Is It Overkill? Analyzing Feature-Space Concept Drift in Malware Detectors

Zhi Chen”, Zhenning Zhang", Zeliang Kan'#, Limin Yang", Jacopo Cortellazzi*
Feargus Pendlebury*, Fabio Pierazzi’, Lorenzo Cavallaro*, Gang Wang"

*University of Illinois at Urbana-Champaign

Abstract—Concept drift is a major challenge faced by machine
learning-based malware detectors when deployed in practice.
While existing works have investigated methods to detect
concept drift, it is not yet well understood regarding the main
causes behind the drift. In this paper, we design experiments
to empirically analyze the impact of feature-space drift (new
features introduced by new samples) and compare it with
data-space drift (data distribution shift over existing features).
Surprisingly, we find that data-space drift is the dominating
contributor to the model degradation over time while feature-
space drift has little to no impact. This is consistently observed
over both Android and PE malware detectors, with different
feature types and feature engineering methods, across different
settings. We further validate this observation with recent
online learning based malware detectors that incrementally
update the feature space. Our result indicates the possibility
of handling concept drift without frequent feature updating,
and we further discuss the open questions for future research.

1. Introduction

In recent years, machine learning (ML) models have
been used to build malware detectors by researchers and
practitioners [1, 2, 3, 4, 5]. Concept drift (i.e., the shift of
ML decision boundaries) is a crucial challenge faced by
these detectors when deployed in practice. Fundamentally,
ML models expect the testing data to roughly match that
of the training data. However, due to organic changes or
adversarial adaptations, the testing samples’ distribution can
drift away, decreasing model performance over time [6].

Researchers have studied concept drift in malware detec-
tors by proactively detecting drifting samples [7, 8, 9, 10]
or aging models [11, 12]. However, less effort has been
investigated to understand the contributors (causing factors)
of concept drift. To fill this gap, in this paper, we aim to
isolate the impact of two types of drift, namely, feature-
space drift and data-space drift, and measure their influence
on the model behavior changes. The goal is to provide a
deeper understanding of the causes of concept drift and
inform future designs to counter this effect.

Motivation Example. Suppose an ML model is trained
for ransomware detection. Fig. | illustrates the difference
between feature-space and data-space drifts. The top figure
shows the data-space drift only. The model considers a fixed
set of two features (f1 is “number-of-writes” and fo is

"King’s College London

#University College London

Drift in data
space only

Drift in feature space
and data space

Figure 1: Motivation Example.

“call-graph-complexity”). This predefined feature set never
changes. At t;, the decision boundary is noted as the red
dashed line. At ¢,,, there is a shift in both ransomware and
benign behavior under these two features, which can lead to
changes in the decision boundary and classification errors.

The bottom figure shows feature-space drift. Instead of
fixing the feature set, the model actively adds new features
that are never seen in the past. For example, recent ran-
somware starts to use a new cryptography library called
“X”. As such, a new feature f3 (“crypto-lib-X-is-present’”)
is introduced to the feature space at t,. Under this new
feature space (f1, f2, f3), we can observe that there exists a
hyperplane to cleanly separate the two distributions, thanks
to the added feature dimension f3.

The hypothesis is that newly arrived data may carry
new features (previously unseen), which can be used to
update the feature space to catch up with concept drift. This
idea has been incorporated in online learning-based malware
detectors [11, 12, 13] where new features are dynamically
added to the feature space.

Our Work and Findings. In this paper, we designed
experiments to empirically analyze the impact of feature-
space drift in comparison with pure data-space drift in com-
mon malware detectors. We used datasets of both Android
malware (7 years) and PE malware (2 years) to compare
model performance with and without feature-space updating.

Surprisingly, we find that feature-space drift has minimal
impact, compared with pure data-space drift (i.e., when
features are completely fixed). For example, we construct a

feature set using data from the first quarter of 2015—without
any changes to this feature set, the model performance
is similar to (or slightly better than) models that actively
incorporate newly appeared features in the data over 7
years of the testing period. This is consistently observed
in both Android and PE detectors despite their significant
differences in feature types and embedding methods. It also
remains consistent under various model types, training data
ratios, and feature set sizes. Despite the significant number
of new features (millions) introduced by the new data over
time, we show it is possible to stick to a fixed set of features
to support model updating over many years.

We further measure the impact of feature-space updating
on online learning-based malware detectors. Interestingly,
we show that feature-space updating has little impact when
the model is updated with ground-truth labels. However,
feature-space updating starts to have an impact when the
model is updated with noisy (less accurate) labels. Based on
these observations, we discuss the implications of our results
and future directions to study feature updating strategies to
counter concept drift for malware detection.

2. Background and Related Work

Concept Drift in Machine Learning (ML). Concept drift
is a general challenge for ML models. After a trained model
is deployed, the testing data distribution may (gradually)
shift away from that of the training data over time. Such
concept drift can lead to model degradation [6, 14]. To
detect concept drift, ML researchers have proposed various
methods to statistically assess model behaviors and measure
distribution changes [15, 16, 17, 18]. However, most of these
methods require collecting extensive labels for the new data,
which can be challenging for security applications.

