHelicon

(DH) with aggressive refinement selection (33 out of 101) on
DATA(101).

L Method Precision Recall F1 F0.35 MCC

L/1 RM 60.83% 45.53% 50.19% 57.79% 50.35%
DH 57.49% 44.02% 47.82% 54.71% 47.91%

L/2 RM 75.32% 29.49% 40.69% 62.61% 45.16%
DH 70.52% 27.36% 37.86% 58.51% 41.97%

L/5 RM 87.31% 14.65% 24.19% 53.72% 34.17%
DH 82.19% 13.34% 22.19% 50.04% 31.59%

L/10 RM 91.88% 7.81% 14.10% 39.99% 25.64%
DH 87.49% 7.27% 13.15% 37.59% 24.10%

[⌜ẼS
k (i, j)⌟, C̃k(i, j))], and iii), main feature used here as 588

shown in Eq 5. The experiments settings are identical as in 589

section 3.4, and the results are shown in Table 11 to Table 13. 590

As shown in Table 11, the largest improvement is 591

achieved with Main feature, and the second largest is 592

achieved by SC feature consistently in top-L/10, top-L/5. 593

For other top-L/2 and top-L/1, SC feature achieves the 594

best results. Overall, comparing with using simple neigh- 595
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Fig. 3. Pipeline of inter-helix contact prediction refinement. The left is 2D contact models building, the middle is feature extraction from predicted
contact map via 2D contact models, and the right contains 10-fold cross validation and fuzzy score threshold estimation.

TABLE 6
Top-L comparisons of the refinement method (RM) and DeepHelicon

(DH) of complement to refinement selection (9 out of 101) on
DATA(101)

L Method Precision Recall F1 F0.35 MCC

L/1 RM 57.92% 52.18% 53.08% 56.47% 52.92%
DH 58.07% 52.07% 53.07% 56.58% 52.92%

L/2 RM 78.08% 36.35% 48.02% 67.84% 51.59%
DH 77.62% 36.11% 47.66% 67.37% 51.23%

L/5 RM 85.95% 16.06% 26.49% 56.32% 35.95%
DH 84.70% 15.90% 26.18% 55.48% 35.45%

L/10 RM 89.16% 8.32% 15.02% 41.68% 26.33%
DH 92.24% 8.60% 15.54% 43.14% 27.27%

TABLE 7
Top-L comparisons of the refinement method (RM) and DeepHelicon

(DH) of complement to aggressive refinement selection (68 out of 101)
on DATA(101)

L Method Precision Recall F1 F0.35 MCC

L/1 RM 66.22% 45.74% 52.18% 62.18% 53.05%
DH 65.01% 44.72% 51.25% 61.06% 52.02%

L/2 RM 79.19% 28.65% 40.38% 64.56% 45.85%
DH 79.12% 28.20% 40.14% 64.42% 45.59%

L/5 RM 88.24% 13.22% 22.17% 51.86% 32.74%
DH 86.96% 12.45% 21.37% 50.83% 31.83%

L/10 RM 89.89% 6.46% 11.91% 36.02% 23.31%
DH 89.87% 6.39% 11.81% 35.87% 23.21%

bor feature alone, it is clear that having hybrid-cutoffs596

technique and contact model feature is strictly better-off597

in DeepHelicon dataset. This phenomena is also true in598

DeepMetaPSICOV case in Table 13. On the other hand, for599

MetaPSICOV dataset, the situation is mixed as shown in600

Table 12. We believe this is caused by the relative poor601

predictions of MetaPSICOV comparing with DeepHelicon602

and DeepMetaPSICOV. The low prediction quality makes603

the hybrid-cutoffs technology inject more noise and degrade604

hybrid-cutoffs’ leveraging power in the same time.605

4 DISCUSSION606

There are several points worthy mentioning. Firstly, the607

machine learning method used here is not necessary to be608

TABLE 8
DeepHelicon’s comparisons of improvements with (W/), with

aggressive (W/a) and without (W/O) refinement selection scheme.
Corresponding p-values are shown underneath inside parentheses (up

to 4 decimal), and improvements are bolded if their p-value < 0.05.

