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Studies of Kelvin–Helmholtz (KH) instability have typically modelled the initial flow as
an isolated shear layer. In geophysical cases, however, the instability often occurs near
boundaries and may therefore be influenced by boundary proximity effects. Ensembles of
direct numerical simulations are conducted to understand the effect of boundary proximity
on the evolution of the instability and the resulting turbulence. Ensemble averages are
used to reduce sensitivity to small variations in initial conditions. Both the transition to
turbulence and the resulting turbulent mixing are modified when the shear layer is near
a boundary: the time scales for the onset of instability and turbulence are longer, and
the height of the KH billow is reduced. Subharmonic instability is suppressed by the
boundary because phase lock is prevented due to the diverging phase speeds of the KH and
subharmonic modes. In addition, the disruptive influence of three-dimensional secondary
instabilities on pairing is more profound as the two events coincide more closely. When the
shear layer is far from the boundary, the shear-aligned convective instability is dominant;
however, secondary central-core instability takes over when the shear layer is close to the
boundary, providing an alternate route for the transition to turbulence. Both the efficiency
of the resulting mixing and the turbulent diffusivity are dramatically reduced by boundary
proximity effects.

Key words: shear-flow instability, turbulent mixing, shear layer turbulence

1. Introduction

Turbulent mixing plays a crucial role in the vertical exchange of heat, momentum, nutrients
and carbon in the ocean (Wunsch & Ferrari 2004). The performance of large-scale
ocean and climate models depends on the parameterization of small-scale mixing and
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turbulent fluxes. Turbulent mixing is often modelled by the classical Kelvin–Helmholtz
(KH) instability of a stably stratified shear layer (e.g. Smyth & Carpenter 2019). The shear
layer rolls up to form a periodic train of ‘billow’ structures which subsequently break down
via three-dimensional (3-D) secondary instabilities (Mashayek & Peltier 2012a,b), leading
to turbulence and vertical transport.
Turbulence in stratified shear flows has been observed in a variety of fluid environments,

ranging from diurnal warm layers near the surface ocean (Hughes et al. 2021), equatorial
undercurrents (Moum, Nash & Smyth 2011), seamounts and oceanic ridges (Chang, Jheng
& Lien 2016; Chang et al. 2022), estuarine shear zones (Geyer et al. 2010; Holleman,
Geyer & Ralston 2016; Tu et al. 2022) and the abyssal ocean (Van Haren & Gostiaux 2010;
Van Haren et al. 2014) to canopy waves above forests (Mayor 2017; Smyth, Mayor & Lian
2023) and higher atmospheric layers (Fukao et al. 2011). Theoretical understanding has
been greatly advanced via the use of direct numerical simulations (Caulfield & Peltier
2000; Smyth & Moum 2000; Mashayek & Peltier 2011, 2012a,b; Salehipour, Peltier &
Mashayek 2015; Kaminski & Smyth 2019; Lewin & Caulfield 2021; VanDine, Pham
& Sarkar 2021). However, most theoretical studies have assumed that the shear layer is
located far from any boundary. In geophysical flows, much of the most important mixing
is found in complex boundary regions (Munk & Wunch 1998; Wunsch & Ferrari 2004;
Smyth et al. 2023); therefore, a comprehensive understanding of boundary effects on
sheared, stratified turbulence is critical for the prediction of such mixing events.
This article describes the impact of proximity to a no-slip boundary on KH instability

and its secondary instabilities as well as the resulting turbulent mixing. We seek to
understand how the boundary modifies the route to turbulence and the ensuing turbulence
characteristics, e.g. mixing efficiency. In the process, we identify and explore a novel
mechanism for the suppression of pairing and turbulence by boundary effects.
Subharmonic pairing, wherein adjacent KH billows merge (Corcos & Sherman 1976;

Klaassen & Peltier 1989; Smyth & Peltier 1993), leads to upscale energy cascade and may
increase turbulent mixing (Rahmani, Lawrence & Seymour 2014) by raising the available
potential energy. This mechanism is sensitive to the details of the initial conditions. For
example, Dong et al. (2019) showed how the initial phase difference between the primary
KH and the subharmonic Fourier components leads to a significant difference in mixing
characteristics. Guha & Rahmani (2019) predicted the strength and pattern of pairing in
terms of the initial asymmetry between consecutive wavelengths of the vertical velocity
profile.
The 3-D secondary instabilities initiate a downscale energy cascade and catalyze

the transition to turbulence (Klaassen & Peltier 1985a; Mashayek & Peltier 2012a,b).
Mashayek & Peltier (2013) showed that pairing can be suppressed, at high Reynolds
number, by the early emergence of various 3-D secondary instabilities. This provides
one explanation for the fact that pairing is observed rarely, if ever, in geophysical flows
(although see Armi & Mayr 2011). Here, we propose an alternative mechanism whereby
pairing instability is suppressed by the boundary.
Turbulent mixing in stratified fluids is often parameterized using mixing efficiency, η,

a ratio of the irreversible mixing to the rate at which the kinetic energy is irreversibly
lost to viscosity. A canonical constant value of Γ = η/(1 − η) = 0.2 (η = 1/6), known
as the flux coefficient, is often assumed in the parameterization of the eddy diffusivity,
Kρ = Γ ε′/N2 (Osborn 1980), where ε′ is the viscous dissipation rate of turbulent kinetic
energy, and N is the buoyancy frequency. However, previous studies have shown that
mixing efficiency is not necessarily constant (Ivey, Winters & Koseff 2008; Gregg et al.
2018; Caulfield 2021). Here, our goal is to understand the effect of boundary proximity on
turbulent mixing and its efficiency.
966 A2-2
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Boundary effects on Kelvin–Helmholtz turbulence

We study these phenomena by comparing statistics from ensembles of direct numerical
simulations in which the initial state is varied slightly and randomly. This is done using
ensembles of direct numerical simulations (DNS), where initial perturbations are varied
due to the sensitive dependence on initial conditions (Liu, Kaminski & Smyth 2022). Liu
et al. (2022) showed that a small change in the initial random perturbation can lead to a
substantial variation in the timing and strength of turbulence. This variation results from
the interactions between mean flow, primary KH, subharmonic and various 3-D secondary
instabilities.
The paper is organized as follows. In § 2 we describe the set-up for our numerical

simulations and the choice of the initial parameter values as well as the diagnostic tools
required for the analysis of energetics and mixing. We then describe the boundary effects
on primary KH instability in § 3, and show that the evolution of KH instability depends
strongly on boundary proximity. In § 4 we explain how the boundary suppresses pairing
by altering the phase speeds of the KH and subharmonic modes. Boundary effects on 3-D
secondary instabilities are presented in § 5. In § 5.4, we show how boundary proximity
modifies the competition between the subharmonic instability and turbulence. In § 6, we
describe the boundary effects on the irreversible mixing, mixing efficiency and turbulent
diffusivity. Conclusions are summarized in § 7.