Concept Drift in Malware Detection. Machine learning
has been used for malware detection [1, 2, 3, 4, 5] and mal-
ware family classification [19, 20]. Concept drift also poses
a challenge to these models, which requires the models to
be periodically re-trained [21, 22]. Recent works propose to
proactively detect drifting samples and use a smaller set of
drifting samples for model updating [7, 8, 9, 10], which can
reduce the overhead of data labeling.

Feature-Space vs. Data-Space Drift. While most existing
works focus on concept drift detection [7, 8, 9, 10], less
effort is investigated to reason the causes of the drift. We
focus on feature-space drift and compare it with data-
space drift. For data-space drift, suppose a malware classifier
uses a fixed set of features F', concept drift happens when
the data distribution D(F') changes over this feature set.
Feature-space drift additionally considers the changes in the
underlying feature space (F' — F’) which then leads to
new data distribution (D(F")). Note that feature-space drift
always leads to data-space drift because data distribution
D(F") is dependent on feature space F”.

In the context of malware detection, feature-space drift
describes the situation where new samples introduce new
features (e.g., APIs, strings, libraries) that are never seen

in the previous data. When such features appear, the model
can either choose to ignore them or incorporate them. For
example, CASANDRA [13] and DroidEvolver [11] adopted
online learning algorithms to incrementally add features to
the feature space as new samples arrive. Another recent
system APIGraph [23] proposes to enhance this process by
learning a robust feature space to reduce the frequency of
feature updating. Our work is built on top of these existing
works with a focus on (a) empirically comparing the impact
of feature-space drift and data-space drift and (b) exploring
the reasons behind the observed drift.

3. Method

The goal of our analysis is to decouple the impact of
feature space drift with that of data-space drift to understand
the main contributor of concept drift. To do so, we take a
malware dataset and divide it into n timestamped data blocks
[Dy,, D¢,, ..., Dy,]. Here, “data block” is just a general
concept. In actual experiments, they can be generated with
a non-overlapping data split or using a sliding time window.

1) Measure data-space drift only: we construct a feature
space I} based on the first data block D, . Then we fix
this feature set F for all the following data blocks. This
feature set will be used for all the model training/re-
training and testing for the following data blocks.

2) Measure feature-space drift: for a given data block at
t;, the corresponding feature space F; will be updated
according to the recent data block. The corresponding
classifier training/re-training at t; will be based on F;.

Types of Features. Malware detection models use dif-
ferent types of features. For the purpose of our analysis,
we categorize features into two types: (1) Data-dependent
features—new features can be introduced as new data ar-
rives. For example, for PE malware, such data-dependent
features can be the set of imports, exports, libraries, and
dll (carried in new malware samples). (2) Data-independent
features—this type of feature is universally applicable to all
samples. For example, features such as file size and number
of sections do not need to be introduced by new data and
can be computed for any PE files. For our analysis, feature-
space drift is mainly considering data-dependent features.

4. Analysis: Android Malware

Dataset. We construct an Android malware dataset sam-
pled from AndroZoo [24] between January 2015 and De-
cember 2021. We take the 2015-2016 data from [25] and
2017-2018 data from [9]. Then to obtain more recent data,
we sampled APKs from AndroZoo between 2019-2021
to combine with existing datasets. We follow the recom-
mendation from [22] to maintain the temporal and spatial
consistency for the evaluation. For each month, we have
at least 2,000 samples and maintain a malicious-to-benign
ratio of 1:9. Following prior works [22, 26], an APK is
labeled “benign” if no VirusTotal engine has flagged it as
malicious; an APK is labeled “malicious” if at least four

1.0 1.0 [1.0 e
0.8 B 0.8+ g 0.8 1
v 06l 1 wvosf —— IBaseline 41 Qo6 1
o o . o
8 8 —— Updating Features b
T o4t 4 T o4t —— |Fixed Features 1 T oaf .
—— Baggline
0.2} —— Updating Features E 0.2+ 1 0.2} —— Updating Features 1
—— Fixed Features —— Fixed Features
0.0 bt 0.0 Ltorton i 0.0 Lotoetoniiii
P OPOPOLOLOLOL® P OPOLOLOLOLOD® P OPOLLLOLOLOD®
INNNSSISSSNSVS OSSN SSISN Q. 9 07 0,0, 9,9, 9.9, 9. 0 9. 0. 0 Q. 9 907 0.0, 9,9, 9.9, 0. 0.9 . 9. 0
N ARG NG QN RN WY WY A WY AT AN Y Y N R AT NIV VA B A D A A Y Y N R AT NIV QAW T A D A A Y)
Month Month Month

(a) Training data ratio: 100%

(b) Training data ratio: 50%

(c) Training data ratio: 25%

Figure 2: Testing performance over time. (a) uses all the training data in the sliding window; (b)-(c) uses less training data.

engines have labeled it so. The rest grayware is excluded.
In total, the dataset contains about 32, 000 malware samples
and 279,000 benign samples from 2015-2021.

