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Abstract— Autism spectrum disorder  (ASD) affects large 

number of children and adults in the US, and worldwide. Early 

and quick diagnosis of ASD can improve the quality of life 

significantly both for patients and their families. Prior research 

provides strong evidence that structural and functional magnetic 

resonance imaging (MRI) data collected from individuals with 

ASD exhibit distinguishing characteristics that differ in local and 

global, spatial and temporal neural patterns of the brain – and 

therefore can be used for diagnostic purposes for various mental 

disorders. However, the data from MRI are high-dimensional and 

advanced methods are needed to make sense out of these datasets. 

In this paper, we present a novel model based on graph 

convolutional network (GCN) that can utilize resting state fMRI 

(rs-fMRI) data to classify ASD subjects from health controls (HC). 

In addition to using the graph from traditional correlation 

matrices, our proposed GCN model incorporates graphlet 

topological counting as one of the training features. Our results 

show that graphlets can preserve the topological information of 

the graphs obtained from fMRI data. Combined with our GCN, 

the graphlets retain enough topological information to 

differentiate between the ASD and HC. Our proposed model gives 

an average accuracy of 64.27% on the whole ABIDE-I data sets 

(1035 subjects) and highest site-specific accuracy of 75.9%, which 

is comparable to other state-of-the-art methods – while potentially 

open to being more interpretable. 

Keywords— Graph Convolutional Networks, Autism Spectrum 

disorder, ABIDE I dataset, graphlet 

I. INTRODUCTION

Autism spectrum disorder (ASD) is a neurodevelopmental 
syndrome that affects children severely, causing difficulties in 
social skills and communication [1], [2]. The current clinical 
diagnosis of ASD is accomplished using behavioral, and 
cognitive metrics such as developmental, language, behavioral 
estimations and child's guardians reports in different settings 
(e.g., home and school) [3]. Early diagnosis for ASD diagnosis 
remains challenging [4], and may lack specificity, and 
sensitivity [5], [6] or the rigor required of other diseases such as 
diabetes. Both ADOS and ADR-R tests are prone to false 
positives. Despite the importance of conferring a diagnosis of 

ASD early to implement intervention, there are numerous 
barriers, delays, and conflicting information many families 
experience during the assessment and diagnosis process [7]. The 
median age at diagnosis for ASD is 46 - 74 months according to 
CDC – approx. diagnostic delay of 2.2 years on average [8] - 
and impacts considerable number of children [9]. This delay is 
consequential considering that the early interventional measures 
such as applied behavioral analysis (ABA) – in addition to being 
satisfactory to parents, and medical staff alike – more 
optimistically, can and does, modify the ASD patterns to 
improve the health, level of functioning and well-being of the 
children [10], [11]. These clinical metrics can be imperfect 
measures as they are subject to high test-retest variability, and 
are influenced by factors (such as environment, social structure, 
other mental disorders, etc.) other than changes due to ASD 
[12]– termed as epistemological uncertainty, and urgent need for 
distinctive, and reliable biomarkers is widely accepted.  

In the recent decade, advances in neuroimaging technologies 
have provided a critical step, and have made it possible to 
measure the pathological, and functional changes associated 
with ASD in the brain [13], [14]. Resting state functional 
magnetic resonance imaging (rs-fMRI) – is non-invasive and 
fast - has the potential to record functional abnormalities in brain 
networks specific to ASD as compared to the typical brain [15]. 
For brain disorders, rs-fMRI is a widely used approach as it 
spontaneously measures low-frequency fluctuations in the 
blood-oxygen-level-dependent (BOLD) signal to investigate the 
functional architecture of the brain. However, the subtle changes 
in functional brain networks are impossible to be used as 
biomarker using conventional radiological, or computational 
methods [16]. Advance machine-learning models applied to 
fMRI data offer a systematic, and possibly interpretable 
approach to learn subtle patterns leading to objective 
classification, and biomarker discovery. Such discoveries offer 
observation of neurological processes, track progression, 
evaluate whether a specific approach (pharmacological or 
otherwise) is helping, and offer differentiation power to classify 
people with typical, ASD, and other mental disorders.  

