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Abstract—Inter-helix contact prediction is to identify residue contact across different helices in a-helical integral membrane proteins.
Despite the progress made by various computational methods, contact prediction remains as a challenging task, and there is no
method to our knowledge that directly tap into the contact map in an alignment free manner. We build 2D contact models from an
independent dataset to capture the topological patterns in the neighborhood of a residue pair depending it is a contact or not, and
apply the models to the state-of-art method’s predictions to extract the features reflecting 2D inter-helix contact patterns. A secondary
classifier is trained on such features. Realizing that the achievable improvement is intrinsically hinged on the quality of original
predictions, we devise a mechanism to deal with the issue by introducing, 1) hybrid-cutoffs, which partially discretizing original
predictions to leverage the usefulness of the existing information 2) fuzzy score, which assesses the quality of the original prediction,
and selecting the residue pairs where improvement is more achievable. The cross-validation results show that the prediction from our
method outperforms other methods including the state-of-the-art method (DeepHelicon) by a notable degree even without using the
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refinement selection scheme. By applying the refinement selection scheme, our method outperforms the state-of-the-art method

significantly in these selected sequences.

Index Terms—Inter-helix contact prediction, Refinement selection, 2D contact model, Fuzzy score.

1 INTRODUCTION

NTER-HELIX contact prediction is to identify residue con-
Itact across different helices in a-helical integral mem-
brane proteins. Knowing the residue contact is an im-
portant step toward better understanding the topology of
membrane proteins and their cellular functions [1], [2], [3].
However, membrane proteins’ structures are very difficult
to be verified through X-ray crystallography [4]. As reported
in [5], only 2% to 3% integral membrane proteins have been
verified experimentally, which has motivated development
of computational methods for predicting residue contact.
Currently, the state-of-art method is DeepHelicon [6]. Like
AlphaFold2 [7], which is an end-to-end learning and pre-
dicts accurate 3D models of globular proteins, DeepHeli-
con is also a deep learning based method that takes co-
evolutionary features [8], [9], [10] as input to the neural
network and outputs a 2D contact matrix of a membrane
protein. While deep learning based methods have achieved
remarkable success in many bioinformatics applications
[11], not limited to protein structure prediction, the com-
putational costs of deep learning have also increased dra-
matically [12]. As reported in [13], disregarding the model’s
training, making accurate predictions takes roughly $1K
per sequence for AlphaFold. With all these success using
deep learning techniques for protein structure prediction,
computational cost will become a future challenge at some
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point, and the computational barrier for the research groups
with limited computational power has already been noticed
[13].

To mitigate the computational barrier issue, we here
proposed a method to improve residue contact prediction by
leveraging the existing state-of-art method’s predictions and
exploiting features that are not fully captured by the existing
method with a simple hybrid-cutoffs technology and a novel
refinement selection scheme. While DeepHelicon and other
methods [14], [15], [16], [17] gather contact patterns based on
sequence alignments to extract useful information, such as
co-evolutionary features and evolutionary couplings, there
is no method to our knowledge that directly tap into the
contact map in an alignment free manner, despite it is
obvious that, because of the periodic nature of helix turn, the
neighborhood of a residue pair in a contact map can provide
strong clue regarding whether the pair is a contact pair or
not. So we proposed to exploit the 2D topological patterns
in the neighborhood of any residue pair in order to improve
the contact prediction. Specifically, using the ground truth,
we build 2D contact models to extract the features reflecting
2D inter-helix contact patterns in the neighborhood of any
residue pair. Concatenating these features with the predic-
tion from an existing methods (we use DeepHelicon) as
input to a secondary classifier (we use Random Forest),
significant improvement is achieved (up to 14 percentage
points in the top-L precision) over DeepHelicon's, indicating
that the 2D contact models indeed capture valuable informa-
tion for accurately predicting residue contact. Of course, in
real world applications, the ground truth of residue contact
is not available, instead it is exactly what the prediction is
aimed at. To overcome this chicken-egg issue, we proposed
to use other methods’ prediction with applying partially
discretization techqniue as surrogate to the ground truth,
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and the results showed that we still outperformed these
methods, though significantly less than using the ground
truth contact in the neighborhood. Note that these other
methods may be based on MSA, although the 2D contact
models are alignment-free. Realizing that the achievable
improvement is intrinsically hinged on how well the ground
truth can be approximated by the surrogate, we devise a
mechanism to deal with the issue by introducing i) hybrid-
cutoffs, which partially discretize prediction scores to 0 or
1 or remain unchanged, and ii) fuzzy score, which can
assess the quality of the current prediction, and selecting
the residue pairs where improvement is more achievable.
The cross-validation results show that the prediction from
our method outperforms the state-of-the-art method Deep-
Helicon and other two methods by a notable degree even
without using the refinement selection scheme. By applying
our refinement selection scheme, which selects a subset
of sequences to refine, our method outperforms the base
method significantly in these selected sequences.

The rest of this paper is organized as the following.
First, the proposed method will be described in details
by introducing (i) hybrid-cutoffs technology, (ii) 2D contact
model with its feature calculations, (iii) improve inter-helix
prediction with its refinement selection scheme. Second,
with the understanding of the proposed method, results
from three experiments will be given. The first is a vali-
dation experiment which shows the usefulness of 2D con-
tact models’” feature for the task of inter-helix prediction
refinement. The second experiment examines the idea of
fuzzy score as a tool to assess original prediction’s quality.
The third experiment will demonstrate the refinement of
prediction from DeepHelicon [6], DeepMetaPSICOV [18],
and MetaPSICOV [16] with and without refinement selec-
tion scheme, and comparing them with only using original
predictions’ simple neighbourhood feature. Last, discussion
and conclusion are given at the end.

2 METHOD

The proposed method is a framework designed to improve
inter-helix contact predictions from some other existing
method in order to achieve better performance as measured
by the widely accepted top-L metric, via 2D contact models,
hybrid-cutoffs, and refinement selection scheme. As such,
the success of this method relies on three key ideas: (1)
A prediction score partially discretizing method, which
give upper and lower cutoffs to original prediction scores
to round them into 1 or 0 or unchanged. (2) The usage
of 2D contact models, which are used to generate useful
refined features to capture inter-helix contact patterns. (3)
A selection scheme based on the idea of fuzzy score, which
assesses the quality of current predictions and helps select
proper residue pairs/sequences most likely to benefit from
the refined features.

Before getting into the details of the method, it is helpful
to define the major notations used throughout this section.
Our dataset contains N sequences. For the k" sequence in
the dataset, we use a square binary matrix C;, to denote the
contact matrix of the sequence. Each element Cj,(4, j) can be
either 0 representing non-contact or 1 representing contact
for the residue pair < 4,5 > in the folding of sequence k.

2

Note that Cj, and C(3, j) are always referred to the ground
truth information, i.e., their values are either 0 or 1, based
on experimental data. In contrast, we use Cj and C(3, j)
to refer to the contact prediction made by inter-helix contact
prediction methods, and their values are a real number from
Otol.