We used Drebin [1] to extract feature vectors from these
Android apps. Drebin has 10 feature categories such as
Activities, URLs, and APIs. Each feature is treated as a string
entity. Given an app, Drebin produces a binary feature vector
of values of 1 or 0—*“1” means the app contains this feature
(e.g., an API), and “0” means the app does not contain this
feature. According to our definition in §3, all of the features
are “data-dependent” since new features (e.g., an API that
never appear before) can be introduced as new data arrives,
which are subject to feature-space drift.

We follow a common approach [27] to performing fea-
ture selection before training a detector (to improve training
efficiency). We use the LinearSVM Lo regularizer to select
the top 20K features and train an MLP binary classifier with
one hidden layer of 1,024 neurons and a dropout rate of
0.2. We use an MLP as the default model because it is a
commonly used model for this problem [4, 28, 29, 30]. We
will also test SVM and SecSVM [27] for comparison.

Experimental Setup. We divide the data between 2015
and 2021 into 84 months and construct three settings to
measure feature-space and data-space drifts.

First, we construct a baseline to measure the level of
concept drift when the model is never updated after training.
We use the first three months of data for training and then
test it in the remaining 81 months without any re-training.

Second, we construct a fixed feature space setting. The
idea is to always keep the same feature set so that we
can exclusively measure the data-space drift. We extract the
features during the first three months and then fix this feature
set for the entire experiment. It means no new features will
be added/removed during the subsequential model training
and testing. Here, we re-train this model every month using
the data in a sliding window of the past three months. After
re-training, we test the updated model in the next month.
For example, at the end of month 3, we will use data
from months 1, 2, and 3 as the training set to retrain the
model. We then test this model in month 4 to report the F1
score. This ensures there is no data leakage between training

and testing. This process repeats at the end of month 4.
Note that we assume abundant labels are available to study
the upper-bound performance. In practice, there are various
techniques [7, 8, 9, 10] to use a smaller number of labeled
samples for retraining, which is not the focus of this paper.
Third, we construct an updating feature space setting to
examine the impact of the feature-space drift. This setting is
similar to the second setting above, except new features from
the recent sliding window can be included for retraining.
During each re-training, feature updating is done by using
a LinearSVM L, regularizer to select the top 20K features
based on the data in the sliding window. As discussed in
§2, feature-space drift always affects the data space because
data distribution D(F') is dependent on the feature set F'.

Drift in the Android Dataset. As shown in Fig. 2a, the
baseline (red line) confirms the existence of concept drift
as the model performance (F1 score) is decreasing over
time. To counter this effect, we show that re-training helps
(both blue and green lines) as the model performance can
be maintained at a high level after re-training.

Surprisingly, the blue line and the green line almost
overlapped. Recall that the blue line represents the setting
where features are updated monthly using recent data, and
the green line represents the setting where the features are
fixed. This result indicates the model performance is not
benefiting from the feature-space update. The fixed feature
set (20K features) initially selected in the first three months
of 2015 still work well later in 2021. This also indicates that
data-space drift (over existing features) is the dominating
cause of model performance degradation over time.

To better interpret the result, we revisit the toy example
in Fig. 1 (§1). The result means introducing the new feature
f3 (crypto-lib-X-is-present) to the feature set is not as critical
as updating the data distribution over existing features (f;
and f5). A possible reason is that the behavior shift can be
readily captured by existing features, e.g., ransomware now
does 10x more writes than before, which can be captured
by the existing fi (number-of-writes) during re-training.

We also observe the green line gets a bit higher than the
blue line during the later years. A possible explanation is
that frequently updating feature space may take in features

3.5M
3.0M
2.5M
2.0M
1.5M
1.0M
0.5M

Accumulative # of Features

0.0M

Figure 3: Cumulative # of features—
This analysis considers all the features that
appear in the dataset, before running any

T e e
20.0K | B
w 15.0KF b
S
2
©
£ 10.0K | 1
.
o
$#
5.0K b
Il New Features
Hmm Overlapped Features
0.0K

P OPOPLPOPLOOD O
Q.9 Q07 Q0,90 90.90, 97970 9. 9.9
N R NI AT RV VWY WY A D A AY Y Y

Figure 4: Updating feature setting—
Number of overlapped features in each train-
ing window compared with the initial feature

R B e A AL L
20.0K | B
w 15.0KF 1
S
2
©
& 10.0K - B
o
o
$#
5.0K - b
EE [nactive Features
I Active Features
0.0K

POPOPLIPOPLOOD O
Q.97 Q7 Q0,900,907 97 970 9. 9.9
NIRRT AG RV VR WY A W A AY Y Y

Figure 5: Fixed feature setting—
Number of active and inactive features in
each sliding window. “Active” means at least

feature selection. set (first 3 months).

1.0 1.0
0.8 0.8
CU 14
506 5 0.6
O O
w (%2}
o 0.4 o 0.4
—— Baselin —— Baseline
0.2 Updating F 0.2 Updating F
—— Fixed F —— Fixed F
0.0 . ! 0.0
RSN I R RN PN SN S I RN
S LA X O QLY RPN BN N - SIS PN S

NONTNT NN
Month

NONTNNT N Y
Month

(a) Feature space size: 10,000 (b) Feature space size: 50,000
Figure 6: Impact of the number of selected features.

that are only temporally useful (i.e., due to short-term drift),
but can hurt the models’ long-term performance.