In this paper, we designed and developed a graph neural 
network [17]–[19] (GNN) based machine-learning model that 
can utilize rs-fMRI data to classify ASD subjects from health 
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control (HC). Our method exploits the topological properties of 
the brain network to distinguish between ASD and HC. In 
addition to lowering the dimensionality of the input rs-fMRI 
features, we developed a technique to extract graph motifs (or 
graphlets) from the regions of interest (ROIs) from the fMRI 
connectivity matrix, leading to a novel feature that have the 
distinguishing power to classify between ASD and healthy 
controls. While other machine-learning models preprocess and 
transform the connectivity matrix into a set of flattened vectors 
leading to losing the spatial and temporal information of the 
brain network; our proposed GCN preserves complex 
topological information, and hence may be open to 
interpretation. Our extensive experiments using Autism Brain 
Imaging Data Exchange (ABIDE-I) benchmarking datasets 
[20], [21] demonstrate that our model can reach an average 
accuracy of 64.27% (across whole data set), and exhibits highest 
accuracy of 75.9% on some of the sites. These results are 
comparable to other state-of-the-art methods such as ASD-
DiagNet [16].  

The rest of this paper is structured as follows: in section 2, 
we discuss the related state-of-the-art tools and approaches of 
ASD classification. In section 3, we discuss the detail of the 
design of the machine-learning algorithm. The experimental 
result and discussion will be presented in Section 4, and 
conclusions and future work are in Section 5. 

II. BACKGROUND AND RELATED WORK 

The Autism Brain Imaging Data Exchange (ABIDE) 
initiative has collaborated with 17 international imaging sites to 
provide the functional and structural brain imaging 
benchmarking datasets [13], [14], [20], [22]–[24]. These data 
sets have been used to develop, test and train machine-learning 
models. Some of these include probabilistic neural network  [13]  
to classify resting state fMRI data of subjects under age of 20. 
Another model BrainNetCNN  [25] with an element-wise layer 
achieved an accuracy of 68.7%. Traditional machine-learning 
models such as Support Vector Machines (SVM) and random 
forests (RF) are explored in several studies [23], [26], [27].  

More advance machine-learning models such as deep 
learning methods, Autoencoders, Long Short-Term Memory 
(LSTM), and Convolutional Neural Network (CNN) are also 
gaining popularity due to superior performances in disease 
diagnosis and classification [18], [22], [27]–[29]. A deep 
learning method [20] that consists of two stacked  autoencoders, 
and a multi-layer classifier achieved an average of 70% accuracy 
(across all sites). Another model used extraction of 
spatiotemporal features from the full 4-D data using 3-D CNNs 
and 3-D Convolutional LSTMs achieves state-of-the-art results 
with F1-scores of 0.78 and 0.7 on NYU and UM sites, 
respectively [30]. Our previously proposed and highly popular 
method, ASD-DiagNet [22], consists of an autoencoder and a 
single layer perceptron (SLP) for classification decision and 
achieved 63.4% accuracy using the complete ABIDE dataset. 
The maximum accuracy exhibited by ASD-DiagNet is 82%. 
However, all these traditional and deep-learning methods are not 
amenable to interpretation, which may be essential for clinical 
purposes.  

In the recent years, Graph Neural Networks (GNNs) have 
gained a lot of attention because these networks can analyze data 

that cannot be represented in a grid-like structure i.e. graphs. 
Application areas include social networks, biological networks, 
or brain connectomes, which are traditionally  represented in the 
form of graphs. GNN as a deep learning method can learn the 
spatial patterns in the graphs and has achieved success in disease 
diagnosis [18], [31], [32]. Some of these models include graph 
similarity metric using a Siamese graph convolutional neural 
network (s-GCN) for pair and subject classification [33]. 
Another hierarchical graph convolution network [18] 
framework was applied to ASD and Alzheimer’s disease. 
Another more recent GNN proposed regularized pooling layer 
[34] to highlight significant regions of interest (ROIs) for 
inferring neuroimaging-derived biomarkers for ASD and 
improving the accuracy of ASD classification. While these 
methods have been successful in achieving results for 
classification of brain data for ASD and Alzheimer’s, the impact 
(of usage) of brain network topology used for achieving the 
classification is unclear. By extension, the utility of these 
methods for interpretation is going to be limited.  

Another limitation of these methods is selective reporting of 
subset of ABIDE results. Some studies have chosen to drop the 
subjects that are under or above a specific age [13], [35] while 
others have tested them on data from a subset of sites [30]. ASD-
DiagNet is the state-of-the-art method in this filed, and has 
reported results on all 1035 subjects in ABIDE I dataset. These 
results will be used as a baseline to compare the results of our 
proposed GCN method in this paper for comprehensive and 
complete analysis.  