2. Methodology

2.1. The mathematical model
We begin by considering a stably stratified parallel shear layer

U∗(z) = U∗
0 tanh

(
z∗

h∗ + L∗
z /2 − d∗

h∗

)
and B∗(z) = B∗

0 tanh
(
z∗

h∗ + L∗
z /2 − d∗

h∗

)
,

(2.1a,b)

in which 2U∗
0 and 2B

∗
0 are, respectively, velocity and buoyancy differences across the shear

layer and 2h∗ is its thickness (figure 1). Asterisks indicate dimensional quantities. The
stratified shear layer has a distance d∗ from the lower boundary. The domain has a vertical
extent L∗

z . The Cartesian coordinates are x∗ (streamwise), y∗ (spanwise) and z∗ (vertical,
positive upwards). The non-dimensional velocity and buoyancy profiles become

U(z) = B(z) = tanh
(
z + Lz

2
− d

)
, (2.2)

after non-dimensionalizing velocities by U∗
0 , buoyancy by B∗

0, lengths by h∗ and times by
the advective time scale h∗/U∗

0 .
The flow evolution is governed by the Boussinesq Navier–Stokes equations,

conservation of buoyancy and mass continuity equations. In non-dimensional form, these
are

∂u
∂t

+ u · ∇u = −∇p + Ri0bẑ + 1
Re0

∇2u, (2.3)

∂b
∂t

+ u · ∇b = 1
Re0Pr

∇2b, (2.4)

∇ · u = 0, (2.5)

where u = {u,v,w} is the net velocity, b is the buoyancy, p is the pressure and ẑ is the
vertical unit vector. The equations include three non-dimensional parameters, namely the
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Free-slip

No-slip

z∗ = Lz
∗/2

z∗ = –Lz
∗/2

U0
∗
, B0

∗

h∗

d∗

Figure 1. Initial mean profile for buoyancy and velocity showing dimensional parameters and boundary
conditions. The bottom boundary moves to the left with speed −U∗

0 tanh (d∗/h∗) for computational efficiency.

initial Reynolds number, Re0 = U∗
0h

∗/ν∗, where ν∗ is the kinematic viscosity, the Prandtl
number, Pr = ν∗/κ∗, where κ∗ is the diffusivity, and the initial bulk Richardson number,
Ri0 = B∗

0h
∗/U∗2

0 .
In general, the gradient Richardson number is defined by

Rig = ∂〈b∗〉xy/∂z∗
(∂〈u∗〉xy/∂z∗)2 = Ri0

∂〈b〉xy/∂z
(∂〈u〉xy/∂z)2 . (2.6)

The notation 〈 〉r denotes an average over r, where r may represent any combination of x, y,
z and t. When t > 0, the minimum gradient Richardson number over z is named as Rimin.
In the inviscid limit, Rimin < 1/4 is a necessary condition for instability (Howard 1961;
Miles 1961). For the flow described by (2.2), the initial minimum Rig is given by Ri0.
Boundary conditions are periodic in both horizontal directions. The top boundary is

free slip (∂u/∂z = ∂v/∂z = 0). The bottom boundary is no slip and moves with velocity
u = − tanh (d), v = 0 (figure 1) so that the speed differential between the mean flow and
the boundary is ∼0. The advantage of setting the no-slip boundary as a moving boundary
is that the timestep can be larger based on the Courant–Friedrichs–Lewy condition. Both
boundaries are insulating (∂b/∂z = 0) and impermeable (w = 0).
A small, random velocity perturbation is added to the initial state (2.2). This initial

noise field is purely random and is applied to all three velocity components throughout the
computational domain. The maximum amplitude of any one component is 0.05, or 2.5%
of the velocity change across the shear layer, small enough that the initial-growth phase
is described by linear perturbation theory. Ensembles of simulations are performed, each
using a different seed to generate the random velocities (Liu et al. 2022). The choices of
d, grid sizes and repetition of runs for each set of simulations are presented in table 1.

2.2. Linear stability analysis
To calculate the linear instabilities, (2.3)–(2.5) are linearized about the initial base flow
(2.2) and perturbed by small-amplitude, normal mode disturbances proportional to the
real part of a(z) exp (σ t + ikx). Here, a(z) is the vertically varying, complex amplitude of
any perturbation quantity, σ is a complex exponential growth rate and k is the wavenumber
in the streamwise direction. The phase speed is defined as c = −σi/k, where the subscript
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Boundary effects on Kelvin–Helmholtz turbulence

d (Lx,Ly,Lz)
10 (28.28, 7.07, 20)
6 (28.56, 7.14, 20)
4 (28.21, 7.05, 20)
3 (28.36, 7.09, 20)
2.5 (27.93, 6.98, 20)
2 (29.16, 7.29, 20)

Table 1. Parameter values for six, 10-member DNS ensembles. In all cases Re0 = 1000,Pr = 1,Ri0 = 0.12
and the grid size is 512 × 128 × 361. The maximum initial random velocity component is 0.05.

i denotes the imaginary part. The normal mode equations are expressed in matrix form
and discretized using a finite difference method to form a generalized eigenvalue problem
(Smyth & Carpenter 2019).

