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Privacy technologies support the provision of online services while 
protecting user privacy. Cryptography lies at the heart of many 
such technologies, creating remarkable possibilities in terms of 
functionality while offering robust guarantees of data confidential- 
ity. The cryptography literature and discourse often represent that 
these technologies eliminate the need to trust service providers, i.e., 
they enable users to protect their privacy even against untrusted 
service providers. Despite their apparent promise, privacy technolo- 
gies have seen limited adoption in practice, and the most successful 
ones have been implemented by the very service providers these 
technologies purportedly protect users from. 

The adoption of privacy technologies by supposedly adversarial 
service providers highlights a mismatch between traditional models 
of trust in cryptography and the trust relationships that underlie 
deployed technologies in practice. Yet this mismatch, while well 
known to the cryptography and privacy communities, remains rela- 
tively poorly documented and examined in the academic literature— 
let alone broader media. This paper aims to fill that gap. 

Firstly, we review how the deployment of cryptographic tech- 
nologies relies on a chain of trust relationships embedded in the 
modern computing ecosystem, from the development of software 
to the provision of online services, that is not fully captured by tra- 
ditional models of trust in cryptography. Secondly, we turn to two 
case studies—web search and encrypted messaging—to illustrate 
how, rather than removing trust in service providers, cryptographic 
privacy technologies shift trust to a broader community of secu- 
rity and privacy experts and others, which in turn enables service 
providers to implicitly build and reinforce their trust relationship 
with users. Finally, concluding that the trust models inherent in the 
traditional cryptographic paradigm elide certain key trust relation- 
ships underlying deployed cryptographic systems, we highlight the 
need for organizational, policy, and legal safeguards to address that 
mismatch, and suggest some directions for future work. 

CCS CONCEPTS 
• Software and its engineering; • Security and privacy → Cryp- 
tography; Systems security; • Social and professional topics → 

Computing / technology policy; 
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1 INTRODUCTION 
Modern cryptography enables remarkably versatile uses of informa- 
tion while simultaneously maintaining (partial) secrecy of that infor- 
mation. In addition to good old encryption, modern techniques such 
as secure multiparty computation and homomorphic encryption 
have opened a new realm of possibilities in privacy technologies, 
enabling the design and development of previously impossible—and 
sometimes seemingly paradoxical—combinations of functionality 
and confidentiality. Examples include, among others, anonymous 
credentials, which can enable verification without requiring identi- 
fication [14, 17]; homomorphic encryption, which can enable cloud 
services that conceal user content from cloud providers [58]; and 
private information retrieval, which keeps user consumption of 
digital information (e.g., web search, media streaming) confidential 
from the provider [29, 40]. 

Being at the heart of modern privacy technologies, cryptogra- 
phy has pushed the limits of what is possible in terms of data 
minimization, a core principle in privacy engineering and privacy 
by design [31]. Cryptography is instrumental to the realization of 
data minimization strategies such as minimum data collection and 
minimum data exposure, which in turn result in minimization of 
the need for trust [32]. In theory, by shielding data flows from unau- 
thorized access and prying eyes by design, implemented through 
code, rather than contractual agreements or privacy policies, cryp- 
tography enables privacy-preserving systems that do not rely on 
the goodwill or good behavior of the service provider or system 
administrators, thus minimizing the need to trust them with the 
protection of users’ privacy. 

Yet in spite of the powerful privacy properties that cryptographic 
privacy technologies promise, few of these technologies have seen 
adoption in practice. Whereas cryptography for security has been 
largely successful, holding the key (no pun intended) to secure trans- 
actions online, cryptography for privacy has not shared the same 
fate [41]. Cryptography for security may address important privacy 
concerns (e.g., HTTPS); however, few organizations have adopted 
the kind of privacy technologies that protect their customers or 
users against the organization itself, in theory ridding users of the 
need to rely on service providers to protect their privacy [23, 30]. In 
the same vein, despite the fact that outcries about privacy invasions 
and state and corporate surveillance have become a mainstay in 
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contemporary media, few users have taken matters into their own 
hands and adopted these technologies to protect their privacy.1 

Reasons for this lack of adoption have long puzzled and drawn 
the interest of the academic community. Assumptions and hypothe- 
ses about poor usability, user and organizational unawareness, 
economic incentives and inefficiency are regarded as a complex 
network of interacting factors that prevent the adoption of these 
technologies, either by end users or service providers [42, 67, 70]. 
Among these factors, there is a key mismatch between how trust 
in cryptosystems is modeled to operate in theory and how it oper- 
ates in practice [42]. In cryptographic privacy technologies design, 
service providers are often considered to be the main adversary. 
In practice, however, the deployment of cryptographic privacy 
technologies often depends on the very service providers these 
technologies are meant to protect against. Even more, privacy by 
design dictates that service providers embed privacy technologies 
in their system designs. 

Take popular instant messaging service WhatsApp, for exam- 
ple. WhatsApp implements end-to-end encryption to protect users’ 
message confidentiality, protecting WhatsApp users against pri- 
vacy intrusions by WhatsApp itself. The traditional cryptographic 
model of end-to-end encryption, in contrast, considers that users 
themselves install an encryption tool to protect their messages 
against the adversarial service provider (here, WhatsApp), in addi- 
tion to assuming that the client application that performs encryp- 
tion is trustworthy and independent from the adversarial service 
provider. This model does not match reality today: WhatsApp, the 
service provider, deploys the encryption code and controls the 
client, i.e., the WhatsApp application itself. 

In light of this significant mismatch, we seek to examine whether 
and how cryptographic privacy technologies, when adopted by 
service providers, effectively eliminate trust in service providers. 
We seek to understand the implications of having the same party 
against whom cryptographic privacy technologies are meant to 
defend users being the one implementing these technologies, and 
whether or not this apparent contradiction undermines the privacy 
protection these technologies are meant to provide. 

Such model limitations and mismatches are generally well un- 
derstood by cryptographers, and thus may seem to lack novelty 
to most in the cryptography community. Our message is not to 
simply reiterate the existence of these limitations or to criticize 
the traditional cryptographic approach. Rather, we argue that the 
lack of systematic exposition thereon, and the effective reliance on 
those modeling assumptions by deployed technologies, have impor- 
tant and understudied consequences in practice. Critical attention 
to modeling limitations when maintaining claims about deployed 
cryptosystems’ properties is essential: without it, we risk conveying 
an oversimplistic and false sense of security (quite possibly at odds 
with lay users’ well-founded skepticism [54]). Academic claims 
taken out of their expert context may further embolden service 

providers to simplistically reiterate those claims.2 
 

1 Notably, some cryptographic privacy technologies cannot be unilaterally adopted 
by users, as they require service providers to deploy them (e.g., privacy technologies 
based on private information retrieval). 

Such claims can be found across many cryptographic appli- 
cations today. End-to-end encryption, already mentioned above, 
promises that only the sender and receiver can read a message, 
typically without mention of the fact that the messaging provider 
is likely the one implementing the encryption. The selling point 
of homomorphic encryption (HE) is to shield users from the pry- 
ing eyes of the cloud provider, typically without mention of the 
fact that the cloud provider would likely be the one implement- 
ing HE and running the whole infrastructure [64]. Similar claims 
of trustlessness abound and sustain the hype of “crypto” in the 
blockchain context, even when “a few economic players—such as the 
largest mining pools and mining farms, as well as the most popular 
online exchanges and blockchain explorers—have become centralized 
points of failure and control in the governance of many blockchain 
networks [21]. This, in turn, undermines the deployment of and 
investment in sociotechnical measures that need to be in place to 
address this mismatch. 