Now, for each inter-helix residue pair < 4,7 > in se-
quence k, we extract a (2n + 1) x (2n + 1) neighbor block
from the matrix Cj, centered at position < ¢,j >, where
n defines the farthest neighboring residue from the center
on either side, and we denote this block as F}'(i, j), whose
elements are Cy(a,b), where |i —a| <nand |j — b < n.In
the cases where a or b out of the boundary or < a,b >
is not an inter-helix pair, 0 values are assigned. Again,
since F}'(i,j) is extracted from Cj, it is a binary matrix.
Similarly, such a matrix can be extracted for each position
< i,j > from a predicted contact map, and we denote it as
F}(i, 7). When building the 2D structure model, calculating
its features, and applying the refinement selection scheme,
the center of Fy’ (i, j) and I} (4, j) needs to be excluded, and
we use E} (i, 7) and E} (4, j) to denote such center excluded
neighbor block in the ground truth and predicted contact
matrix respectively. When used in features calculation or as
feature directly, these matrices are flattened row by row into
an array of size (2n+1)?—1. A graphical representation with
n = 1 (i.e., 3 x 3 neighborhood block) of above procedure
is shown in Figure 1. For readers reference, the summary of
the notations introduced above and several others appeared
later are shown in Table 1.

2.1 Hybrid Cutoffs

First, it is worthy to mention that the simple neighbor fea-
ture, i.e. E (i, j) has already contained useful information; a
classifier trained on such simple feature can make improve-
ments over original inter-helix contact prediction in most
cases already. The improvement can be further enhanced by
partially discretizing original predictions as follows:

CT(score,lower, upper) =1 if score > upper
=0 if score < lower

=score otherwise

With CT'(score,lower, upper) defined as such, finding
the optimal lower and upper cutoffs is simply by grid search
in defined cutoff searching space (0 < lower < upper < 1),
and can be expressed by the following mathematical for-
mula with original predictions denoted by Y, and ground
truth label denoted by Y in training set.

(lower™, upper™) = argmax corr(C'T(f/7 lower, upper),Y)

After finding the optimal cutoffs via a training set, apply-
ing CT (score,lower*, upper*) to E{ (i, j) to have a hybrid-
discretized neighbor features, such feature is denoted by
TEY(i,7)s. These hybrid-discretized features will be part
of our whole feature, and we will show that such partially
discretized feature alone will better than simply applying
ER (i, 5)-
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Fig. 1. Diagram of F}* (3, 5), le(i,j), EZ(i,5), EVLL(i,j) extraction from C, (contact map from ground truth) and Cr, (contact map from prediction)

withn =1
TABLE 1
Notations
Symbols Explanations
Cy A square binary matrix represents the k' sequence’s 2D contact map
Ci(i,7) C'’s element, which represents contact/non-contact of residue pair < 4, j > in sequence k.
Cy A square matrix represents the k" sequence’s predicted 2D contact map, values are from 0 to 1.
Ck(3,7) C},’s element, which represents contact estimation of residue pair < ¢, > in sequence k.
FP (4, 9) (2n + 1) x (2n + 1) matrix extracted from C}, centered at < 4,5 >.
E7 (4, 5) A flattened vector in size of (2n + 1)Z — 1 from F}* (i, j) by excluding the center.
FP' (3, 9) (2n + 1) x (2n + 1) matrix extracted from C},, centered at < 4,j >.
EZ(i,9) A flattened vector in size of (2n + 1) — 1 from F}*(i, j) by excluding the center.
My (+/-) 2D contact model with parameter n.
fzScore(x) Fuzzy score, which defines the fuzzy level of *.
f eaturez+/ "~ (4,7) 2D contact model’s feature of sequence k residue pair < i, j > with parameter n.

2.2 2D Contact Models

To build 2D contact models, a separate training set with
ground truth label is needed. Given N number of train-
ing sequences, F}'(i,j) can be extracted for all inter-helix
residue pairs < 4, j > of sequence k from C}, for all k € N.
A 2D contact model has one parameter n, which determines
the size of the neighborhood block centering at any residue
pair in the contact map: (2n + 1) x (2n + 1). The key idea
of the 2D contact model is to capture the general contact
patterns in the contact map surrounding any given residue
pair. To avoid sequence alignment and other details such as
residue identities, we just calculate the probability of each
position within the (2n + 1) x (2n + 1) neighborhood block
of any residue pair to be a contact. As we believe such a
probability distribution across the neighborhood of a contact
residue pair is likely different from that of a non-contact
residue pair, we build two 2D contact models: one for inter-
helix contact residue pairs, and the other one for inter-helix
non-contact residue pairs, and are denoted by M, (+) and

M, (—) respectively. The 2D contact models can be built
by approximating the probability with frequency using the
training data. To build M,,(+), whichisa (2n+1) x (2n+1)
matrix, we go through the 2D ground truth contact map of
training sequence k, for each contact point < 4,j > in se-
quence k, namely Cy(i,j) = 1, we collect its neighborhood
block E7(i,7) and sum these (2n + 1) X (2n + 1) matrix
blocks, element-wise, over all contact points in sequence
k, and then over all N training sequences in the dateset.
This way, each element in the summed matrix block gives
the count of contact points at the corresponding position
in the neighborhood of contact residue pairs, which, after
normalized by the total number of contact residue pairs,
gives the frequency (thus probability) of the corresponding
neighbor of a contact residue pair also to be a contact
point. In a similar way, we can build M, (—), which is a
(2n + 1) x (2n + 1) matrix, each element is the probability
of the corresponding neighbor of a non-contact residue
pair to be a contact point. The mathematical formulas for
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calculating the 2D contact structure models M, (+) and
M, (—) are given as follows.

Sy X, ER (i g) - O, )
Sohey Xy O, 4)

Sy Y, BRGL) - (1= Cr(i,g))
iy 3 (1 = Cliy 5))

Note that M, (+), M,(—), and E}(4,j) in the above
equations can be viewed as (2n+1) x (2n+1) matrices with
empty center as a whole (so that there are (2n+1)2 — 1 total
elements), the summation is element-wise matrix addition,
and - represents that the matrix is multiplied by a single
value Cy(7,7). It is critical to note that, E}(7,j) instead
of F'(i,7) is being used because to build M, (+) and
M, (—), the corresponding centers of F}'(i, j) are either all
contact or non-contact, which have been captured by contact
or non-contact models already. In sum, the 2D contact
models M, (+) and M, (—) have the same dimension as
Ek and consist of contact frequencies position-wise in the
(2n 4+ 1) x (2n + 1) neighborhood centering a contact or
non-contact residue pair respectively.

We hypothesize that, the 2D contact models built from
a decently large training set capture general patterns and
therefore can be generalized to other protein sequences,
not only those present in the training set, but also those
in a separate test set. In a test sequence k, for each inter-
helix residue pair < 7,j >, we compare the ground truth
contact in the neighborhood to the 2D contact models;
intuitively, if its neighborhood E} (4, ) is more similar to
the M,,(+) than to M,,(—), then < ¢, j > is more likely to be
a contact point. Consider them respectively as probability
distribution of contacts in the neighborhood of < 4,5 >
and collectively in the training data, the similarity can be
measured by using the KL divergence. Instead of relying
on one neighborhood of a big size, which can give just
two KL divergence scores, we use a set of neighborhoods
with increasing size n = 1,..,5 to get 25 KL divergence
scores as features to train a secondary classifier. Because a
smaller neighborhood is enclosed in a bigger neighborhood,
to avoid redundant information due to overlap, for each
neighborhood we calculate the KL divergence between the
perimeters of the neighborhood block E7 (i, j) and contact
model block M,,(+/—)T. Here, we denote the perimeter of
Ep(i,j) and of My (+/=)" 1 by Ef(i,j) and M,(+/—-)T
respectively, and with normalization so that all elements on
the perimeter sum to be 1.