2.3. Direct numerical simulations
The simulations are carried out using DIABLO (Taylor 2008), which utilizes a mixed
implicit–explicit timestepping scheme with a pressure projection method. The viscous and
diffusive terms are handled implicitly with a second-order Crank–Nicolson method; other
terms are treated explicitly with a third-order Runge–Kutta–Wray method. The vertical z
direction dependence is approximated using a second-order finite difference method, while
the periodic streamwise and spanwise (x, y) directions are handled pseudospectrally.
To allow the subharmonic mode to grow, two wavelengths of the fastest-growing

KH mode are accommodated in the streamwise periodicity interval Lx based on linear
stability analysis (§ 2.2). The spanwise periodicity interval Ly = Lx/4 is adequate for the
development of 3-D secondary instabilities (e.g. Klaassen & Peltier 1985b; Mashayek
& Peltier 2013). The domain height is Lz = 20, sufficient to avoid boundary effects for
simulations of isolated shear layer.
The computational grid is uniform and isotropic. Grid dimensions are chosen to resolve

∼2.5 times the Kolmogorov length scale, Lk = (Re−3/ε′)1/4 after the onset of turbulence.
Due to the sensitive dependence on initial conditions that may greatly alter the evolution

of the instability and turbulent mixing (Liu et al. 2022), an adequate ensemble size is
crucial for controlling sampling error. Therefore, we must compromise between Re, Pr
and ensemble size. Since we are focused mainly on the boundary proximity effect, the
initial state parameters, Richardson, Reynolds and Prandtl numbers are fixed. We conduct
a total of 60 DNS runs, ensembles of 10 cases for different values of d. In all cases, we set
Re0 = 1000, the smallest value at which the suppression of pairing is clearly manifested.
We choose Ri0 = 0.12, large enough for stratification to be important but small enough for
pairing to develop without being entirely damped by stratification. We choose Pr = 1, an
appropriate value for air but too small to be entirely realistic in water, a compromise that
has to be made due to computational resource limits.

2.4. Diagnostics
The total velocity field can be decomposed into a horizontally averaged component (the
mean flow) and a perturbation (Caulfield & Peltier 2000)

u(x, y, z, t) = Ūê(x) + u′(x, y, z, t), where Ū(z, t) = 〈u〉xy , (2.7)
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where ê(x) is the unit vector in the streamwise direction. The perturbation velocity is further
partitioned into 2-D and 3-D components

u′(x, y, z, t) = u2d + u3d, (2.8)

where

u2d(x, z, t) = 〈u〉y − Ūê(x) and u3d(x, y, z, t) = u − u2d − Ūê(x) = u − 〈u〉y .

(2.9a,b)

The buoyancy field can be decomposed in the same manner as the velocity field, therefore
the 3-D component can be defined as

b3d(x, y, z, t) = b − 〈b〉y. (2.10)

Following the decomposition of the velocity, the total kinetic energy can be subdivided as

K = ¯K + K ′; K ′ = 〈K2d〉xz + 〈K3d〉xyz, (2.11a,b)

where

¯K = 1
2

〈
Ū2

〉
z
, K2d = 1

2(u
2
2d + v22d + w2

2d), K3d = 1
2

(
u23d + v23d + w2

3d

)
.

(2.12a–c)

These constituent kinetic energies ¯K , K ′, K2d and K3d may be identified, respectively,
as the horizontally averaged kinetic energy associated with the mean flow, the turbulent
kinetic energy and the kinetic energy associated with 2- and 3-D motions, respectively.
The time at which 〈K3d〉xyz is maximum is defined as t3d.
It is also convenient to partition the kinetic energy into components associated with

certain wavenumbers by Fourier decomposition. The Fourier transform of the perturbation
velocity field at z = 0 is

û′(k, y, t) = 1
Lx

∫ Lx

0
u′(x, y, t)e−ikx dx, (2.13)

where k = (2π/Lx)n, n = 1, 2, 3, . . .Nx/2 − 1 and Nx = 512 for the array sizes used here.
The spectral decomposition of the perturbation kinetic energy is then defined as

K̂ ′(k, t) = 1
2

(
〈û′û′∗〉y + 〈v̂′v̂′∗〉y + 〈ŵ′ŵ′∗〉y

)
, (2.14)

where û′∗ is the complex conjugate of the transformed perturbation velocity component.
The turbulent kinetic energy is given by

K ′(t) =
Nx/2−1∑
n=1

K̂ ′
n . (2.15)

We denote the subharmonic component as Ksub for n = 1, and the KH component as
KKH for n = 2. The time at whichKsub andKKH are maxima are defined as tsub and tKH ,
respectively.
We calculate the phase spectrum of the perturbation vertical velocity by taking the

Fourier transform of 〈w′〉y. The result can then be expressed as

ŵ′(k, t) = Ŵ(k)eiφ̂(k), (2.16)

where Ŵ(k) and φ̂(k) are, respectively, the amplitude spectrum and the phase spectrum.
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Boundary effects on Kelvin–Helmholtz turbulence

A key process that we wish to quantify is the irreversible mixing. To do so, we
decompose the total potential energy P = −Ri0〈bz〉xyz into available and background
components, P = Pa + Pb. Here, Pb is the minimum potential energy that can be
achieved by adiabatically rearranging the buoyancy field into a statically stable state b∗
(Winters et al. 1995; Tseng & Ferziger 2001). After computing the total and background
potential energy, the available potential energy is calculated from the residual, Pa =
P − Pb; Pa is the potential energy available for conversion to kinetic energy, which
arises due to lateral variations in buoyancy or statically unstable regions.
Following Caulfield & Peltier (2000), we define the irreversible mixing rate due to fluid

motionsM as

M = dPb

dt
− Dp, (2.17)

where Dp ≡ Ri0(btop − bbottom)/(RePrLz) denotes the rate at which the potential energy
of a statically stable density distribution would increase in the absence of any fluid motion
(i.e. due only to diffusion of the mean buoyancy profile).
We define the instantaneous mixing efficiency as

ηi = M

M + ε
, (2.18)

where we use the total dissipation rate ε = 2/Re〈sijsij〉xyz, and sij = (∂ui/∂xj + ∂uj/∂xi)/2
is the strain rate tensor. The mixing efficiency relates the fraction of energy that goes
into irreversible mixing to the total loss of kinetic energy that is irreversibly lost by the
fluid (Peltier & Caulfield 2003). We note that there are a variety of definitions for mixing
efficiency in the literature (Gregg et al. 2018). A cumulative mixing efficiency is also
useful for quantifying the efficiency of the entire mixing event, and is defined as