1.1 Relation to prior work 
The academic literature is awash with papers that examine reasons 
which may explain the poor adoption of cryptographic privacy 
technologies. In a 2013 paper, Narayanan charts the main lines of 
inquiry, which he broadly identifies as human factors, developer’s 
lack of training and mismatched incentives and models [42]. Within 
human factors, a vast body of work has studied usability issues that 
may hinder user adoption, from the seminal and now classic 1999 
Why Johnny can’t encrypt study that exposed the inability of lay 
people to encrypt e-mail with PGP [70], to the more recent studies 
that investigate users’ perceptions and understanding of end-to-end 
encryption on instant messaging apps [2, 3, 22, 54, 66, 71]. These 
later studies are illuminating because they call into question previ- 
ous premises around usability, i.e., people still do not understand 
how encryption works, the threats encryption is meant to protect 
them from, or the extent to which it mitigates those threats, yet 
they are using encryption, if only because it is embedded by default 
in the services they use [2, 3, 22, 66, 71]. This work also casts a new 
light on Narayanan’s point about mismatched models; namely, that 
“crypto protocols treat service providers as adversaries, a model that’s 
nonsensical in the modern computing environment”. And yet some 
studies evaluate usability by how well users understand this model, 
e.g., Schroder et al. argue that because users do not compare keys 
with their conversation partners for verification purposes, they are 
“very likely to fall for attacks [such as] central services [exchanging] 
cryptographic keys” [54]. Such analysis makes sense within the 
traditional cryptographic model; in practice, when those central 
services control the app, they can undermine the key verification 
implementation in ways effectively invisible even to users who 
do try to verify. In other words, the traditional model would have 
users trust the implementation of the key verification process that 
displays the encryption/decryption keys, yet mistrust the service 
provider because it may tamper with their keys. While this seems to 
be a contradiction, it logically follows from the traditional model of 
cryptosystem design: user device security is out of scope, client-side 

2 To mention just one example, WhatsApp claims that “WhatsApp’s end-to-end encryp-   

tion [...] ensures only you and the person you’re communicating with can read or listen to 
what is sent, and nobody in between, not even WhatsApp. [...] WhatsApp has no ability to 
see the content of messages or listen to calls that are end-to-end encrypted” [68]. As we 

examine below, WhatsApp does retain that ability, as it controls the code of the app 
and can deactivate end-to-end encryption or push a side-channel through an update 
in a snap of a finger. 
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encrypting software is assumed to be trustworthy, and adversaries 
trying to intercept and decrypt messages in transit (i.e. eavesdrop- 
pers) are a threat. In practice, however, both tampering with keys 
and the key verification process are equally legitimate threats, as 
the party providing the encryption software is the adversarial party. 
There has been extensive work on the study of software vulnera- 
bilities that undermine the theoretical properties of cryptosystems, 
including the introduction of intentional or unintentional back- 
doors, zero-days, or the possibility of side-channel attacks [7, 53]. 
Similarly, scholars have drawn attention to how recent shifts in 

computing infrastructure and software engineering practices may 
alter the way we think about security and privacy [6, 27]. Other 
work has pointed out at the mismatch between the role of and trust 
assumptions about service providers in privacy law and privacy en- 
gineering [23]. However, there has been significantly less attention 

to the consequences of having service providers —whom traditional 
cryptographic threat models treat as adversaries— control or assist 
in the adoption of cryptographic privacy technologies [9]; or more 
generally how traditional cryptographic assumptions and models 

do not accurately reflect the current paradigm of provision of digital 

services [27, 33]. We aim to bridge this gap. 

1.2 Summary of contributions 
Our contributions are as follows. 

(1)  In Sect. 2, we describe how cryptographic privacy guaran- 
tees depend on broader sociotechnical arrangements that 
traditional trust models in cryptography abstract away from. 
Privacy guarantees ultimately depend not only on crypto- 
graphic specifications and cryptographic security analyses, 
but on a complex chain of trust relationships inherent in the 
modern computing ecosystem, from the development of soft- 
ware to the provision of online services, including control 
over user devices and the software that runs on them. 

(2) In Sect. 3, we show how instead of eliminating the need 
to trust providers, cryptographic privacy technologies shift 
trust to a broader community of security and privacy experts, 
in turn enabling service providers to implicitly build and rein- 
force trust relationships with their user base. To that end, we 
perform a comparative analysis examining two paradigms of 
privacy protection: one, based on trusted parties, the second, 
based on cryptographic privacy technologies. We consider 
the following case studies. 
– In Sect. 3.1 we examine private web search, illustrating 

through a hypothetical dialogue between a cryptographer 
and a skeptical user how conceptions of trust diverge 
between a cryptographer’s implicit model and notion of 
trust and a popular, commonsense notion of trust. 

– In Sect. 3.2 we provide a comparative security analysis 
between encrypted instant messaging systems to illus- 
trate how the service provider’s adoption of end-to-end 
encryption shifts and distributes trust away from service 
providers to a wider community of security, privacy, and 
cryptography experts. 

(3) In Sect. 4, we emphasize the need for legal and policy strate- 
gies to support the deployment of cryptographic privacy 
technologies, and chart some directions for future work. 

2 CRYPTOGRAPHY AND TRUST 
This section overviews: (1) cryptographic terminology and assump- 
tions; (2) cryptographic and colloquial notions of trust, and where 
they may diverge; and (3) chains of trust that arise in cryptography 
as deployed in practice, throughout the process of implementation 
and deployment of a cryptographic specification. 

2.1 Cryptographic assumptions 
Cryptographic systems (henceforth, “cryptosystems”) are defined by 

an algorithmic specification of how each of their components must 
be programmed to function—much like an architectural or engi- 
neering blueprint serves as a specification of how each component 

of a physical structure must be constructed. Cryptosystems are typ- 
ically accompanied by a security analysis or security proof, which 
demonstrates that if certain specified conditions hold, then the cryp- 
tosystem as described in the specification provides certain security 
guarantees (e.g., related to confidentiality, integrity, or availability). 
Such conditions are usually called assumptions, because the security 
analysis assumes that they are true. Some of these assumptions are 
explicitly specified in the cryptography literature, such as compu- 

tational hardness assumptions3 or assumptions about the behavior 

of parties or devices;4 others, however, are often left implicit in the 
cryptography literature, especially those common to all or most 
cryptographic protocols. A key, commonly implicit condition is 
that the implementation of a cryptosystem—including hardware 

devices, software, and human interaction—adheres to the specifi- 
cation of the cryptosystem. This condition encompasses that the 

software implementation of a cryptosystem is free from bugs and 
that hardware devices work as expected. Regrettably, implementa- 

tion of cryptosystems and human error pose serious challenges in 
practice, and are a far more likely source of failure in cryptosystems 
than violation of explicitly specified cryptographic assumptions [7]. 
To be clear, cryptographic security proofs are generally precise 
and rigorous: all they claim to demonstrate is that certain security 
guarantees hold in the cryptosystem as described in the specification. 
Moreover, security proofs are a critical component of ensuring the 
trustworthiness of cryptosystems in practice. Our purpose here is 

not to criticize cryptographic analyses for omitting these implicit as- 
sumptions, or to characterize them as imprecise or flawed: they are 
not. Rather, we wish to highlight that in order to fully understand 

cryptographic security claims once they are deployed in practice, it 
is essential to account for the software engineering problems and 
human aspects of correctly implementing a cryptographic speci- 
fication that are widely treated as out of the scope of the field of 
cryptography, and thus are not expressed in security guarantees 

and trust requirements as stated in the cryptography literature.5 

Finally, it also bears note that colloquial discussion of cryptogra- 
phy more often omits assumptions and even states unconditional 
guarantees, e.g., “in end-to-end encryption, nobody but the sender 
and the receiver can read the content of their messages” or “in 
Bitcoin, it is not possible for anyone to tamper with data once it 
is written into the blockchain.” While such simplified descriptions 

 

3 E.g., hardness of integer factorization or inverting a discrete logarithm. 
4 E.g., involved parties adhere to the protocol specification. 
5 This is reasonable given the extent of subfield specialization in modern computer 
science. Software engineering and human factors are not within cryptographers’ 
expertise and other computer science subfields are better equipped to deal with them. 
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can be helpful and more accessible in some contexts, they can also 
mislead as to the nature and strength of the guarantees cryptogra- 
phy provides: no cryptographic tool provides truly unconditional 

guarantees in practice.6 A nuanced and more realistic analysis of 
the security and privacy properties of a cryptosystem will always 
depend on the underlying (explicit or implicit) assumptions. 