L Method Precision Recall F1 F0.35 MCC

L/1

W/ 2.10% 1.28% 1.53% 1.94% 1.64%
(0.0002) (0.0109) (0.0004) (0.0002) (0.0006)

W/a 3.34% 1.51% 2.13% 2.72% 2.21%
(0.0044) (0.1089) (0.0130) (0.0052) (0.0165)

W/O 1.90% 1.18% 2.37% 3.09% 2.44%
(0.0002) (0.0112) (0.0006) (0.0003) (0.0007)

L/2

W/ 1.74% 1.07% 1.16% 1.53% 1.30%
(0.0038) (0.0063) (0.0014) (0.0026) (0.0017)

W/a 4.81% 2.13% 2.83% 4.11% 3.19%
(0.0002) (0.0002) (0.0002) (0.0002) (0.0002)

W/O 1.63% 1.00% 1.09% 1.43% 1.22%
(0.0037) (0.0058) (0.0013) (0.0025) (0.0017)

L/5

W/ 2.67% 1.02% 1.28% 2.00% 1.55%
(0.0042) (0.0463) (0.0172) (0.0054) (0.0101)

W/a 5.13% 1.31% 2.00% 3.69% 2.57%
(0.0102) (0.0168) (0.0148) (0.0113) (0.0117)

W/O 2.54% 0.94% 1.20% 1.90% 1.45%
(0.0041) (0.0441) (0.0158) (0.0049) (0.0091)

L/10

W/ 1.90% 0.27% 0.47% 1.11% 0.72%
(0.0444) (0.0185) (0.0182) (0.0216) (0.0230)

W/a 4.40% 0.54% 0.95% 2.39% 1.54%
(0.0267) (0.0300) (0.0283) (0.0254) (0.0252)

W/O 1.45% 0.22% 0.38% 0.88% 0.57%
(0.1044) (0.0384) (0.0396) (0.0522) (0.0545)

random forest. In principle, any classifier should be applica- 609

ble as long as its outputs can be interpreted as probability. 610

When the classifier’s output is not natively interpreted as 611

probability, e.g., SVM, then the prediction score has to be 612

scaled and normalized first. Secondly, for the refinement 613

selection scheme, as mentioned in Results section, the plot 614

of error vs fuzzy score in Figure 2 looks almost perfectly 615

convex, due to the smoothing effect of the plot software. 616

When the plot is not perfectly convex, the choice of optimal 617

cutoff for fuzzy score can be less reliable, i.e., it cannot per- 618

fectly separate the cases of refine vs non-refine. One example 619

is the AUC-ROC used here that finds the maximum point 620

instead of the minimum. For such cases, besides smooth- 621

ing the curve, other metric may also be explored. Thirdly, 622

while DeepHelicon, DeepMetaPSICOV, and MetaPSICOV 623
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TABLE 9
MetaPSICOV’s comparisons of improvements with (W/), with

aggressive (W/a) and without (W/O) refinement selection scheme.
Corresponding p-values are shown underneath inside parentheses (up

to 4 decimal), and improvements are bolded if their p-value < 0.05.

L Method Precision Recall F1 F0.35 MCC

L/1

W/ 6.29% 4.62% 5.06% 5.93% 5.38%
(0.0) (0.0) (0.0) (0.0) (0.0)

W/a 4.76% 4.84% 4.74% 4.75% 4.94%
(0.0191) (0.0508) (0.0340) (0.0222) (0.0328)

W/O 6.24% 4.59% 5.03% 5.89% 5.34%
(0.0) (0.0) (0.0) (0.0) (0.0)

L/2

W/ 8.51% 3.45% 4.53% 7.00% 5.28%
(0.0) (0.102) (0.0) (0.0) (0.0)

W/a 9.14% 4.78% 6.23% 8.27% 6.73%
(0.0569) (0.0716) (0.0668) (0.0600) (0.0638)

