
The Parallelism Tradeoff: Limitations of Log-Precision Transformers

William Merrill
Center for Data Science

New York University, New York, NY
willm@nyu.edu

Ashish Sabharwal
Allen Institute for AI

Seattle, WA
ashishs@allenai.org

Abstract

Despite their omnipresence in modern NLP,
characterizing the computational power of
transformer neural nets remains an interest-
ing open question. We prove that trans-
formers whose arithmetic precision is log-
arithmic in the number of input tokens (and
whose feedforward nets are computable us-
ing space linear in their input) can be sim-
ulated by constant-depth logspace-uniform
threshold circuits. This provides insight
on the power of transformers using known
results in complexity theory. For exam-
ple, if L 6= P (i.e., not all poly-time
problems can be solved using logarithmic
space), then transformers cannot even accu-
rately solve linear equalities or check mem-
bership in an arbitrary context-free gram-
mar with empty productions. Our result in-
tuitively emerges from the transformer ar-
chitecture’s high parallelizability. We thus
speculatively introduce the idea of a fun-
damental parallelism tradeoff: any model
architecture as parallelizable as the trans-
former will obey limitations similar to it.
Since parallelism is key to training models
at massive scale, this suggests a potential in-
herent weakness of the scaling paradigm.

1 Introduction

This work aims to characterize the computational
model implicit in transformer neural networks
(Vaswani et al., 2017), which form the basis of re-
cent breakthroughs in large language models such
as BERT (Devlin et al., 2019), T5 (Raffel et al.,
2020), and GPT-3 (Brown et al., 2020). What
computational primitives can the transformer’s
components implement, and what problems can
the full system solve in aggregate? These ques-
tions are important for interpreting transformers in
a principled way, understanding potential limita-
tions of their reasoning capabilities, and building
trust in deployed transformer-based systems.

Early theoretical work on transformers estab-
lished their Turing completeness, albeit with as-
sumptions like infinite precision and arbitrarily
powerful feedforward subnets (Pérez et al., 2019;
Dehghani et al., 2019). On the other hand, a
strand of more recent work uses techniques from
circuit complexity theory to derive strong limita-
tions on the types of problems transformers can
solve given restrictions on the form of attention
allowed in the transformer. Specifically, Hahn
(2020) and Hao et al. (2022) showed transform-
ers restricted to hard attention are very limited:
they can only solve problems in a weak complex-
ity class (non-uniform AC0) that doesn’t even con-
tain basic problems like majority of n bits. Merrill
et al. (2022) extended this to a more general class
of “saturated attention” transformers with a float-
ing point datatype, and showed a larger class of
problems (non-uniform TC0) as an upper bound.
This motivates analyzing a setting that strikes a
middle ground: Can we characterize transformers
whose precision and feedforward nets’ computa-
tional power are realistically bounded, but where
attention is also realistically expressive?

An important practical limitation of these prior
results is the “non-uniform” nature of the con-
sidered circuit classes, which makes these classes
non-realizable and the findings difficult to inter-
pret. This is because non-uniform AC0 and TC0,
while highly limited in computation, also con-
tain some problems that are not even decidable,
i.e., for which there doesn’t exist any exact algo-
rithm. Thus, non-uniform classes cannot be di-
rectly compared with standard algorithmic com-
plexity classes such as P, NP, etc. This motivates
our second key question: Can we derive uniform
upper bounds on transformers?

We show that one can achieve both of these
goals by making the modest assumption that all
values in the transformer have O(log n) preci-
sion (where n is the number of input tokens),
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and, similarly, that transformer’s subnetworks are
computable in O(log n) space. Log precision is
enough to represent the positional encodings at the
input layer of the transformer, and to encode point-
ers to all other positions in the sequence at later
transformer layers. Assuming log precision across
all layers captures the idea that the hidden rep-
resentations contain a constant number of hidden
states whose precision (16 or 32 bits) is small rela-
tive to the length of the input (2048 in GPT-3). On
long sequences, the precision will not be enough
to losslessly encode the full input sequence into
a single vector. Instead, the processing of the se-
quence must somehow be distributed in each layer
and performed in parallel.

Upper Bound on Transformers. Our main con-
tribution is proving that log-precision transform-
ers can be simulated by uniform constant-depth
threshold circuits. Thus, such transformers can
only solve problems in uniform TC0. This char-
acterization is strikingly weak compared to the
Turing-completeness of infinite-precision trans-
formers. Since we believe log precision is more re-
alistic for practical transformers than infinite pre-
cision, these results point to the conclusion that
transformers are not Turing-complete in practice.

In contrast to past results, our upper bound on
transformers is a uniform circuit class, enabling
direct comparison of log-precision transformers to
many natural complexity classes. These connec-
tions reveal specific problems that define the upper
limits of log-precision transformers’ capabilities,
as discussed further in §2.

Intuitively, our upper bound says that log-
precision transformers are computationally shal-
low, and that this shallowness can be understood
to emerge from their parallelizability. Transform-
ers’ inherent parallelism is useful for training them
efficiently at massive scale, but may limit the com-
plexity of the computations they can express. We
introduce the term parallelism tradeoff to capture
this idea, which represents a potential fundamental
weakness of the current paradigm of scaling lan-
guage models. Formally characterizing reasoning
capabilities relevant to language models and un-
derstanding whether they likely fall outside upper
bounds implied by the tradeoff would clarify the
practical implications of this limitation of scaling.

It could also be that the limitations of paral-
lelism are not a curse but a blessing, if they con-
strain the hypothesis space in a way useful for

learning. We have no evidence that this is true,
but mention it as an alternate interpretation of the
results that could be clarified in future work.

Instruction Following and Advice Transform-
ers. We also consider an instruction following
setting (Brown et al., 2020) where the transformer
is provided the description of a task along with an
input on which to execute the instruction. We con-
struct a practically parameterizable transformer
that can execute instructions perfectly if they are
provided in the form of TC0 circuits. This comple-
ments recent work that studies transformers’ abil-
ity to follow other forms of instructions such as
regular expressions (Finlayson et al., 2022).

Based on the fundamental property that trans-
formers can correctly evaluate any given TC0 cir-
cuit on a given input, we introduce the notion of
advice transformers akin to advice taking Turing
machines. We show that transformers can recog-
nize any (non-uniform) TC0 language if provided
appropriate poly-size advice.

In summary, our findings provide new insights
on both the abilities and the limitations of trans-
formers, and bring out bounded precision, thresh-
old computations, and parallelism as key no-
tions for understanding the implicit computational
model of transformers in practice.

Roadmap. Before diving into technical details,
we discuss in §2 the implications of our results
on both fundamental as well as practical abilities
of transformers. §3 provides a brief primer on
circuits as a model of computation. It then dis-
cusses a way of serializing a circuit into a string;
we later show how to generate such serializations
using a resource-bounded algorithm, which is the
key to proving containment of transformers in uni-
form circuit classes. §4 defines our formal model
of bounded-precision transformers. §5 derives our
first formal bound on log-precision transformers.
This bound involves non-uniform circuit families,
similar in spirit to prior results in this area. §6
proves our more technical main result: the first
uniform circuit complexity upper bound for trans-
formers (specifically, uniform TC0). Finally, §7
provides a lower bound on transformers, intro-
duces the notion of an Advice Transformer, and
connects these to the machine learning problems
of Instruction Learning and Following.



2 Implications of Our Findings

Before diving into technical details, we discuss the
general implications of our findings on the abili-
ties and limitations of transformers. We will focus
here on our main result (Thm. 2), which shows that
log-precision transformers are in the complexity
class logspace-uniform TC0.