2.2 Models of trust 
Trust is a key concept in security and privacy. The term features 
prominently in cryptographic terminology, in technical analyses 
of privacy tools in practice, and in public perceptions of privacy 
and technology. However, the meaning of trust as a term of art in 
cryptography is not always intuitive based on its lay usage. Below, 
we briefly examine some semantic nuances, and disambiguate how 
the term is used in this paper. 

A commonsense notion of trust. Trust is an extraordinarily rich 
concept and covers a variety of relationships; it may refer to certain 
beliefs about others, attitudes toward them, or even certain feelings 
they elicit. Generally, when we trust others, we believe they will 
not act, intentionally, contrary to our interests; they won’t harm, 
cheat, or betray us. What it means to trust others, however, is 
more than believing they will not intentionally harm us; it means 
placing our fates in their hands, knowing we are vulnerable to their 
actions. This is different from circumstances in which we believe 
others will not intentionally harm us because our interests have 
been secured against these harms. When reviewing conditions that 
philosophers and social scientists have claimed as important for 
engendering trust, including interaction history, reputation, known 
personal characteristics, relationships of mutuality and reciprocity, 
familiar social and professional roles, as well as contextual norms, 
it is not surprising that the formation of trust in digital societies, 
particularly in digital transactions, over digital networks, and on 
digital platforms is challenged [26, 34, 38, 57]. More specifically, not 
the mere formation of trust but the formation of reliably grounded 
trust is challenged by such conditions as lack of persistent identities 
that enable an accrual of histories and reputations, the breakdown 
of reciprocity, newfangled social and commercial actors who may or 
may not stand in adversarial relations to us, and uncertainty about 
prevailing norms in contexts in transition [11, 44, 45]. It probably 
also is not surprising that absent such conditions, people might be 
reluctant to trust even as they need to engage in transactions and 
communications that typically benefit from a penumbra of trust. 
As a consequence, in digital realms, security has come to stand in 
for trust so people will continue to engage. This can create a spiral 
downward for trust because, if Philip Pettit is right [49], making 
oneself vulnerable is a necessary condition for the formation of 
trust: if one does not have the opportunity to test others by exposing 
oneself to the possibility of harm, how does one learn who is and 
is not trustworthy, and for what? Common sense tells us not to 
expose ourselves to catastrophic harms, where the cost of learning 
who can and cannot be trusted may be fatal—literally or figuratively. 
In digital societies, we will need to count on the development of 

 

6 Even the classic “one-time pad” encryption scheme, widely known for its simplicity 
and unconditional security, relies on deployment details for security in practice. The 
term “unconditional security” in this context refers to the absence of cryptographic 
hardness or trust assumptions within the traditional cryptographic model. 

novel social markers of trust, to augment those that have evolved in 
the past as well as the heuristics each of us has developed through 
individual experiences. 

In cryptography. The cryptography literature refers to parties as 
trusted if they are assumed, for the purpose of a security analysis, 
to adhere perfectly to behavior that is defined in the specification 
of a cryptosystem. Parties are described as untrusted if the security 

analysis assumes they may deviate from the specified behavior.7 

In a nutshell, cryptographic security guarantees hold as long as 
trusted parties follow the specification, regardless of whether un- 
trusted parties deviate. Within the context of a given cryptosystem, 
cryptographers may refer to the need to trust a party (e.g., a service 
provider) if the party is trusted and hence the relevant security 
guarantees rely on that party’s adherence to specified behavior. 

The literature usually (implicitly) treats parties as monolithic 
entities encompassing human(s), software, and hardware devices. 
For example, if Alice is trusted, then not only she herself but also her 
software and devices are assumed to behave correctly according to 
specification; if Company X is trusted, then all the human processes 
in the company and the software and devices that the company 
controls are assumed to adhere perfectly to the specification. 

A trusted party represents a single point of failure with respect to 
a given security guarantee because that party has the potential to 
unilaterally undermine a cryptosystem’s security. However, entirely 
eliminating reliance on trusted parties is usually impractical: the 
security guarantees achievable tend to be quite limited when all 
parties are modeled as untrusted. One approach cryptographers use 
to avoid a single point of failure is to distribute trust across multiple 
parties: this means that security guarantees hold provided at least 
one of these parties, across whom trust is distributed, adheres to 
the cryptosystem specification. 

The term trust in cryptography is thus effectively a shorthand for 
assumptions about adherence to prescribed behavior as described 
in the cryptosystem specification. Certainly, there is a relationship 
between the cryptographic term of art and its lay usage: parties 
that are untrusted or untrustworthy in the colloquial sense may be 
more likely to deviate from the specification. However, there is not 
a perfect match. Trustworthy parties in the cryptographic sense 
may be untrustworthy in the colloquial sense. As an example, a 
cryptosystem may enable two parties to confidentially communi- 
cate over an insecure channel, e.g., sending encrypted e-mail, so 
that their e-mail and Internet providers cannot eavesdrop on their 
conversation. In this scenario, sender and recipient (often called 
Alice and Bob) are trusted in the cryptographic model and the po- 
tential eavesdroppers are untrusted. However, even if Alice and Bob 
follow the cryptosystem’s specification (i.e., in terms of the protocol 
and code they run on their computers) and are therefore effectively 
trusted in the cryptographic sense, they may be untrusted outside of 
the cryptosystem’s scope. Indeed, whether Alice can or should trust 
Bob with sensitive information—i.e., whether he is trustworthy in 
the colloquial sense—is out of scope, and unrelated to the fact that 
Bob is a trusted party in the cryptographic analysis, e.g. Bob may 

 

7 In the cryptography literature, trusted parties are also commonly referred to as 
honest, and untrusted parties are also commonly referred to as dishonest or malicious— 
terminology that can appear to evoke far stronger value judgments and to an audience 
outside the field of cryptography. We use only the trusted/untrusted terminology in 
this paper, but note the common synonyms here for completeness. 
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follow the cryptosystem specification (thus remaining “trusted” in 
the cryptographic sense) and still choose to reveal the contents 
of his communication with Alice through an alternative channel, 
outside of the cryptosystem’s purview (thus being “untrusted” in 
the colloquial sense). In addition, even highly trustworthy parties in 
the colloquial sense cannot be considered foolproof, as deviations 
from a specification may occur without malicious intent. 

In sum, the cryptographic usage of the term trust should be taken 
for just what it is: a technical term of art that has a precise, narrow 
meaning that is useful within a specialized field. Cryptographic 
trust is about adherence to prespecified behavior, not about trust- 
worthiness, interpersonal relationships, or other aspects relevant 
to the lay usage of the term. 

Parameters of a trust relationship. Trust is relational: it is im- 
portant who trusts whom and for what. Or, in the cryptographic 
context: who relies upon whom for the correct functioning of what. 
The cryptography literature is often lax about these parameters, 
leaving one or more of the three implicit. This approach can be 
rigorous within the cryptography community, in which there are 
established norms about the kinds of trust assumptions intended 
by certain set phrases, but can be confusing if the language reaches 
a broader audience. This paper aims to specify all three parameters 
wherever relevant. 

Usage in this paper. We use the terms trusted party, trust as- 
sumption, and distributing trust as in the cryptographic terms of 
art. Beyond that, unless otherwise specified, we use the term trust 
informally, and aim to specify all the relevant parameters (i.e., who, 
whom, and for what) each time. 

 

2.3 Cryptography in practice: from 
specification to implementation and 
deployment 

For cryptosystems to be useful in practice, in addition to designing 
them and analyzing their security, it is necessary to implement, 
deploy and adopt them. 

Implementation means writing code that follows the cryptosys- 
tem’s specification, so it can be executed as a component of a larger 

system that provides a service.8 For example, the specification of 
TLS needs to be written in code and embedded in browsers and 
servers so that users can request HTTPS-encrypted websites. 