Impact of Training Data and Feature Space Size. We
further explore under which condition will feature-space
drift starts to have an impact. In Fig. 2b and 2c, we first
try to reduce the data used for training and re-training. The
rationale is that, with less data, it might be more difficult to
capture concept drift, and thus the model is more dependent
on a good/updated feature space to perform well. This also
mimics a real-world scenario where labeled data is limited.
The result, however, shows that using less training data does
not separate the blue and green lines.

Next, we further explore the impact of feature set size,
i.e., the number of selected features. The default feature set
size is 20K features. In Fig. 6, we further test 10K and 50K.
We find that using a larger or smaller feature set does not
make a notable difference.

We have also tested the impact of ML models (using
SVM and SecSVM) and also did not observe major differ-
ences between the blue and green lines. Due to the space
limitation, the result is presented in Appendix B.

Feature Space Analysis. To understand the reasons behind
our observation, we further analyze the feature space. A
natural question is, is it because there are no major feature
changes over time? Fig. 3 suggests the answer is “no”. If
we consider all the features (without feature selection), there

one sample has this feature.

are about 100K unique features observed during the first
three months, and 3.6 million features in the end of 2021—
a significant number of features are introduced over time.

Then after feature selection, the total number of features
is capped at 20K, and thus the level of feature dynamics is
reduced. For the “updating feature” setting, Fig. 4 shows
the number of features in each sliding window that are
overlapped with the first three months (i.e., the initial feature
set). The black bar (new features) gets bigger while the red
bar (old features) gets smaller over time. This shows new
features are indeed selected during periodical retraining.

We further examine the features under the “fixed feature”
setting in Fig. 5. For each sliding window, we show the
old features that are still active (i.e., appeared in at least
one sample in the window) and features that are inactive
(i.e., did not appear in any samples). The result indicates
that about 2.1K features remain active at the end of 2021.
We further analyze the importance score (produced by the
feature selection method) and confirm these features have a
higher average score (0.054, STD=0.075) than the inactive
features (0.032, STD=0.060). This indicates that a small
set of important features (selected in the beginning) are
sufficient to maintain the model performance over multiple
years, without any feature updating. Additional analysis of
feature weights and correlations is in Appendix D.

5. Analysis: PE Malware

We validate our observations with PE malware detectors.
Dataset. We use the EMBER PE dataset [3] that contains
over 2 million PE files collected between January 2017 and
December 2018. The dataset includes 800K malicious, 700K
benign, and 500K unlabeled files. For this experiment, we
only use labeled malicious and benign files.

EMBER extracts three types of features from a PE file,
namely, numerical, boolean, and string features. Numerical
features record the numerical value of certain properties of
the file (e.g., file size, number of sections). Boolean features
record the binary value (“yes” or “no”) such as has_debug

1.0 P L B e B 1.0 F—r—0 L B e B L B R R R R A MR RS S RS
» 20.0M | B Import]
oslh 1 oslh 1 g EEE Export
. . " I Others
¢ 15.0M
L o6 1 L 06 4 bS]
]] *
< < ¢ 10.0M
w 0.4 B w 0.4 B F=}
o
g
—— Baseline —— Baseline
0.2) 4 0.2+ .] 3 5.0M
Updating Features —— Updating Features S
—— Fixed Features —— Fixed Features <
0.0 b 0.0 b T T 0.0M
> O X O > DO YD X O X O > DO YD 3P OO
PRSP NSRS LD SIS M S A A PRSP NSRS LD SIS M S A A Q7 0,0, 0, QN QT Q7 Q0 Q7 Y
RPN NP RN RPN RPN N RN NN NN RN RN PN PN N VRV RV RYRN Y RY WY R RY Y
Month Month Month

Figure 7: PE results (all features).

and has_signature. String features encode discrete entities
such as the set of imports, exports, and libraries in the PE
files. There are 10 types of such strings (see Appendix A
for the full list). According to our definition in §3, only the
string features are “data-dependent” since new features (e.g.,
libraries that never appear before) can be introduced as new
data arrives. Numerical and boolean features are pre-defined
(which are not introduced by the new data).

For string features, EMBER proposes to use locality-
sensitive hashing (LSH) to convert/embed a set of string
entities into a fixed-length vector. For this experiment, we
use MinHash [31] for feature embedding which preserves
the similarity between the string sets in the embedding
space. More details are in Appendix A.

Experimental Setup. We follow the original EMBER
paper [3] and use LightGBM to train the malware detector
for its high efficiency and good detection performance [32].
We divide the data between 2017 and 2018 into 24 months
and test the three settings described in §4: (1) baseline
setting, (2) fixed feature space, and (3) updating feature
space. Note that settings (2) and (3) are only applied to
the string features since these features are data-dependent
(i.e., subject to feature-space changes).

Drift in the PE Dataset. As shown in Fig. 7, the baseline
(red line) confirms that concept drift exists, given the clear
drop in the F1 score after the first month of 2018 (dropped
by 17%) and stays at the lower level. This result echoes
the EMBER paper [3] as the authors intentionally included
“harder-to-detect” malware in the 2018 data.