III. MATERIALS AND METHODS 

A. Graph Convolutional Network 

We use the GCN model proposed by Kipf et al. [36] as the 
basis of our model. We define an undirected graph for each 

subject 𝐺 = {ℛ𝑖 , 𝐴𝑖}, where ℛ𝑖 = {𝑟𝑖
1, 𝑟𝑖

2 … , 𝑟𝑖
𝑁  } is the set of N 

nodes, and 𝐴𝑖 ∈ 𝑅𝑁×𝑁is the adjacency matrix of the i-th subject 
[36]. For CC200 functional parcellation, N equals to 200 and is 
the number of regions of interests (ROIs). 

Each of the convolutional layer can be defined as: 

𝐻𝑙+1 = 𝜎 (𝐷̃−
1
2𝐴̃𝐷̃−

1
2𝐻𝑙𝑊𝑙) (1) 

Fig. 1.  30 isomorphic types of undirected subgraphs between size 2 and 5. 
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Where 𝐴̃ = 𝐴 + 𝐼 , 𝐼  is the identity matrix and 𝐴  is the 

adjacency matrix of the undirected graph G.  𝐷̃ is the diagonal 

node degree matrix of 𝐴̃, and W is a trainable weight matrix. 
Here 𝜎  is the activation function and we choose 𝑅𝑒𝐿𝑢(∙) =
max (0, ∙). 

Graph convolutional layer is used to predict the structure of 
the graph by using edge features. For example, the weights and 
the Pearson’s correlation coefficient are some of the 
representations of the relationship between different ROIs. We 

can define the 𝑓𝑖 as the features for the nodes in the 𝑙𝑡ℎ layer. 
Then the propagation mode for the update of node representation 
is given by [31]: 

𝑓𝑖 = 𝜎 (𝑊0
𝑙𝑓𝑖 + ∑ 𝜑(𝑤1

𝑙−1𝑓𝑗
𝑙−1, 𝑒𝑖𝑗)

𝑗∈𝒩(𝑖)

) (2) 

Where 𝑁(𝑖) denotes the set of indices of neighboring nodes, 

𝑒𝑖𝑗  denotes the features related to the edge of node 𝑣𝑖 and 𝑣𝑗. 𝜎 

is the activation function, and 𝜑 is a function used to embed the 

neighboring nodes’ features. In this paper, we choose the ReLu 

as the activation function for each hidden layer.  

B. Node and Edge Feature Construction 

1) Pearson’s correlation coefficient: The characteristics of 

nodes were collected from imaging data. After the Craddock 

template [37] was used to partition the ABIDE I preprocessed 

fMRI data [38] into 200 brain areas (CC-200 parcellation), for 

each of the subject, we construct a graph with 200 nodes using 

these ROIs. Then, average time series were computed in the 

brain and the Pearson correlation coefficient between two brain 

regions was calculated to obtain each subject's whole functional 

connectivity matrix and this was done for all pairs. 

The following equation was used to obtain the coefficient 

between each region x, and y of length of n. 

 

𝑝𝑥𝑦 =  
∑ (𝑥𝑖 − 𝑥̅)(𝑦𝑖 − 𝑦̅)𝑛

𝑖=1

√∑ (𝑥𝑖 − 𝑥̅)2√∑ (𝑦𝑖 − 𝑦̅)2𝑛
𝑖=1

𝑛
𝑖=1

 (3)
 

 

Where 𝑥̅ , and 𝑦̅  are the mean of x and y vectors, 
respectively. With the 200 regions provided, the computing of 
all pairwise correlations yield a matrix of 200 × 200 . The 
functional connectivity matrix is a real symmetric matrix, and 
the diagonal elements represent the correlation between each 
region and themselves, so we only keep the upper right triangle 
of the matrix, which is a widely-adopted method as in [3], [15], 
[20], [22]. These pairs give 𝑛(𝑛 − 1)/2 = 19900 features. The 
feature chosen for nodes still have a high dimension. Therefore, 
to avoid the redundancy of the features and possible overfitting 
problem, we reduce the feature vectors with Recursive Feature 
Elimination [39] (RFE) with a fixed number of 5000. For our 
proposed method, the Pearson’s correlation coefficient is also 
used for the graphlet counting vector calculation and is 
described below. 