Mn("’) =
¢y

My (-) =

feature;™ (i, ) = > Bf (i, j)log (B} (i )/ Ma(+)T)
) =D By j)log(E} (i, )/ My (<))

For above computation, all operations are element-wise.
Therefore, the final results of these vectors generates a single
number, feature ™ (i,j) or feature}™ (i,7). The values of
feature}™ (i, j) and feature}™ (i, j) can be interpreted as a
distance score, which indicates how likely C%(4,j) = 1 or 0
respectively, given the perimeters of 2D contact models
M, (+/—) and inter-helix residue pair < %,j > ’s neigh-
bours contact E} (4, 7).

@)

feature; ™ (i

4

By stacking a set of neighborhoods with increasing size
n = 1 to S, using the perimeter of each, we effectively cover
the neighborhood of size S with more details (i.e., 25 KL
scores) than a single neighborhood of size S can provide
(i-e., just 2 KL scores). In the next subsection, we show how
to use such 2S KL scores as features to train a secondary
classifier to predict residue contact, and the results in Table
2 show great improvement as compared to DeepHelicon,
and hence strongly support our hypothesis about the 2D
contact models.

However, the above definition of feature}™(i,j) or
feature; ™ (i, j) requires knowing the ground truth contact
in the neighborhood of < i, j >, which is not available but
rather what a prediction method is aimed at in a real world
scenario. To overcome this ”chicken-egg” issue, we propose
to use the predicted contact map from a method with good
performance (e.g., DeepHelicon) as the surrogate to the
ground truth contact map. That is, we can use 2D contact
models to calculate KL divergence from other method’s
prediction about the inter-helix of residue pairs, and treat
these divergence as refined features for a secondary classi-
fier. Specifically, the calculation is done as follows:

= 3" Ep (i, )log(Ep (i, 5) /My (+)T)
=" Ep(i, j)log(Bp (i, §)/Ma(—)T)

_ Here, E,? (4,7) is built from the predicated contact map
C}, for test sequence k by an existing computational method.
In our case, such existing methods include DeepHelicon,
DeepMetaPSICOV, and MetaPSICOV.

featurek (4,7)

®)

featurek (4,7)

23

Now we are ready to describe the procedure for improved
inter-helix prediction with a secondary classifier (Random
Forest), consisting the following steps: applying hybrid-
cutoffs to simple neighbourhood feature, contact model fea-
ture preparation, model training and testing, and refinement
selection.

Second, using the an independent training dataset and
the formulas in Eq 1, we build multiple 2D contact mod-
els M,(+) and M, (—) with different sizes: n = 1...5,
and then use Eq 2 to generate the refined features for
inter-helix residue pair< %, > in sequence k, denoted as
RF_feature; (i, j) in the following form:

Inter-helix Prediction

RF_features (i,§) = concat|
featurei"'(i,j)7 featurei_ (i,7),

featurei"'(i,j), featurei_ (i,7), @

featurel ™ (i, 5), featurey (i, j),
B (i,)5 Cali, )

Note that, this refined feature set consists of scores
calculated according to Eq 2 with 2D contact models of
different sizes from 1 to S, in order to capture hidden
contact patterns in a wide range of neighborhood. This

is more advantageous than using just models of size S,
because although neighborhood of size S encompasses all
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neighborhoods of size smaller than .S, a single score over a
large neighborhood may hide detailed variations within it.
On the other hand, by stacking features calculated from 2D
contact models of various sizes we can “expose” the detailed
and nuanced patterns for the secondary classifier to learn.

With RF_feature; (i,j) ready for each inter-helix
residue pair of each sequence, the training and testing
procedures in a cross-validation setting are standard: we
randomly split the dataset into 10 subsets, merge 9 subsets
to train the random forest classifier and test the trained
classifier on the reserved subset, and rotate to use each of
the 10 subset once as test set. Since the proposed method
is designed to improve predictions made by some existing
computational methods, it is reasonable to assume that
the predictions are significantly better than random tossup.
Therefore, in practice, users may choose to only improve
top ranked inter-helix residue pairs, instead of all inter-
helix residue pairs, to save computational cost. In our
experiments, we chose to improve top 3L ranked residue
pairs from DeepHelicon, where L is the total length of the
helices in a particular sequence. The results, listed in Table 2,
show that our method achieves significant improvement
(e.g., up to 14% in top-L precision and 9% in top-L recall)
over DeepHelicon’s. This is clearly a very strong support of
our hypothesis that contact patterns in the neighborhood
of a residue pair contain valuable information that can
help, when properly used, significantly improve contact
prediction.

Of course, the construction of the refined features in Eq 2
requires knowing the ground truth contact map, which is
not available in a real world scenario, actually the contact
map is what the prediction method is aimed at predicting.
To overcome this “chicken-egg” issue, we propose to use the
predicted contact map from a decently performing method
(e.g., DeepHelicon) as the surrogate to the ground truth
contact map. Specifically,

RF_featurey (i, j) = concat|
—— 1+ —_— 1-
fea'turek (7’7 .7)7 fea’turek (Za j)a
—— 24 —_— 2—
fea'turek (7’7 .7)7 fea’turek (Za j)7 (5)

— S+ —
featurey, (i,7), feature, (i,7),
I—Eks(lvj)—'ack(la])]

Here everything is the same as Eq 4, except that

1—

feature,” (i, j) is replaced with feature, (i,7).

Due to the use of predicted contact map in calculating
the refined features, it is expected that the achievable im-
provement is intrinsically hinged on how well the ground
truth can be approximated by the surrogate. Even though
we select a state-of-the-art method with a good overall per-
formance, the quality of prediction in the predicted contact
map can vary from position to position. We devise a mech-
anism to deal with this issue by introducing a fuzzy score,
which can assess the quality of the current prediction, and
selecting the residue pairs/sequences where improvement
from the refined features is more achievable.

5

Let us assume that the prediction by the existing method
(e.g., DeepHelicon) for a residue pair is a score in the range
from 0 to 1, which can be interpreted as the likelihood
that the pair is a contact, with 0.5 being a tossup, or most
uncertain prediction. The fuzzy score for a given position
< 1,7 > in a predicted contact map C. (i, j) is calculated as
follows:

fzScore(C.(i, 7)) = min(1 = Cu(i, 5), Cu(i,5)) ~ (6)
When C.(i,j) = 0.5, then fzScore(C.(i,j)) = 0.5, indi-
cating the highest fuzzy (uncertain) level. When C\(i, j) =
lor0, fzScore(C.(i,7)) = 0, indicating the lowest fuzzy
(uncertain) level.