More importantly, we again observe that the blue and

green lines are largely overlapping, indicating the two set-
tings have similar results. This suggests data-space drift is
the primary cause to model degradation while feature space
updating has little impact.
Models with String Features Only. An alternative ex-
planation might be that the features subject to drift (i.e.,
string features) did not play a major role in the model. To
eliminate this possibility, we perform the same experiment
by using string features only.

As shown in Fig. 8, when only using string features, the
conclusion remains the same. The overall performance drops
slightly compared to using full features (Fig. 7). However,
the blue and green lines still overlapped.

Figure 8: PE results (string features).

Figure 9: # of unique features over time.

Feature Space Analysis. To show there is indeed a high
level of feature dynamics, we plot Fig. 9, which shows the
accumulative number of raw string features (before hashing)
over time. We note that import and export contributed to
the majority of the unique strings. We can also observe a
sudden increase in the number of new features in early 2018,
which explains the sudden performance drop during that
time (Fig. 8). The result confirms that a large number of
new features (strings) are introduced, from 4.4 million in
the first three months to 20.7 million by the end of 2018.

Despite the high level of feature dynamics, the classi-
fier’s performance is not affected, possibly due to feature
embedding. The hashing function (LSH) has helped to map
a large, sparse feature space (i.e., 20.71 million strings)
into a fixed-sized dense feature space (in our case, the hash
vector length is 2,381), which can stabilize the feature space.
Another reason is that the initial feature set (first three
months) is still quite actively used by samples in the last
month of the two-year period (see an example in Fig. 10).
These features remain effective in separating malicious from
benign samples (F1=0.93, Fig. 7).

6. Online Learning

Finally, we revisit systems that proactively perform fea-
ture space updating via online learning. We pick DroidE-
volver [11] considering it is more advanced than the earlier
variants (e.g., [13]). A recent paper introduced improve-
ments on DroidEvolver and released DroidEvolver++ [12].
Due to the space limit, we report the DroidEvolver analysis
in this section. The experiment on DroidEvolver++ has a
similar conclusion, which is shown in Appendix C.
DroidEvolver. DroidEvolver uses online learning to con-
tinuously update the model as new data arrives. Unlike our
experiments in §4 and §5 (models are updated each month
with batches of samples), DroidEvolver updates its model
incrementally with each individual sample as it arrives (i.e.,
stream-based). DroidEvolver trains an ensemble of 5 linear
online learning models. At the testing time, DroidEvolver
produces a prediction for a sample based on a weighted sum
of decision scores from the 5 models. To handle concept
drift, DroidEvolver maintains an app buffer to store a small
set of samples that represent the current data distribution.

T T T 1.0 — T T T T 1.0
3.0M —— Updating Features
o 2.5M] 0.8 —— Fixed Features o8l 1
é 2.0M
i © 0.6 { eo6f 1
o o
5 1smf] b]
3 T o4t 1 T oaf
5 1.0M | B
* 0.2 1 02f ’
0.5M F EE |nactive Features J . ' —— Updating Features
B Active Features —— Fixed Features
0.0M I RAAARAARNAAR 0.0 b . . \ . . 0.0 b . L \ \ \ .
I AN I I I SIS I W R > QA Q > > A S > QA Q & > A Q
ISR SIS ISR IGN S IO NI I N2 S N S N S e N S N N S N >
NN ENENEN N SN SN N PN N NN INEEECEER NS DN SN RN RN RN RN

Month
Figure 10: “Fixed feature” setting: we
show the number of active and inactive
export features in each sliding window.

The buffer is used to identify new samples that deviate
from the current distribution and also flag “aging models”
that start to give less accurate predictions. The aging model
then will be updated using the new sample. To get the labels
for the model updating, DroidEvolver produces a “pseudo-
label” for the new sample based on the ensemble prediction
of “non-aging” models. Importantly, during model updating,
the feature set is also extended to include any previously
unseen features present in the new sample.

Experimental Setup. This experiment is not to diminish
the value of DroidEvolver, which is one of the first papers
to study stream-based model updating for malware detec-
tors. Our goal is to obtain a deeper understanding of the
impact of feature-space and data-space drifts. The original
DroidEvolver is evaluated on an Android malware dataset
with API features. Without access to the original data, we
use Drebin features (which include APIs as features).
DroidEvolver updates the model based on each new
sample (not in batches), and thus it takes a long time to
run. For this test, we focus on 2015-2016 data (24 months).
We train the initial model ensemble with the first three
months of data in 2015. After that, we run DroidEvolver
to perform malware detection and model updating as new
samples arrive (with 1,000 random samples each month).
We aggregate the testing results per month to report F1.
To examine the impact of feature updating, we create two
versions, one with feature updating enabled (DroidEvolver’s
original design), and one never updates the feature space.
As mentioned, DroidEvolver does not need any “ground-
truth” labels for the model updating—they rely on pseudo-
labels voted by the model ensemble. However, recent works
pointed out that model updating with its own predictions
(pseudo-labels) can lead to self-poisoning [12, 33]. As such,
we also test the case where model updating is done with
ground-truth labels for DroidEvolver.
Results. Fig. 10a shows the performance using the pseudo
labels. It has a much lower F1 score (around 0.6-0.7),
compared with updating with ground-truth labels (F1 over
0.8, Fig. 10b). This confirms the concerns from prior work
that pseudo labels can cause self-poisoning [12, 33] which
started as early as the first testing month (15-04).
Interestingly, when using ground-truth labels (Fig. 10b),
there is almost no difference between updating and fixing

(a) Pseudo Labels
Figure 11: DroidEvolver performance over time.