Implementation and deployment may introduce vulnerabilities 
and reliance on third parties that typically fall out of the scope of 
cryptosystems’ design. As mentioned above, most of the cryptogra- 
phy literature treats as out of scope the sociotechnical arrangements 
that enable users to reasonably believe that the code and the broader 
system in which it is embedded are trustworthy. Looking at the 
broader picture of a cryptosystem’s lifecycle from specification to 

 
8 In this paper we focus on software implementations, but acknowledge that hardware 
security provides the root of trust for any software implementation. In fact, hardware 
security clearly highlights how cryptosystems which are secure on paper become 
vulnerable to physical attacks (e.g., side-channels) as their specification abstracts away 
from the physics of the hardware that enables computing [52]. Hence, while for 
illustration purposes we restrict our observations to software implementations and 
software infrastructure, similar observations could (and should!) be drawn to account 
for the hardware that supports them (e.g., devices, physical networks). 

implementation to deployment, however, the reliability and credi- 
bility of security guarantees promised by cryptosystems depends 
on a complex chain of trust, as we outline next. 

Firstly, even if a cryptosystem specification is deemed to be secure, 
its implementation in executable code may not be. This highlights 
the importance of open standards, disclosed specifications, and 
disclosed-source code. Open standards and disclosure of specifica- 
tions and code make it easier for stakeholders to agree on and, at 
least in principle, verify and test an implementation. 

Secondly, even if specification and code are public, most intended 
users are unable to test and verify the cryptosystem directly, and 
must therefore rely on proxies of trust in order to assess the credibil- 
ity of claimed cryptographic privacy guarantees. For example, they 
may depend on a cryptographer or developer whom they trust, or 
on institutional endorsements (e.g., a NIST standard, or statements 
from reputable research institutes or nonprofit organizations) to 
support a belief that a cryptosystem—and the system in which it 
is embedded—is secure. Of course, reputable institutions may still 
make mistakes or behave in bad faith [13, 53]. 

Thirdly, even expert cryptographers and software engineers are 
typically unable to verify with perfect certainty that a particular 
cryptosystem implementation is secure. Current computing infras- 
tructure represents a tremendous challenge to the verification of 
code. Software applications are networked and distributed, as well 
as constantly updated: developers routinely rely on third-party code 
packages, need to deal with legacy code and systems, and service 
providers continuously push updates which, even when including 
security patches, make it harder to test and verify by the broader 
community [27]. Perhaps surprisingly, the problem of software ver- 
ification—i.e., verifying that a given piece of source code conforms 
to a given specification of functionality, is an unsolved problem 
in computer science—save for very simple or specialized pieces 
of code [65]. Furthermore, due to complexities in the compilation 
processes that convert the human-readable source code written by 

developers to the machine-readable executable code9 that can be 
run on devices, it is notoriously challenging to verify with certainty 
that a given piece of executable code corresponds exactly to a given 

piece of source code.10 

Lastly, even a perfect implementation in code can be undermined 
by human error (or intentional misbehavior) in necessary human 
interactions with the deployed cryptosystem. 

Chain of trust. To further illustrate these friction points and com- 
plex trust dependencies, let us provide a walk-through of a typical 
application’s development lifecycle. 

(1)  Cryptographer designs cryptosystem The first step starts with 
a cryptosystem specification, i.e., an algorithmic description 
of how the cryptosystem works, the steps and parties in- 
volved. If the specification and its constituent components 
are published, other people can verify them, distributing trust 
among the crypto community who is able to verify the pri- 
vacy guarantees the initial design provides. The community 
thus reaches sufficient confidence to trust the cryptosystem 
design, even if some vulnerabilities may be hard to detect. 

 

9 Sometimes called object code. 
10 E.g., Mozilla has been working for years on providing such verifiability for its Firefox 
browser [62]. 
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(2)  Developer writes code. A developer implements the cryptosys- 
tem specification into code, often embedding it within a 
broader system in which the cryptosystem is but a compo- 
nent. If the code of the implementation is disclosed, this 
distributes trust among the community who is able and 
willing to examine and test it (e.g., developers and secu- 
rity experts). Even if such a community reaches sufficient 
confidence to deem the code secure, the developer may have 
(un)intentionally introduced a vulnerability or backdoor that 
is hard to detect. 

(3)  Developer compiles code and creates an installation package. 
Developers rarely use their own compilers. Instead they 
use compilers that third parties have written and publicly 
released. If the compiler is buggy or has been tampered 
with,it could introduce vulnerabilities into the executable 
code. The developer could also (1) deliberately use a compiler 
that introduces a backdoor or (2) simply compile different 

source code from the code it publishes as open source.11 

Hence, there is reliance on both developer and compiler.12 

(4) Developer publishes installation package, e.g., Apple’s App 
Store, Google Play, or any other websites and repositories for 
non-mobile applications (henceforth, “app store”). To verify 
that the application offered for download on the app store 
is the same application that the developer uploaded, most 
users rely on the app store host (e.g., Apple or Google). For 
those with more technical expertise, such reliance on the app 
store host is not necessary, as developers can provide digital 
signatures showing the authenticity of applications, which 

expert users can verify themselves.13 Some non-expert users 
may also rely on experts that they consider reputable to 
check digital signatures, thereby reducing the extent of their 
reliance on the app store hosts. 

(5) User installs app. Users must trust that the operating sys- 
tem (OS) installs the downloaded app correctly, i.e., as op- 
posed to installing a malicious or weakened version of the app. 

(6) User opens and uses app. The OS runs the installed app. Users 
must trust that the OS executes the app correctly, that it 
does not tamper with its execution or leaks details about 
it (e.g., OS effectively has control over the app on the user 
device). Incorrect functioning of the OS or device (see foot- 
note 8) may arise from errors (e.g., software bugs, hardware 
glitches) as well as malicious compromise (e.g., malware 
such as NSO’s Pegasus [12]). 

Further trust requirements arise after initial installation: 

– Developers can push updates, prompting users to install 
them, thus requiring anew trust assumptions as described 
in items 3 to 5 above. 

 
11 Recall (see Section 2) that it is currently impractical to verify with perfect confidence 
that a complex piece of executable code is really the result of compiling a given piece 
of source code. 
12 Alternatively, users could compile the code themselves, eliminating the dependence 
on the developer; however, this is unrealistic for most people, and even then users 
need to trust the compilation process. 
13 Note that relying on digital signatures further shifts trust from the app store host 
to the distributed network of trust on which the relevant public-key infrastructure 
is built. How trust is construed within public-key infrastructures has been amply 
discussed elsewhere [4, 15, 39]. 

– Threats related to the OS and device (namely, items 5 and 6) 
may arise at any time. A compromised operating system or 
device can undermine the security even of perfectly imple- 
mented, perfectly installed apps. 

 
These chains of trust illustrate how in spite of the initial specifica- 

tion of a cryptosystem, its implementation and deployment require 
a coordinated interplay of several actors and processes, all of which 
must be relied upon not to introduce vulnerabilities that under- 
mine the system in which the cryptosystem is embedded—even if 
the cryptosystem specification, analyzed in isolation, is provably 
secure. In other words, a reasoned belief that an implemented and 
deployed cryptosystem provides the security guarantees promised 
by the cryptosystem specification depends on many factors beyond 
the scope of the cryptosystem’s specification and security analysis. 
With this in mind, it is arguably neither surprising nor misguided 
that many users conflate security and privacy issues, and neither 
understand nor trust the protection that cryptography may offer 
to them [22]. 

 
 

3 TWO CASE STUDIES 
We present two case studies where we compare trust assumptions 
across two paradigms of privacy protection. On the one hand, we 
consider services where, from the cryptographic point of view, pri- 
vacy protection depends on the service provider as a trusted party. 
This paradigm has been previously referred to in the privacy en- 
gineering literature as privacy-by-policy, process-oriented privacy 
or soft privacy, highlighting that privacy guarantees are derived 
from a promise or contract, rather than a technological interven- 
tion [20, 36, 59]. On the other hand, we consider services where, in 
cryptographic terms, the service provider is an untrusted party and 
privacy protection relies on a cryptosystem that the service provider 
itself implements. This paradigm has been previously referred to 
in the privacy engineering literature as privacy-by-architecture, 
or data-oriented privacy and hard privacy, to highlight that pri- 
vacy protections are embedded into the system architecture by 
design [20, 36, 59]. In the language of cryptographers and privacy 
engineers, the second paradigm would remove the need to trust the 
service provider: a phrase that means that it is the architecture and 
code of the system itself that guarantee privacy protection, rather 
than the promise and goodwill of the service provider. 

