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Abstract— Autism spectrum disorder (ASD) affects large
number of children and adults in the US, and worldwide. Early
and quick diagnosis of ASD can improve the quality of life
significantly both for patients and their families. Prior research
provides strong evidence that structural and functional magnetic
resonance imaging (MRI) data collected from individuals with
ASD exhibit distinguishing characteristics that differ in local and
global, spatial and temporal neural patterns of the brain — and
therefore can be used for diagnostic purposes for various mental
disorders. However, the data from MRI are high-dimensional and
advanced methods are needed to make sense out of these datasets.
In this paper, we present a novel model based on graph
convolutional network (GCN) that can utilize resting state fMRI
(rs-fMRI) data to classify ASD subjects from health controls (HC).
In addition to using the graph from traditional correlation
matrices, our proposed GCN model incorporates graphlet
topological counting as one of the training features. Our results
show that graphlets can preserve the topological information of
the graphs obtained from fMRI data. Combined with our GCN,
the graphlets retain enough topological information to
differentiate between the ASD and HC. Our proposed model gives
an average accuracy of 64.27% on the whole ABIDE-I data sets
(1035 subjects) and highest site-specific accuracy of 75.9%, which
is comparable to other state-of-the-art methods — while potentially
open to being more interpretable.

Keywords— Graph Convolutional Networks, Autism Spectrum
disorder, ABIDE I dataset, graphlet

1. INTRODUCTION

Autism spectrum disorder (ASD) is a neurodevelopmental
syndrome that affects children severely, causing difficulties in
social skills and communication [1], [2]. The current clinical
diagnosis of ASD is accomplished using behavioral, and
cognitive metrics such as developmental, language, behavioral
estimations and child's guardians reports in different settings
(e.g., home and school) [3]. Early diagnosis for ASD diagnosis
remains challenging [4], and may lack specificity, and
sensitivity [5], [6] or the rigor required of other diseases such as
diabetes. Both ADOS and ADR-R tests are prone to false
positives. Despite the importance of conferring a diagnosis of
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ASD early to implement intervention, there are numerous
barriers, delays, and conflicting information many families
experience during the assessment and diagnosis process [7]. The
median age at diagnosis for ASD is 46 - 74 months according to
CDC - approx. diagnostic delay of 2.2 years on average [8] -
and impacts considerable number of children [9]. This delay is
consequential considering that the early interventional measures
such as applied behavioral analysis (ABA) — in addition to being
satisfactory to parents, and medical staff alike — more
optimistically, can and does, modify the ASD patterns to
improve the health, level of functioning and well-being of the
children [10], [11]. These clinical metrics can be imperfect
measures as they are subject to high test-retest variability, and
are influenced by factors (such as environment, social structure,
other mental disorders, etc.) other than changes due to ASD
[12]- termed as epistemological uncertainty, and urgent need for
distinctive, and reliable biomarkers is widely accepted.

In the recent decade, advances in neuroimaging technologies
have provided a critical step, and have made it possible to
measure the pathological, and functional changes associated
with ASD in the brain [13], [14]. Resting state functional
magnetic resonance imaging (rs-fMRI) — is non-invasive and
fast - has the potential to record functional abnormalities in brain
networks specific to ASD as compared to the typical brain [15].
For brain disorders, rs-fMRI is a widely used approach as it
spontaneously measures low-frequency fluctuations in the
blood-oxygen-level-dependent (BOLD) signal to investigate the
functional architecture of the brain. However, the subtle changes
in functional brain networks are impossible to be used as
biomarker using conventional radiological, or computational
methods [16]. Advance machine-learning models applied to
fMRI data offer a systematic, and possibly interpretable
approach to learn subtle patterns leading to objective
classification, and biomarker discovery. Such discoveries offer
observation of neurological processes, track progression,
evaluate whether a specific approach (pharmacological or
otherwise) is helping, and offer differentiation power to classify
people with typical, ASD, and other mental disorders.

In this paper, we designed and developed a graph neural
network [17]-[19] (GNN) based machine-learning model that
can utilize rs-fMRI data to classify ASD subjects from health
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control (HC). Our method exploits the topological properties of
the brain network to distinguish between ASD and HC. In
addition to lowering the dimensionality of the input rs-fMRI
features, we developed a technique to extract graph motifs (or
graphlets) from the regions of interest (ROIs) from the fMRI
connectivity matrix, leading to a novel feature that have the
distinguishing power to classify between ASD and healthy
controls. While other machine-learning models preprocess and
transform the connectivity matrix into a set of flattened vectors
leading to losing the spatial and temporal information of the
brain network; our proposed GCN preserves complex
topological information, and hence may be open to
interpretation. Our extensive experiments using Autism Brain
Imaging Data Exchange (ABIDE-I) benchmarking datasets
[20], [21] demonstrate that our model can reach an average
accuracy of 64.27% (across whole data set), and exhibits highest
accuracy of 75.9% on some of the sites. These results are
comparable to other state-of-the-art methods such as ASD-
DiagNet [16].