Our rationale for using such fuzzy scores is that, given
predictions of a residue pair Ci(i,j) in sequence k and
its neighborhood E} (i, ), only when the fuzzy score of
E}(i,j) is on average less than the fuzzy score of Cy (i, )
by a certain degree, then the prediction of neighborhood
contact is significantly better off than random tossup and
hence can be used as good surrogate to the ground truth
so that the refined feature feature] " (i, j) can be better ap-

—_— n
proximated as featurer (i, Q So, based on this rationale,
we define the fuzzy score of E}'(i, j) as just the average of
each element’s fuzzy score as follows.

fzScore(E}(i,j)) =

ZO<|a—i\§n,O<|b—j|§n fZSCOTe(ac(aa b))
(2n—1)2 -1

For each inter-helix residue pair < 7,j > and its neigh-
bours bounded by a (21 + 1) x (2n + 1) box, we have a pair
fuzzy scores that measure the fuzzy level of Cy(4,j) and
E}(i, 7). Their difference is denoted by 0 fzScorej! (i, j) and
calculated as:

OfzScorel (i, j) = fzScore(Cr(i,j)) — fzScore(Ei}(i,j))

The key idea of using the fuzzy score is: when
Of zScorei (i, j) is higher than a threshold, it indicates that
Cy (i, ) is more fuzzy than E}(i,j), and applying the 2D
contact model onto the neighbours of < 7,5 > to produce
refined features is more likely to give rise to better predic-
tion at < 4,7 >. In practice, an empirical procedure can
be used to optimize the threshold of dfzScore} (i, ), by
maximizing the performance gain from the refined features,
using an independent dataset. In this dataset, each residue
pair < 4,7 >’s fuzzy score difference 0fzScore(i,j) is
computed, here the sequence index k and the neighborhood
size n are omitted for simplicity. We like to know which
residue pair’s fuzzy score difference, if used as a threshold,
can lead to maximal performance gain. Let’s say < 4,j > is
that residue pair. Then for all other residue pairs < ¢/, 7" >
whose fuzzy score difference larger than 0fzScore(i, )
we will assess the collective performance difference from
applying the refinement versus not applying the refinement
as Ll(l’ ]) = Z i"j: 0fzScore(i’,j') >0 fzScore(i,j) [67‘7’1 (i/7 jl) -
erra(i’,j'), where erry(i/,j') is the prediction error when
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refined features are used, and erry(i/,j’) the predic-
tion error when refined features are not used for each
residue pair < ¢,5' >. The smaller the L1 is, the more
benefit we get from applying the refinement. Similarly,
for all other residue pairs < 17,57 > whose fuzzy
score difference smaller than 9fzScore(i,j) we also as-
sess the performance difference from applying the re-
finement versus not applying the refinement L2(i,j) =
Z i”j": 0 fzScore(i”,57)<d fzScore(i,j) [67"7"1 (7:” ’ j”) —Eerr (i” ) j” )/
where erry(i”, j”) is the prediction error when refined fea-
tures are used, and errz(i”,j”) the prediction error when
refined features are not used for residue pair < ¢”,j57 >.
The smaller the L2 is, the more benefit we get from
applying the refinement; reversely the larger the L2 is,
the less benefit we get from applying the refinement. So,
L(i,j) = L1(i,5) — L2(3,j) tells us the net effect of using
residue pair < ¢,j >’s fuzzy score difference as the cutoft:
the lower the L is, the more benefit we get from applying the
refinement to these < i, 5/ > and not applying refinement
to these < 7,77 >. We calculate L(3, j) for all residue pairs
< 1,j > and choose the one that has the minimal L.
Specifically,

1) Calculate the prediction error: erri(i,j) when re-
fined features are used, and the prediction error:
erra(i,j) when refined features are not used for
each residue pair < 7, j >.

2) Calculate the difference between these two errors:
Oerr(i,j) = erri(i,j) — erra(i, j) for each residue
pair.

3) With a given fuzzy score cutoff (arbitrarily
indexed by < x,% >) dfzScore(x,*), calculate the
corresponding refinement loss defined as: L(x, %) =

Z i"j’: 0fzScore(i’,j')>0 fzScore(x,*) 867"7‘(7;/, -]/)
i”j": 0 fzScore(i”,57 )< fzScore(x,x) 867"’1"(2'” ) j” )
4) Repeat above step for all possible fuzzy score cut-
offs.
5) Find the minimal value of L, and its corresponds
fuzzy score Ofzmy is the final threshold to deter-
mine when refinement method applied.

It is optional to do selection more aggressively, i.e. select
the ones with larger level of improvements, by only a
small modification of the 2"? step: derr (i, j) = erry(i,5) —
lerra(i, j) — C), where C' is a positive constant to make the
original prediction error errs(i,j) artificially smaller and
hence only when the refinement error is even smaller , i.e.,
erry(i,7) < erry(i,j) — C, then derr(i, j) < 0 is satisfied.

Note that, the specifics of this procedure may vary,
mainly for lower computational costs and/or better per-
formance, via alternative metric, such as per residue pair
or per sequence. Validation experiment of this procedure is
demonstrated in Results section.

3 RESULTS

In this section, we first describe in details the datasets
used for this study, and the results from four experiments.
The first experiment is served to demonstrate the utility of
2D contact structure model and establish the upper bound
of this refinement method. The second experiment is to
validate the hypothesis that 2D contact model without
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the ground truth can still lead to improved prediction,
with the help of fuzzy score and refinement selection
scheme, as compared with DeepHelicon’s results. The
third experiment is to compare the results of using 2D
contact model, with and without refinement selection tech-
nique with three different methods: DeepHelicon, Deep-
MetaPSICOV, and MetaPSICOV. Finally, last experiment is
to compare the improvements over original predictions of
three different features: i) simple neighbor feature alone ii)
simple neighbor feature with applying hybrid-cutoffs, and
iif) the main feature used here as shown in Eq 5, which
consists contact models feature, simple neighbor feature
with applying hybrid-cutoffs, to show the usefulness of
hybrid-cutoffs technique and the contact model features.

3.1

Since our method mainly refines the predictions from Deep-
Helicon [6], the same datasets are adopted. There are three
different datasets: TRAIN, TEST, and PREVIOUS. They con-
tain 165, 57, and 44 bitopic or polytopic a-helical trans-
membrane proteins respectively. TRAIN and TEST datasets
were extracted from PDBTM database [19] by DeepHelicon
group. PREVIOUS is a combined dataset from TMhhcp [20]
and MemConP [21].

Here, we use the TRAIN as an independent dataset to
build 2D contact structure model with different values of
the parameter n. And combining the TEST and PREVIOUS
datasets (101 sequences in total) to evaluate the proposed
method by 10 fold cross validation. The combined dataset is
called DATA(101) hereafter.

Dataset

3.2 2D Contact Model Validation

In this experiment, the main goal is to demonstrate the
usefulness of the 2D contact structure model and its features
in task of inter-helix prediction. In addition to the purpose of
validation, this experiment also computes the upper bound
with the given data.

This experiment and later two used TRAIN dataset to
build the 2D contact models, and DATA(101) to perform 10-
fold cross validation. The classifier used is random forests
with 500 trees. The hyper-parameter S in Eq 4 is chosen to
be 7.