W/O 8.51% 3.46% 4.54% 7.02% 5.29%
(0.0) (0.0068) (0.0) (0.0) (0.0)

L/5

W/ 7.93% 1.35% 2.22% 4.88% 3.22%
(0.0007) (0.4026) (0.0803) (0.0031) (0.0069)

W/a 14.69% 2.63% 4.43% 9.68% 6.30%
(0.0215) (0.0337) (0.0321) (0.0269) (0.0268)

W/O 7.94% 1.35% 2.23% 4.90% 3.23%
(0.0005) (0.2904) (0.0558) (0.0020) (0.0046)

L/10

W/ 7.90% 0.70% 1.27% 3.54% 2.33%
(0.0227) (0.0491) (0.0316) (0.0132) (0.0131)

W/a 8.96% 1.08% 1.94% 5.09% 3.20%
(0.3001) (0.1931) (0.1973) (0.2211) (0.2317)

W/O 7.73% 0.69% 1.24% 3.46% 2.27%
(0.0383) (0.0844) (0.0558) (0.0244) (0.0236)

TABLE 10
DeepMetaPSICOV’s comparisons of improvements with (W/), with
aggressive (W/a) and without (W/O) refinement selection scheme.

Corresponding p-values are shown underneath inside parentheses (up
to 4 decimal), and improvements are bolded if their p-value < 0.05.

L Method Precision Recall F1 F0.35 MCC

L/1

W/ 3.34% 2.00% 2.57% 3.12% 2.68%
(0.0) (0.0) (0.0) (0.0) (0.0)

W/a 3.35% 2.01% 2.52% 3.13% 2.66%
(0.0) (0.0) (0.0) (0.0) (0.0)

W/O 2.82% 1.78% 2.21% 2.65% 2.31%
(0.0) (0.0) (0.0) (0.0) (0.0)

L/2

W/ 3.61% 1.11% 1.73% 2.91% 2.05%
(0.0) (0.0010) (0.0002) (0.0) (0.0001)

W/a 3.74% 1.11% 1.74% 2.99% 2.09%
(0.0) (0.0010) (0.0002) (0.0) (0.0001)

W/O 2.77% 0.97% 1.42% 2.28% 1.66%
(0.0) (0.0) (0.0) (0.0) (0.0)

L/5

W/ 1.96% 0.30% 0.49% 1.14% 0.75%
(0.0642) (0.1426) (0.1308) (0.0944) (0.0969)

W/a 2.18% 0.28% 0.50% 1.24% 0.79%
(0.0593) (0.1021) (0.0961) (0.0776) (0.0778)

W/O 1.28% 0.22% 0.35% 0.77% 0.51%
(0.0880) (0.1660) (0.1570) (0.1195) (0.1213)

L/10

W/ 1.10% 0.10% 0.17% 0.46% 0.31%
(0.3240) (0.4599) (0.4485) (0.3976) (0.3812)

W/a 0.78% 0.00% 0.02% 0.19% 0.13%
(0.5643) (0.9754) (0.9205) (0.7464) (0.7290)

W/O 0.61% 0.05% 0.09% 0.25% 0.17%
(0.4308) (0.5502) (0.5446) (0.5053) (0.4867)

are used as reference methods, it is reasonable to believe624

that contact prediction by other deep learning methods can625

benefit from 2D contact models for improvements as well.626

Lastly, the usage of refinement selection scheme is highly627

recommended, as the utility of the refined features hinges628

on the collective reliability of the neighborhood as measured629

TABLE 11
Comparisons of improvements over DeepHelicon with simple neighbor
feature (SN), with simple neighbor feature with hybrid-cutoffs (SC) and

the main feature (Main) in Eq 5. Corresponding p-values are shown
underneath inside parentheses (up to 4 decimal), and highest

improvements are bolded.

