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Abstract—Epilepsy is a chronic condition that causes repeat
unprovoked seizures and many epileptics either develop resis-
tance to medications and/or are not suitable candidates for
surgical solutions. Hence, these recurring unpredictable seizures
can have a severely negative impact on quality of life including
an elevated risk of injury, social stigmatization, inability to take
part in essential activities such as driving and possibly reduced
access to healthcare. A predictive system that informs patients
and caregivers about a potential upcoming seizure ahead of time
is not only desirable but an urgent necessity. In this paper, we
contribute by designing and developing patient-specific epileptic
seizure (ES) prediction models using only electroencephalography
(EEG) data with residual neural networks (ResNets) and transfer
learning (TL) - (SPERTL). We train our proposed model on EEG
data from 20 patients with a seizure prediction horizon (SPH)
of 5 minutes and use the validation data to plot precision-recall
curves for selecting the best thresholds. Testing on unseen data
shows our model outperforms the state-of-the-art methods by
achieving the highest average sensitivity of 88.1%, specificity of
92.3%, and accuracy of 92.3%. Our results also demonstrate
the proposed model is less susceptible to false positives while
maintaining a high positive prediction rate.

Index Terms—residual neural networks, CNN, ResNet, Elec-
troencephalography, EEG, epileptic seizure prediction

I. INTRODUCTION

Epilepsy is a neurological disorder that causes repeat un-
provoked seizures and affects over 3.4 million people in the
USA and over 65 million worldwide. An epileptic seizure
(ES) is defined as two or more unprovoked recurring seizures
with a gap greater than 1 day [1], [2]. During a seizure,
increased electrical activity of the brain results in symptoms
including but not limited to shaking, convulsions, and short-
term memory loss [1]. Seizures may include one or more of
the following phases: aura, preictal (before a seizure), ictal
(main seizure activity) and interictal (period between two
seizures) [3]. Repeat seizures can be debilitating because they
interfere with daily activities, may lead to social stigma, and
can potentially result in serious injury or death. Although
treatable with medications or surgical resection, epilepsy can
become drug-resistant and many patients can be excluded from
surgery due to comorbidities and other risk factors, risk of loss
of cognitive functions, failure to localize epileptogenic zone
or even a low socioeconomic status.

Existing commercial solutions based on wearables are only
capable of detection, mostly based on movement sensors
which are unreliable, exclude some types of seizures and have

a high drop-rate due to their unreliability. Alternative seizure
control methods based on implants such as responsive neuro-
stimulation (RNS) [4] and vagus nerve stimulation (VNS) [5]
have some of the same obstacles as surgical solutions. There-
fore, wearable solutions that can reliably predict seizures ahead
of time are urgently needed so that patients/caregivers can take
the necessary precautionary measures. Consequently, the focus
has shifted to seizure prediction using electroencephalography
(EEG) data which directly measures electrical activity of the
brain. Although the protocol for diagnosing epilepsy in clinical
settings is well-established, ES prediction with EEG for use in
ambulatory settings remains a significant challenge; especially
the design of accurate predictive models.

In this work, we design and develop an ML model for
patient-specific ES prediction based on the residual neural
network (ResNet) and transfer learning (TL). Our proposed
model SPERTL performs epileptic Seizure Prediction using
only EEG data by applying ResNets with TL. ResNet is a
form of convolutional neural network (CNN) that features
additional residual layers with skip connections. At the time, it
provided the highest performance for ImageNet classification
when trained on 1.28 million images with ∼2 million parame-
ters [6] and has recently found use in time-series classification
[7]. TL works by re-training a successfully pre-trained model
for one problem on another problem with either a different
task or a different domain with the same task. Re-use of pre-
trained models with TL is of high research and commercial
interest due to the amount of resources (time, money, energy,
etc.) required for training these models in the first place [8].

A. Motivation and Contributions

Initially, techniques such as the recurrent neural network
(RNN), gated recurrent unit (GRU) and long short-term mem-
ory (LSTM) were popular for time-series classification but,
1d-CNNs have made a comeback [7]. Adding residual layers
further enhances CNN performance as a recent benchmark
[7] shows that ResNets provide the best performance for
time-series classification. Overall, ResNets provide superior
performance, are better able to prevent overfitting compared
to CNNs, and can deal with class imbalance. All of these
properties are desirable for the ES prediction task with severe
class-imbalance (e.g. less than 2% of the EEG recordings
in the used dataset contain seizure activity). To design the
ResNet, we can either start from scratch or adopt well-
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TABLE I
COMPARISON OF EXISTING MODELS IN THE LITERATURE FOR ES PREDICTION.