ηc =

∫ tf

ti
M dt∫ tf

ti
M d +

∫ tf

ti
ε dt

, (2.19)

where ti ∼ 2.2 is the initial time after the model adjustment period, and tf is the final time
of the simulation at whichK ′ drops more than 3 orders of magnitude.
The evolution of kinetic energy equation associated with the 3-D perturbations can be

expressed in the form (Caulfield & Peltier 2000)

σ3d = 1
2〈K3d〉xyz

d
dt

〈K3d〉xyz (2.20)

= R3d + S h3d + A3d + H3d + D3d, (2.21)

where the first two terms represent the 3-D perturbation kinetic energy extraction from
the background mean shear and the background 2-D KH billow by means of Reynolds
stresses, respectively defined as

R3d = − 1
2〈K3d〉xyz

〈
u3dw3d

∂Ū
∂z

〉
xyz

, (2.22)

S h3d = − 1
2〈K3d〉xyz

〈
(u3dw3d)

(
∂u2d
∂z

+ ∂w2d

∂x

)〉
xyz

. (2.23)
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Figure 2. Cross-sections through y = 0 at various times for (a–e) shear layer far from boundary (d = 10, case
#3), ( f–j) shear layer close to boundary (d = 2.5, case #1). Panels (b,g) are at their respective tKH .

The third term represents the stretching/compression of the 3-D vorticity and is defined as

A3d = − 1
2〈K3d〉xyz

〈
1
2

(
u23d − w2

3d

) (
∂u2d
∂x

− ∂w2d

∂z

)〉
xyz

. (2.24)

The final two terms are the buoyancy production term and the negative–definite viscous
dissipation term associated with 3-D perturbations and are defined, respectively, as

H3d = Ri0
2〈K3d〉xyz 〈b3dw3d〉xyz, (2.25)

D3d = − 1
〈K3d〉xyzRe 〈sijsij〉xyz, (2.26)

where sij is the strain rate tensor of the 3-D motions. There are no additional terms in (2.21)
associated with boundary fluxes, but all terms are ultimately affected by the boundary.

3. Overview

Consider a tanh shear layer (as in figure 1) with Rimin < 1/4 and weak viscosity
and diffusion located far from any boundary (figure 2a). The incipient KH instability
grows to macroscopic amplitude and generates a train of KH billows of which our
computational domain contains two (figure 2b). In the next phase, adjacent billows pair
(figure 2c). Thereafter, the billow structure breaks down as 3-D secondary instabilities
create turbulence (figure 2d). Finally, the flow relaminarizes. The shear layer is now stable
because Rimin > 1/4 (figure 2e).
When the instability occurs near the boundary (d = 2.5; figure 2f–j), the evolution of

the KH instability has some resemblance to the d = 10 cases. The linear instability grows
to finite amplitude (figure 2g), then 3-D secondary instabilities arise and turbulence is
generated, breaking down the KH billows (figure 2h,i). Finally, the flow relaminarizes to
a stable state (figure 2j). When d = 2.5, the vertical extent of the KH billow at t = tKH
(figure 2g) is 55% of that for d = 10 (figure 2b). In other words, KH billows are flatter
when the shear layer is closer to the boundary. (The vertical extent of the billows is defined
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200

180

160tKH

140

120

100
2 3 4 5 6 7

Far from boundaryClose to boundary

8 9 10

d

Figure 3. Dependence of tKH on d. Circles denote all ensemble members. Red represents the mean.

as the distance between two local maximum buoyancy gradients at the upper and lower
edges of the billows.) This result is consistent with previous laboratory experiments (Holt
1998). The geometrical change occurs because the impermeable boundary constrains the
vertical development of the billows.
Another impact of the boundary is that the primary KH instability grows slower

so the onset of turbulence is delayed. The maximum KKH occurs at tKH = 120 for
d = 10 (figure 2b) but is delayed to tKH = 145 for d = 2.5 (figure 2g). A more robust
demonstration of the boundary effect on the KH evolution is the dependence of tKH
on d (figure 3). When the boundary effect becomes salient, e.g. d < 4, tKH increases
significantly with decreasing d.

4. Pairing

In a train of KH billows, there is a range of different wavelengths including the primary KH
wavelength, along with its shorter harmonics and longer subharmonics. Like all interfacial
disturbances, KH instability decays exponentially and vertically away from the interface
(Smyth & Carpenter 2019). The decay depth is proportional to the wavelength. Therefore,
we can expect that the subharmonic mode (twice the wavelength of the fastest-growing
KH mode) is influenced by the boundary most strongly because it has the greatest vertical
reach. In this section, we explore the mechanisms whereby the subharmonic instability is
affected by the boundary.

4.1. Energy evolution
The evolution of KKH and Ksub with different values of d is shown in figure 4. The
dependence of these energies on d can be viewed as two distinct regimes. The change
of KKH and Ksub is slight when d � 4 (red, blue and green curves are close together),
but precipitous when d < 4 (orange, purple and yellow curves are widely separated). We
interpret this to mean that boundary effects become significant when d < 4.
One possible consequence of subharmonic instability is pairing, which can increase

mixing significantly (Rahmani et al. 2014). However, pairing is found mainly in idealized
simulations and laboratory experiments; it is rarely observed in geophysical flows.
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Figure 4. Time variation of kinetic energy of the (a) primary KH and (b) subharmonic Fourier components
with different values of d. Each thick curve represents the average of all cases with the same d.

A possible explanation is provided by the discovery that, at high Reynolds number,
pairing can be suppressed by the early emergence of a ‘zoo’ of 3-D secondary instabilities
(Mashayek & Peltier 2011, 2013, 2012b). Another well-known mechanism that suppresses
pairing is background stratification, which restricts vertical motion, thereby stabilizing
the subharmonic mode whenever Ri0 exceeds approximately 3/16 (i.e. instability requires
Ri0 < k(1 − k) and the subharmonic wavenumber is k 	 1/4, e.g. Smyth & Carpenter
2019, § 4.4). In the present simulations, we ensure that pairing is not prevented by either
3-D secondary instability or stratification by choosing Re0 = 1000 and Ri0 = 0.12 for all
cases.
Here, we propose that the boundary can be another important factor in suppressing