The Parallelism Tradeoff. One interpretation
of complexity classes such as NC0, AC0, and TC0

is sets of poly-time solvable problems that are
parallelizable to a very high degree—they can be
solved in parallel in constant time with enough
parallel processors. This gives some intuitive ex-
planation of our result: log-precision transformers
end up in TC0 because they were designed to be
highly parallelizable. Since parallelism is an im-
portant property of today’s dominant paradigm of
training models at massive scale, this points to the
conclusion that any massively scaled up model—
transformer or otherwise—will likely obey restric-
tions similar to the ones derived here for log-
precision transformers. There is thus an important
tradeoff between the massive parallelizability of
today’s networks and their representation power.

What Transformers Can/Cannot Compute.
Our result places log-precision transformers in the
complexity class logspace-uniform TC0. This has
immediate implications on the kinds of problems
such transformers can and cannot accurately solve.

Consider any problem X that is complete for a
complexity class C that contains logspace-uniform
TC0. By definition of completeness, every prob-
lem log-precision transformers can solve perfectly
is efficiently reducible to X and is thus no harder
than X . This implies that—despite their massive
size—the computation performed by such trans-
formers is, for instance, no harder than solving ba-
sic L-complete problems like graph connectivity:
the problem of checking whether there is a path
between two nodes in an undirected graph (Lewis
and Papadimitriou, 1982; Reingold, 2008).

By the same token, if C is strictly larger than
logspace-uniform TC0, then such transformers
cannot perfectly solve X . Thus, log-precision
transformers cannot perfectly solve the following
reasoning problems:

• Linear equalities: find x s.t. Ax = b1

1Assuming logspace-uniform TC0 6= P. Follows because
these problems are P-complete (Greenlaw et al., 1991).

• Universal context-free recognition1,2

• Propositional satisfiability (SAT)3

• Horn-clause satisfiability (HORN-SAT)1

• AI planning (Bylander, 1991)
• Permanent computation4

This highlights the limits of practical transformers
with limited-precision arithmetic, indicating that
they are far from being universal or all-powerful
as suggested by some prior studies.

One important caveat about these negative re-
sults is that they are asymptotic in nature—they
apply for “large enough” input size n. It’s possible
for log-precision transformers to solve such prob-
lems easily when n is small. Further, these nega-
tive results are about exact solutions, but they of-
ten also extend beyond this when formal hardness-
of-approximation results are known.

Limitations of Our Formal Model. Prior for-
mal characterizations of transformers either make
unrealistically strong assumptions (Pérez et al.,
2019; Dehghani et al., 2019) or place unrealistic
restrictions (Hahn, 2020; Hao et al., 2022; Mer-
rill et al., 2022). In contrast, we make only one
assumption—namely, all intermediate values in
the transformer are limited to O(log n) bits, where
n is the number of input tokens. We next discuss
some implications of this assumption and what our
findings mean for practical transformers.

As mentioned above, our bounds are asymp-
totic in nature and thus apply when n is suffi-
ciently large. In practice, transformers use fixed
precision at each computation node, which is more
restrictive than precision growing with the input
sequence length n, as O(log n) bits. However,
this constant could be large and thus, for rela-
tively small n, our results do not rule out practi-
cal transformers solving difficult problems. Our
results, however, do show that as n grows suffi-
ciently large, log-precision transformers are fun-
damentally limited to problems within TC0 and
cannot accurately solve various commonly studied
problems mentioned earlier under “What Trans-
formers Cannot Compute”. Extending our anal-
ysis to small n will help close the gap to practice.

2Takes both a grammar and a string as input and return
whether the grammar generates the string. Jones and Laaser
(1976) demonstrate P-completeness.

3Assuming logspace-uniform TC0 6= NP. Follows be-
cause SAT is NP-complete (cf. Biere et al., 2009).

4Assuming logspace-uniform TC0 6= #P. Follows be-
cause permanent is #P-complete (Valiant, 1979). Allender
(1999) shows permanent is not in logtime-uniform TC0.



Our formal model is based on a binary classi-
fication view of transformers. However, our re-
sults apply directly to multi-class classification as
well and can be extended to generation problems
by viewing, for instance, next word prediction in
NLP as a multi-class classification problem. How-
ever, if the transformer decoder is allowed to con-
dition on its previous output in a generation prob-
lem, then this would violate our formal setup.

2.1 Potential Applications

Extracting Circuits from Transformers. El-
hage et al. (2021) propose extracting circuits5 that
capture the computational structure of transform-
ers. Our results suggest threshold circuit fami-
lies are a good formalism for expressing mecha-
nisms extracted from transformers. Constructively
converting transformers to threshold circuits is be-
yond the scope of the current paper, although we
hope to explore this in more detail in future work.

Testing Separation Candidates in Complexity
Theory. Thm. 2 also motivates a paradigm for
quickly testing complexity theory conjectures. If
a problem is believed to separate TC0 and NC1, a
transformer can be trained on problem instances.
If the transformer generalizes perfectly to harder
instances than it was trained on, this gives an em-
pirical hint that the problem is in TC0, providing
evidence against the conjecture.

3 Circuit Computation

Let {0, 1}∗ be the set of finite binary strings. For
x ∈ {0, 1}∗, let |x| be its length. We refer to
a function from {0, 1}∗ to {0, 1}∗ as a boolean
function. Boolean functions can implement arith-
metic operations if we define a semantics for bi-
nary strings as numbers. We will treat the inter-
mediate values in a transformer as binary strings,
and the internal operations as boolean functions.

Circuits are a model of computation for com-
puting boolean functions of fixed-length binary
strings.6 Formally, a circuit is a directed acyclic
computation graph. The leaf nodes represent bi-
nary variables and their negations. The internal
nodes represent functions in some set G, and the

5Their sense of “circuit” is not exactly the formal sense
we use in this paper, though the goal of capturing transform-
ers’ implicit computational mechanism is the same.

6For a mini-tutorial on circuit complexity theory and its
relevance to transformers, see Merrill et al. (2022).

directed edges represent the flow of function out-
puts into inputs of other functions. One or more
nodes in the circuit are marked such that their
value is the output of the circuit.

Definition 1. For a set of functions G, a G-circuit
is a directed acyclic computation graph where the
internal nodes have labels from G.

Complexity Measures. The size of a circuit is
the total number of gates in it, including negation.
The depth of a circuit is the length of the longest
path from any input node to any output node.

Circuit Families. A circuit family generalizes a
circuit to take variable-length binary strings as in-
put. Formally, a circuit family is a sequence of
circuits Cn : {0, 1}n → {0, 1} for n ∈ N. A
circuit family implicitly recognizes a formal lan-
guage defined as follows:

Definition 2. A circuit family Cn recognizes L ⊆
{0, 1}∗ if, for all x ∈ {0, 1}∗, C|x|(x) = 1 if and
only if x ∈ L.

We now define classes of languages by con-
straining the complexity of the circuit families
needed to recognize them:

Definition 3. Let non-uniform AC0 be the set of
L ⊆ {0, 1}∗ such that L is recognizable by a poly-
size, constant-depth {¬,∧,∨}-circuit family.

For k ∈ N, a threshold gate θ≤k takes m input
bits and returns whether

∑m
i=1 xi ≤ k. We define

θ≥k analogously. For example, θ≤3(110011) = 0.