L Method Precision Recall F1 F0.35 MCC

L/1

SN 1.84% 1.11% 1.33% 1.70% 1.42%
(0.0004) (0.0182) (0.0011) (0.0004) (0.0013)

SC 1.95% 1.21% 1.42% 1.80% 1.52%
(0.0002) (0.0094) (0.0005) (0.0002) (0.0006)

Main 1.90% 1.18% 1.40% 1.76% 1.49%
(0.0002) (0.0112) (0.0006) (0.0003) (0.0007)

L/2

SN 1.75% 1.10% 1.18% 1.54% 1.32%
(0.0027) (0.0036) (0.0009) (0.0018) (0.0011)

SC 1.87% 1.11% 1.22% 1.63% 1.37%
(0.0019) (0.0035) (0.0008) (0.0013) (0.0009)

Main 1.63% 1.00% 1.09% 1.43% 1.22%
(0.0037) (0.0058) (0.0013) (0.0025) (0.0017)

L/5

SN 2.00% 0.78% 0.97% 1.51% 1.17%
(0.0204) (0.0861) (0.0406) (0.0179) (0.0280)

SC 2.37% 0.91% 1.15% 1.79% 1.38%
(0.0054) (0.0505) (0.0189) (0.0058) (0.0112)

Main 2.54% 0.94% 1.20% 1.90% 1.45%
(0.0041) (0.0441) (0.0158) (0.0049) (0.0091)

L/10

SN 0.87% 0.14% 0.24% 0.55% 0.35%
(0.2906) (0.1161) (0.1224) (0.1649) (0.1726)

SC 0.87% 0.13% 0.23% 0.54% 0.35%
(0.2701) (0.1128) (0.1179) (0.1551) (0.1622)

Main 1.45% 0.22% 0.38% 0.88% 0.57%
(0.1044) (0.0384) (0.0396) (0.0522) (0.0545)

TABLE 12
Comparisons of improvements over MetaPSICOV with simple neighbor
feature (SN), with simple neighbor feature with hybrid-cutoffs (SC) and

the main feature (Main) in Eq 5. Corresponding p-values are shown
underneath inside parentheses (up to 4 decimal), and highest

improvements are bolded.

L Method Precision Recall F1 F0.35 MCC

L/1

SN 6.10% 4.50% 4.91% 5.75% 5.22%
(0.0) (0.0) (0.0) (0.0) (0.0)

SC 6.28% 4.63% 5.06% 5.92% 5.37%
(0.0) (0.0) (0.0) (0.0) (0.0)

Main 6.24% 4.59% 5.03% 5.89% 5.34%
(0.0) (0.0) (0.0) (0.0) (0.0)

L/2

SN 8.42% 3.28% 4.37% 6.89% 5.14%
(0.0) (0.0) (0.0) (0.0) (0.0)

SC 8.24% 3.23% 4.29% 6.75% 5.04%
(0.0) (0.0) (0.0) (0.0) (0.0)

Main 8.51% 3.46% 4.54% 7.02% 5.29%
(0.0) (0.0) (0.0) (0.0) (0.0)

L/5

SN 8.10% 1.50% 2.38% 5.05% 3.38%
(0.0) (0.0) (0.0) (0.0) (0.0)

SC 8.06% 1.50% 2.37% 5.03% 3.37%
(0.0) (0.0) (0.0) (0.0) (0.0)

Main 7.94% 1.35% 2.23% 4.90% 3.23%
(0.0) (0.0) (0.0) (0.0) (0.0)

L/10

SN 8.06% 0.73% 1.30% 3.60% 2.38%
(0.0) (0.0) (0.0) (0.0) (0.0)

SC 7.78% 0.65% 1.17% 3.36% 2.22%
(0.0) (0.0) (0.0) (0.0) (0.0)

Main 7.73% 0.69% 1.24% 3.46% 2.27%
(0.0) (0.0) (0.0) (0.0) (0.0)

by the fuzzy score. 630

In addition, we like to know whether the improve- 631

ment is affected by the sequence length or the number of 632

transmembrane domains in a sequence. We calculated the 633

correlation of α-helix length and AUC-ROC gain (refined 634
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Fig. 4. Histogram of performance improvement versus the number of transmembrane domains

TABLE 13
Comparisons of improvements over DeepMetaPSICOV with simple

neighbor feature (SN), with simple neighbor feature with hybrid-cutoffs
(SC) and the main feature (Main) in Eq 5. Corresponding p-values are
shown underneath inside parentheses (up to 4 decimal), and highest

improvements are bolded.