pairing. In the examples shown in figure 2, pairing occurs when d = 10 but not when
d = 2.5. To generalize the distinction, we examine the ensemble average of many cases
(figure 4b and 5) over a range of d values. Similar to the dependence on Re (Mashayek
& Peltier 2013, figure 21), we find that the maximum of Ksub decreases monotonically
with decreasing d. Therefore, the boundary effect has similar influence on pairing to the
Reynolds number effect, although the underlying mechanism is different.
The spread of K max

sub tends to be larger when d is large (figure 5). This is because the
pairing process is sensitive to small changes in the initial conditions. Billow evolution
can be categorized as laminar pairing, turbulent pairing or non-pairing (Dong et al. 2019;
Guha & Rahmani 2019; Liu et al. 2022). Laminar pairing involves the greatest amount
of subharmonic kinetic energy (blue circles in figure 5), because at the time when Ksub
is a maximum, turbulence has not yet grown strong enough to collapse the coherent
billow structure. When the boundary effect is negligible (e.g. when d = 10), laminar
pairing occurs in a single case. Other cases with d = 10 produce turbulent pairing (green
circles), in which turbulence drains part of the kinetic energy from the emerging paired
billow. When the shear layer is located close to the boundary, the maximum subharmonic
kinetic energy decreases. Furthermore, more cases fail to pair (red circles). Among cases
that successfully pair, most are already turbulent (turbulent pairing, green circles), while
laminar pairing becomes less likely. The spread ofK max

sub between cases is usually smaller
when d is small.
One might expect that the suppression of pairing by the boundary would be

accomplished via damping of the subharmonic KH instability, and such damping is in fact
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Figure 5. Dependence of maximum subharmonic kinetic energy on d. The ensemble members exhibiting
laminar pairing, turbulent pairing and non-pairing are represented by blue, green and red circles, respectively,
while the mean is indicated by the black line.
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Figure 6. Dependence of KH growth rate and subharmonic growth rate on d from linear stability analysis
with Ri0 = 0.12, Re0 = 1000 and Pr = 1.

found for d < 4 (figure 6, red curve). However, a hint that the mechanism is more subtle
than this is revealed by the growth rate of the primary KHmode, σKH (figure 6, blue curve),
which decreases even more than does σsub, i.e. the growth rate of the subharmonic relative
to the primary increases. Based only on this comparison of growth rates, one would expect
pairing to take longer but to actually be more pronounced at low d, contrary to figure 2.
We will describe the mechanism whereby the boundary effect suppresses pairing in the
following subsection.

4.2. Phase evolution
The optimal separation between the KH and subharmonic modes is

ΔKH
sub ≡ xKH − xsub

λKH
= 3

4
+ n, (4.1)

where n is an arbitrary integer, λKH is the wavelength of the KH mode and xKH and xsub
are the crest positions of the KH and subharmonic vertical velocity profiles, respectively
(figure 7a). These positions are computed from the Fourier phase spectrum of the
centreline vertical velocity. In this configuration, one KH billow is lifted and its neighbour
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Figure 7. Schematic of vorticity and vertical motions in terms of the subharmonic and KH modes at the
onset of (a) pairing instability with optimal ΔKH

sub = 3/4 (d = 10, case #7) and (b) draining instability with
optimal ΔKH

sub = 1/4 (d = 2.5, case #2). Buoyancy snapshots in the background of both panels demonstrate the
corresponding structure. Here, k0 is the subharmonic wavenumber and x0 is a midway point between billows.

is lowered by the vertical motion of the subharmonic mode (figure 7a). Thereafter, the
mean shear feeds energy to the pairing billows, and a single vortex is formed (Dong
et al. 2019; Guha & Rahmani 2019). The opposite value of the optimal ΔKH

sub is 1/4 + n
(figure 7b). In this case, one vortex rotates in the same direction as the subharmonic
vorticity, while the other one rotates oppositely and is thus cancelled out. This process
is referred to as draining (Klaassen & Peltier 1989).
The evolution of ΔKH

sub (figure 8) shows that the KH and subharmonic modes require
some time to lock on. The onset and end of the lock-on process are ambiguous, especially
when d is small. Nonetheless, the lock-on period can be qualitatively viewed as the period
during which the change of ΔKH

sub is the smallest (i.e. the dotted curve is most nearly
horizontal). For d = 10 (figure 8a), the lock-on value is 3/4 from approximately t ∼ 100
to 150 during which time pairing occurs. The highlighted red coloured case locks on to the
pairing position ΔKH

sub = 3/4 relatively early, t ∼ 100. The corresponding buoyancy field
is shown in the background of figure 7(a), in which laminar pairing can be seen. In the
paired state (e.g. t = 170), when billows are replaced by a single vortex, ΔKH

sub switches
to 1/4. After the flow becomes turbulent, ΔKH

sub fluctuates chaotically because the billows
break down into turbulence, therefore ΔKH

sub is not meaningful.
In cases with lower d, several changes complicate the lock-on process: (i) ΔKH

sub changes
in time more rapidly, (ii) the time during which phase locking is sustained decreases
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Figure 8. Time variations of ΔKH
sub with different values of d. Two horizontal dashed lines in each panel denote

the optimal lock-on value,ΔKH
sub = 3/4, and the opposite of optimal value,ΔKH

sub = 1/4, respectively. Red curves
indicate the cases selected in figure 7.

and (iii) the value of ΔKH
sub at which phase locking occurs departs from 3/4, eventually

approaching 1/4 (figure 8b–e). For d = 6, the lock-on value is slightly larger than 3/4
during t ∼ 110 to 150 (figure 8b); for d = 4, the lock-on value is ∼7/8 during t ∼ 120–150
(figure 8c) and, for d = 3, the lock-on value increases to ∼1 or equivalently 0 (i.e.
xKH and xsub at the same position) during t ∼ 150 to 170 (figure 8d). When d = 2.5
(figure 8e), the lock-on value becomes less clear because the time variation of ΔKH

sub
increases. Nonetheless, we can still roughly estimate the lock-on value by determining
the time at which most cases converge to a similar ΔKH

sub value. With this approach, a
reasonable lock-on value is 1/4 at t ∼ 170 (figure 8e), which coincides with the optimal
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Figure 9. Dependence of KH phase speed and subharmonic phase speed on d from linear stability analysis
with Ri0 = 0.12, Re = 1000 and Pr = 1.