We select two essential services, web search and messaging, as 
our case studies. In the first, we confront a cryptographer’s trust 
assumption logic with that of an imagined skeptical user that faces 
a choice between a search engine that promises privacy protections 
exclusively by policy and one that implements a cryptosystem to 
blind itself from seeing users’ search queries. In the second, we 
compare popular instant messaging (IM) services that implement 
end-to-end encryption with an imagined IM service that promises 
the same privacy guarantees without relying on cryptography. In 
both cases, we illustrate how neither cryptosystem truly elimi- 
nates trust in the provider. Rather, trust is shifted or distributed, 
sustained by a complex web of trust relationships underlying the 
implementation and deployment of any privacy technology. 
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3.1 Web search 
Web search allows users to find online resources (e.g., websites, 
images, videos) by querying a search engine with keywords describ- 

ing what they seek.14 While the most well known search engine is 
Google, we focus on DuckDuckGo (DDG) as a privacy preserving 
alternative. We compare DDG to a fictitious search engine that 
relies on state-of-the-art cryptography to embed analogous privacy 
protections into the system architecture. 

Web search and privacy. Search queries can be highly sensitive 
and revealing, especially when collected over extended periods of 
time. Web search data may reveal gender, age, location, health con- 
dition, religious and political affiliation, sexual orientation, daily 
routine and frequented locations, life struggles, hobbies and in- 
terests, and much more [10, 37, 60, 63]. Moreover, when search 
engines such as Google use search query data to personalize search 
results and target users with advertisements, users may be served 
hyperpersonalized queries and discriminated against, among other 
harms that stem from user profiling [47, 61]. 

Google, DuckDuckGo and "CryptoSearch". Google collects users’ 
search queries and has a vast network of trackers across the web to 
analyze and monetize users’ web browsing behavior. Conversely, 
DDG presents itself as an alternative “search engine that doesn’t 
track you” [25]. To that end, DDG chooses not to collect any user 
data [24]. Note the emphasis on chooses: DDG does not implement 
any technology that makes it difficult for it to collect this data, it 
simply decides not to implement any code that logs users’ search 
queries. Hence, in cryptographic terms, DDG is a trusted party: 
users must rely upon DDG to honor its promise and protect their 
privacy by not collecting any of their search queries, now or in 
future. 

Let us now consider a hypothetical cryptographic alternative: 
“CryptoSearch”, a search engine that "encrypts" user queries and 
search results so that only the user can decrypt them, hiding this 
sensitive information even from the search provider itself. Cryp- 
tographers have developed sophisticated techniques for private 
information retrieval (PIR) [5, 18] that, in theory, provide functional- 
ity similar to this. Currently, these PIR techniques are not developed 
enough to efficiently implement the complex algorithms of modern 
search engines. However, our inquiry concerns not efficiency but 
the differences in trust requirements between cryptographic pri- 
vacy technologies and promise-based alternatives. As such, we put 
aside the efficiency question for the sake of a thought experiment: 
the hypothetical CryptoSearch provides an illuminating contrast 

with DDG in the discussion that follows.15 

Why not settle with a trusted party? DDG’s stated assurances 
are very similar to what one would expect from CryptoSearch, but 
instead of relying on cryptography to provide those assurances, 

 
 

14 This describes a text-based search engine. Search engines don’t have to be text-based, 
but most of them are. 

DuckDuckGo promises its users that it will not collect their informa- 

tion.16 From a cryptographers’ viewpoint, DDG is a trusted party. 
Yet, how does DDG’s trust-based guarantee fundamentally differ 
from the guarantees that a service like CryptoSearch would offer? 
Let us consider the following hypothetical exchange between a 
skeptical user and a cryptographer: 

Skeptical User: What’s the difference between DDG and Cryp- 
toSearch? If I wish to prevent the search engine (and other third parties) 
from using my search queries, which should I prefer? 

Cryptographer: With DDG, the privacy of your search data is 
under DDG’s control and you are relying entirely on their promise not 
to use it in ways you don’t want. With CryptoSearch, you’re relying 
on a technical guarantee, not some humans’ promise. As long as the 
cryptosystem that CryptoSearch uses is sound, it is guaranteed that 
CryptoSearch cannot misuse your data even if it wants to, because 
it cannot "see" your queries—even if the provider changes its mind, 
breaks its promise, or is coerced or hacked. 

Indeed, CryptoSearch seems to do away with the search engine 
provider as a trusted party. Eliminating trusted parties (or eliminat- 
ing trust assumptions) is such a common goal in cryptography that 
it needs hardly any justification in academic papers: the received 
wisdom is that trusted parties provide poorer security and can ben- 
eficially be replaced by cryptographic guarantees. But now, let us 
consider how the rest of the conversation might play out. 

Skeptical User: But if CryptoSearch changes its mind, or is co- 
erced or hacked, won’t it just stop using the cryptography? 

Cryptographer: Perhaps, but at least you would know that the 
code had changed, and probably detect that the cryptography had 
been removed. 

Skeptical User: How would I be able to tell? 
Cryptographer: If the client-side (user) code were disclosed-source, 

then you could check the code to see what had changed. Otherwise you 
could still reverse-engineer the client code, or do some traffic analysis; 
you might be able to detect the change that way. Of course you could 
always get a security expert to do those things for you. 

Skeptical User: Right, I wouldn’t be able to do those things my- 
self. I’d have to place my trust in some humans’ promise after all. I 
have to trust cryptographers like you, both when you say that cryp- 
tography provides all these strong guarantees, and when you say that 
a particular service I’m using correctly deploys that cryptography. So 
in the end I would choose between DDG or CryptoSearch depending 
on whom I trust more. 

The above dialogue is not intended to be realistic but rather to 
make a point; namely, to illustrate that the language of eliminating 
trust is misleading, both to users and to cryptographers; shifting or 
distributing trust would probably be more apt. To users, shifting trust 
is a more accurate description of the choice they face between these 
two services. And to cryptographers, the framing of eliminating 
trust makes it seem as if cryptographic solutions really remove the 
need for trust, as if a cryptosystem would be a replacement for 
trust relationships. This is why a cryptographer’s response to a 
layperson may not address the latter’s concerns. 

15 We could have selected a different cryptographic technology which is currently   

efficiently deployable, such as encrypted messaging. However, we found it helpful 
to reference a real-world technology that offers promise-based privacy, of which 
DuckDuckGo appears to be a relatively rare example. 

16 Some of DuckDuckGo’s publicly advertised guarantees are reminiscent of what 
one would expect from cryptography. In an interview with Wired, founder Gabriel 
Weinberg declared “We protect your search history, even from us” [16]. 
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In the next case study, we further examine how the adoption of 
cryptographic privacy technologies by service providers shifts and 
distributes trust, rather than eliminating it. 

3.2 Instant messaging 
Instant messaging (IM) refers to online services that enable near- 
instantaneous communication between two or more people, e.g., 

WhatsApp and Signal.17 

IM and privacy. People use messaging services like WhatsApp 
and Signal to communicate with intimate partners, family, friends 
and coworkers, among others. As such, IM provides a medium for 
some of people’s most private and sensitive conversations. 

Online communication was originally devoid of strong privacy 
protections. Messages exchanged on early IM services, such as AIM 
or MSN’s Messenger, could be easily intercepted in transit [50, 51]. 
A big shift took place with the normalization of TLS (previously 
SSL) encryption and XMPP, enabling service providers to encrypt 
in-transit communication, thus preventing network eavesdroppers 
from reading users’ messages. However, TLS only encrypts mes- 
sages between a user’s device and the service provider, thus still 
enabling service providers to read all of their users’ messages. To 
cryptographically protect message confidentiality against service 
providers themselves, end-to-end encryption (e2ee) is required. 

End-to-end encryption. E2ee, as the name suggests, encrypts mes- 
sages “end to end,” meaning that only the communicating users 
hold the necessary keys to encrypt and decrypt the messages they 
send to each other. This means that an IM service provider like 
WhatsApp or Signal should not have the ability to decrypt their 
users’ messages. Cryptographers would say that e2ee removes the 
need to trust the service provider for message confidentiality: since 
the provider has no access to user messages’ content to begin with, 
there is no need to rely on the provider’s good behavior to guarantee 
that the messages will not be misused or mishandled. 