The results are shown in Table 2. The performance of
inter-helix predictions is evaluated using the metric of top-L
precision and recall, adopted from [6] and commonly used
in the community. The term L refers to the total length of a
particular sequence’s a-helix. Instead of setting a particular
cutoff on the prediction score, top L/1, L/2, L/5, or L/10
in the list of residue pairs ranked by the prediction score
are chosen as decision boundary’s cutoff, namely predicted
as positive. For example, with a given bitopic or polytopic
transmembrane protein, the total length of its a-helices is X,
the top-L/5 evaluation means ranking prediction scores in
descending order, and considering the top X/5 predictions
as predicted contact inter-helix residue pairs, remaining as
predicted non-contact inter-helix residue pairs. For com-
parison purpose, we adopt top-L evaluation with L/1, L2,
L/5,L/10 to evaluate precision, recall, F; score, F{ 35 score,
and Matthews correlation coefficient (MCC). With multiple
sequences in the testing set, average of precision, recall,
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TABLE 2
Top-L Comparisons of the refinement method denoted as RM(with 2D
contact model features calculated from ground truth contact map) and
DeepHelicon (DH) without refinement selection on DATA(101)

L Method | Precision | Recall F Foy.35 MCC
L/1 RM 74.36% 53.13% | 59.70%| 70.15% | 60.80%
DH 62.55% 44.49% | 50.13%| 58.99% | 50.68%
L/2 RM 89.60% 33.81% | 47.05%| 73.73% | 53.14%
DH 76.30% 27.92% | 39.39%| 62.49% | 44.41%
L/5 RM 96.65% 15.10% | 25.21%| 57.82% | 36.70%
DH 85.40% 12.75% | 21.63%| 50.57% | 31.76%
L/10 RM 98.28% 7.83% 14.14%| 40.96% | 26.57%
DH 89.09% 6.68% | 12.25%| 36.43% | 23.50%

F1-scores, and MCC are computed as final results. The
definition of F'-scores and MCC is given as follows.

precision - recall

Fp=(1+ By’ B2 - precision + recall
_ tp-tn+ fp- fn
Vtp+ fp)(tp + fn)(tn + fp)(tn+ fn)

where tp is the number of true positive, tn is the number of
true negative, fp is the number of false positive, and fn is
the number of false negative.

It is clear from Table 2 that, with 2D contact structure
model’s feature calculated from the ground truth contact
map, all top-L performances are strictly better than the orig-
inal results across different L’s. This validates our hypothesis
and the utility of applying 2D contact topological model in
the neighborhood of a residue pair for improved contact
prediction. This ground-truth based 2D model established
the upper bound for performance gain from leveraging the
neighborhood information in our proposed method. In real
world applications, the ground truth contact map is not
available and only an estimation of it is given. In such
cases, as shown later, the performance drops from the upper
bound but is still better off than the original inter-helix
contact prediction made by DeepHelicon.

3.3 Fuzzy Score Validation

The goal of this second experiment is to evaluate the fuzzy
score and test the 5-step procedure for optimizing a fuzzy
score cutoff used by the refinement selection scheme. The
overall setting of this experiment is the same as the previous
one expect that the evaluation criterion is absolute error,
which measure performance per residue pair, instead of
top-L, which measures performance per sequence, and the
features used here are all calculated from DeepHelicon’s
predictions.

Let X denote the collection of original prediction results
from DeepHelicon, X, denote the collection of inter-helix
prediction refinement results, and Y denote the ground
truth label. X, X, Y are arrays with length equal to total
inter-helix residue pairs in DATA(101). Then, define:

Error =|X -Y]
Error, = |X, =Y

OFError = Error — Error,
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Let Oe be an element of Error. When Oe is greater than 0,
original error is greater than the refinement’s, which is our
favourable case. Otherwise, it indicates refinement model
should not be used for the residue pair. Equivalent to the 5-
step procedure in refinement selection scheme, we plot the
curve for cutoff 0 fzScore vs cumulative error with sorting
OfzScore in ascending order, and the result is shown in
Figure 2. The curve is almost perfectly convex, and the red
”X” indicates the minimum point of the curve, which is
to be used as the threshold or cutoff of dfzScore by the
refinement selection scheme to decide whether the refined
features from applying 2D contact model should be used
or not. The left region of the threshold goes down almost
monotonically indicating majority Je is less than 0. The right
region of the threshold goes up almost monotonically indi-
cating majority Oe is greater than 0. This result validates our
hypothesis, and supports the 5-step procedure for finding a
cutoff used by the refinement selection scheme. It is worthy
to note that dfzScore is plotting against the cumulative
error not individual errors, in order to identify a cutoff on
the L(Of2zmin) computed per the 5-step procedure as the
minimum point of the cumulative error curve.

3.4 Inter-Helix Prediction Refinement and Refinement
Selection Scheme

This third experiment contains four parts. The first part is to
test the performance of contact prediction using the refined
features indiscriminatively for all sequences. The second
part is to test the performance of contact prediction when
the refined features are used selectively by both the normal
and aggressive settings of refinement selection scheme. In
aggressive setting, the constant C is picked as the average
of erra(i) — erry (i), which is a positive value. The third part
is the complement results of the second part, namely, the
performance of the sequences that are not selected in the sec-
ond part. The last part is a comparison of the improvements
in first and second part. This comparison highlights our
method’s overall performance gain, which is enhanced with
the refinement selection scheme. As mentioned, we tested
this refinement method on three different other methods.
Detailed results are only shown for DeepHelicon; for other
two methods DeepMetaPSICOV and MetaPSICOV, only the
third part is shown, which is enough for demonstrating the
performance of refinement and the selection scheme.

For our dataset, with normal selection setting, the
scheme selects 92, 100 out of 101 sequences to refine
for DeepHelicon and MetaPSICOV respectively. For Deep-
MetaPSICOV, 56 out of 89 are selected as it failed to output
results for the remaining 12 sequences. With our aggressive
setting of selection, 33, 5, 40 are selected for DeepHelicon,
MetaPSICOV, and DeepMetaPSICOV correspondingly.

The experiments used random forests with 500 tress,
training and testing in 10 fold cross validation fashion.
Here, the performance metric described in the refinement
selection scheme is the AUC-ROC. Moreover, as we found
there is no direct link from refinement per residue pair to
refinement per sequence, empirical, in 5-step procedures,
O0fzScore}(i,j) is replaced by fzScore(E} (4, j)). Since this
experiment is more complex than the early two, the overall
pipeline is shown in Figure 3 to readers’ convenience.
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Fig. 2. Fuzzy Score Validation.
TABLE 3 TABLE 4

Top-L comparisons of the refinement method (RM) and DeepHelicon
(DH) without refinement selection on DATA(101)

Top-L comparisons of the refinement method (RM) and DeepHelicon
(DH) with refinement selection (92 out of 101) on DATA(101).