Definition 4. Let TC0 be the set of L ⊆
{0, 1}∗ such that L is recognizable by a poly-size,
constant-depth {θ≤k, θ≥k}k∈N-circuit.

The gates ¬, ∧, and ∨ are all just special cases
of thresholds, so we can imagine TC0 circuits to
have access to these as well. Thus, TC0 circuits
can implement AC0 circuits.

Circuit Serialization. We identify a circuit with
its serialization in a formal language that identi-
fies each node’s label and adjacency list. We will
adopt a specific grammar for concreteness, but our
construction can be adapted to other string repre-
sentations of circuits.

We define a circuit serialization as a traversal
of a circuit ordered by some topological sort. In
this serialization, leaf nodes (variables) are repre-
sented by the string X. An internal node (gate) is
represented in Polish notation by the function it



computes (AND, OR, or NOT) followed by a list of
pointers to its arguments. Each argument &1j of
gate i encodes (in a unary) a zero-indexed pointer
to the j-th gate in the circuit, where j < i. The
final node is interpreted as the circuit output.

To serialize {∧,∨}-circuits, we use the follow-
ing grammar, where the i parameter is passed
through Gate[i] nonterminals to track the index of
the gate in left-to-right order:

Circuit → Gate[1] Gate[2] · · · Gate[g]

Gate[i] → X | NOT Arg[i] | Op Arg[i]∗

Arg[i] → &1j s.t. j < i

Op → AND | OR

In the Arg[i] rule, we enforce that j < i so that ar-
guments must be pointers to already defined gates.
As an example of this serialization language, the
circuit for x1 ∨ ¬x2 ∨ x3 is represented as7

X X X NOT &1 OR & &111 &11

By convention (cf. §3), negations in AC0 circuits
are usually taken to occur at the beginning of the
circuit, rather than after ∧ or ∨ nodes.8 Our seri-
alization grammar does not enforce this property,
but of course any circuit with this property can be
serialized by our grammar.

It is a bit more complicated to serialize thresh-
old circuits. Formally, a threshold circuit serial-
ization is generated by the following grammar:

Circuit → Gate[1] Gate[2] · · · Gate[g]

Gate[i] → X | Dir 1k0m−k Arg[i]m

Arg[i] → &1j s.t. j < i

Dir → <= | >=

In the rewrite rule for Gate[i], m ∈ N is the
arity of the gate, and k ≤ m is its threshold.
The span 1k after Dir can be interpreted semanti-
cally as a unary encoding of the parameter k for a
threshold gate, padded by 0’s to the number of to-
tal arguments of gate i. For simplicity, we imagine
¬ gates are represented as unary θ≤0 gates. Thus,
the circuit θ≥1(x1,¬x2) would be represented as

X X <= 00 &1 >= 10 & &11

We say a threshold circuit serialization is in pre-
fix form if all inputs (X) come before all threshold
gates (<= or >=), as is the case in this example.

7Spaces here (and in the grammar) are added for readabil-
ity. We will ignore these spaces when passing circuit serial-
izations as inputs to a transformer in §7.

8We can apply De Morgan’s laws to force any AC0 circuit
to have this property.

Uniformity. The circuit families we have de-
fined above are non-uniform, meaning that we do
not enforce that the circuits processing different
input sizes must be related in any way. In degen-
erate cases, non-uniform circuit families can solve
undecidable problems9 because they have infinite
description length, making them a physically unre-
alizable model of computation. Complexity theo-
rists have thus introduced uniform circuit families.
Uniform circuit families are a realizable model of
computation with relations to classes in computa-
tional complexity and formal language theory.

Intuitively, in a uniform circuit family, the cir-
cuits for different input sizes must be “somewhat
similar” to each other. We formalize this (cf.
Arora and Barak, 2009) by saying that there exists
a resource-constrained Turing machine that maps
the input 1n to a serialization of circuit Cn.

Definition 5. A language L is (S(n), I(n))-space
uniformly computable by a circuit model M iff
there exists a Turing machine that, for all n ≥ 0,
uses S(n) space to map 1n to an M -circuit recog-
nizing L on inputs of size I(n).

This notion of uniformity is more general than
the standard notion in that the input size I(n) is a
function of the problem complexity n. The reason
for this is that we will apply uniformity to subcom-
putations with different input sizes I(n) within a
larger computation of input size n. The standard
notion of uniformity corresponds to I(n) = n.

Furthermore, we will refer to a circuit fam-
ily as uniform if it is uniformly computable with
S(n) = O(log n) (cf. Arora and Barak, 2009).
We can define uniform versions of AC0 and TC0

by adopting the previous definitions exactly, but
also enforcing uniformity. For the rest of the pa-
per we will clarify whether we mean the uniform
or non-uniform variant of TC0 when unclear from
context, since both classes will come up.

4 Bounded-Precision Transformers

A transformer (Vaswani et al., 2017) is a neural
network architecture made up of a constant num-
ber of transformer layers. A transformer layer is
a module that computes self-attention over a se-
quence followed by an elementwise transforma-
tion of the output vectors.

9Consider the unary language 1n such that Turing ma-
chine n (under some arbitrary enumeration) halts. This prob-
lem is in non-uniform AC0 since we can hard-code the right
answer for each n in Cn.



4.1 Precision and Space
We will assume that each transformer is resource
bounded in terms of the precision of each value it
computes and, for some of our results, the space
it uses for the computation of key operations such
as embedding, attention, and activation. Specifi-
cally, we will assume precision p, i.e., the values
at all layers, as well as the outputs of all key in-
termediate operations in it (attention, activation,
arithmetic operators, etc.), are represented using
p bits. This is a realistic assumption as, in prac-
tice, today’s transformers are typically limited to
the 64-bit precision of the underlying hardware.
Formally, we define p-precision as follows:

Definition 6. A k-ary function f : x1, . . . , xk 7→
y is p-precision if x1, . . . , xk, y ∈ {0, 1}∗ have
size at most p bits, and f can be computed by a
p-space-bounded Turing machine.

This says the size of the function input and out-
put are bounded below p. Similarly, the interme-
diate space used by the computation must also be
bounded below p. Thus, higher precision compu-
tations cannot somehow be hidden inside f .

Def. 6 naturally applies to functions with
bounded arity k. We will also need to define p
precision for the summation operator in the trans-
former, which adds n different floats of size p.10

Adding n floats can blow up the precision needed
to represent their sum. For example, imagine
adding the floating points 1 · 20 + 1 · 2c. We obtain
(2c+1)·20, whose mantissa takes c+1 bits to rep-
resent. In practice, computers do not preserve full
precision in such situations: instead, small terms
like 1 ·20 are discarded. Thus, we define the trans-
former’s addition operation ⊕ to be similarly ap-
proximate (and thus preserve precision); see §A.

4.2 Transformer Definition
4.3 Attention Heads
The core building block of a transformer is an at-
tention head. We define this at a high level of ab-
straction as follows:

Definition 7. A p-precision attention head is spec-
ified by a binary p-precision similarity function
s : {0, 1}p × {0, 1}p → {0, 1}p.

Let h1, . . . ,hn ∈ {0, 1}p be the input sequence
to a p-precision attention head, and let ⊕ be ap-
proximate floating-point addition (§A).

10Our proof also goes through if the transformer weights
are integers, as is sometimes done (Dettmers et al., 2022).

Definition 8. For all ` ≥ 0, a p-precision attention
head H`+1

h computes a vector a`+1
ih ∈ {0, 1}p via

a`+1
ih =

n⊕
j=1

s(h`
i ,h

`
j)

Zi
· h`

j ,

where Zi =
⊕n

j=1 s(h
`
i ,h

`
j).