Ref. Feature Extraction End-to-end? Classifier Class-imbalance Sensitivity
[9] FT + Genetic Algorithm No Logistic Regression Considered 61.7%
[10] Several Handcrafted No Ensemble (SVM, CNN, LSTM) GANs 96.3%
[11] Short-time FT No LSTM GANs 93.0%
[12] AE+CNN Yes LSTM Equal preictal and interictal 99.6%

[13], [14] CWT conversion to 2D images Yes Semi-Dilated CNN +FC Equal preictal and interictal 99.7%
[15] Neural arch. search + CNN Yes FC Overlapping preictal segments 99.8%
[16] CNN with 1D & 2D pooling (each lead a dimension) Yes FC Overlapping preictal segments 98.8%
[17] CNNs Yes FC Considered 81.9%
[18] CNNs Yes FC Considered 68.8%
[19] CNNs Yes Bi-LSTM Considered 76.6%

known architectures (e.g. ResNet101). However, we employ
TL because it speeds up the model development process, can
achieve a higher accuracy compared to a completely new
architecture, and enhance the accuracy when there is less data
by transferring the knowledge from models trained on larger
datasets [20]. For example, the adopted model was trained on
a dataset of > 2.5 million patients [21] whereas for patient-
specific ES prediction, data is available from only 1 patient at
a time.

Specifically, the contributions of this paper are as follows:
• It represents the first work to use a ResNet for ES

prediction from raw EEG data with TL.
• Does not make an assumption of a large preictal period

within which a seizure should be predicted. Rather, a
stricter approach is used as explained in Section III.

• The complete data is used for seizure prediction which
better reflects the real-world scenario where the occur-
rence of a seizure is expected to be an extremely rare
event. Several previous works use only parts of the EEG
recordings to eliminate the class imbalance.

• Achieves a higher accuracy compared to the state-of-the-
art given these constraints.

II. RELATED WORK

With the advent of machine learning (ML), researchers
have leveraged large amounts of data collected from long-
term EEG recordings, such as the Children Hospital Boston-
Massachusetts Institute of technology (CHB-MIT) dataset
[22], to develop predictive models. Early ES prediction mod-
els involved feature extraction with time-frequency analysis
e.g., continuous/discrete wavelet transform (CWT/DWT) or
a version of the Fast Fourier Transform (FFT) followed by
traditional techniques such as the support vector machine
(SVM), random forest (RF), naı̈ve Bayes (NB) or the neural
network (NN) [2]. Unfortunately, these techniques reached a
performance ceiling. The introduction of deep learning (DL)
has revived interest in seizure prediction because of its ability
to provide a superior performance and do end-to-end predic-
tion from raw EEG data which is desirable for deployment
on low-cost hardware. DL techniques include the deep NN
(DNN), CNNs, LSTMs and the generative adversarial network
(GAN) among others.

Though DL application to raw data is desirable, some works
[9]–[11] apply DL techniques after manual feature extraction.

In contrast, the works of [12]–[16] are end-to-end and achieve
a sensitivity > 98%, but they assume balanced classes whereas
seizures are very rare events making the problem severely
imbalanced. For example, [12]–[14] select data samples such
that there is an equal preictal and ictal duration whereas [15],
[16] artificially increase the amount of preictal data by using
overlapping segments while keeping the interictal segments
non-overlapping; both are not reflective of the real-world. The
works of [17]–[19] take into account the class imbalance
and design simple 1d-CNNs for ES prediction. Therefore,
they suffer from low performance with average sensitivities
of 81.9%, 68.8% and 76.6%, respectively. Furthermore, the
state-of-the-art work by [19] which uses a Bi-LSTM for
classification, shows models tested after eliminating imbalance
perform poorly when tested with the complete data. For
example, the performance of the model in [12] comes down
to below 70% from a near-perfect score. Table I summarizes
the details of all discussed models.