L Method | Precision | Recall Fy Fo.35 MCC L Method | Precision | Recall Fy Fo.35 MCC

L/1 RM 64.45% 45.67% | 51.53%| 60.75% | 52.17% L/1 RM 65.09% 45.03% | 51.38%| 61.17% | 52.09%
DH 62.55% 44.49% | 50.13%| 58.99% | 50.68% DH 62.99% 43.75% | 49.84%| 59.22% | 50.46%

L/2 RM 77.93% 28.92% | 40.48%| 63.92% | 45.63% L/2 RM 77.91% 28.20% | 39.74%| 63.54% | 45.04%
DH 76.30% 27.92% | 39.39%| 62.49% | 44.41% DH 76.17% 27.12% | 38.58%| 62.01% | 43.74%

L/5 RM 87.94% 13.69% | 22.83%| 52.47% | 33.21% L/5 RM 88.13% 13.46% | 22.47%| 52.09% | 32.94%
DH 85.40% 12.75% | 21.63%| 50.57% | 31.76% DH 85.46% 12.44% | 21.19%| 50.09% | 31.39%

L/10 RM 90.54% 6.90% 12.63% | 37.32% | 24.07% L/10 RM 90.68% 6.76% 12.39% | 36.89% | 23.85%
DH 89.09% 6.68% | 12.25%| 36.43% | 23.50% DH 88.78% 6.49% | 11.92%| 35.78% | 23.13%

TABLE 5

The results for all four parts are shown in Table 3 to Table
10 respectively. In Table 3, our method gains around 1%—3%
improvements in precision and around 1% improvements
in recall, without using the refinement selection scheme. In
Table 4 and Table 5, for the selected sequences, the improve-
ments of our method are higher. Moreover, even for the
sequences unlisted by the refinement scheme, our method
perform almost as same as DeepHelicon as shown in Table
6 and Table 7. In Table 8 to Table 10, the comparison results
highlight that both first and second parts of this experiment
gain improvements in precision, recall, F, Fp 35, MCC cross
different Ls, and show the differences of improvements
between the true improvements and diluted improvements
of our method for all three different methods considered.

3.5 Feature Comparison

In this experiment, we will compare the performance,
measured by improvements over original prediction (in
this case, DeepHelicon), of three different features: i) the
simple neighbor feature: Fj(i,j) = [E}(i,5),Ck](i,7),
ii) simple neighbor feature with applying hybrid-cutoffs:

Top-L comparisons of the refinement method (RM) and DeepHelicon
(DH) with aggressive refinement selection (33 out of 101) on

DATA(101).
L Method | Precision | Recall F Foy.35 MCC
L/1 RM 60.83% 45.53% | 50.19%| 57.79% | 50.35%
DH 57.49% 44.02% | 47.82%| 54.71% | 47.91%
L/2 RM 75.32% 29.49% | 40.69%| 62.61% | 45.16%
DH 70.52% 27.36% | 37.86%| 58.51% | 41.97%
L/5 RM 87.31% 14.65% | 24.19%| 53.72% | 34.17%
DH 82.19% 13.34% | 22.19%| 50.04% | 31.59%
L/10 RM 91.88% 7.81% | 14.10%| 39.99% | 25.64%
DH 87.49% 727% | 13.15%| 37.59% | 24.10%

[FEZ(i,§)2, Ck(i, §))], and iii), main feature used here as
shown in Eq 5. The experiments settings are identical as in
section 3.4, and the results are shown in Table 11 to Table 13.

As shown in Table 11, the largest improvement is
achieved with Main feature, and the second largest is
achieved by SC feature consistently in top-L/10, top-L/5.
For other top-L/2 and top-L/1, SC feature achieves the
best results. Overall, comparing with using simple neigh-
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Fig. 3. Pipeline of inter-helix contact prediction refinement. The left is 2D contact models building, the middle is feature extraction from predicted
contact map via 2D contact models, and the right contains 10-fold cross validation and fuzzy score threshold estimation.

TABLE 6
Top-L comparisons of the refinement method (RM) and DeepHelicon
(DH) of complement to refinement selection (9 out of 101) on

DATA(101)
L Method | Precision | Recall F Foy.35 MCC
L/1 RM 57.92% 52.18% | 53.08%| 56.47% | 52.92%
DH 58.07% 52.07% | 53.07%| 56.58% | 52.92%
L/2 RM 78.08% 36.35% | 48.02%| 67.84% | 51.59%
DH 77.62% 36.11% | 47.66% | 67.37% | 51.23%
L/5 RM 85.95% 16.06% | 26.49%| 56.32% | 35.95%
DH 84.70% 15.90% | 26.18% | 55.48% | 35.45%
L/10 RM 89.16% 8.32% 15.02% | 41.68% | 26.33%
DH 92.24% 8.60% 15.54% | 43.14% | 27.27%
TABLE 7

Top-L comparisons of the refinement method (RM) and DeepHelicon
(DH) of complement to aggressive refinement selection (68 out of 101)
on DATA(101)

L Method | Precision | Recall F Foy.35 MCC
L/1 RM 66.22% 45.74% | 52.18%| 62.18% | 53.05%
DH 65.01% 44.72% | 51.25%| 61.06% | 52.02%
L/2 RM 79.19% 28.65% | 40.38% | 64.56% | 45.85%
DH 79.12% 28.20% | 40.14%| 64.42% | 45.59%
L/5 RM 88.24% 13.22% | 22.17%| 51.86% | 32.74%
DH 86.96% 12.45% | 21.37%| 50.83% | 31.83%
L/10 RM 89.89% 6.46% | 11.91%| 36.02% | 23.31%
DH 89.87% 6.39% | 11.81%| 35.87% | 23.21%

bor feature alone, it is clear that having hybrid-cutoffs
technique and contact model feature is strictly better-off
in DeepHelicon dataset. This phenomena is also true in
DeepMetaPSICOV case in Table 13. On the other hand, for
MetaPSICOV dataset, the situation is mixed as shown in
Table 12. We believe this is caused by the relative poor
predictions of MetaPSICOV comparing with DeepHelicon
and DeepMetaPSICOV. The low prediction quality makes
the hybrid-cutoffs technology inject more noise and degrade
hybrid-cutoffs’ leveraging power in the same time.

4 DISCUSSION

There are several points worthy mentioning. Firstly, the
machine learning method used here is not necessary to be

TABLE 8
DeepHelicon’s comparisons of improvements with (W/), with
aggressive (W/a) and without (W/O) refinement selection scheme.
Corresponding p-values are shown underneath inside parentheses (up
to 4 decimal), and improvements are bolded if their p-value < 0.05.

L Method | Precision | Recall Fi Fo.35 MCC
W/ 2.10% 1.28% 1.53% | 1.94% 1.64%
(0.0002) | (0.0109) (0.0004) (0.0002) (0.0006)

L/1 W/a 3.34% 1.51% 2.13% | 2.72% 2.21%
(0.0044) | (0.1089) (0.0130) (0.0052) (0.0165)

W/0 1.90% 1.18% 2.37% | 3.09% 2.44%
(0.0002) | (0.0112) (0.0006) (0.0003) (0.0007)

W/ 1.74% 1.07% 1.16% | 1.53% 1.30%
(0.0038) (0.0063), (0.0014) (0.0026) (0.0017)

L/2 W/a 4.81% 2.13% 2.83% | 4.11% 3.19%
(0.0002) (0.0002) (0.0002) (0.0002) (0.0002)

W/0 1.63% 1.00% 1.09% | 1.43% 1.22%
(0.0037) (0.0058), (0.0013) (0.0025) (0.0017)

W/ 2.67% 1.02% 1.28% | 2.00% 1.55%
(0.0042) (0.0463), (0.0172) (0.0054) (0.0101)

L/5 W/a 5.13% 1.31% | 2.00% | 3.69% | 2.57%
(0.0102) (0.0168), (0.0148) (0.0113) (0.0117)