Standard transformer attention heads (Vaswani
et al., 2017) are a special case of this definition
where s is scaled dot-product similarity between
keys and queries. Standard transformers also have
a linear or affine value function applied to each h`

j

in the sum over j. By its affineness, the value func-
tion can, without loss of generality, be removed
from the attention head and considered to be part
of the transformer layer (i.e., applied to the output
of the attention head).

4.4 Transformer Layers
A p-precision transformer layer is then a tuple of
heads and a function f used to combine them.

Definition 9 (p-precision transformer layer). A
p-precision transformer layer is a tuple L`+1 =
〈H1, · · · , Hk, f〉, where each Hh is an attention
head and f : ({0, 1}p)k × {0, 1}p → {0, 1}p is a
p-precision activation function.

A p-precision transformer layer can be
understood to define a sequence of vectors
h`+1

1 , . . . ,h`+1
n in terms of an input sequence of

vectors h`
1, . . . ,h

`
n (coming from the previous

layer in the transformer) by first computing k
attention heads in parallel and then combining
their output using f . The first k inputs to f will
correspond to the attention head outputs, and the
additional input is the original input from the
previous layer. Recall that a`+1

ih is the output of
head H`+1

ih on input h` at position i. The function
computed by a transformer layer can be described
formally as follows.

Definition 10 (Transformer layer computation).
For ` ≥ 0, a p-precision transformer layer
L`+1 recurrently computes the output sequence
h`+1

1 , . . . ,h`+1
n as a function of the inputs

h`
1, . . . ,h

`
n, where, for 1 ≤ i ≤ n, the i-th com-

ponent is computed according to

h`+1
i = f(a`+1

i1 , . . . , a`+1
ik ,h`

i).

f can be understood to encapsulate layernorm,
residual connections, and the feedforward sub-
layer of a standard transformer (Vaswani et al.,



2017). h`
i is given to f to allow residual connec-

tions. As mentioned in §4.3, f can also encapsu-
late the value function for each head.

4.5 Transformer Encoder

Finally, we define a transformer of depth d as a
cascade of d transformer layers:

Definition 11 (p-precision transformer). A p-
precision transformer over alphabet Σ is a pair
consisting of a p-precision position embedding
function11 φ : Σ × N → {0, 1}p and a d-tuple
of p-precision transformer layers 〈L1, . . . , Ld〉.

For a position embedding function φ and w ∈
Σn, let φ(w) be the position-wise broadcasted em-
bedding of w: for 1 ≤ i ≤ n, φi(w) , φ(wi, i).

Definition 12 (Transformer computation). A
transformer

(
φ, 〈L1, · · ·Ld〉

)
computes the fol-

lowing function of a string w ∈ Σ∗:

T (w) = (Ld ◦ Ld−1 ◦ · · · ◦ L1)(φ(w)).

We will use n to denote the length of w, and
take the transformer’s depth d to be fixed w.r.t. n.

The input to the transformer can thus be rep-
resented with N = n log|Σ| bits using a binary
encoding for the vocabulary. The circuits we con-
struct in subsequent sections to simulate trans-
formers will also have input size N . We will
assume transformers have log-precision relative
to the size of the input, specifically O(logN)-
precision. Since |Σ| is fixed (typically 30000
in practice), we will think in terms of O(log n)-
precision. Thus, by Def. 6, all of the intermediate
functions of such transformers are computable in
O(log n) space and output (at most) these many
bits. Note that this is enough precision to repre-
sent positional encodings and for each position to
point to a constant number of other values, but not
enough precision for non-lossy pooling of the en-
tire input into a single value.

Relationship to Practical Transformers. Our
log-precision transformers do not enforce that s
(Def. 7) and f (Def. 9) follow the transformer
structure. However, a feedforward net whose
primitive operations (e.g., scalar multiplication)
are defined over O(log n)-size numbers can be

11To apply the normal notion of p-precision to inputs out-
side {0, 1}∗, we imagine elements of Σ are encoded as inte-
gers ≤ |Σ| in binary, and natural numbers are represented as
integers ≤ n. Thus, we assume log|Σ|+ log n ≤ p.

computed in O(log n) space. Thus, bounded-
precision practical transformers are a special case
of our log-precision transformers. This makes
our setup appropriate for proving upper bounds on
transformers, which is our main contribution.

5 Log-Precision Transformers as
Non-Uniform Threshold Circuits

We first show that log-precision transformers can
be simulated by non-uniform threshold circuits,
before presenting the more technical uniform ver-
sion of the results in §6. The initial non-uniform
result extends the findings of Merrill et al. (2022),
who showed that saturated attention transform-
ers12 can be simulated in TC0. Here, we remove
the simplifying saturated attention assumption and
other restrictions on the underlying datatype. In-
stead, we show that our log-precision assumption
is enough to prove that a transformer can be simu-
lated in TC0 with any attention function.

Hao et al. observed that any boolean function of
O(log n) bits can be computed by a poly(n) size
circuit. We extend this to m-bit outputs, which
is both more convenient and more efficient than
constructing m separate boolean circuits:

Lemma 1 (Extended from Hao et al., 2022). Let
f : {0, 1}∗ → {0, 1}m be a function. For all c ∈
R+ and n ∈ N, there exists an AND/OR circuit
of size at most nc + c log n + m and depth 3 that
computes f on inputs of size c log n.

Proof. Like Hao et al. (2022), we construct a cir-
cuit using a DNF representation of f on inputs of
size c log n, except we use a combined DNF rep-
resentation for all output bits of f . The DNF for-
mula has at most 2c logn = nc terms. The circuit
has a NOT gate for each input bit, an AND gate for
each DNF term, and, for each of them output bits,
an OR gate combining the outputs of those AND
gates (i.e., DNF terms) for which that bit is 1.

We now use Lem. 1 to prove the following
non-uniform result. We note that the proof goes
through even if the notion of p-precision (Def. 6)
is relaxed to not require computability in space p.
This requirement will, however, become important
for our subsequent result in §6.

Theorem 1 (Non-uniform). Any c log n-precision
depth-d transformer operating on inputs in Σn can

12Saturated attention is uniform attention over a subset of
the prior layer nodes.



be simulated by a threshold circuit family of depth
3 + (9 + 2d⊕)d.

Proof. Let w ∈ Σn be the input of a c log n-
precision transformer. We show by induction that
we can construct a composition of constant-depth,
poly-size threshold circuits to compute each layer
of this transformer. Thus, any constant-depth
transformer will be computable by a constant-
depth threshold circuit.

In the base case of layer 0 and token i, we con-
struct gates representing the constant i encoded in
binary. We can then compute h0

i = φ(wi, i) using
Lem. 1, yielding a poly-size depth-3 circuit.

In the inductive case of computing layer h`+1
i

for 1 ≤ `+ 1 ≤ d, we note that each vector output
of layer h`

i has size (at most) c log n bits because
of the log-precision assumption.

We first fix a head a`+1
ik (Def. 8) to simulate.

Applying Lem. 1, we can compute s(h`
i ,h

`
j) with

a poly-size depth-3 circuit, in parallel for all j.
Since n floats with c log n precision can be ap-
proximately added in TC0 (§A), we can construct
a TC0 circuit of depth d⊕ to compute Zj . Since
s(h`

i ,h
`
j), Zi, and h`

i all have c log n bits, we can

compute
s(h`

i ,h
`
j)

Zi
h`
j with a poly-size depth-3 cir-

cuit;13 we do this in parallel for all j. Next, we
again use the fact that approximate addition of n
floats is in TC0 to compute a`+1

ih as the approxi-
mate sum over j with a depth-d⊕ circuit.