As observable, existing techniques for ES prediction from
raw EEG data mostly focus on simple 1-D CNNs or LSTM
networks for feature extraction and prediction whereas our
work is the first to introduce ResNet. Moreover, many existing
works do not include all of the data for training and testing
or use techniques to eliminate class imbalance which is not
reflective of the real-world. In contrast, the works that consider
the whole dataset do not achieve high performance metrics.
Our work is the first to introduce ResNets for ES prediction
with a higher performance on class-imbalanced data.

III. METHODS

A. Data

CHB-MIT dataset [22]: The CHB-MIT dataset comprises
approximately 24-hour wearable EEG scalp recordings from
22 patients split into files of approximately 1-hour recordings
each, with 1 patient providing 2 sets for a total of 23 record-
ings. The data was collected from 23 electrodes placed using
the international 10-20 system sampled at 256Hz with a 16-
bit resolution. A total of 198 seizure events were recorded and
they are clearly marked in the annotation files which states the
number of seizures in every recording as well as the respective
start and end times for each seizure. The data is split into
smaller segments of Tseg = 20s to be used as raw input to
the model. Recall that we propose an end-to-end DL model
without any manual feature extraction. Two important concepts
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Fig. 1. An illustration of the model. The top part shows how the output
shape changes over successive residual layers. The center part shows a block
overview of the model. The bottom-left describes the basic convolutional
block whereas the bottom-center part describes the overall residual block.
The position of the skip connection within the second convolutional block of
the residual block is shown on the bottom-right.

in ES prediction include the seizure prediction horizon (SPH),
which defines how far ahead the seizure should be predicted,
and the seizure occur period (SOP), which is the window of
time within which the seizure should occur.

With respect to our data, let us further define the start
duration of the seizure as marked by experts as tstart and
the end by tend. Then, any segment that contains even one
reading falling within the window of the seizure duration is
considered an ictal segment. An additional variable defining
the desired prediction time Tpred represents the duration
before start of a seizure such that the segment that contains
the first reading tstart − Tpred will be associated with the
preictal label. All subsequent segments before tstart will be
marked as preictal and all remaining segments interictal. In this
way, the prediction problem can be reformulated as a simple
classification task. The choices for Tseg and Tpred will dictate
the accuracy and will be further dictated by how far ahead
the user wants to be warned of an upcoming seizure. In this
work, we set Tpred or the SPH to be 5 minutes. We do not
evaluate our model based on its capability to predict a seizure
within a given SOP. Rather, we use a more stringent evaluation
and purely quantify its performance based on the capability to
correctly predict all preictal segments. More details about the
evaluation metrics are provided after the model description;
direct comparison regarding the capability to predict seizures
within a given SOP will be left for future work.

B. Proposed Model

As described, our proposed model SPERTL applies TL to
the ResNet architecture developed by [21]. TL is characterized
by a source task S and a target task T . Each task has a domain
denoted by DS and DT comprising the feature space (XS

and XT ) and associated probability distributions P(XS) and
P(XT ). The tasks are defined by the labels YS and YT and the
predictive functions are denoted by PS and PT . Because our
tasks are the same (binary classification of a disorder), it is
a heterogeneous TL problem since XT ̸= Xs. However, the

feature space is only different in the sense that the raw EEG
data with 23 leads will have a different shape than the ECG
data with 12 leads. In contrast, the overall strategy is justified
because the final feature space after the convolutional layers
is similar. Recall that these layers are considered automatic
feature extractors. We modify the input layer and re-train the
residual layers to do domain adaptation whereas the fully
connected (FC) layers perform the function of PT which is
re-trained using PS as a starting point.

The overall model accepts raw EEG data as input into a
convolutional block, which is followed by 4 residual blocks for
feature extraction. The output of the last block is flattened, and
an FC layer is introduced for classification. The convolutional
block comprises a convolution filter, batch normalization,
rectified linear unit (ReLU) activation, followed by dropout.
Each residual block features 2 convolutional blocks where the
second convolutional block accepts the output of the previous
convolutional block within the residual block, and also the
output of the skip connection from the previous block after
max pooling and 1x1 convolution. The dropout probability
in the first convolutional block is zero but is set to 0.8 for
all other convolutional blocks inside the residual blocks. The
convolutional filter length starts with 64, increasing by 64
in each subsequent residual block. Our implementation is
adapted to start with channel length similar to the input size
which may range from 1024 to 5120 depending upon the
selection of segment duration and is sub-sampled by 4 after
every residual block. The output of the last residual block is
flattened followed by the FC layers and sigmoid activation for
classification. Figure 1 describes the model.