Testing month Testing month

(b) Ground Truth Labels

the feature space. This is consistent with our prior obser-
vations. However, when using “pseudo labels”, we observe
that updating feature space has helped to improve the F1
score. Recall that pseudo-labels are noisy and often contain
incorrect labels. This result indicates that feature updating
might be helpful when label quality is low.

7. Discussion and Conclusion

In this paper, we decouple feature-space drift from data-
space drift to examine their impact on malware detectors.
Empirically, we find that data-space drift is the dominating
contributor to model performance degradation over time
while feature-space updating has little to no impact. This is
consistently observed across different feature types and fea-
ture engineering methods, across Android and PE malware
detectors. The takeaway is that a well-constructed feature
set can effectively support model re-training (to catch up
with data-space drift) without updating the feature set itself.
This is true despite a large number of new features being
introduced by incoming new samples.

Does it mean feature updating is completely unneces-
sary? We don’t think that’s the case either. For example,
in §6, we show that feature-space updating seems to help
when the labels used for model retraining are noisy (less
accurate). Future work is needed to further investigate this
condition to draw a more reliable conclusion.

On the flip side, what’s the benefit of not updating
features frequently? First, during model re-training, if a
brand new feature set is used, it means the model will need
to be either re-trained from scratch on the new feature space
(costly) or use simpler linear models (less accurate) for
incremental updating like DroidEvolver. In comparison, with
a fixed feature set, there is more flexibility in model choices
and incremental updating methods. Second, frequent feature
updating may take on features that are only temporally use-
ful (i.e., due to short-term drift), but hurt the models’ long-
term performance (e.g., Fig. 2). We believe more work is
needed to understand the impact of feature-space updating.
Acknowledgment. This work was supported in part by
NSF grants CNS-2055233 and CNS-1955719, C3.AI Re-
search, IBM-Illinois Discovery Accelerator Institute, and a
gift from AVAST.

References

(1]

(2]

[3]

(4]

(]

(6]

(71

(8]

(91

[10]

(11]

[12]

[13]

[14]

[15]

[16]
[17]

[18]

[19]

[20]

(21]

[22]

(23]

[24]

D. Arp, M. Spreitzenbarth, M. Hubner, H. Gascon, K. Rieck, and
C. Siemens, “Drebin: Effective and explainable detection of android
malware in your pocket.” in Proc. of NDSS, 2014.

M. Lindorfer, M. Neugschwandtner, and C. Platzer, “Marvin: Effi-
cient and comprehensive mobile app classification through static and
dynamic analysis,” in Prof. of COMPSAC, 2015.

H. S. Anderson and P. Roth, “Ember: an open dataset for train-
ing static pe malware machine learning models,” arXiv preprint
arXiv:1804.04637, 2018.

Y. Chen, S. Wang, D. She, and S. Jana, “On training robust PDF
malware classifiers,” in Proc. of USENIX Security, 2020.

D. Arp, E. Quiring, F. Pendlebury, A. Warnecke, F. Pierazzi,
C. Wressnegger, L. Cavallaro, and K. Rieck, “Dos and don’ts of
machine learning in computer security,” in Proc. of USENIX Security,
2022.

J. Gama, I. Zliobaité, A. Bifet, M. Pechenizkiy, and A. Bouchachia,
“A survey on concept drift adaptation,” ACM computing surveys
(CSUR), 2014.

L. Yang, W. Guo, Q. Hao, A. Ciptadi, A. Ahmadzadeh, X. Xing, and
G. Wang, “CADE: Detecting and explaining concept drift samples
for security applications,” in Proc. of USENIX Security, 2021.

D. Han, Z. Wang, W. Chen, Y. Zhong, S. Wang, H. Zhang, J. Yang,
X. Shi, and X. Yin, “Deepaid: Interpreting and improving deep
learning-based anomaly detection in security applications,” in Proc.
of CCS, 2021.

R. Jordaney, K. Sharad, S. K. Dash, Z. Wang, D. Papini, I. Nouretdi-
nov, and L. Cavallaro, “Transcend: Detecting concept drift in malware
classification models,” in Proc. of USENIX Security, 2017.

F. Barbero, F. Pendlebury, F. Pierazzi, and L. Cavallaro, “Transcend-
ing transcend: Revisiting malware classification in the presence of
concept drift,” in Proc. of IEEE S&P, 2022.

K. Xu, Y. Li, R. Deng, K. Chen, and J. Xu, “Droidevolver: Self-
evolving android malware detection system,” in Proc. of Euro S&P,
2019.

Z. Kan, F. Pendlebury, F. Pierazzi, and L. Cavallaro, “Investigating
labelless drift adaptation for malware detection,” in Proc. of AlSec,
2021.

A. Narayanan, M. Chandramohan, L. Chen, and Y. Liu, “Context-
aware, adaptive, and scalable android malware detection through
online learning,” IEEE TETCI, 2017.