We now simulate a layer h`+1
i (Def. 10) in terms

of its constituent heads. Since all arguments of
g have size c log n, we apply Lem. 1 to compute
g with a poly-size depth-3 circuit, yielding h`+1

i .
We repeat this in parallel for all i. This completes
the inductive step new to compute all values in the
`+ 1-st layer with a circuit depth of 9 + 2d⊕.

Aggregating the circuit over all d layers, the
overall circuit depth is 3 + (9 + 2d⊕)d.

Corollary 1.1 (Non-uniform). Any log-precision
transformer can be simulated by a non-uniform
TC0 circuit family.14

13This may seem counterintuitive since multiplication of
two n-precision numbers is outside AC0. However, here we
leverage the fact that the precision is c log n.

14Here, a TC0 circuit family is a constant-depth, poly-size
circuit family computing some function {0, 1}∗ → {0, 1}∗.
While we define TC0 for decision problems in Def. 4, it is
standard and well-defined to extend the same term to refer to
circuit families computing functions as well (Hesse, 2001).

6 Log-Precision Transformers as
Uniform Threshold Circuits

We will now extend the argument from the last
section to show that O(log n)-precision transform-
ers can be simulated by uniform constant-depth
threshold circuits by capitalizing on the assump-
tion that φ, s, and f are log-precision, and thus can
be computed in O(log n) space. The overall proof
idea is similar, but due to the uniformity condi-
tion, the proof becomes substantially more tech-
nical. We must not just show the existence of a
threshold circuit family computing a transformer,
but also show that this circuit family can be gener-
ated by a log-space Turing machine.

We first extend Lem. 1 to respect uniformity:

Lemma 2. Let f : {0, 1}∗ → {0, 1}m be a linear-
space computable function. There exists a Turing
machine that, for all n ∈ N and c ∈ R+, uses at
most c log n + logm space to map input 1n to a
circuit of size at most nc + c log n+m and depth
3 that computes f on inputs of size at most c log n.

Proof. We give the proof in the form of an algo-
rithm to construct a circuit as a function of n and
then justify its correctness and space complexity.

Algorithm. We first print 2c log n nodes repre-
senting unnegated and negated input nodes.15

Now, we need to show how to construct nodes
corresponding to nc DNF terms. To this end, we
loop over all possible inputs x ∈ {0, 1}c logn by
maintaining the c log n bit binary representation
of x (initialized with 0c logn) and incrementing it
by 1 at each step of the loop. We create a new ∧
node i with c log n arguments, defined as follows.
For j ∈ [c log n], we create an argument pointer
to (unnegated) node j if xj = 1 and to (negated)
node c log n+ j otherwise.

Now, we construct nodes computing each of the
m output nodes. We loop over k ∈ [m], construct-
ing a single node for each k. We loop over all
x ∈ {0, 1}c logn analogously above to construct a
list of arguments. By our linear-space computabil-
ity assumption and because x has c log n bits, we
can compute f(x) as a subroutine in O(log n)-
space to obtain fk(x). If fk(x) = 1, we print node
2c log n+ j as an argument of node k.

Correctness. We show that this Turing machine
maps input n to a serialized circuit computing f

15We ignore the initial unnegated input nodes when con-
sidering the size of the circuit.



on inputs of size n. The first layer simply pro-
duces unnegated and negated input values. The
second layer then produce all possible DNF terms.
Finally, node k of the third layer computes the dis-
junction over all terms x such that fk(x) = 1.
Thus, node k of the third layer computes fk.

Log Space. To complete the proof, we justify
thatM uses O(log n+logm) space. Looping over
x ∈ {0, 1}c logn is accomplished by treating x as
a binary number initialized to 0 and incrementing
it at each step. Thus, the loop pointer for building
the DNF terms takes c log n space to store. For
building the m output nodes, we maintain a simi-
lar loop pointer as well as an index k ≤ m, taking
c log n+ logm space. Thus, the overall algorithm
uses c log n+ logm space.

Thus, M uses c log n + logm space to map 1n

to a circuit of size at most nc + c log n + m and
depth 3 that computes f on size c log n inputs.

We can leverage this lemma to derive the uni-
form analog of Thm. 1, as follows.

Theorem 2 (Uniform, main result). Any c log n-
precision depth-d transformer operating on inputs
in Σn can be simulated by a logspace-uniform
threshold circuit family of depth 3 + (9 + 2d⊕)d.

Proof. We will provide a proof by induction over
transformer layers ` that there is a Turing machine
M operating in O(log n) space that, on input 1n,
outputs a circuit that simulates the transformer’s
computation on inputs of size n. This circuit is
identical to the one in the proof of Thm. 1, and
thus has the same circuit depth.

In the base case, we use log space to track a
counter maintaining the current token i (between
1 and n) throughout the circuit construction. We
construct gates encoding the constant i in binary.
We can then apply Lem. 2 to construct a Turing
machine that maps 1n to a constant-depth thresh-
old circuit computing h0

i = φ(wi, i).
In the inductive case, we assume we can output

in O(log n) space a circuit computing every value
h`
i in the previous layer `. We will show that we

can, in O(log n) space, now output a circuit com-
puting every value in layer `+ 1.

As in Thm. 1, we first fix a head a`+1
ih to simu-

late. Recall (Def. 8) that

a`+1
ih =

n⊕
j=1

s(h`
i ,h

`
j)

Zi
· h`

j .

By Lem. 2, we can generate a depth-3 circuit of
size at most z = nc

′
+ c′ log n+ 1, where c′ = 2c

(since the input to f is of size 2c log n) that com-
putes s(h`

i ,h
`
j) for specific i, j. We do this se-

quentially for 1 ≤ j ≤ n and 1 ≤ h ≤ k, padding
each circuit with unused nodes so that each one
has size exactly z, and the z-th node corresponds
to the output. Thus, the indices of the output nodes
for each of the columns will be w` + z(jk+h) for
1 ≤ j ≤ n, wherew` is the index of the last output
node h`

n of the previous layer.

At this point, we use the fact that for p =
c log n, the p-precision approximate sum of n p-
precision numbers can be computed by a uniform
threshold circuit (§A). We can thus use a Tur-
ing machine as a sub-routine to generate, on in-
put 1n, a k threshold circuits, where each has size
z′ that computes an ⊕ gate over n items of pre-
cision p each. We set the inputs of circuit h to
be nodes w` + z(jk + h) for 1 ≤ j ≤ n. By
construction, this yields the normalizing constants
Zi =

⊕n
j=1 s(h

`
i ,h

`
j), whose value is located at

the node at index w` + znk + z′ for head h.

Using p-precision arithmetic operator circuits,
we can now also generate a circuit to compute
s(h`

i ,h
`
j)

Zi
h`
j for each 1 ≤ j ≤ n and 1 ≤ h ≤ k,

by using index w` + z(jk + h) as before for the
value of s(h`

i ,h
`
j) and index w` + znk + z′h

for the normalizing constant Zi of head h. Here
too we use circuits of identical size z′′, making
w`+k(zn+z′+z′′i) the index of the output nodes
of these n circuits. Next, we again employ a⊕ cir-
cuit of size z′, similar to the computation of Zi, to
compute the sum of these n values. Finally, we
compute h`+1

i by applying f via Lem. 2.