2) Graphlet counting vector: We propose graphlet counting 

vector as a feature for preserving the topological information of 

the fMRI data.  
With the correlation matrix calculated, we construct a complete 
graph with 200 nodes by it. For each pair of the nodes in this 
graph, there is an edge containing the coefficient value. All the 
nodes also have a self-loop which is corresponding to the 
diagonal value of the correlation matrix. For each of the subjects, 
we construct a vector of 30 dimensions to represent the number 
of 30 different graphlets with 2 to 5 nodes [40]. A subgraph G′ 
of a graph G is a graph such that V(G′) ⊆ V(G) and E(G′) ⊆ 

 

 

 

Algorithms 1. Calculating the graphlet counting vector 

Input: an 𝑁 × 𝑁 correlation matrix 𝐴𝑐𝑜, where in this case 

𝑁 = 200. A vector 𝑉𝑔 of size 1 × 30 initialized. 30 types of 

graphlets 𝐺1 to  𝐺30. A given threshold 𝜃. 

 

1: create a graph 𝐺 with edge weights given by 𝐴𝑐𝑜 

2: remove self-loop edge in  𝐺 

3: for each value 𝑎𝑖𝑗  in 𝐴𝑐𝑜 (edge in  𝐺): 

4:       remove edge where |𝐴𝑐𝑜| < 𝜃. (we have 𝐺 ⇀ 𝐺̂) 

5: end for 

6: for  𝑖 = 0 𝑡𝑜 29 do: 

7:      calculate isomorphism count in 𝐺’ →  𝑉𝑔[𝑖]  

8:  end for 
Fig. 2.  An example of counting the graphlet type 4 in a 7-node graph. 
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E(G). And a graphlet is defined as a small, connected, non-
isomorphic subgraph. From the 2 nodes to 5 nodes, there are a 
total of 30 different undirected subgraphs named G1 to G30  as 
shown in Fig. 1. Like the process we proposed in previous 
section, we use the 200 regions provided to compute all pairwise 
correlations and yield a matrix of 200 × 200. In this case, we 
have a complete graph Gpcc that has 200 nodes, and between 

each pair of nodes there exists an edge with coefficient value. 
This graph also contains 200 self-loop edges which will be 
removed in the next stage. All these values are in range [−1, 1] 
and with the threshold θg we choose, we can get a new graph 

Gpcc
′ . After all the self-loops and isolated nodes are removed, we 

use Networkx Python library to count the number of 30 types of 
graphlets and store the value into a Vgc = (nG0

, nG1
, … , nG29

). 

The whole process is followed by the Algorithm 1 and illustrated 
in Fig. 2. 

3) Edge Weight Construction: The relationship between 

nodes in the graph in the form of edges is also an important 

factor to be considered in modeling. We calculate the weight of 

each pair of the nodes by defining a similarity variable between 

them. This similarity variable value is consist of two parts – the 

first one is the phenotypic information, i.e. the gender of the 

subjects, and the second is the graph motif similarity. It is 

defined as: 

𝐶𝑜(𝑀𝑥 , 𝑀𝑦) = 𝑆𝑖𝑚(𝑉𝑔𝑐𝑥, 𝑉𝑔𝑐𝑦) (4) 

Where 𝑆𝑖𝑚(𝑉𝑔𝑐𝑥, 𝑉𝑔𝑐𝑦) represents the similarity of the two 

graphlet counting vectors (GCV). In this paper, we use the 
Cosine Similarity to measure it. Given two GCVs 𝑥 and 𝑦 with 
dimension of 30, we define their similarity value as: 

Fig. 3.  An overview of the pipeline used for building and training the model of classifying ASD 
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𝑆𝑖𝑚(𝑉𝑔𝑐𝑥, 𝑉𝑔𝑐𝑦) =  
𝑥 ∙ 𝑦

‖𝑥‖‖𝑦‖
=  

∑ 𝑥𝑖𝑦𝑖
30
𝑖=1

√∑ 𝑥𝑖
230

𝑖=1 √∑ 𝑦𝑖
230

𝑖=1

(5)
 

Where ‖𝑥‖ is the Euclidean norm of vector 𝑥⃗. This measure 
computes the cosine of the angle between 𝑥⃗  and 𝑦⃗. A cosine 
value of 0 means the two vectors have no match and the closer 
the cosine value to 1, the smaller the angle between them and 
the greater the match between vectors. 