The rest of this paper is structured as follows: in section 2,
we discuss the related state-of-the-art tools and approaches of
ASD classification. In section 3, we discuss the detail of the
design of the machine-learning algorithm. The experimental
result and discussion will be presented in Section 4, and
conclusions and future work are in Section 5.

II. BACKGROUND AND RELATED WORK

The Autism Brain Imaging Data Exchange (ABIDE)
initiative has collaborated with 17 international imaging sites to
provide the functional and structural brain imaging
benchmarking datasets [13], [14], [20], [22]-[24]. These data
sets have been used to develop, test and train machine-learning
models. Some of these include probabilistic neural network [13]
to classify resting state fMRI data of subjects under age of 20.
Another model BrainNetCNN [25] with an element-wise layer
achieved an accuracy of 68.7%. Traditional machine-learning
models such as Support Vector Machines (SVM) and random
forests (RF) are explored in several studies [23], [26], [27].

More advance machine-learning models such as deep
learning methods, Autoencoders, Long Short-Term Memory
(LSTM), and Convolutional Neural Network (CNN) are also
gaining popularity due to superior performances in disease
diagnosis and classification [18], [22], [27]-[29]. A deep
learning method [20] that consists of two stacked autoencoders,
and a multi-layer classifier achieved an average of 70% accuracy
(across all sites). Another model used extraction of
spatiotemporal features from the full 4-D data using 3-D CNNs
and 3-D Convolutional LSTMs achieves state-of-the-art results
with Fl-scores of 0.78 and 0.7 on NYU and UM sites,
respectively [30]. Our previously proposed and highly popular
method, ASD-DiagNet [22], consists of an autoencoder and a
single layer perceptron (SLP) for classification decision and
achieved 63.4% accuracy using the complete ABIDE dataset.
The maximum accuracy exhibited by ASD-DiagNet is 82%.
However, all these traditional and deep-learning methods are not
amenable to interpretation, which may be essential for clinical
purposes.

In the recent years, Graph Neural Networks (GNNs) have
gained a lot of attention because these networks can analyze data

3132

that cannot be represented in a grid-like structure i.e. graphs.
Application areas include social networks, biological networks,
or brain connectomes, which are traditionally represented in the
form of graphs. GNN as a deep learning method can learn the
spatial patterns in the graphs and has achieved success in disease
diagnosis [18], [31], [32]. Some of these models include graph
similarity metric using a Siamese graph convolutional neural
network (s-GCN) for pair and subject classification [33].
Another hierarchical graph convolution network [18]
framework was applied to ASD and Alzheimer’s disease.
Another more recent GNN proposed regularized pooling layer
[34] to highlight significant regions of interest (ROIs) for
inferring neuroimaging-derived biomarkers for ASD and
improving the accuracy of ASD classification. While these
methods have been successful in achieving results for
classification of brain data for ASD and Alzheimer’s, the impact
(of usage) of brain network topology used for achieving the
classification is unclear. By extension, the utility of these
methods for interpretation is going to be limited.

Another limitation of these methods is selective reporting of
subset of ABIDE results. Some studies have chosen to drop the
subjects that are under or above a specific age [13], [35] while
others have tested them on data from a subset of sites [30]. ASD-
DiagNet is the state-of-the-art method in this filed, and has
reported results on all 1035 subjects in ABIDE I dataset. These
results will be used as a baseline to compare the results of our
proposed GCN method in this paper for comprehensive and
complete analysis.

III. MATERIALS AND METHODS

A. Graph Convolutional Network

We use the GCN model proposed by Kipf et al. [36] as the
basis of our model. We define an undirected graph for each
subject G = {R;, A;}, where R; = {r}, 7% ..., 7N }is the set of N
nodes, and 4; € R¥*Vis the adjacency matrix of the i-th subject
[36]. For CC200 functional parcellation, N equals to 200 and is
the number of regions of interests (ROIs).