Note that this requires keeping only `, i, and n
in memory, each of which takes O(log n) bits.

We repeat this process for all 1 ≤ i ≤ n to
compute the entire ` + 1 layer, which finishes the
inductive step: if we can output a circuit comput-
ing layer ` in O(log n) space, then we can do the
same for layer `+ 1.

Because the depth derived in Thm. 2 is constant
with respect to n, it follows that:

Corollary 2.1 (Uniform, main result). Any log-
precision transformer can be simulated by a uni-
form TC0 circuit family.



7 Lower Bounds for Instruction
Following and Advice Transformers

So far, we have shown that uniform TC0 is an up-
per bound for log-precision transformers. Is this
upper bound tight, i.e., also a lower bound? While
we do not answer this question here, we address
a related question as a first step: we construct a
transformer that can evaluate TC0 circuits on bi-
nary inputs, showing that transformers can com-
pute any TC0 function when their input is aug-
mented with the right “instructions”.

More formally, we consider the Circuit Value
Problem (CVP) (Ladner, 1975), also referred to
as the Circuit Evaluation Problem, where the input
is a boolean circuitC and a string x ∈ {0, 1}n, and
the task is to return the value of C(x) ∈ {0, 1}.
This problem is known to be complete for the
class P under AC0 reductions (Ladner, 1975). We
will assume C is serialized as described in §3 and
prove that log-precision transformers can evaluate
any TC0 circuit. Note that this is an extension
of the typical CVP since the circuit has threshold
gates, not just standard AND/OR gates.

It is known that LSTMs cannot evaluate boolean
formulae (Merrill, 2020), a special case of the
CVP. In contrast, we show that transformers can.

To demonstrate the practicality of our lower
bound construction, we will not just prove the ex-
istence of transformers that can evaluate TC0 cir-
cuits but also specify concrete choices for the posi-
tional embedding scheme and the class of attention
functions that are sufficient to do so.

Fractional Positional Embeddings. For a vec-
tor x and scalar y, let 〈x, y〉 be the vector append-
ing y onto x.16 For σ ∈ Σ, let v(σ) be the one-hot
embedding of σ into R|Σ|. For w ∈ Σ∗ and i ≥ 1,
the fractional positional embedding at token i is

φ(wi, i) = 〈v(wi), i/n〉.
Saturated Attention. We imagine f(h`

i ,h
`
j) is

computed via saturated attention (cf. Merrill et al.,
2022), which provides a simple model of the types
of attention we can expect to be learned in trans-
formers (Merrill et al., 2021). First, queries are
computed as qi = Qh`

i , and then keys kj =
Kh`

j Define the dot-product attention score σij =

q>i kj . We can then define saturated attention as

s(h`
i ,h

`
j) =

{
1 if σij = maxk σik

0 otherwise.
16I.e., 〈x, y〉i = xi for 1 ≤ i ≤ |x|, and y if i = |x|+ 1.

After normalization, saturated attention creates a
distribution that is uniform over a subset of po-
sitions. Thus, it is capable of parameterizing hard
attention, uniform attention over the full sequence,
and various attention patterns in between.

Simple Pooling Functions. For simplicity, we
assume pooling functions f are thresholded linear
functions of their inputs. Thus, they could be im-
plemented by a feedforward neural net. Without
loss of generality, we let attention heads have a
value function, which can be folded into the pool-
ing function from the last layer (see §4).

Terminology. We use input node to mean a to-
ken of type X and gate node to mean a token of
type Dir. We call a token of type & an argument.

We are now ready to present the main result.
Our construction below is specific to circuits se-
rialized in prefix form (see §3), but it can be ex-
tended to other serializations as well.

Lemma 3. For all d, there exists a transformer
with fractional positional embeddings, saturated
attention, thresholded linear pooling functions,
and depth 2d that, for any threshold circuit C
of depth d serialized in prefix form, maps input
〈C, x〉 to the value C(x).

Proof. We will construct a pair of two transformer
layers that evaluate all the nodes at depth ` in the
threshold circuit, for any `. It follows that a trans-
former of depth 2d can compute the value C(x).

Base Case: Input Nodes. We use an attention
layer to attend uniformly over all positions with
value returns 1 if wi = X and 0 otherwise. This
head computes #(X)/n, where #(X) is the num-
ber of occurrences of X in w. A second layer, then,
at input node i, computes the positional embed-
ding of the token representing input value xi:

1−#(X) + i

n
.

We attend to this position to retrieve xi. After
these layers, each input node i stores its value xi.

We also use the base-case layers to construct
an attention head that, at the i-th node, counts the
fraction of tokens (out of n) that are nodes to the
left of the current node. Thus, the column corre-
sponding to node i stores the value i/n.

At each gate node i, we use two more attention
heads to find the index of the next & to the right
and then count the fraction of tokens before it that



are 1. This head thus computes ki/mi where ki is
the threshold value of gate i and mi is its arity.

Finally, using the first attention layer, we have
each 1 node attend to the first argument symbol
& to its left and retrieve its index p/n. Then, in
the second attention layer, each argument attends
uniformly over all nodes with values p/n. The net
effect is for each argument to store j/n, i.e., the
pointer it is encoding in unary as &1j .

Inductive Case: Gate Nodes. By our inductive
assumption over prior layers, all tokens corre-
sponding to circuit nodes at depth ≤ ` contain
their appropriate value. We now construct 2 trans-
former layers to evaluate gate nodes at depth `+1.

In the first attention layer, each argument token
attends to the closest gate node i to its left, which
is the gate it belongs to. Recall from the base case
that argument token & already stores j/n, where
j is the pointer value it encodes. Each argument
token now attends with query j/n to retrieve from
node j its already computed value.

The second attention layer applies at gate nodes,
not arguments. At gate i of arity mi, we set the at-
tention s(i, j) to indicate whether argument j be-
longs to gate node i, which holds for exactly mi

arguments. We set the attention value at argument
j to be the binary value of node j, which was re-
trieved in the previous paragraph. Thus, the atten-
tion head computes ci/mi, where ci is the number
of arguments of node i that are 1. We repeat this
for all gate nodes.

At this point, we have both the count of true
inputs to gate node i (ci/mi) and, from the base
case, the threshold parameter of gate i (ki/mi).
Thresholding (ci − ki)/mi at 0 allows us to de-
cide, based on whether Dir is <= or >=, whether
the current gate node should output a 0 or a 1. Re-
peating this for all gates at layer ` + 1 completes
the inductive step: we can evaluate all gate nodes
in this layer.

Theorem 3. Depth-2d transformers can solve
CVP for depth-d TC0 circuits.

7.1 Instruction Following

CVP is closely related to instruction learn-
ing (Brown et al., 2020) and instruction following
tasks (Finlayson et al., 2022). The latter task setup
provides a transformer two inputs: a regular ex-
pression r as an “instruction”, and z ∈ {0, 1}∗.
The goal of the task is to return whether z belongs

to the regular language represented by r. Viewed
from this lens, the circuit evaluation setup asks:
Can transformers follow instructions provided in
the form of a circuit? As discussed below, our re-
sult says the answer is yes for all constant depth
threshold circuits. This, to the best of our knowl-
edge, provides the first non-trivial lower bound for
transformers in the instruction learning setting.