For the category information gender, 𝜑 is defined as: 

𝜑 (𝐴𝑥 , 𝐴𝑦) =  {
0,     𝑖𝑓 𝐴𝑥 ≠  𝐴𝑦 

1,     𝑖𝑓 𝐴𝑥 =  𝐴𝑦
(6) 

At last, we can compute the weight for each pair of the edges: 

𝑊(𝑢, 𝑣) = 𝐶𝑜(𝑀𝑢 , 𝑀𝑣) +  𝜑 (𝐴𝑢, 𝐴𝑣) (7) 

 

TABLE I.  LEAVE-ONE-SITE-OUT RESUTLES 

C.  GCN structures 

Graph convolutional neural network cannot achieve 

satisfactory performance by simply stacking graph 

convolutional modules to deepen the network, and vanishing 

gradient problem will result in network over-smoothing [41]. 

Our proposed model, shown in Fig. 3, has one input layer, 

several hidden layers, and an output layer in this model. Input 

layer and hidden layers were followed by node pooling layer, 

and output layer was followed by SoftMax. 

The node pooling layer is used to reduce the redundant 

features of the graph [17]. The methods include aggregating the 

neighboring nodes to one node and pruning the original graph G 

to a smaller subgraph with only some important nodes. In order 

to classify at the graph level, we need a dimensionality reduction 

layer to bring the number of nodes and the feature dimension of 

each node down to a suitable size. Previous research results [42] 

have shown that some parts of the brain (ROIs) hold more 

weight in prediction and classification than other regions, so 

they must be retained in the pooling process. 

To avoid overfitting, we applied DropEdge [43] to the 

feature graph when the hidden layer was convolved. The idea of 

DropEdge is to randomly remove a certain number of edges 

from the input graph at each training epoch, which can be treated 

as a data augmenter. In our experiment, the super-parameter 

value of drop rate was set to 0.2, which means edges were 

deleted with a probability of 20%. 

IV. EXPERIMENT RESULT AND DISCUSSION 

 The purpose of this paper is to propose a functional 

connectivity based graph neural networks model that using 

fMRI time series and the topological information (graphlet 

count) within ROIs to classify and assist ASD diagnosis. 

A. Data Acquisition 

In this paper, we used the ABIDE I data, which is a 

collection of 1112 subjects composed of structural and rs-fMRI 

data including 539 people with ASD and 573 healthy people. 

Because various locations have different data collecting 

equipment, parameters setting, diagnosis processes, and 

assessment techniques, ABIDE dataset I is a highly 

heterogeneous database [17], [31]. After filtering the 

incomplete and corrupted subjects data, our experiment dataset 

consists of 505 subjects with ASD and 530 healthy controls 

from all the 17 sites [20], [44]. The data was preprocessed using 

a widely adopted pipeline called Configurable Pipeline for the 

Analysis of Connectomes (C-PAC) and parcellated the brain 

into 200 region of interests (ROIs) using Craddock 200 [37] 

(CC200) functional parcellation. 

Site 
Subject 

Count 
Acc. Sen. Spe. 

CALTECH 37 66.3 53.6 79.7 

CMU 27 53.8 68.5 37.9 

KKI 48 64.9 62.8 66.4 

LEUVEN 63 58.7 52.4 64.1 

MAXMUN 52 53 49.7 55.8 

NYU 175 68.1 53.9 78.75 

OHSU 26 67.6 59.9 74.2 

OLIN 34 75.9 67.7 86.3 

PITT 56 65.8 72.8 58.3 

SBL 30 48.7 66.5 30.9 

SDSU 36 50.1 36.7 58.6 

STANFORD 39 55.4 59.9 51.1 

TRINITY 47 63.6 55.9 70.4 

UCLA 98 69.5 57.3 84.5 

UM 140 66.2 54.1 77 

USM 71 67.4 64.2 73.3 

YALE 56 68.3 68.7 67.9 

Mean 1035 

(total) 

64.27 57.95 69.97 

 
 

Fig. 4.  Comparison results with the existing methods 
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B. Implementation details 

For all the experiments reported in this section, we run them 

on a Linux server running Ubuntu Operating System. The server 

contains two Intel Xeon (Skylake) Processors at 2.1 GHz with a 

total 48 GBs of RAM. The system contains an NVIDIA Tesla 

K-40c GPU with 2,880 CUDA cores and 12 GBs of RAM. 