C. Evaluation Metrics

Consider a seizure has occurred, a prediction of a seizure
represents a true positive (TP) whereas a prediction of no
seizure is a false negative (FN). In contrast, if a seizure has not
occurred, a prediction of a seizure is a false positive (FP) and a
true negative (TN) otherwise. Although the existence of FN’s
reduces the value of seizure prediction/detection technologies,
FP’s are as dangerous because they create anxiety, cause stress,
and can lead to the discontinuation of usage over time. Let us
define the following metrics:

Sensitivity =
TP

TP + FN

Specificity =
TN

TN + FP

Accuracy =
TP + TN

TP + TN + FP + FN
(1)

The sensitivity is also known as the TP rate which (TPR)
which is the complement of the FN rate (FNR) such that
(Sensitivity = TPR = 1 − FNR). This sensitivity will
capture the ability of the classifier to reduce FN’s. Because
specificity is the TN rate which is the complement of the FP
rate (Specificity = TNR − 1 − FPR), it will capture the
ability to reduce FP’s while correctly identifying TN’s. Both
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Fig. 2. The PRC curve drawn for several patients from their respective
validation dataset. The threshold was selected to maximize the F-1 score.

metrics are important because the accuracy may not capture
the true performance due to the severe class imbalance.

Recall that the classifier outputs a probability threshold
and for balanced binary class problems, the threshold for a
positive label is a probability of greater than 0.5. On the
other hand, this strategy fails for class-imbalanced problems.
During validation, the precision-recall curve (PRC) will be
used to select an initial threshold based on the highest F1-score
( 2×Precision×Recall

(Precision+Recall ). The threshold will be tuned to ensure the
maximum possible accuracy with lowest numbers of FNs/FPs
and the final accuracy will be evaluated on the unseen test data.
For the sake of stringent evaluation, we report the results from
the model directly where classification as a pre-ictal segment
indicates a seizure and interictal indicates no seizure.

IV. RESULTS AND DISCUSSION

Figures 2 illustrates the PRC curve for a set of patients
chosen from the complete 20 patients for illustrative purposes.
Using validation data, we generate a set of probabilities
that are output by the model, and each point on the plot
corresponds to a pair of either (Recall, Precision) or (FPR,
TPR) achieved by setting that probability as a threshold for
seizure vs non-seizure prediction. The ideal model should be
able to achieve a perfect score for both, the precision and
the recall, which is rarely possible and hence, we select the
threshold that maximizes the F-1 score initially and then tune
it. From Figure 2, it is clear that SPERTL only achieves a
perfect model for patient 22 during validation and this also
translated into 100% test accuracy.

Table II shows the achieved sensitivity (sen.), specificity
(spe.), and accuracy (acc.) for 20 patients in the CHB-MIT

TABLE II
TESTING RESULTS FOR SEIZURE PREDICTION WITH SPERTL

ID Sen. Spe. Acc.
1 83.3% 100.0% 99.9%
3 100.0% 100.0% 100.0%
4 90.0% 100.0% 100.0%
5 100.0% 100.0% 100.0%
6 60.0% 97.6% 97.5%
7 87.5% 72.2% 72.2%
8 95.7% 92.5% 92.6%
9 85.7% 95.8% 95.8%
10 91.7% 100.0% 100.0%
11 100.0% 100.0% 100.0%
12 92.5% 74.5% 74.8%
14 100.0% 98.6% 98.6%
15 96.2% 89.1% 89.2%
16 50.0% 96.1% 96.0%
17 100.0% 99.9% 99.9%
18 100.0% 60.0% 60.0%
19 100.0% 99.9% 99.9%
21 100.0% 99.8% 99.8%
22 100.0% 100.0% 100.0%
23 90.9% 99.9% 99.8%