E2ee does not address all privacy concerns in IM. Most notably, 
e2ee does not protect metadata, this is, information about a user’s 
communication other than message content. Metadata includes 
users’ contact lists, who they talk to, how often, for how long, 
when users are online and their location, among other types of 
information. WhatsApp and Signal also differ in their treatment of 
metadata: Signal promises (much like DuckDuckGo) to not collect 
metadata, whereas WhatsApp states that it may retain and use 
metadata for business and other purposes. 

E2ee has become the gold standard for message confidentiality 
in IM. However, the deployment of e2ee in Whatsapp and Signal 
challenges some of the assumptions upon which the privacy guar- 
antees of e2ee depend. When the IM provider itself implements 
e2ee—namely, the very party e2ee is supposed to protect against— 
an interesting conundrum arises: does e2ee truly remove the need 
to trust the service providers? The short answer is no. To better 
understand how exactly the adoption of e2ee by service providers 
shapes trust assumptions supporting message confidentiality guar- 
antees, below we present a comparative privacy analysis between 
three IM services: WhatsApp and Signal, that implement e2ee and 
enable it by default. WhatsApp and Signal implement very similar 

 

17 See https://www.whatsapp.com and https://signal.org. 

cryptographic protocols, but are organizationally very different: Sig- 
nal is a nonprofit whereas WhatsApp is owned by Meta (formerly 
Facebook), and Signal’s source code is published whereas What- 

sApp’s is not.18 Alongside WhatsApp and Signal, we also consider 
“TrustMeIM”, a hypothetical IM service that encrypts messages in 
transit (using TLS) but not end-to-end, yet promises not to examine 
or store user messages—much like DuckDuckGo’s promises in the 
previous case study. 

Comparative security analysis. 

Message confidentiality against service providers. TrustMeIM has 
access to messages in plaintext by default, as they traverse their 
servers unencrypted. Thus, message confidentiality requires re- 
liance on TrustMeIM’s promise not to use or access users’ mes- 
sages. There is no technology preventing TrustMeIM from reading 
users’ messages. 

As for Signal and WhatsApp, message confidentiality requires 
that the client software (i.e., the messaging application running on 
the user’s phone), has no unintended functionality that enables the 
transfer of data to the service provider. Note that it is not necessary 
to break encryption in order to undermine message confidentiality: 
a few extra lines of code are all that is needed to instruct the app to 
send back unencrypted messages to the server. 

In this regard, there is a key difference between Signal and What- 
sApp. While the two services may implement the same protocol, 
Signal’s code is public and available for anyone to review, whereas 
WhatsApp’s is not. Secrecy of code substantially hinders the ability 
to audit and verify the implementation. 

In sum, by publishing all its code, Signal partially distributes 
trust among the community of cryptographers and security experts 
that have the willingness and commitment to audit and verify this 
code. Conversely, by keeping its source code closed, WhatsApp 
hinders such independent auditing, thereby requiring heightened 
trust in its e2ee implementation. 

Surreptitious policy changes. In all three IM services, there is 
little protection against a service provider determined to imple- 
ment surreptitious changes to undermine message confidentiality 
Such surreptitious breaches of message confidentiality might target 
particular users’ communications (as in wiretaps), or undermine 
message confidentiality across large groups of users: the former, tar- 
geted surveillance, would be harder to detect than the latter, mass 
surveillance. There is however a significant difference in the cost 
and effort required to implement surreptitious changes to message 
confidentiality if e2ee is implemented. Because of this, e2ee enables 
providers to claim inability to comply with wiretap requests. 

TrustMeIM would be the easiest to wiretap, since it already 
has access to user messages. Users would have no way of find- 
ing out if they have been subjected to a wiretap, barring someone 
(e.g., an insider from law enforcement, the courts, or the service 
provider) revealing its existence. In fact, in all three services, em- 
ployees in the know about these wiretapping programs could ex- 
pose their employers. 

Wiretapping WhatsApp or Signal, on the other hand, would 
require either exploiting existing flaws in the implementation (in- 
tentional or not), or creating and distributing specific vulnerabilities 

 

18 WhatsApp is built on the Signal protocol with some modifications. 

https://www.whatsapp.com/
https://signal.org/
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(e.g., by forcing an update on selected users or devices). Although 
regular users would unlikely be able to detect such vulnerabilities, 
the larger cryptography and security community could potentially 
expose such flaws and vulnerabilities. This, however, can be an 
arduous process, and requires a commitment from the community 
that is often predicated on free labor. Vulnerabilities can go unde- 
tected for years, and those who do discover them may choose not 
to disclose them to benefit from a lucrative zero-days market [1, 55]. 
In any case, even targeted surveillance would be more detectable 
than TrustMeIM’s wiretapping. 

Moreover, users’ devices and the OS running on them would 
be vulnerable to exploits by external adversaries (i.e., beyond the 
service provider) such as law enforcement and governmental intel- 
ligence agencies. A case in point is NSO’s Pegasus, a Trojan horse 
that exploited OS vulnerabilities to gain access to cellphones’ text 
messages, calls and their microphones and cameras, among other 
capabilities [12]. Hence, the adoption of e2ee forces adversaries to 
attack end-user devices, to some extent preventing the convenience 
of just collecting all messages being relayed by the service provider. 
In this sense, e2ee also makes targeted surveillance much harder. 

To conduct mass surveillance, the strategic vulnerabilities or 
backdoors required to conduct targeted surveillance (as described 
above) would have to be deployed at scale, for the vast majority of 
the user base. This would render the vulnerabilities more visible, 
and the ease of detecting them higher. 

 

Overt policy changes. In all three IM services, there is no protec- 
tion against the service provider changing its policy and deciding 
to undermine message confidentiality. TrustMeIM could decide to 
start collecting and analyzing users’ messages; WhatsApp and Sig- 
nal could decide (willingly or under pressure or coercion) to switch 
off e2ee. 

Factors such as reputation, willingness to moderate content, and 
willingness to cooperate with law enforcement would likely influ- 
ence providers’ approaches to message confidentiality. Arguably, 
it could be easier for TrustMeIM to revert their policy of message 
confidentiality, as privacy expectations may already be lower. Con- 
versely, the implementation of e2ee signals a stronger commitment 
to message confidentiality. Hence, breaking or switching off e2ee 
might be seen as a harsher reversal of that commitment, and one 
that would anger and disappoint those users who adopted Signal 
or Whatsapp for their deployment of e2ee. 

Additional factors could influence the willingness of a provider 
to shift policies. Signal, as a non-profit, stands in opposition to 
the data-extractive business model that most tech companies rely 
on today. Signal stores minimal user data about its users and has 
been consistently pushing the state of the art in e2ee. Conversely, 
while Whatsapp provides e2ee encryption, its privacy policy reveals 
that collection of metadata is extensive and open to monetization 
by Meta. Meta’s own reputation cannot but color user’s privacy 
expectations. Moreover, Signal’s reputation and far smaller userbase 
suggests that its userbase may have more stringent expectations 
of privacy than the far larger and more heterogeneous WhatsApp 
userbase [28]. Signal’s userbase may thus be far more unwilling to 
tolerate a regressive change to Signal’s privacy policy [28]. On the 
other hand, competition from other more privacy-protective IM 
apps could conceivably discourage Whatsapp from discontinuing 

e2ee (e.g., a recent change to its privacy policy to allow companies 
to connect with customers on Whatsapp led to a public outcry 
and some users leaving Whatsapp for alternatives such as Signal 
and Telegram [43]). 