CUDA version 11.4 and PyTorch library were used for 

conducting the experiments.  In the training process, learning 

rate was set to 0.005, and dropout rate was set to 0.15. Each 

model was iteratively trained 200 times. 

We implemented a GCN-based ASD classification using 

fMRI data with the pipeline of PyTorch framework [45]. As 

mentioned above, the nodes of the graph were obtained from the 

classification of brain regions as well as the graphlet count 

vector, while the edges feature of the graph were constructed by 

the weight between pairs of the ROIs with age information and 

graph motif similarities. The potential representations of the 

graph were learned by the GCN layer, and the salient features 

were fed to the classification layer for autism label prediction 

[19]. The readout layer was used to aggregate the node feature 

vectors into a single vector which was then used as input to the 

final classifier. With a limited number of data topics available 

from the dataset, this model was evaluated using a k-fold cross-

validation technique to overcome possible overfitting problems. 

The dataset was randomly partitioned into k groups of equal 

size, one of which was used to obtain the classification 

performance and this process was repeated 𝑘 times. Due to the 

subject size limitation of the ABIDE dataset, when evaluating 

the results site by site, we use 𝑘=5 to avoid substantial bias in 

the results for a particular data site due to the insufficient number 

of the subjects [22]. 

C. Evaluation 

To evaluate the proposed model, the entire data set was 

divided into two sets of subjects: 80% training data (828 

subjects) and 20% testing data (207 subjects). Comparing to 

other neural networks, graph networks are a more natural way 

to represent brain network since graphs can inherently capture 

relationships and complex interactions between ROIs, and thus 

possess the power of interpreting relational information in 

human brains. The improved performance of our proposed GCN 

model in classifying functional connectivity networks comes 

from graph convolutional layers for node and edge 

representation.  

Additionally, as an evaluation of the classifier performance 

across sites, we performed a leave-one-site-out cross validation 

process. This process excluded all the subjects from one site 

from the training process and used that data as the test set to 

evaluate the model. We repeated this process for all the 17 sites 

and the results of these analyses are reported in Table I. 

For a whole data sites evaluation, we performed 10-fold 

cross-validation on all 1,035 subjects using CC-200 atlas. We 

compared accuracy, sensitivity, and specificity of our approach 

with [21], [22]. As shown in Fig 4, our method achieves 64.27% 

accuracy as compared to 60% and 63.2% for Neilsen et. al and 

ASD-DiagNet. We were able to perform well for sensitivity 

57.95% as compared to ASD-DiagNet which exhibited 53.67% 

but fall short when compared with Neilsen et. al. (62%). We 

outperformed the other two leading methods in specificity with 

our GCN model achieving 69.97% as compared to 58% and 

68.4% for Neilsen et. al. and ASD-DiagNet, respectively. These 

are encouraging early results for GCN based classification of 

ASD vs. HC.  

V. CONCLUSIONS AND DISCUSSIONS 

In this paper, we proposed a novel graph convolutional 
network (GCN) method to classify between autistic brain scans 
from healthy brain scans. To utilize the spatial structure of the 
brain network and extract information from the topology of the 
connectome, we utilized a novel graphlet count vector feature, 
which were then fed to the GCN layers to perform the 
classification. We evaluated our developed method using 
ABIDE-I data set, which contains all the images from 17 
different acquisition sites and compared with other state-of-the-
art techniques. Our results showed a mean test accuracy of 
64.3% in a 10-fold cross validation experiment using the GCN 
algorithm and Drop Edge strategy for whole ABIDE-I data set 
with comparable sensitivity and superior specificity as 
compared to the state-of-the-art methods. Our method provides 
a novel architecture and method for classifying, characterizing 
ASD biomarkers and can potentially be adaptable for diagnosis 
of other mental illnesses such as Alzheimer’s and ADHD 
disease. Further investigation will be needed to interpret the 
GCN models specific to ASD classification and our unique 
graph motif based model will be more amenable to explanations, 
which will be essential for clinical adaptations.  

There are few limitations to our work presented in this paper. 
One is that the ABIDE dataset size is small and the network 
training stops relatively fast before it is overfitted – a limitation 
that is shared among all the existing machine-learning models. 
Another is that the current model is only tested on ABIDE-I 
dataset. More testing for larger data sets in the future will give 
us more insights. 
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