value for draining. The buoyancy field of the red-highlighted case, in which one vortex is
enhanced while the other is suppressed, is shown in the background of figure 7(b). This
result does not imply that draining always occurs when d = 2.5; draining can often be
absent depending on the details of the initial conditions (Liu et al. 2022).
It is not a coincidence that the draining lock-on value for the case d = 2.5 and the

paired state lock-on value for the case d = 10 (e.g. t = 150) are both ΔKH
sub 	 1/4. This

is because the pairing and draining mechanisms, though very different, both transform a
pair of billows into a single vortex. When d is even smaller (d = 2), the lock-on value
and period are highly ambiguous. The boundary effect prevents the KH and subharmonic
phases from locking on altogether, and therefore pairing is suppressed.
The phase difference ΔKH

sub at t = 0 exhibits substantial variability in all cases; however,
this variability diminishes considerably during phase locking. This indicates that the
phase-locking value is not significantly contingent upon the initial random noise. When
the boundary effect is prominent, significant variability is evident between simulations
from the beginning to the end.
For the small-d cases (figure 8e, f ), the steady, rapid increase of ΔKH

sub suggests an
ongoing change in the phase speeds of the KH and subharmonic modes. This is confirmed
by linear stability analysis (figure 9). The fastest-growing KH instability has a phase speed
cKH while its subharmonic has half the KH wavenumber by definition, and the phase
speed is csub. When the boundary effects are negligible (d = 10), both cKH and csub are
∼0. However, when the shear layer is closer to the boundary, the phase speeds diverge.
Therefore, xKH and xsub are constantly changing, which explains the constant change of
ΔKH

sub seen in figure 8(b–f ). Thus, boundary proximity impedes phase locking of the KH
and subharmonic modes by causing their phase speeds to diverge. In extreme cases of
small d (figure 8f ), phase locking and pairing are prevented altogether.
The dependence of the phase speed difference between the KH and subharmonic

modes on the parameters Re0, Pr and Ri0 is also of interest as a step toward a broader
exploration of the parameter space. The KH instabilities change very little with increasing
Re0 once Re0 exceeds ∼ O(102) (Smyth et al. 2013); hence, we see little dependence of
the phase speed difference cKH − csub (figure 10a). The same is true of the Prandtl number
(figure 10b). There is a slight dependence on Ri0 (figure 10c) when d is small: the contour
(thick contour) corresponding to the phase speed difference found at Ri0 = 0.12, d = 4
varies between d = 3.7 at very low Ri0 and d = 4.6 at high Ri0. Therefore the threshold
d ∼ 4 for the suppression of phase locking (and thus pairing) by boundary effects may
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Figure 10. Phase speed difference between unstable KH and subharmonic modes. A non-zero phase speed
difference indicates that the KH and subharmonic modes phase lock only if forced to do so by nonlinear effects.
(a) Relationship between d and Re0 at a fixed value of Ri0 = 0.12 and Pr = 1. (b) Relationship between d and
Pr at a fixed value of Ri0 = 0.12 and Re0 = 1000. (c) Relationship between d and Ri0 at Re0 = 1000 and
Pr = 1. The growth rate in the shaded region of (c) is below the cutoff value, 0.001. Black contours represent
phase speed difference with an interval of 0.05. Horizontal dashed lines indicate Re0 = 1000 and Ri0 = 0.12,
respectively, in (a,c).

vary only weakly with Ri0. Further DNS is needed to explore the dependence of boundary
effects on these parameters in the nonlinear regime.

5. Three-dimensional secondary instabilities

Three-dimensional secondary instabilities catalyze the transition to turbulence, which in
turn leads to irreversible mixing. Various 3-D secondary instabilities have been discovered;
notably, the shear-aligned convective instability (Davis & Peltier 1979; Klaassen & Peltier
1985b) appears when KH billows become large enough to overturn the buoyancy gradient.
Herein, we focus on some of the instabilities that help to explain the sources and sinks
of 3-D perturbation kinetic energy in shear layers centred at different distances from the
boundary. We begin by examining the case d = 10, where boundary effects are negligible
(§ 5.1). We then examine differences that arise when d = 2.5 (§ 5.2) and boundary effects
are dominant.
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Figure 11. Negligible boundary effect when d = 10. (a) Time variation of 2-D and 3-D volume-averaged
kinetic energy. The thick line is ensemble averaged and thin lines represent all cases. (b) Time variation of
different terms of the σ3d evolution equation (2.21). All terms are ensemble averaged. Vertical dashed lines
represent ensemble-averaged tKH . For clarity in plotting, lower resolution time series have been interpolated
to higher temporal resolution using cubic splines. (c,d) Show spanwise-averaged K3d for d = 10, case #3 at
t = 108 and t = 136, respectively. The contour lines represent spanwise-averaged buoyancy with an interval of
0.4. Note that the colour scales for (c,d) are different. Times correspond to the diamond symbols in (a,b).

5.1. The case d = 10: negligible boundary effects
Three-dimensional secondary instabilities grow mostly between t ∼ 90 and t ∼ 180
(figure 11a, blue curve). This growth starts after the saturation of the primary KH
instability, when 〈K2d〉xz starts to decline (red curve). Two times, indicated by the
diamonds in figure 11(a), have been selected to illustrate the form of the 3-D motions
in terms of the spanwise-averaged K3d. The first of these represents the early growth of
〈K3d〉y (t = 108, figure 11c), the second the time of most rapid growth (t = 136).
The form of the 3-D motions changes because the KH billow develops different 3-D

instabilities as its geometry evolves. We therefore focus on the 3-D perturbation kinetic
energy evolution to explain the changes. In the early stage (0 < t < 90), there is no 3-D
instability. Growth is negative due mostly to viscous dissipation of the initial noise field.
During the earliest stage of 3-D growth, represented by time t = 108 (first diamond

in figure 11b), 3-D motions are concentrated in the cores of the KH billows (figure 11c)
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and the K3d budget is dominated by the shear production term R3d (figure 11b). This
is because the spanwise vortex tube at the core of each billow is distorted sinusoidally.
Spanwise vorticity is thus redirected towards the x–z plane such that the Reynolds stress
〈u3dw3d〉xyz becomes negative (as illustrated in Smyth 2006, figure 8). This 3-D stress field
works with the mean shear dŪ/dz to produce 3-D kinetic energy. Since dŪ/dz is large near
the billow core, the shear production quantified by R3d is dominant. This 3-D secondary
instability exhibits similar characteristics to the central-core mode found in Klaassen &
Peltier (1991), hence we identify it as central-core instability (CCI).
During the maximum growth stage (t = 136, second diamond in figure 11b), 3-D