Formally, an instruction I is any description17

of a function fI of {0, 1}∗. We say a trans-
former correctly follows an instruction I if, for all
x ∈ {0, 1}∗, it correctly computes fI(x) on input
〈I, x〉. A non-uniform instruction description is
a family of length-specific descriptions {In}∞n=1.
We say a transformer correctly follows a non-
uniform instruction family {In} if, for all n and
all x ∈ {0, 1}n, it correctly computes fI(x) on
input 〈In, x〉. The non-uniform description {In}
may take any form. When it forms a TC0 circuit
family, we refer to it as a TC0 instruction descrip-
tion. Since Thm. 3 constructs a transformer that
can evaluate any TC0 circuit, it follows that:

Corollary 3.1. There exists a depth-2d trans-
former that can correctly follow any depth-d TC0

instruction description.

Thus, transformers with simple position embed-
dings, attention, and pooling functions can simu-
late any instruction provided in the form of a TC0

circuit. We note that while it is unknown whether
the class of regular languages, considered by Fin-
layson et al. (2022), is contained in TC0, the other
side is known: there are problems computable by
TC0 circuits that are not computable by a regu-
lar language. These include problems involving
counting and arithmetic, which are beyond regu-
lar languages. Our results thus expand the known
kinds of instructions transformers are able to fol-
low, at least with hand-constructed weights.

7.2 Advice Transformers
We can also view circuit evaluation abilities of
transformers (Lem. 3) from the lens of advice tak-
ing Turing machines which, in addition to their
usual input, are also provided an input length de-
pendent (but input independent) advice string. For
instance, P/poly is the class of problems decid-
able in polynomial time when the Turing machine
is given an advice string of size polynomial in the
input length (cf. Arora and Barak, 2009).

17Formally, a function description is a fixed-size program
to compute that function under some model of computation.



In the same vein, let T/poly be the class of log-
precision, constant-depth transformers with poly-
nomial advice strings. In other words, on an in-
put of size n, we allow the transformer to receive
an additional poly(n) bits of input that cannot de-
pend on the standard input. Now let {Cn}∞n=1 be
a circuit family demonstrating that a problem is in
non-uniform TC0. Then, by passing the descrip-
tion of Cn as advice for input length n, it immedi-
ately follows from Lem. 3 that advice transformers
can simulate non-uniform TC0:

Corollary 3.2. Non-uniform TC0 ⊆ T/poly .

Since non-uniform TC0 even contains some
undecidable languages (Arora and Barak, 2009,
Claim 6.8), T/poly is clearly a very powerful class
and a strict superset of T, the class of decision
problems recognized by transformers (which are
all decidable). Thus, a problem in T/poly can-
not always be solved by a transformer on its own.
However, if given a description of how to do so
(“advice”) in the form of a TC0 circuit, our result
shows that a transformer could solve that problem.

8 Conclusion

Answering two open questions from Merrill et al.
(2022), we prove log-precision transformers with
any (including soft) attention can be simulated by
uniform constant-depth threshold circuits. This
establishes thresholded addition as a fundamen-
tal operation for understanding the computational
model of transformers: any log-precision trans-
former can be re-expressed as a polynomial num-
ber of threshold gates stacked to a constant depth.
This result also establishes potential limits on the
computational power of log-precision transform-
ers; e.g., if L ⊂ P, transformers cannot com-
pute all poly-time functions. They are certainly
very far from being universal. The intuition at
the heart of this result is that forcing a model
to be highly parallelizable likely sacrifices its ex-
pressiveness. Since parallelism seems essential to
pretraining any massive model at scale, any large
language model—transformer or otherwise—may
suffer from a similar tradeoff.

Acknowledgments

The authors are grateful for the valuable feedback
from the anonymous reviewers and the TACL ac-
tion editor Dan Gildea. They also thank Paul
Beame and colleagues at AI2 including Kyle
Richardson, Michal Guerquin, Peter Clark, Tushar

Khot, and especially Matthew Finlayson, whose
empirical findings about instruction learning in-
spired §7. Feedback from Sam Bowman, Arya
McCarthy, Roma Patel, and Lena Strobl, and dis-
cussions with the FLaNN, ML for Code (MILA),
and Foundations of Language Processing (Umeå)
research groups helped improve earlier drafts. The
authors also appreciate Rahul Santhanam’s feed-
back. This work was funded in part by NSF award
1922658. William Merrill was supported by an
NSF graduate research fellowship and by AI2.

References

Eric Allender. 1999. The permanent requires large
uniform threshold circuits. Chicago Journal of
Theoretical Computer Science.

Sanjeev Arora and Boaz Barak. 2009. Computa-
tional Complexity: A Modern Approach. Cam-
bridge University Press.

Arin Biere, Marijn Heule, Hans van Maaren, and
Toby Walsh. 2009. Handbook of Satisfiability:
Volume 185 Frontiers in Artificial Intelligence
and Applications. IOS Press.

Tom Brown, Benjamin Mann, Nick Ryder,
Melanie Subbiah, Jared D Kaplan, Prafulla
Dhariwal, Arvind Neelakantan, Pranav Shyam,
Girish Sastry, Amanda Askell, Sandhini Agar-
wal, Ariel Herbert-Voss, Gretchen Krueger,
Tom Henighan, Rewon Child, Aditya Ramesh,
Daniel Ziegler, Jeffrey Wu, Clemens Winter,
Chris Hesse, Mark Chen, Eric Sigler, Ma-
teusz Litwin, Scott Gray, Benjamin Chess,
Jack Clark, Christopher Berner, Sam McCan-
dlish, Alec Radford, Ilya Sutskever, and Dario
Amodei. 2020. Language models are few-shot
learners. In Advances in Neural Information
Processing Systems, volume 33, pages 1877–
1901. Curran Associates, Inc.

Tom Bylander. 1991. Complexity results for plan-
ning. In Proceedings of the International Joint
Conference on Artificial Intelligence.

Andrew Chiu, George I. Davida, and Bruce E.
Litow. 2001. Division in logspace-uniform nc1.
RAIRO Theor. Informatics Appl., 35:259–275.

Mostafa Dehghani, Stephan Gouws, Oriol
Vinyals, Jakob Uszkoreit, and Lukasz Kaiser.

https://books.google.com/books/about/Computational_Complexity.html?id=8Wjqvsoo48MC
https://books.google.com/books/about/Computational_Complexity.html?id=8Wjqvsoo48MC
https://proceedings.neurips.cc/paper/2020/file/1457c0d6bfcb4967418bfb8ac142f64a-Paper.pdf
https://proceedings.neurips.cc/paper/2020/file/1457c0d6bfcb4967418bfb8ac142f64a-Paper.pdf


2019. Universal transformers. In International
Conference on Learning Representations.

Tim Dettmers, Mike Lewis, and Luke Zettle-
moyer. 2022. GPT3.int8(): 8-bit matrix multi-
plication for transformers at scale. In Advances
in Neural Information Processing Systems.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. BERT: Pre-training
of deep bidirectional transformers for language
understanding. In Proceedings of the 2019
Conference of the North American Chapter of
the Association for Computational Linguistics:
Human Language Technologies.

Nelson Elhage, Neel Nanda, Catherine Olsson,
Tom Henighan, Nicholas Joseph, Ben Mann,
Amanda Askell, Yuntao Bai, Anna Chen, Tom
Conerly, Nova DasSarma, Dawn Drain, Deep
Ganguli, Zac Hatfield-Dodds, Danny Hernan-
dez, Andy Jones, Jackson Kernion, Liane
Lovitt, Kamal Ndousse, Dario Amodei, Tom
Brown, Jack Clark, Jared Kaplan, Sam McCan-
dlish, and Chris Olah. 2021. A mathemati-
cal framework for transformer circuits. Trans-
former Circuits Thread.