W/0O 2.54% 0.94% 1.20% | 1.90% 1.45%
(0.0041) (0.0441), (0.0158) (0.0049) (0.0091)

W/ 1.90% 0.27% 0.47% | 1.11% 0.72%
(0.0444) | (0.0185) (0.0182) (0.0216) (0.0230)

L/10 W/a 4.40% 0.54% 0.95% | 2.39% 1.54%
0.0267) | (0.0300) (0.0283) (0.0254) (0.0252)

W/0 1.45% 0.22% | 0.38% | 0.88% | 0.57%
(0.1044) | (0.0384) (0.0396) (0.0522) (0.0545)

random forest. In principle, any classifier should be applica-
ble as long as its outputs can be interpreted as probability.
When the classifier’s output is not natively interpreted as
probability, e.g., SVM, then the prediction score has to be
scaled and normalized first. Secondly, for the refinement
selection scheme, as mentioned in Results section, the plot
of error vs fuzzy score in Figure 2 looks almost perfectly
convex, due to the smoothing effect of the plot software.
When the plot is not perfectly convex, the choice of optimal
cutoff for fuzzy score can be less reliable, i.e., it cannot per-
fectly separate the cases of refine vs non-refine. One example
is the AUC-ROC used here that finds the maximum point
instead of the minimum. For such cases, besides smooth-
ing the curve, other metric may also be explored. Thirdly,
while DeepHelicon, DeepMetaPSICOV, and MetaPSICOV
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TABLE 9
MetaPSICOV’s comparisons of improvements with (W/), with
aggressive (W/a) and without (W/O) refinement selection scheme.
Corresponding p-values are shown underneath inside parentheses (up
to 4 decimal), and improvements are bolded if their p-value < 0.05.

L Method | Precision | Recall F Fy.35 MCC
W/ 6.29% 4.62% 5.06% 5.93% 5.38%
(0.0) 0.0) (0.0) 0.0) 0.0)
L/1 W/a 4.76% 4.84% 4.74% | 4.75% 4.94%
0.0191) | (0.0508) (0.0340) (0.0222) (0.0328)
W/0 6.24% 4.59% 5.03% 5.89% 5.34%
(0.0) (0.0) (0.0) (0.0) 0.0)
W/ 8.51% 3.45% 4.53% 7.00% 5.28%
0.0) (0.102) | (0.0) (0.0) 0.0)
L/2 W/a 9.14% 4.78% 6.23% | 8.27% 6.73%
(0.0569) (0.0716), (0.0668) (0.0600) (0.0638)
W/0 8.51% 3.46% 4.54% 7.02% 5.29%
(0.0) (0.0068), (0.0) (0.0) 0.0)
W/ 7.93% 1.35% | 2.22% | 4.88% | 3.22%
(0.0007) (0.4026) (0.0803) (0.0031) (0.0069)
L/5 W/a 14.69% 2.63% | 4.43% | 9.68% 6.30%
(0.0215) (0.0337) (0.0321) (0.0269) (0.0268)
W/0 7.94% 1.35% | 2.23% | 4.90% | 3.23%
(0.0005) (0.2904) (0.0558) (0.0020) (0.0046)
W/ 7.90% 0.70% 1.27% | 3.54% 2.33%
0.0227) | (0.0491) (0.0316) (0.0132) (0.0131)
L/10 W/a 8.96% 1.08% | 1.94% | 5.09% | 3.20%
(0.3001) | (0.1931) (0.1973) (0.2211) (0.2317)
W/0 7.73% 0.69% 1.24% | 3.46% 2.27%
(0.0383) | (0.0844) (0.0558) (0.0244) (0.0236)
TABLE 10

DeepMetaPSICOV’s comparisons of improvements with (W/), with
aggressive (W/a) and without (W/O) refinement selection scheme.
Corresponding p-values are shown underneath inside parentheses (up
to 4 decimal), and improvements are bolded if their p-value < 0.05.

L Method | Precision | Recall F Fy.35 MCC
W/ 3.34% 2.00% | 2.57% | 3.12% | 2.68%
(0.0 (0.0) (0.0) 0.0) (0.0)
L/1 W/a 3.35% 2.01% | 2.52% | 3.13% | 2.66%
(0.0 (0.0) (0.0) 0.0) (0.0)
W/0 2.82% 1.78% | 2.21% | 2.65% | 2.31%
(0.0 (0.0) (0.0) 0.0) (0.0)
W/ 3.61% 1.11% | 1.73% | 2.91% | 2.05%
(0.0) (0.0010)| (0.0002) (0.0) | (0.0001)
L/2 W/a 3.74% 1.11% 1.74% | 2.99% 2.09%
(0.0) (0.0010)| (0.0002) (0.0) | (0.0001)
W/0 2.77% 0.97% | 1.42% | 2.28% | 1.66%
(0.0) 0.0) (0.0) (0.0) (0.0)
W/ 1.96% 0.30% 0.49% | 1.14% 0.75%
(0.0642) (0.1426) (0.1308) (0.0944) (0.0969)
L/5 W/a 2.18% 0.28% 0.50% | 1.24% 0.79%
(0.0593) (0.1021), (0.0961) (0.0776)| (0.0778)
W/0 1.28% 0.22% 0.35% | 0.77% 0.51%
(0.0880) (0.1660), (0.1570) (0.1195) (0.1213)
W/ 1.10% 0.10% 0.17% | 0.46% 0.31%
(0.3240) (0.4599), (0.4485) (0.3976) (0.3812)
L/10 W/a 0.78% 0.00% 0.02% | 0.19% 0.13%
(0.5643) (0.9754), (0.9205) (0.7464) (0.7290)
W/0 0.61% 0.05% 0.09% | 0.25% 0.17%
(0.4308) (0.5502) (0.5446) (0.5053) (0.4867)

are used as reference methods, it is reasonable to believe
that contact prediction by other deep learning methods can
benefit from 2D contact models for improvements as well.
Lastly, the usage of refinement selection scheme is highly
recommended, as the utility of the refined features hinges
on the collective reliability of the neighborhood as measured
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TABLE 11
Comparisons of improvements over DeepHelicon with simple neighbor
feature (SN), with simple neighbor feature with hybrid-cutoffs (SC) and
the main feature (Main) in Eq 5. Corresponding p-values are shown
underneath inside parentheses (up to 4 decimal), and highest
improvements are bolded.