Avg. 91.2% 93.8% 93.8%

dataset by SPERTL. The patient ID’s highlighted in bold font
are for patients which were used for ES prediction in [19].
The achieved average sensitivity is 91.20% and an average
specificity of 93.80% is achieved for predicting a seizure
5 minutes ahead of time. Furthermore, a higher specificity
indicates that the model was able to reduce the likelihood of
generating FP’s. However, this comes at a cost of a few FN’s
as it resulted in a lower sensitivity. For patients 5, 11 and 22,
the designed model was able to differentiate between the pre-
ictal and interictal segments perfectly even during the testing
phase. For several patients, the model was able to achieve a
perfect score for either sen. (ID’s: 3, 14, 17, 18, 19, 21) or
for spe. (ID’s: 1, 3, 4 and 10). For the remaining patients, the
model did achieve scores of greater than 90% for at least one
metric except for patient ID 7. Further, the case of patients 6
and 18 are outliers because despite performing very well for
one metric, the other metric had a low score of 60%.

Comparing our work to the state-of-the-art [19], it can
be seen that our proposed ResNet model provided a higher
accuracy for all patients except for patient 6 where our
achieved accuracy of 60.0% was lower compared to 77.4%.
For patients 1 and 2, our model had a lower sensitivity of
83.3% and 60.0% compared to 88.4% and 82.7%, respectively,
and a lower specificity of 60.0% compared to 66.5% for patient
18. All of these results are summarized in Table III. Specificity
measures the ability of the model to identify true negatives
while minimizing the false positives. For patient 18, our model
actually has a sensitivity of 1 which means that all seizures are
predicted (none is missed), i.e. there are 0 false negatives. In
contrast, both works show a low specificity which indicates a
high false positive rate for this particular patient. This may be
because there are very few seizures to begin with, the preictal
duration is too low, and lastly, the preictal profile makes it
very hard to predict an upcoming seizure.

Authorized licensed use limited to: FLORIDA INTERNATIONAL UNIVERSITY. Downloaded on August 02,2023 at 15:30:35 UTC from IEEE Xplore.  Restrictions apply. 



TABLE III
SPERTL SEN., SPE. AND ACC. COMPARED TO STATE-OF-THE-ART [19]

Wang et al. [19] SPERTL
ID Sen. Spe. Acc. Sen. Spe. Acc.
1 88.4% 91.2% 89.8% 83.3% 100.0% 99.9%
6 82.7% 66.2% 74.4% 60.0% 97.6% 97.5%
8 78.5% 83.3% 80.9% 95.7% 92.5% 92.6%
9 81.4% 71.9% 76.7% 85.7% 95.8% 95.8%

10 75.8% 71.7% 73.8% 91.7% 100.0% 100.0%
18 88.4% 66.5% 77.4% 100.0% 60.0% 60.0%
22 90.7% 63.3% 77.0% 100.0% 100.0% 100.0%

Avg 82.7% 72.4% 77.6% 88.1% 92.3% 92.3%

The higher accuracy is the result of higher specificity
achieved by SPERTL, which also implies an ability to improve
the TNR which reduces the FPR. In [19], because only
seizures with certain properties are chosen (at least one hour
of preictal time and 4 hours of interictal time), the class
imbalance is lower. Despite using the complete dataset, the
ability of SPERTL to have a lower number of FP’s is desirable.
One reason for this maybe the ability of ResNets to deal
with class-imbalance. For example, a simple 34-layer ResNet
without stacked layers can reduce the top-1 error rate by
3.50% compared to plain CNNs for ImageNet classification.
Compared to such tasks, medical event detection/prediction is
even more imbalanced which highlights ResNet superiority.

V. CONCLUSION

In this work, we successfully developed a model called
SPERTL which used TL techniques to train a ResNet for
early ES prediction from EEG data. Our proposed model was
trained and tested on a set of 20 patients from the CHB-MIT
dataset for patient-specific 5-minute-ahead seizure prediction.
The experiments have shown SPERTL has a superior capa-
bility to differentiate between preictal and interictal segments
and it outperformed the state-of-the-art method in terms of
sensitivity by 5.4%, specificity by 19.9%, and accuracy by
14.7%. These are encouraging preliminary results, and we are
working towards improving the seizure prediction accuracy
within a given SOP which will result in lower false alarm
rates. Other future goals include developing energy-efficient
federated models for real-time deployment on hardware.
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