Each of the convolutional layer can be defined as:

1 1
+1 — N 5AD 5! l
H"' = ¢ (D 2ADZH'W €))
2-Node 3-Node 4-Node
| AN
Gy Gy Gy Gy Gs Gg Gy Gg Gg
5-Node
Gio Gy Giz Gz Gia Gis Gis
Gi7 Gig Gig Gao Gz1

Fig. 1. 30 isomorphic types of undirected subgraphs between size 2 and 5.
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Where A =A+1, I is the identity matrix and A is the
adjacency matrix of the undirected graph G. D is the diagonal
node degree matrix of A, and W is a trainable weight matrix.
Here o is the activation function and we choose ReLu(:) =
max (0, -).

Graph convolutional layer is used to predict the structure of
the graph by using edge features. For example, the weights and
the Pearson’s correlation coefficient are some of the
representations of the relationship between different ROIs. We
can define the f; as the features for the nodes in the [** layer.
Then the propagation mode for the update of node representation
is given by [31]:

fi=o|Wifit D el e | @
JEN (@)
Where N (i) denotes the set of indices of neighboring nodes,
e;; denotes the features related to the edge of node v; and v;. o
is the activation function, and ¢ is a function used to embed the
neighboring nodes’ features. In this paper, we choose the ReLu
as the activation function for each hidden layer.

B. Node and Edge Feature Construction

1) Pearson’s correlation coefficient: The characteristics of
nodes were collected from imaging data. After the Craddock
template /37] was used to partition the ABIDE I preprocessed
fMRI data /38 into 200 brain areas (CC-200 parcellation), for
each of the subject, we construct a graph with 200 nodes using
these ROIs. Then, average time series were computed in the
brain and the Pearson correlation coefficient between two brain
regions was calculated to obtain each subject's whole functional
connectivity matrix and this was done for all pairs.

The following equation was used to obtain the coefficient
between each region x, and y of length of n.

Algorithms 1. Calculating the graphlet counting vector

Input: an N X N correlation matrix A.,, where in this case
N = 200. A vector ; of size 1 X 30 initialized. 30 types of
graphlets G; to G3q. A given threshold 6.

1: create a graph G with edge weights given by A,

2: remove self-loop edge in G

3: for each value q;; in 4., (edge in G):

4:  remove edge where |A.,| < 6. (we have G — G)
5: end for

6: for i = 0 to 29 do:

7. calculate isomorphism count in G* - V;[i]

8: end for
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Where X, and ¥ are the mean of x and y vectors,
respectively. With the 200 regions provided, the computing of
all pairwise correlations yield a matrix of 200 X 200. The
functional connectivity matrix is a real symmetric matrix, and
the diagonal elements represent the correlation between each
region and themselves, so we only keep the upper right triangle
of the matrix, which is a widely-adopted method as in [3], [15],
[20], [22]. These pairs give n(n — 1) /2 = 19900 features. The
feature chosen for nodes still have a high dimension. Therefore,
to avoid the redundancy of the features and possible overfitting
problem, we reduce the feature vectors with Recursive Feature
Elimination [39] (RFE) with a fixed number of 5000. For our
proposed method, the Pearson’s correlation coefficient is also
used for the graphlet counting vector calculation and is
described below.

2) Graphlet counting vector: We propose graphlet counting

vector as a feature for preserving the topological information of
the fMRI data.
With the correlation matrix calculated, we construct a complete
graph with 200 nodes by it. For each pair of the nodes in this
graph, there is an edge containing the coefficient value. All the
nodes also have a self-loop which is corresponding to the
diagonal value of the correlation matrix. For each of the subjects,
we construct a vector of 30 dimensions to represent the number
of 30 different graphlets with 2 to 5 nodes [40]. A subgraph G’
of a graph G is a graph such that V(G") € V(G) and E(G") S

‘ count G4

s

\ Increment the value by 2

Gy Gz G3 Gy Gs Gg Gy Gg G Gig Gg Gag

. | ‘

Fig. 2. An example of counting the graphlet type 4 in a 7-node graph.
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Fig. 3. An overview of the pipeline used for building and training the model of classifying ASD

E(G). And a graphlet is defined as a small, connected, non-
isomorphic subgraph. From the 2 nodes to 5 nodes, there are a
total of 30 different undirected subgraphs named G; to G, as
shown in Fig. 1. Like the process we proposed in previous
section, we use the 200 regions provided to compute all pairwise
correlations and yield a matrix of 200 X 200. In this case, we
have a complete graph Gy that has 200 nodes, and between
each pair of nodes there exists an edge with coefficient value.
This graph also contains 200 self-loop edges which will be
removed in the next stage. All these values are in range [—1, 1]
and with the threshold 8, we choose, we can get a new graph
Gpcc- After all the self-loops and isolated nodes are removed, we
use Networkx Python library to count the number of 30 types of
graphlets and store the value into a Vg = (ng,, Ng,, -, Ng,,)-
The whole process is followed by the Algorithm 1 and illustrated
in Fig. 2.
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3) Edge Weight Construction: The relationship between
nodes in the graph in the form of edges is also an important
factor to be considered in modeling. We calculate the weight of
each pair of the nodes by defining a similarity variable between
them. This similarity variable value is consist of two parts — the
first one is the phenotypic information, i.e. the gender of the
subjects, and the second is the graph motif similarity. It is
defined as:

Co(My, My) = Sim(Vyex, Vyey) 4)

Where S im(l/;,cx, I/;,Cy) represents the similarity of the two
graphlet counting vectors (GCV). In this paper, we use the
Cosine Similarity to measure it. Given two GCVs x and y with
dimension of 30, we define their similarity value as:
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Where ||x]| is the Euclidean norm of vector X. This measure
computes the cosine of the angle between ¥ and j. A cosine
value of 0 means the two vectors have no match and the closer
the cosine value to 1, the smaller the angle between them and
the greater the match between vectors.

For the category information gender, ¢ is defined as:

0, ifA,+ A
A, A) = { ) g 6
¢ (A 4y) 1, if Ay = A, (6)
At last, we can compute the weight for each pair of the edges:
W(u,v) = Co(My, My,) + ¢ (A, Ay) (7

TABLE L LEAVE-ONE-SITE-OUT RESUTLES
Site Sél:ljl flctt Acc. Sen. Spe.
CALTECH 37 66.3 53.6 79.7
CMU 27 53.8 68.5 37.9
KKI 48 64.9 62.8 66.4
LEUVEN 63 58.7 52.4 64.1
MAXMUN 52 53 49.7 55.8
NYU 175 68.1 53.9 78.75
OHSU 26 67.6 59.9 74.2
OLIN 34 75.9 67.7 86.3
PITT 56 65.8 72.8 58.3
SBL 30 48.7 66.5 309
SDSU 36 50.1 36.7 58.6
STANFORD 39 554 59.9 51.1
TRINITY 47 63.6 55.9 70.4
UCLA 98 69.5 57.3 84.5
UM 140 66.2 54.1 77
USM 71 67.4 64.2 73.3
YALE 56 68.3 68.7 67.9
Mean 1035 64.27 57.95 69.97
(total)
C. GCN structures
Graph convolutional neural network cannot achieve

satisfactory  performance by simply stacking graph
convolutional modules to deepen the network, and vanishing
gradient problem will result in network over-smoothing [41].
Our proposed model, shown in Fig. 3, has one input layer,
several hidden layers, and an output layer in this model. Input
layer and hidden layers were followed by node pooling layer,
and output layer was followed by SoftMax.
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The node pooling layer is used to reduce the redundant
features of the graph [17]. The methods include aggregating the
neighboring nodes to one node and pruning the original graph G
to a smaller subgraph with only some important nodes. In order
to classify at the graph level, we need a dimensionality reduction
layer to bring the number of nodes and the feature dimension of
each node down to a suitable size. Previous research results [42]
have shown that some parts of the brain (ROIs) hold more
weight in prediction and classification than other regions, so
they must be retained in the pooling process.

To avoid overfitting, we applied DropEdge [43] to the
feature graph when the hidden layer was convolved. The idea of
DropEdge is to randomly remove a certain number of edges
from the input graph at each training epoch, which can be treated
as a data augmenter. In our experiment, the super-parameter
value of drop rate was set to 0.2, which means edges were
deleted with a probability of 20%.

IV. EXPERIMENT RESULT AND DISCUSSION

The purpose of this paper is to propose a functional
connectivity based graph neural networks model that using
fMRI time series and the topological information (graphlet
count) within ROIs to classify and assist ASD diagnosis.

A. Data Acquisition

In this paper, we used the ABIDE I data, which is a
collection of 1112 subjects composed of structural and rs-fMRI
data including 539 people with ASD and 573 healthy people.
Because various locations have different data collecting
equipment, parameters setting, diagnosis processes, and
assessment techniques, ABIDE dataset 1 is a highly
heterogeneous database [17], [31]. After filtering the
incomplete and corrupted subjects data, our experiment dataset
consists of 505 subjects with ASD and 530 healthy controls
from all the 17 sites [20], [44]. The data was preprocessed using
a widely adopted pipeline called Configurable Pipeline for the
Analysis of Connectomes (C-PAC) and parcellated the brain
into 200 region of interests (ROIs) using Craddock 200 [37]
(CC200) functional parcellation.