L Method | Precision | Recall F Foy.35 MCC
SN 1.84% 1.11% 1.33% | 1.70% 1.42%
(0.0004) (0.0182) (0.0011) (0.0004) (0.0013)
L/1 SC 1.95% 1.21% 1.42% | 1.80% 1.52%
(0.0002) (0.0094) (0.0005) (0.0002) (0.0006)
Main 1.90% 1.18% 1.40% | 1.76% 1.49%
(0.0002) (0.0112) (0.0006) (0.0003) (0.0007)
SN 1.75% 1.10% 1.18% | 1.54% 1.32%
(0.0027) | (0.0036) (0.0009) (0.0018) (0.0011)
L/2 SC 1.87% 1.11% 1.22% 1.63% 1.37%
(0.0019) | (0.0035) (0.0008) (0.0013) (0.0009)
Main 1.63% 1.00% 1.09% | 1.43% 1.22%
(0.0037) | (0.0058) (0.0013) (0.0025) (0.0017)
SN 2.00% 0.78% 0.97% | 1.51% 1.17%
(0.0204) (0.0861) (0.0406) (0.0179) (0.0280)
L/5 SC 2.37% 0.91% 1.15% | 1.79% 1.38%
(0.0054) (0.0505) (0.0189) (0.0058) (0.0112)
Main 2.54% 0.94% 1.20% | 1.90% 1.45%
(0.0041) (0.0441), (0.0158) (0.0049) (0.0091)
SN 0.87% 0.14% 0.24% | 0.55% 0.35%
0.2906) | (0.1161) (0.1224) (0.1649) (0.1726)
L/10 SC 0.87% 0.13% 0.23% | 0.54% 0.35%
0.2701) | (0.1128) (0.1179) (0.1551) (0.1622)
Main 1.45% 0.22% 0.38% | 0.88% 0.57%
(0.1044) (0.0384) (0.0396) (0.0522) (0.0545)
TABLE 12

Comparisons of improvements over MetaPSICOV with simple neighbor
feature (SN), with simple neighbor feature with hybrid-cutoffs (SC) and
the main feature (Main) in Eq 5. Corresponding p-values are shown
underneath inside parentheses (up to 4 decimal), and highest
improvements are bolded.

L Method | Precision | Recall P Fy.35 MCC
SN 6.10% 450% | 491% | 5.75% | 5.22%
0.0) 0.0) (0.0) (0.0) (0.0)
L/1 SC 6.28% 4.63% 5.06% 5.92% 5.37%
0.0) 0.0) (0.0) (0.0) (0.0)
Main 6.24% 4.59% | 5.03% | 5.89% | 5.34%
0.0) 0.0) (0.0) (0.0) (0.0)
SN 8.42% 3.28% 4.37% | 6.89% 5.14%
0.0) 0.0) (0.0) (0.0) 0.0)
L2 SC 8.24% 3.23% 4.29% | 6.75% 5.04%
0.0) 0.0) (0.0 (0.0) 0.0)
Main 8.51% 3.46% 4.54% 7.02% 5.29%
0.0) 0.0) (0.0 (0.0) (0.0)
SN 8.10% 1.50% | 2.38% | 5.05% | 3.38%
0.0) 0.0) (0.0 (0.0) (0.0)
L/5 SC 8.06% 1.50% | 2.37% | 5.03% | 3.37%
0.0) 0.0) (0.0 (0.0) (0.0)
Main 7.94% 1.35% | 2.23% | 4.90% | 3.23%
0.0) 0.0) (0.0) (0.0) (0.0)
SN 8.06% 0.73% 1.30% | 3.60% 2.38%
0.0) (0.0) (0.0) (0.0) (0.0)
L/10 SC 7.78% 0.65% 1.17% | 3.36% 2.22%
0.0) (0.0) (0.0) (0.0) (0.0)
Main 7.73% 0.69% 1.24% | 3.46% 2.27%
0.0) (0.0) (0.0) (0.0) (0.0)

by the fuzzy score.

In addition, we like to know whether the improve-
ment is affected by the sequence length or the number of
transmembrane domains in a sequence. We calculated the
correlation of a-helix length and AUC-ROC gain (refined
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Fig. 4. Histogram of performance improvement versus the number of transmembrane domains

TABLE 13
Comparisons of improvements over DeepMetaPSICOV with simple
neighbor feature (SN), with simple neighbor feature with hybrid-cutoffs
(SC) and the main feature (Main) in Eq 5. Corresponding p-values are
shown underneath inside parentheses (up to 4 decimal), and highest
improvements are bolded.

L Method | Precision | Recall Fy Fo.35 MCC
SN 2.70% 1.66% | 2.10% | 2.54% | 2.19%
(0.0) (0.0) (0.0) (0.0) (0.0)
L/1 SC 2.81% 1.77% | 2.20% | 2.64% | 2.30%
(0.0) (0.0) (0.0) (0.0) (0.0)
Main 2.82% 1.78% 2.21% | 2.65% 2.31%
(0.0) (0.0) (0.0) (0.0) (0.0)
SN 2.47% 0.86% | 1.26% | 2.03% | 1.48%
0.0) (0.0001), (0.0) (0.0) (0.0)
L/2 SC 2.72% 0.97% | 1.41% | 2.25% | 1.64%
0.0) 0.0) (0.0 (0.0) (0.0)
Main 2.77% 0.97% | 1.42% | 2.28% | 1.66%
0.0) (0.0) (0.0) (0.0) (0.0)
SN 1.00% 0.13% | 0.22% | 0.55% | 0.36%
(0.1482) (0.3550) (0.3240) (0.2251)] (0.2387)
L/5 SC 1.69% 0.31% 0.49% | 1.05% 0.70%
(0.0321) (0.0991) (0.0853) (0.0523) (0.0571)
Main 1.28% 0.22% | 0.35% | 0.77% | 0.51%
(0.0880) (0.1660) (0.1570) (0.1195) (0.1213)
SN —0.87% —0.12%| —0.21% —0.51%| —0.33%
(0.3277) (0.2106), (0.2094) (0.2332) (0.2413)
L/10 SC 0.24% 0.03% | 0.05% | 0.10% | 0.07%
(0.7601) (0.7547) (0.7679) (0.7842) (0.7670)
Main 0.61% 0.05% | 0.09% | 0.25% | 0.17%
(0.4308) (0.5502) (0.5446) (0.5053) (0.4867)

AUC-ROC minus original AUC-ROC), the results are mixed:
—0.2575 for DeepHelicon and —0.4236 for MetaPSICOV,
which indicate longer a-helix length; on the other hand,
this correlation for DeepMetaPSICOV is 0.1407. In Figure
4, for different number of transmembrane domains in our
dataset, their average performance improvement as mea-
sured by L10 precision is shown. Note that in our dataset, it

just happens that no sequence contains 18 transmembrane
domains, which is why there is no registered performance
improvement for the data point. As shown in Figure 4, no
clear pattern is observed, though it is possible that some
patterns may emerge with a different dataset or as the size of
the dataset grows bigger and hence more statistically stable.

5 CONCLUSION

In conclusion, we proposed a low computational cost and
quite general method for improving inter-helix contact pre-
diction. The proposed method shows notable improvements
as measured by the top-L evaluation criterion. The success is
achieved by simple but powerful hybrid-cutoff technology,
exploiting features that are not fully captured by the current
state-of-art methods, and the development of refinement
selection scheme via the idea of fuzzy score, which offers a
partial solution to the intrinsic challenge of any refinement
method.

With this demonstrated success, there are several com-
ponents of the proposed method that can be improved
further. The first component is the 2D contact model. At
the current stage, the developed 2D contact model with
its feature calculation is still simplistic, which can lead to
losing important spatial information of inter-helix patterns.
Second, the refinement selection scheme is only an empirical
solution, and does not guarantee optimally. To investigate
the challenge of refinement further both practically and
theoretically, more experiments across different domains are
necessary in the future work.

Finally, the code and data are freely available online at:
https:/ /www.cis.udel.edu/~1liao/inter-helix-refinement
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