 
Discussion. Adoption of e2ee by the provider thus has an impact 

on trust that differs from the traditional cryptography model, in 
which users would rely on e2ee to protect the confidentiality of 
their communications against any unauthorized parties, e.g., the 
government, the Internet service provider (ISP), or the IM provider. 
Certainly, technologically savvy TrustMeIM users could adopt e2ee 
on their own to protect themselves against TrustMeIM. However, 
this model does not translate well when instead of users resorting 
to e2ee to protect themselves against an IM provider, it is the IM 
provider itself implementing e2ee. In this setting, e2ee does not 
perform the same function as it does in the traditional cryptography 
model. Certainly, it serves to protect message confidentiality, but 
trust must still be placed squarely on the service provider. An IM 
provider does not deploy e2ee so that users do not have to trust it 
with the confidentiality of their messages; rather, e2ee reinforces 
the trust that users place on the provider. By deploying e2ee, the 
provider is essentially telling users and the wider community: “I 
have no desire to read, analyze, or misuse your messages, and I am 
committed to implementing technological measures to make it difficult 
for myself and others to do so”. In situations such as misbehaving 
employees, faulty system security that exposes the service’s servers 
to external attackers or intelligence agencies over-relying on com- 
munications surveillance, e2ee introduces an additional barrier to 
protect the confidentiality of users’ communications. Similarly, e2ee 
works as a shield for IM providers to refuse turning user data to 
law enforcement or contributing to a surveillance infrastructure. 

Still, e2ee does not ultimately prevent a truly adversarial service 
provider from breaching message confidentiality if it wishes to. 
Hence, e2ee has a performative function on top of the privacy 
guarantees it provides. It is a token of goodwill, a way for the IM 
provider to keep itself honest, tie its hands behind its back—a sort 
of checks and balances. Thus, whereas for a cryptographer e2ee 
is a tool to avoid placing trust in the provider, in practice, when 
adopted by a provider, it becomes a tool to build trust. 

Yet the provider’s adoption of e2ee still distributes trust, relying 
on a delicate balance of institutional trust and experts willing to 
verify the provider’s claims. The analysis above in fact shows that 
trust in practice is far more complex and multidimensional than 
the concept of trust traditionally inherent in cryptosystems’ design. 
Trust is in the eye of the beholder. Our analysis shows how the 
perspective of a layperson, a regular user, unable to verify or test 
code themselves, is radically different from a crypto, security or 
privacy expert. Regular users cannot be expected to rely on the 
same relationships of trust as experts do to obtain privacy guar- 
antees online, partly because they are unlikely to understand the 
properties of the cryptosystem and likely to conflate the links along 
the chain of trust (see Sect. 2.3). Experts, on the other hand, still 
rely on a delicate balance of trust relationships within the broader 
community: not every crypto expert can test and verify every cryp- 
tosystem currently in use, so we implicitly rely on the expertise 
and know-how of others. 
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3.3 Lessons 
According to privacy-by-design principles, service providers should 
adopt organizational and technological solutions to protect, by de- 
sign and by default, users’ privacy. Cryptographic privacy tech- 
nologies are at the forefront of privacy engineering and privacy 
by design, often promising privacy protections against the service 
provider itself. A cryptographer would phrase this as eliminating 
the trust on the service provider to protect users’ privacy. 

The case studies above provide a comparison between a purely 
organizational approach to privacy protection (provider as a trusted 
party) and a cryptographic approach that implicitly considers the 
service provider as an untrusted party that users must be protected 
from. Whereas a cryptographer’s promise would be that adoption 
of cryptographic privacy technologies eliminates the need to rely 
on the untrusted service provider, our analysis illustrates why this 
does not happen in practice, especially when the provider itself 
implements these technologies. Instead, cryptography shifts and 
shapes a new delicate balance of trust between users, (security, 
privacy, cryptography) experts and service providers that users 
themselves are likely to remain oblivious to. 

This mismatch between a cryptographer’s promise of eliminating 
trust is partly predicated in outdated computing and user paradigms: 
a paradigm where users control their devices and adopt privacy 
technologies by themselves to fend off an adversarial, untrusted 
service provider. In reality, the modern computing paradigm makes 
it incredibly difficult for users to adopt these technologies on their 
own: even if users did not trust WhatsApp’s e2ee, users cannot add 
an encrypting plugin or extension to WhatsApp to encrypt their 
messages because of current mobile OS sandboxing restrictions. 

Moreover, users cannot unilaterally adopt certain privacy tech- 
nologies even if they wished to. A tool like CryptoSearch requires 
service provider cooperation, i.e., the service provider is the only 
one who can deploy it. And so the provider retains the power to 
undermine it. It is therefore crucial that complementary measures 
are in place to support cryptographic solutions. Privacy protection 
requires reliance on humans and organizations, whether that in- 
volves implementing cryptographic code or making sure service 
providers abide by their implementing promises. We explore some 
of these measures next. 

4 PATHS FORWARD 
In this section we explore a range of complementary measures, 
both technical and non-technical, to support the deployment of 
cryptographic privacy technologies. In essence, we ask: 

What legal, organizational, technical, or other measures 
could support cryptographic privacy technologies 

where traditional modeling assumptions are in doubt? 

While a thorough study of this question is beyond the scope of 
a single paper, we highlight the question for future research, and 
outline preliminary directions for further exploration. In particular, 
we hope to promote explicit and context-specific consideration of 
this question when analysing existing or planned deployments of 
cryptographic privacy technologies. 

Firstly, we note that technical measures may help, but they 
alone are insufficient. Hence, organizational and legal measures 
that enhance the transparency, accountability, and enforceability 

of promised privacy protection—cryptographic or otherwise—are 
essential to bolster the reliability of privacy guarantees at the in- 
evitable points where their realization relies on third-party (human 
and organizational) behavior. As such, the following discussion is 
lighter on technical measures than legal and organizational ones. 

The rest of this section discusses technical, organizational, policy, 
and legal measures in turn. While not all of these will be a perfect 
fit for every situation in which a privacy technology is deployed, 
we believe most have broad applicability. 

4.1 Technical and organizational safeguards 
– Avoid unnecessary complexity in system design.19 

– Publish (crypto)system specifications. 
– Publish source code. 
– Provide signed code, binary transparency, and reproducible 

builds wherever practicable. 
– Encourage or commission independent code audits. 
– Promote, develop and adopt open standards and interoper- 

ability [35, 56]. 
– Enforce robust access-control policies for insiders. 
– Maintain detailed activity logs and audit them routinely. 
– Establish incident reporting and investigation processes. 
– Establish a bug bounty program, and set clear guidelines as 

to what discoveries will be considered a privacy bug. 
– Openly commit to whistleblower protection policies. 
– Publish clear policies about allowed data use and access. 
– Publish clear policies about any commitments to continue 

providing privacy services into the future. 

4.2 Legal safeguards 
To further support the privacy properties that cryptosystems afford, 
organizations may choose to make them credibly legally enforce- 
able. Making contractual commitments (e.g., in terms of service) 
to the organizational and policy safeguards described above is use- 
ful, but only a starting point. Contracts may be as ineffective as 
cryptography unless contract violations are evident to the party 
harmed, and that party has the resources and patience to pursue 
legal action against the violating party. 

Thus, to ensure meaningful private enforceability: (1) organi- 
zations should implement transparency and auditing processes 
that render it likely that deviations from contractual commitments 
would be readily detectable and demonstrable (perhaps reinforced 
by technical measures); and (2) organizations should commit to 
clearly defined consequences and penalties in case of discovered 
violations (e.g., reviews and reports after the fact, curtailment of 
certain activities, and/or monetary payouts to affected users or char- 
ities). Additionally, to enhance enforceability beyond the defaults 
provided by the legal system, organizations may commit to honor 
such penalties and consequences through extrajudicial processes, 
reducing the likelihood of costly litigation as a barrier to enforce- 
ment. For example, organizations might pledge to award a “privacy 
bounty” to those who report deviations from the organization’s 
stated privacy commitments, and/or to put funds in escrow with 

 

19 E.g., the phrase “Keep It Simple, Stupid” (KISS) refers to a design principle originating 
from the U.S. Navy in 1960, which has since gained popularity in software development 
and security. The underlying idea is that simpler systems work more reliably and can 
be more reliably secured, so unnecessary complexity should be avoided [19, 69]. 
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a neutral arbiter who is charged with paying out privacy-related 
claims. Finally, some of the voluntary safeguards thus far mentioned 
may be overridden by government subpoenas or other mandates; 
to reduce the likelihood of such activities going undetected, organi- 
zations may choose to implement canaries [46]. 