RESULTS COMPARISON WITH EXISTING
METHODS

B ASD-DiagNet[12] Nielsen et al.[9] This paper

69.97

64.27

63.19

Percentage
&

62

60
57.95

53.67

Il

Sensitivity

Fig. 4. Comparison results with the existing methods
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B. Implementation details

For all the experiments reported in this section, we run them
on a Linux server running Ubuntu Operating System. The server
contains two Intel Xeon (Skylake) Processors at 2.1 GHz with a
total 48 GBs of RAM. The system contains an NVIDIA Tesla
K-40c GPU with 2,880 CUDA cores and 12 GBs of RAM.
CUDA version 11.4 and PyTorch library were used for
conducting the experiments. In the training process, learning
rate was set to 0.005, and dropout rate was set to 0.15. Each
model was iteratively trained 200 times.

We implemented a GCN-based ASD classification using
fMRI data with the pipeline of PyTorch framework [45]. As
mentioned above, the nodes of the graph were obtained from the
classification of brain regions as well as the graphlet count
vector, while the edges feature of the graph were constructed by
the weight between pairs of the ROIs with age information and
graph motif similarities. The potential representations of the
graph were learned by the GCN layer, and the salient features
were fed to the classification layer for autism label prediction
[19]. The readout layer was used to aggregate the node feature
vectors into a single vector which was then used as input to the
final classifier. With a limited number of data topics available
from the dataset, this model was evaluated using a k-fold cross-
validation technique to overcome possible overfitting problems.
The dataset was randomly partitioned into k groups of equal
size, one of which was used to obtain the classification
performance and this process was repeated k times. Due to the
subject size limitation of the ABIDE dataset, when evaluating
the results site by site, we use k=5 to avoid substantial bias in
the results for a particular data site due to the insufficient number
of the subjects [22].

C. Evaluation

To evaluate the proposed model, the entire data set was
divided into two sets of subjects: 80% training data (828
subjects) and 20% testing data (207 subjects). Comparing to
other neural networks, graph networks are a more natural way
to represent brain network since graphs can inherently capture
relationships and complex interactions between ROIs, and thus
possess the power of interpreting relational information in
human brains. The improved performance of our proposed GCN
model in classifying functional connectivity networks comes
from graph convolutional layers for node and edge
representation.

Additionally, as an evaluation of the classifier performance
across sites, we performed a leave-one-site-out cross validation
process. This process excluded all the subjects from one site
from the training process and used that data as the test set to
evaluate the model. We repeated this process for all the 17 sites
and the results of these analyses are reported in Table 1.

For a whole data sites evaluation, we performed 10-fold
cross-validation on all 1,035 subjects using CC-200 atlas. We
compared accuracy, sensitivity, and specificity of our approach
with [21], [22]. As shown in Fig 4, our method achieves 64.27%
accuracy as compared to 60% and 63.2% for Neilsen et. al and
ASD-DiagNet. We were able to perform well for sensitivity

3136

57.95% as compared to ASD-DiagNet which exhibited 53.67%
but fall short when compared with Neilsen et. al. (62%). We
outperformed the other two leading methods in specificity with
our GCN model achieving 69.97% as compared to 58% and
68.4% for Neilsen et. al. and ASD-DiagNet, respectively. These
are encouraging early results for GCN based classification of
ASD vs. HC.

V.  CONCLUSIONS AND DISCUSSIONS

In this paper, we proposed a novel graph convolutional
network (GCN) method to classify between autistic brain scans
from healthy brain scans. To utilize the spatial structure of the
brain network and extract information from the topology of the
connectome, we utilized a novel graphlet count vector feature,
which were then fed to the GCN layers to perform the
classification. We evaluated our developed method using
ABIDE-I data set, which contains all the images from 17
different acquisition sites and compared with other state-of-the-
art techniques. Our results showed a mean test accuracy of
64.3% in a 10-fold cross validation experiment using the GCN
algorithm and Drop Edge strategy for whole ABIDE-I data set
with comparable sensitivity and superior specificity as
compared to the state-of-the-art methods. Our method provides
a novel architecture and method for classifying, characterizing
ASD biomarkers and can potentially be adaptable for diagnosis
of other mental illnesses such as Alzheimer’s and ADHD
disease. Further investigation will be needed to interpret the
GCN models specific to ASD classification and our unique
graph motif based model will be more amenable to explanations,
which will be essential for clinical adaptations.

There are few limitations to our work presented in this paper.
One is that the ABIDE dataset size is small and the network
training stops relatively fast before it is overfitted — a limitation
that is shared among all the existing machine-learning models.
Another is that the current model is only tested on ABIDE-I
dataset. More testing for larger data sets in the future will give
us more insights.
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