L Method Precision Recall F1 F0.35 MCC

L/1

SN 2.70% 1.66% 2.10% 2.54% 2.19%
(0.0) (0.0) (0.0) (0.0) (0.0)

SC 2.81% 1.77% 2.20% 2.64% 2.30%
(0.0) (0.0) (0.0) (0.0) (0.0)

Main 2.82% 1.78% 2.21% 2.65% 2.31%
(0.0) (0.0) (0.0) (0.0) (0.0)

L/2

SN 2.47% 0.86% 1.26% 2.03% 1.48%
(0.0) (0.0001) (0.0) (0.0) (0.0)

SC 2.72% 0.97% 1.41% 2.25% 1.64%
(0.0) (0.0) (0.0) (0.0) (0.0)

Main 2.77% 0.97% 1.42% 2.28% 1.66%
(0.0) (0.0) (0.0) (0.0) (0.0)

L/5

SN 1.00% 0.13% 0.22% 0.55% 0.36%
(0.1482) (0.3550) (0.3240) (0.2251) (0.2387)

SC 1.69% 0.31% 0.49% 1.05% 0.70%
(0.0321) (0.0991) (0.0853) (0.0523) (0.0571)

Main 1.28% 0.22% 0.35% 0.77% 0.51%
(0.0880) (0.1660) (0.1570) (0.1195) (0.1213)

L/10

SN −0.87% −0.12% −0.21% −0.51% −0.33%
(0.3277) (0.2106) (0.2094) (0.2332) (0.2413)

SC 0.24% 0.03% 0.05% 0.10% 0.07%
(0.7601) (0.7547) (0.7679) (0.7842) (0.7670)

Main 0.61% 0.05% 0.09% 0.25% 0.17%
(0.4308) (0.5502) (0.5446) (0.5053) (0.4867)

AUC-ROC minus original AUC-ROC), the results are mixed:635

−0.2575 for DeepHelicon and −0.4236 for MetaPSICOV,636

which indicate longer α-helix length; on the other hand,637

this correlation for DeepMetaPSICOV is 0.1407. In Figure638

4, for different number of transmembrane domains in our639

dataset, their average performance improvement as mea-640

sured by L10 precision is shown. Note that in our dataset, it641

just happens that no sequence contains 18 transmembrane 642

domains, which is why there is no registered performance 643

improvement for the data point. As shown in Figure 4, no 644

clear pattern is observed, though it is possible that some 645

patterns may emerge with a different dataset or as the size of 646

the dataset grows bigger and hence more statistically stable. 647

5 CONCLUSION 648

In conclusion, we proposed a low computational cost and 649

quite general method for improving inter-helix contact pre- 650

diction. The proposed method shows notable improvements 651

as measured by the top-L evaluation criterion. The success is 652

achieved by simple but powerful hybrid-cutoff technology, 653

exploiting features that are not fully captured by the current 654

state-of-art methods, and the development of refinement 655

selection scheme via the idea of fuzzy score, which offers a 656

partial solution to the intrinsic challenge of any refinement 657

method. 658

With this demonstrated success, there are several com- 659

ponents of the proposed method that can be improved 660

further. The first component is the 2D contact model. At 661

the current stage, the developed 2D contact model with 662

its feature calculation is still simplistic, which can lead to 663

losing important spatial information of inter-helix patterns. 664

Second, the refinement selection scheme is only an empirical 665

solution, and does not guarantee optimally. To investigate 666

the challenge of refinement further both practically and 667

theoretically, more experiments across different domains are 668

necessary in the future work. 669

Finally, the code and data are freely available online at: 670

https://www.cis.udel.edu/∼lliao/inter-helix-refinement 671
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