R. Sommer and V. Paxson, “Outside the closed world: On using
machine learning for network intrusion detection,” in Proc. of IEEE
S&P, 2010.

M. Baena-Garcia, J. del Campo—Avila, R. Fidalgo, A. Bifet,
R. Gavalda, and R. Morales-Bueno, “Early drift detection method,” in
Proc. of Workshop on knowledge discovery from data streams, 2006.
A. Bifet and R. Gavalda, “Learning from time-changing data with
adaptive windowing,” in Proc. of SDM, 2007.

M. Harel, S. Mannor, R. El-Yaniv, and K. Crammer, “Concept drift
detection through resampling,” in Proc. of ICML, 2014.

D. M. dos Reis, P. Flach, S. Matwin, and G. Batista, “Fast unsuper-
vised online drift detection using incremental kolmogorov-smirnov
test,” in Proc. of KDD, 2016.

M. Ahmadi, D. Ulyanov, S. Semenov, M. Trofimov, and G. Giacinto,
“Novel feature extraction, selection and fusion for effective malware
family classification,” in Proc. of CODASPY, 2016.

T. Chakraborty, F. Pierazzi, and V. Subrahmanian, “Ec2: Ensemble
clustering and classification for predicting android malware families,”
IEEE TDSC, 2017.

A. Kantchelian, S. Afroz, L. Huang, A. C. Islam, B. Miller, M. C.
Tschantz, R. Greenstadt, A. D. Joseph, and J. D. Tygar, “Approaches
to adversarial drift,” in Proc. of AlSec, 2013.

F. Pendlebury, F. Pierazzi, R. Jordaney, J. Kinder, and L. Cavallaro,
“TESSERACT: Eliminating experimental bias in malware classifica-
tion across space and time,” in Proc. of USENIX Security, 2019.

X. Zhang, Y. Zhang, M. Zhong, D. Ding, Y. Cao, Y. Zhang, M. Zhang,
and M. Yang, “Enhancing state-of-the-art classifiers with api seman-
tics to detect evolved android malware,” in Proc. of CCS, 2020.

K. Allix, T. F. Bissyandé, J. Klein, and Y. Le Traon, “Androzoo:
Collecting millions of android apps for the research community,” in

Proc. of MSR, 2016.

L. Yang, Z. Chen, J. Cortellazzi, F. Pendlebury, K. Tu, F. Pierazzi,
L. Cavallaro, and G. Wang, “Jigsaw puzzle: Selective backdoor attack
to subvert malware classifiers,” arXiv preprint arXiv:2202.05470,
2022.

F. Pierazzi, F. Pendlebury, J. Cortellazzi, and L. Cavallaro, “Intriguing
properties of adversarial ML attacks in the problem space,” in Proc.
of IEEE S&P, 2020.

A. Demontis, M. Melis, B. Biggio, D. Maiorca, D. Arp, K. Rieck,
I. Corona, G. Giacinto, and F. Roli, “Yes, machine learning can
be more secure! a case study on android malware detection,” /IEEE
TDSC, 2017.

K. Xu, Y. Li, R. H. Deng, and K. Chen, “Deeprefiner: Multi-layer
android malware detection system applying deep neural networks,”
in Proc. of Euro S&P, 2018.

G. Severi, J. Meyer, S. Coull, and A. Oprea, “Explanation-guided
backdoor poisoning attacks against malware classifiers,” in Proc. of
USENIX Security, 2021.

H. Li, S. Zhou, W. Yuan, X. Luo, C. Gao, and S. Chen, “Robust
android malware detection against adversarial example attacks,” in
Proc. of WWW, 2021.

W. Wu, B. Li, L. Chen, J. Gao, and C. Zhang, “A review for weighted
minhash algorithms,” IEEE TKDE, vol. 34, no. 6, pp. 2553-2573,
2022.

G. Ke, Q. Meng, T. Finley, T. Wang, W. Chen, W. Ma, Q. Ye, and
T.-Y. Liu, “Lightgbm: A highly efficient gradient boosting decision
tree,” in Proc. of NeurIPS, 2017.

G. Andresini, F. Pendlebury, F. Pierazzi, C. Loglisci, A. Appice, and
L. Cavallaro, “Insomnia: Towards concept-drift robustness in network
intrusion detection,” in Proc. of AlSec, 2021.

M. A. Hall, “Correlation-based feature selection for machine learn-
ing,” Ph.D. dissertation, The University of Waikato, 1999.