Matthew Finlayson, Kyle Richardson, Ashish
Sabharwal, and Peter Clark. 2022. What makes
instruction learning hard? An investigation and
a new challenge in a synthetic environment. In
Proceedings of the 2022 Conference on Empir-
ical Methods in Natural Language Processing.

Raymond Greenlaw, James M. Hoover, and Wal-
ter L. Ruzzo. 1991. A compendium of prob-
lems complete for P. Technical Report TR91-
11, University of Alberta.

Michael Hahn. 2020. Theoretical limitations
of self-attention in neural sequence models.
Transactions of the Association for Computa-
tional Linguistics, 8:156–171.

Yiding Hao, Dana Angluin, and Robert Frank.
2022. Formal language recognition by hard at-
tention transformers: Perspectives from circuit
complexity. Transactions of the Association for
Computational Linguistics, 10:800–810.

William Hesse. 2001. Division is in uniform TC0.
In International Colloquium on Automata, Lan-
guages, and Programming, pages 104–114.

Neil Immerman. 2012. Descriptive complexity.
Springer Science & Business Media.

Neil D. Jones and William T. Laaser. 1976. Com-
plete problems for deterministic polynomial
time. Theoretical Computer Science, 3(1):105–
117.

Richard E Ladner. 1975. The circuit value prob-
lem is log space complete for P. ACM SIGACT
News, 7(1):18–20.

Harry R. Lewis and Christos H. Papadimitriou.
1982. Symmetric space-bounded computation.
Theoretical Computer Science, 19:161–187.

William Merrill, Vivek Ramanujan, Yoav Gold-
berg, Roy Schwartz, and Noah A. Smith. 2021.
Effects of parameter norm growth during trans-
former training: Inductive bias from gradient
descent. In Proceedings of the 2021 Confer-
ence on Empirical Methods in Natural Lan-
guage Processing.

William Cooper Merrill. 2020. On the linguistic
capacity of real-time counter automata. ArXiv,
abs/2004.06866.

William Cooper Merrill, Ashish Sabharwal, and
Noah A. Smith. 2022. Saturated transformers
are constant-depth threshold circuits. Transac-
tions of the Association for Computational Lin-
guistics, 10.

Jorge Pérez, Javier Marinković, and Pablo
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A Iterated p-Precision Float Addition

We interpret a p-bit string x as a p-precision float
by taking the first p/2 bits18 of x as a signed in-
teger m encoding the mantissa and the remaining
p/2 bits of x as another signed integer e encoding
the exponent. A float with mantissa m and expo-
nent e, denoted 〈m, e〉, encodes m · 2e.

Computing the sum of n n-bit integers (known
as iterated addition or simply summation) is well-
known to be in uniform TC0 (Hesse, 2001; Chiu
et al., 2001). We leverage this fact to show that the
same holds for the sum of n O(log n)-precision
floats. A subtlety of adding p-precision floats is
that their sum can require more than p bits to rep-
resent precisely as a float. For instance, while each
of 2r and 1 is representable with a (signed) man-
tissa of only 2 bits, their exact sum, 2r + 1, re-
quires a mantissa of r+ 1 bits. Hence, p-precision
transformers must sacrifice some precision when
performing summation.

We define float addition by mapping the floats
to integers, adding the integers exactly, and then
mapping the sum back to a float (with possible loss
of precision). Let Imax

q = 2q − 1 be the great-
est q-bit signed integer, and Imin

q = −Imax
q . Let

Fmax
p be the greatest value representable by a p-

precision float. Since the exponent of a float φ can
be negative and represent a fraction, we rescale φ
by 2

−Imin
p/2 when mapping it to an integer gp(φ):

Definition 13. The integer mapping of a p-bit float
φ = 〈m, e〉 is defined as gp(φ) = m · 2e−I

min
p/2 .

Definition 14. The p-truncated float mapping of
an integer z is defined as fp(z) = 〈m, e〉 where19

m = rshift(z,max{0, sizeof(z)− p/2})
e = sizeof(z)− sizeof(m) + Imin

p/2

when e ≤ Imax
p/2 ; otherwise (i.e., when z > Fmax

p ),
we setm = e = Imax

p/2 to properly handle overflow.

18We assume w.l.o.g. that p is even.
19For x 6= 0, sizeof(x) = blog|x|c + 2; sizeof(0) = 2.

For y ≥ 0, rshift(x, y) right-shifts x by y bits

Definition 15 (Iterated p-precision float addition).
We define the sum of k p-precision floats as

k⊕
i=1

φi = fp

(
k∑

i=1

gp(φi)

)
.

We first verify that Def. 14 closely approxi-
mates exact addition.

Lemma 4. Let φ = 〈e,m〉 be a float such that
|φ| ≤ Fmax

p and e ≥ Imin
p/2 . Then φ and fp(gp(φ))

differ by a factor of at most 1± 2−p/2+2.

Proof. Let z = gp(φ), which is well-defined be-
cause of the precondition e ≥ Imin

p/2 of the lemma.
Let φ′ = 〈m′, e′〉 = fp(z).

First consider the easy case where sizeof(z) ≤
p/2. Then m′ = z and e′ = Imin

p/2 from Def. 14.

Since z = m · 2e−I
min
p/2 by Def. 13, it follows that

φ and φ′ have exactly the same value.
Now assume sizeof(z) > p/2. It follows from

the precondition |φ| ≤ Fmax
p of the lemma that

there is no overflow when applying Def. 14 to
compute 〈m′, e′〉. Thus m′ consists of the p/2
highest-order bits (including the sign bit) of z and
e′ = ` + Imin

p/2 , where ` = sizeof(z) − p/2 is the
number of bits truncated from z to obtain m′. Let
δ denote the (non-negative) integer formed by the
` lowest-order bits of z that are truncated. Then
δ ≤ 2` − 1 = 2sizeof(z)−p/2 − 1 < z · 2−p/2+2.

Recall that the value of φ is gp(φ) · 2−I
min
p/2 = z ·

2
−Imin

p/2 . By the above argument, we also have that
the value of φ′ is within (z ± δ) · 2−I

min
p/2 , which is

within z ·(1±2−p/2+2)·2−I
min
p/2 . Thus, φ and φ′ are

within a factor of 1± 2−p/2+2 of each other.

Finally, we show that, with log precision, com-
puting ⊕ (Def. 14) is in uniform TC0.

Lemma 5. Let p ≤ c log n and φ =
⊕k

i=1 φi,
where k ≤ n and each φi is p-precision. Then φ is
computable by a constant-depth uniform threshold
circuit of size poly(n).

Proof. Let N = c log n + 2nc. We first use
Lem. 1 to map each φi = 〈mi, ei〉 to the integer
zi = mi · 2ei−I

min
p/2 , which has size sizeof(mi) +

(ei−Imin) ≤ p/2+2 ·2p/2 ≤ c log n+2nc = N .
For 1 ≤ i ≤ k, we pad zi to N bits, and for
k < i ≤ N , we create anN -bit integer zi = 0. We
can then compute z =

∑k
i=1 zi with a constant-

depth uniform threshold circuit of size poly(N)
using the classical construction to sum N N -bit

https://proceedings.neurips.cc/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf
https://proceedings.neurips.cc/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf


integers (cf. Immerman, 2012, exercise 5.29). The
size of this circuit is also polynomial in n by the
definition of N . Finally, we compute f †(z) using
a constant-depth AND/OR circuit.