motions in the central core are no longer dominant as 〈K3d〉y is mainly concentrated at
the margins of the billows (figure 11d). At this stage, the primary KH billows roll up. This
results in regions of statically unstable buoyancy variation within and surrounding the
billow cores. The buoyancy production H3d becomes the dominant energy source while
A3d and S h3d also increase. This is all consistent with the emergence of shear-aligned
convection rolls via the secondary convective instability (SCI; Klaassen & Peltier 1985a).
Vorticity is created when vortex tubes are stretched and is exchanged between different
components when vortex tubes bend and tilt. The 2-D velocity gradients increase along
with the stretching and bending of vortex tubes surrounding the billows, the stretching
deformation term, A3d, and the shear deformation term,S h3d, both increase.
Beyond the time when σ3d is a maximum, the billows start to pair at t ∼ 150, and R3d

regains its dominance over the other terms. The shear-aligned convection rolls are still
active at the periphery of the billow core, but gradually break down into turbulence;
therefore H3d declines toward zero. After the pairs of billows have amalgamated, the
extraction of 3-D perturbation kinetic energy from the background mean shear decreases.
During the post-turbulent stage, all terms gradually decay.
The fact that the evolution of R3d when boundary effects are negligible includes two

local maxima is consistent with the findings of Mashayek & Peltier (2013). However, they
found that, prior to billow saturation, buoyancy production is the major source term while
we found that R3d is dominant. The difference may be due to a difference in the initial
random noise field – Mashayek & Peltier (2013) applied noise to both the buoyancy and
velocity fields whereas we perturbed only the velocity.

5.2. The case d = 2.5: strong boundary effects
When the boundary effect is strong (e.g. d = 2.5), growth rates of both 〈K2d〉xz
and 〈K3d〉xyz are reduced relative to cases with negligible boundary effects (compare
figures 11a and 12a), as are their maximum values.
At maximum growth (t = 176, figure 12d), there are neither clear unstable sublayers nor

3-D motions in layers surrounding the billows. Instead, 〈K3d〉y remains concentrated in
the core, suggesting that SCI is suppressed. A conspicuous impact of the boundary is that
R3d dominates all other source terms from the initial-growth stage of the instability to
the post-turbulent stage (figure 12b), rather than being supplanted by H3d as the primary
billows roll up (cf. § 5.1). The termsH3d (red line in figure 12b),A3d andS h3d are small
throughout the evolution because the overturning within the billow is suppressed by the
boundary. This suggests that the balance is mostly between the energy extraction from the
background mean shear and the viscous dissipation of the 3-D perturbations.
We conclude that three-dimensionalization is via CCI alone when the boundary effect

is strong (figure 12c,d).
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Figure 12. Similar to figure 11 but with the case d = 2.5. Case #1 is selected for (c,d).

5.3. Effects of boundary proximity on SCI
We have seen that, for the single case d = 2.5, the main effect of the boundary on 3-D
instabilities is the suppression of SCI. The Rayleigh number provides a compact metric
for SCI that we can examine as a function of d, thus gaining a more comprehensive view
of the boundary proximity effect. We define the Rayleigh number at tKH for the statically
unstable regions (Klaassen & Peltier 1985b) as

Ra = −Re2Ri0Pr
∂ b̄
∂z

δ4, (5.1)

where ∂ b̄/∂z is the average buoyancy gradient across the most unstable layer, and δ is its
dimensionless thickness. The critical Ra for convective instability in a layer with free-slip
upper and lower boundaries, an approximation to the superadiabatic regions found here, is
Rac ≈ 657.5 (e.g. Smyth & Carpenter 2019).
When d � 4 (figure 13), Ra is more than 1 order of magnitude larger than Rac,

suggesting that SCI is prominent. A precipitous drop in Ra can be seen when d < 4,
indicating that the boundary suppresses SCI (as seen in figure 12).
Most cases for d = 2 fail to satisfy the criterion Ra > Rac, and as a result, convective

motions are suppressed within the KH billow.
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Figure 13. Dependence of Rayleigh number on d at tKH . Circle symbols are all ensemble cases and red dots
indicate the mean of the ensembles. Horizontal line denotes the critical Rayleigh number Rac, and has a value
of 657.5.
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Circles are all ensemble cases. Data points represent the ensemble mean. The deviated cases of d = 2 are not
shown in the figure.

5.4. Timing of subharmonic and 3-D secondary instabilities
The timing of the turbulence emergence relative to the subharmonic instability is critical
to pairing (Mashayek & Peltier 2013; Liu et al. 2022) and therefore to mixing. Thus, tsub
and t3d are useful measures for understanding the competition between the subharmonic
and 3-D secondary instabilities. The difference between t3d and tsub tends to decrease as d
decreases (figure 14a). This suggests that the subharmonic instability is more susceptible
to interference by turbulence when the boundary effect is strong. (The slope of the mean
t3d − tsub vs d is reversed between d = 2.5 and d = 3, but the reversal is not statistically
significant.)
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To identify the source of this behaviour, we next focus on tsub and t3d individually
(figure 14b). A monotonic increase of tsub with decreasing d can be seen (figure 14b);
the increase becomes more pronounced when d < 4. Thus, Ksub requires more time to
reach to its maximum when the boundary effect is greater. The increase of tsub is owing to
the fact that phase lock between the KH and subharmonic modes is prevented due to the
divergence of the corresponding phase speeds (§ 4).
The increase of t3d with decreasing d when d < 4 is due to suppression of 3-D secondary

instabilities by the boundary, as has been demonstrated in § 5.2. Even though tsub increases
considerably at d = 2 and d = 2.5, 3-D secondary instabilities (and hence the onset of
turbulence) are also delayed. Therefore, subharmonic instability may arise at d = 2.5
because turbulence emerges too late to overtake it. When d = 2, the subharmonic does not
reach maximum amplitude until after 3-D secondary instabilities have already appeared.