[25]

[26]

[27]

[28]
[29]
[30]
[31]
[32]
[33]

[34]

Appendix A.
EMBER: Embedding String-based Features

In the EMBER dataset [3], string-based features are
the main source of feature-space drift, and we provide
more context for their embedding method. There are
ten categories of string features including section_name,
section_characteristics, library, import, export, machine,
subsystem, dll_characteristics, header_characteristics, and
magic. For each file, the raw features of each category are
presented as a set of discrete strings/entities. Given the large
number of unique entities, we follow EMBER [3] to embed
the string features using a hashing function that maps a set
of strings to a fixed-length vector. We choose the vector
length for each string category based on the suggestion
of the original paper [3]. We use a locality-sensitive hash
(LSH) method—the advantage is that LSH preserves the
similarity between sets, i.e., if two sets are more similar
(i.e., with a bigger intersection), their hashed vectors also
have a smaller distance in the embedding space. Hashing
helps to map a sparse feature space with potentially tens of
millions of features into fixed-sized dense vectors (e.g., size
of 2,381). This helps to improve the efficiency of training.
Note that the original EMBER paper [3] used FeatureHasher
in the sklearn library which is an LSH with respect to cosine
distance. We used MinHash [31] for easy implementation,
and we confirmed that both hashing algorithms have equally
good performances (i.e., < 1% difference in F1 score).

Appendix B.
Impact of Different Models

1.0 1.0
0.8} 0.8
[[
So06f 5 06
O O
(%] (%2}
T 04f o 0.4
—— Baselin — Baselin
021 ypdating F 021 ypdating F
—— Fixed F —— Fixed F
ool fedf 0 gl
LS EIRSIR IR
RN SN RN B e RN RN RN R B S
Month Month

(a) Model: SVM (b) Model: SecSVM
Figure 12: Impact of different types of models.

In this section, we evaluate the impact of model choices
on our experiment result on the Android dataset. In addition
to the MLP model (used in §4), prior works have also
used LinearSVM and SecSVM for Android malware detec-
tion [26]. Note that SecSVM [27] is a variant of the SVM
model designed to be more robust against evasion attacks.
The main idea of SecSVM is to maintain more evenly-
distributed feature weights such that the model cannot be
easily evaded by manipulating a few features. We follow
the same experimental methodology from §4, and test Lin-
earSVM and SecSVM respectively under the default setting
(20K feature set size, 100% training data). The results are
presented in Figure 12. We find that our conclusion remains
the same. With LinearSVM and SecSVM, the blue and green
lines are still largely overlapping, indicating that data-space
drift is still the dominating contributor to concept drift.

1.0

08l \N/\/\Qm]
© 06}
o
&
04t

0.2r Updating Features

—— Fixed Features
0.0 - :

Testing month
Figure 13: DroidEvolver++ performance over time.

Appendix C.
Online Learning with DroidEvolver++

A recent paper introduced a series of improvements on
DroidEvolver and released DroidEvolver++ [12]. These im-
provements include two main categories: (1) a new pseudo-
label generation method (to reduce self-poisoning), and (2)
other small design improvements such as modifying the

voting scheme for the model ensemble and the updating
scheme for “app buffer”. To validate our observation on
DroidEvolver++, we run the same experiment described
§6. Here, to avoid the distraction of the self-poisoning
problem from pseudo-labels, we use ground-truth labels for
the test (other design improvements from DroidEvolver++
are applied). The result is reported in Fig. 13. We show
that the blue line (updating features) and the green line
(using fixed features) are still very close, confirming the
conclusion remains consistent, namely, feature updating has
little impact on the model performance over time.

Appendix D.
Feature Correlation and Weight Analysis

In this section, we provide additional analysis to under-
stand the correlation between features in the fixed feature
space and those in the updated feature space, to understand
the impact of feature updating.

In §4, we observe that updating the feature space has lit-
tle impact on improving the model performance. Other than
the explanation provided in §4, another possible explanation
is that the newly added features are strongly correlated with
the replaced/removed features, and thus making the update
had little impact on the model.

To validate this hypothesis, we run a quick experiment
on the last 3-month window of the Android dataset (ending
in 2021-11, see Fig. 4). For this time window, we divide
the features into three groups, by comparing features in the
fixed-feature setting and the updating-feature setting: (1) 644
features in both feature sets (overlapped features); (2) 19,356
features newly selected under the updating setting (new
features); and (3) 1,495 features that exist in the fixed feature
space and the last 3-month time window, but are removed
from the updated feature set (removed features). We then
calculate the average Pearson’s correlation coefficients [34]
between the above three feature groups. The correlation co-
efficient is 0.0114 between “overlapped” and “new” features,
0.0259 between the “overlapped” and “removed” features,
and 0.0024 for the “new” and “removed” features. The result
indicates that the newly added features are least correlated
with the removed features, which does not support the above
hypothesis. In other words, the ineffectiveness of feature
updating is not caused by strong correlations between the
new and removed features.

Another possible explanation for the lack of impact of
feature updating is that the new features do not have signif-
icantly higher weights than those of the removed features.
Here, using the above experiment setup, we further calculate
the average feature weights for the “new” feature set and
the “removed” feature set, based on the last 3-month time
window. We confirm that the newly selected features indeed
have much higher weights (AVG=0.0104, STD=0.010) than
those of removed features (AVG=0.0008, STD=0.001).

Overall, the results help to eliminate these alternative
explanations for the observation in §4.

	Introduction
	Background and Related Work
	Method
	Analysis: Android Malware
	Analysis: PE Malware
	Online Learning
	Discussion and Conclusion
	Appendix A: EMBER: Embedding String-based Features
	Appendix B: Impact of Different Models
	Appendix C: Online Learning with DroidEvolver++
	Appendix D: Feature Correlation and Weight Analysis