A further benefit of clear commitments by private parties to or- 
ganizational privacy practices—and of establishing credible mecha- 
nisms to make violations evident to parties harmed—is that the U.S. 
Federal Trade Commission (FTC) would then have jurisdiction to 
investigate and penalize violations of the stated privacy practices, 
as they would fall within the scope of “unfair and deceptive prac- 

tices” as defined by the FTC Act.20 Though regulatory regimes differ 
internationally, written commitments to privacy practices and evi- 
dence of violations may similarly facilitate oversight by consumer 
protection and data protection authorities in other countries. 

The legal measures discussed thus far depend on voluntary adop- 
tion by organizations. While this limits their scope, it also means 
that they could be instated in the immediate term upon the ini- 
tiative of individual organizations. New legislative or regulatory 
measures are likely to take much longer to establish, but could 
provide stronger safeguards. In general, productive legislative or 
regulatory directions should encourage or mandate the adoption 
of technical and organizational measures such as outlined above. A 
few examples follow. 

– Obliging cryptographic service providers that meet certain 
requirements (e.g., a threshold in user base or revenue) to 
demonstrate heightened trustworthiness, such as by under- 
going independent privacy audits. 

– Requiring providers to publish the results of any independent 
privacy audits—or, at the very least, to disclose them to a 
competent government agency with authority to pursue 
further investigation, such as the FTC. 

– Designating and providing resources to a government agency 
or other organization to enforce and conduct privacy audits. 

– Allocating public funds so that demonstrations of trustwor- 
thiness, such as independent privacy audits, are accessible to 
all interested cryptographic service providers (e.g., subsidies 
for nonprofits). 

– Establishing a heightened duty of care for cryptographic 
service providers above a certain size (perhaps similar to 
some existing information fiduciary proposals [8]). 

– Suggesting enhanced penalties for otherwise actionable harm 
related to providers’ misuse or misrepresentation of privacy 
technologies. 

–  Creating a private right of action, rooted in consumer pro- 
tection law, that users (or classes of users or nonprofits ad- 
vocating on behalf of users) could raise against providers for 
misuse or misrepresentation of privacy technologies and/or 
cryptography, even if no otherwise actionable harm can be 
proven. The elements of such a claim might be scoped around 
reasonable reliance and exposure to risk: (1) that users rea- 
sonably relied on providers not to misuse or misrepresent the 
technology; (2) that users placed themselves at significant 
privacy or other risk based on such reliance, would not have 

 
20 Federal Trade Commission Act, 15 U.S.C. §41–58, at §45. 

done so but for such reliance, and the providers’ misuse or 
misrepresentation aggravated that risk. 

– Allocating public funds and convening independent expert 
bodies towards the development of open standards. 

– Encouraging the use of, and interoperation via, open stan- 
dards, e.g., by offering capped or reduced penalties for se- 
curity or privacy incidents for organizations that use open 
standards according to software engineering and security 
best practices. 

 
 

4.3 Discussion 
Our emphasis on providers in the above is significant. The burden 
should be on providers, not users, to ensure privacy technologies 
are understood and used safely, and not to offer unreasonably risky 
products. Much as in consumer protection law, providers are bet- 
ter informed, and generally are positioned to be the “lesser cost 
avoider”. Furthermore, where providers may be naturally incen- 
tivized to cut corners, they would often be able to do so in a way that 
would be difficult or impossible for consumers to detect; therefore, 
placing liability and auditing obligations on providers is essential 
to effectively achieving the privacy protections sought. 

However, an important counterbalancing consideration when 
designing mandates for providers is to promote the broader policy 
goal underlying strengthened privacy regulation: namely, to en- 
courage the adoption of privacy technologies. Imposing additional 
burdens on organizations that voluntarily adopt cryptographic pri- 
vacy technologies could backfire by discouraging the adoption of 
such technologies in the first place—especially where, as now, ex- 
isting privacy regulation does not mandate privacy protection at 
the level that cryptographic privacy technologies provide. Hence, 
the measures outlined above should be considered in combination 
with complementary measures that encourage (or at least do not 
make more difficult) the adoption of privacy technologies. These 
could include broader privacy protection requirements for more 
companies to “level the playing field” for those providing crypto- 
graphic protections, or other types of incentives, such as tax breaks 
or safe harbors for adopting organizations that comply with one or 
more measures listed above (e.g., published code and independent 
audits), and meet security best practices in their deployment. 

Providers of supporting infrastructure for cryptographic privacy 
technologies, such as app stores and code repositories, are also 
critical to these technologies’ trustworthiness, as discussed in detail 
in Sect. 2.2. Though the discussion above refers mainly to privacy 
technology providers, many of the suggested measures may be 
productively applied to supporting infrastructure providers too. 
Furthermore, since providers of centralized supporting infrastruc- 
ture can sometimes function as effective gatekeepers to market 
entry by privacy technology providers, regulation to encourage 
(or not make more difficult) the adoption of privacy technology 
should also discourage or penalize infrastructure providers from im- 
posing disproportionate barriers for privacy technology providers. 
Looking ahead longer term, these problems would be alleviated by 
reducing the extent of technological dependence and gatekeeper 
roles in the “chain of trust” (discussed in Sect. 2.2) that technologies 
today tend to rely on. 
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Finally, added obligations on users should be avoided. Naturally, if 
users cause otherwise actionable harm through the use of a privacy 
technology (e.g., harassment via private messaging), then they may 
be properly liable under existing law. However, there should be no 
liability for users for simply using a provider’s product or service 
in a manner not anticipated or endorsed by the provider—even if 
such use entails privacy risk. In other words, companies should 
not be in a position to shift liability for a privacy incident to the 
user by claiming that the user “misused” a privacy technology 
which, if used correctly, would not have led to the incident. Not 
only does this approach again mirror consumer protection law, it 
also promotes essential research that may involve experimenting 
with privacy technologies: such research may discover weaknesses 
in existing technologies, from which we can learn, and is necessary 
to improving computer and Internet security over time [48]. 

 
5 CONCLUSION 
Cryptography is at the heart of modern privacy technologies, en- 
abling stringent data confidentiality properties. The cryptography 
literature often informally claims that cryptography eliminates the 
need for trust. In other words, cryptography enables users to no 
longer need to trust service providers to protect their privacy, as 
these tools protect them even against service providers. The narra- 
tive goes that privacy is thus protected by design and by default, 
embedded into system design, automatically enforced by code. 

And yet, despite their apparent promise, cryptographic privacy 
technologies have seen limited adoption in practice, while, at the 
same time, the most popular cryptographic privacy technologies 
have been implemented by the very service providers these tech- 
nologies purportedly protect users from. Hence, the adoption of 

privacy technologies by supposedly adversarial service providers 
highlights a mismatch between traditional models of trust in cryp- 

tography and the trust relationships that underlie deployed tech- 
nologies in practice. While this mismatch is well known to experts 

in the cryptography community, its consequences have been under- 
studied and understated in practice, emboldening service providers 
to peddle misleading claims and fostering a false sense of security. 
This paper has sought to highlight, document and better under- 
stand this mismatch. To that end, we have provided a description of 
the divergence between conceptualizations of trust in cryptography 
and a commonsense notion of trust. We have described how cryp- 

tographic privacy guarantees operate within a limited model that 
abstracts away from complex relationships of trust in the modern 

computing ecosystem, from the development of software to the 
provision of online services, including control over user devices and 
the software that runs on them. Moreover, we have performed a 
comparative analysis between two paradigms of privacy protection: 

one, based on trusted parties, the second, based on cryptographic 
privacy technologies. This comparative analysis enables us to il- 
lustrate how, far from removing trust in the provider, adopting 
cryptographic privacy technologies shifts trust to a broader com- 
munity of security and privacy experts, enabling in turn service 
providers to implicitly build and reinforce trust relationships with 

its user base. 
Lastly, these observations have important implications for pol- 

icy making and the broader regulation of privacy online. While a 

technocentric or cryptocentric approach may suggest that crypto- 
graphic privacy technologies are the solution to complex sociotech- 
nical problems, the deployment of these technologies requires a 
robust arrangement of complementary technical and non-technical 
measures to support them. This paper has charted a few tentative 
steps in this direction. 
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