6. Turbulent mixing

In the latter part of each simulation, the flow consists of slowly decaying sheared
turbulence. The energy in the 3-D motions is supported mainly by shear production
(figures 11b and 12b, blue curves) and diminished by viscosity (purple curves). We
now discuss the energy budget of this turbulence in the context of irreversible mixing.
The instantaneous mixing efficiency has been calculated using (2.18) and is shown in
figure 15(c), as are the irreversible mixing rate (figure 15a) and the total dissipation rate
(figure 15b) for various boundary proximity values. Initially, a large dissipation rate arises
due mainly to the viscous decay of the random noise. Dissipation rapidly decreases to a
near-constant (although non-zero) value as the mean flow continues to diffuse (figure 15b),
while the mixing rate is near zero.
For all d, the instantaneous mixing rate M and mixing efficiency exhibit two peaks

(figure 15a,c). The first peak of M and ηi (e.g. at t ∼ 130, d = 10) is associated with
the roll up of the KH billows. Because they are not yet turbulent, the KH billows develop
strong buoyancy gradients where M is large. During this time, Pa is rapidly converted
to background potential energy Pb (figure 15d,e). The dissipation rate is smaller than the
mixing rate because the flow is not turbulent at this stage; hence the irreversible mixing
efficiency ηi is greatest.
When the shear layer is close to the boundary (small d), the roll-up of the KH billows

weakens, and SCI (§ 5.2) is therefore suppressed. Because of this, the first peak of M
(e.g. red curve at t = 140 when d = 3 in figure 15a) is reduced. Boundary proximity also
reduces dissipation during this time (figure 15b).
A precipitous drop in ηi occurs immediately after the first local maximum (figure 15c),

due to the emergence of the 3-D secondary instabilities that collapse the KH billows. The
value of 〈K3d〉xyz rapidly increases at this stage, e.g. t ∼ 140–160 for d = 10 (figure 15g),
suggesting the emergence of 3-D turbulence. Therefore,Pa (figure 15d) as well as 〈K2d〉xz
(figure 15f ) drop to a local minimum because the 2-D KH billow structure is partly
destroyed. As a consequence, the instantaneous mixing efficiency decreases as M is
reduced but ε simultaneously increases.
The second peak of M and ηi (e.g. at t ∼ 200 for d = 10 in figure 15a) is associated

with the turbulent stage of the flow evolution. The dissipation rate (figure 15b) reaches its
maximum shortly after the maximum of M . Pairing involves significant vertical motion
and thus enhances Pa (e.g. t = 150–180 when d = 10 in figure 15d). Therefore, Pb and
M both increase at t = 180. In contrast, the suppression of pairing by the boundary effect
(e.g. t = 200 when d = 3 in figure 15d) reduces Pa as well as Pb. As a result, mixing
efficiency is reduced.
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Figure 15. Time variation of (a) mixing rate, (b) total dissipation rate and (c) instantaneous mixing efficiency
with different values of d. Horizontal line denotes the canonical value of ηi ∼ 1/6. Time variation of changes
from the initial state in (d) available potential energyPa, (e) background potential energyPb associated with
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diffusivity, Kρ . All curves are ensemble averaged.
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During the fully turbulent stage, the instantaneous mixing efficiency roughly converges
to the canonical value of ηi ∼ 1/6 or Γ = 0.2. In the post-turbulent stage,M drops to ∼0
whereas the mean kinetic energy continues to dissipate. Therefore, ηi gradually decays to
∼0.
We further relate the mixing efficiency to a turbulent diffusivity associated with

irreversible mixing devised by Salehipour & Peltier (2015, their (2.23)). Using the present
non-dimensionalization, this is

Kρ = Γ
Reb
Re0

, (6.1)

where Reb is the buoyancy Reynolds number ε∗/ν∗N∗2. The time variation of Kρ is shown
in figure 15(h) with different values of d. The first peak of Kρ is associated with the roll
up of the KH billow, during which the mixing efficiency is maximum. The second peak
is associated with turbulence, where ε and 〈K3d〉xyz are large. The value of Kρ drops
significantly with decreasing d as does the mixing rate.
We further demonstrate the importance of the route to turbulent mixing by showing

the cumulative mixing, dissipation and mixing efficiency (2.19) for various values of d in
figure 16. All three quantities decrease monotonically with decreasing d. The net mixing
and dissipation vary slightly when d � 4, but drop sharply as d < 4 (figure 16a,b). This
suggests that the impact of the boundary on mixing and dissipation becomes prominent
when d is less than 4 due to the suppression of pairing and SCI. The abrupt decrease
in cumulative mixing efficiency observed at d < 4 could be attributed to a combination
of changes in net dissipation and mixing. We consider the derivative of the cumulative
mixing efficiency with respect to d

1
ηc

∂ηc

∂d
= 1

Γc + 1

(
1
Mc

∂Mc

∂d
− 1

εc

∂εc

∂d

)
, (6.2)

where the subscript ‘c’ refers to cumulative values. The boundary effect diminishes net
dissipation (figure 16a, dotted line), leading to an increase in cumulative mixing efficiency
((6.2), second term in parentheses). However, it also diminishes net mixing, which is a key
factor contributing to the sharp reduction in cumulative mixing efficiency when d is less
than 4. Because the relative change in Mc is considerably greater than that in εc, i.e.
(1/Mc)(∂Mc/∂d) > (1/εc)(∂εc/∂d), the change in ηc is particularly pronounced.
For smaller d, e.g. d = 2, the net mixing

∫
M dt is small, but the net dissipation persists

since the dissipation of the mean flow is non-zero. Therefore, the efficiency of mixing is
considerably reduced.

7. Summary and discussion

In geophysical flows, much of the most important shear-driven turbulent mixing appears
near boundaries. Here, we have shown that boundary proximity significantly modifies the
life cycle of turbulence in a stably stratified shear layer. A classical KH instability has
been investigated by performing ensembles of DNS experiments with Re0 = 1000, Ri0 =
0.12 and Pr = 1. Absent boundary effects, the moderately low Ri0 and Re0 ensure the
amalgamation of the KH billows. Our study describes the impact of boundary proximity
on the primary KH instability, the subharmonic pairing instability, the 3-D secondary
instability and the resulting turbulent mixing.
When the shear layer is close to the boundary, the primary KH billows are geometrically

flatter. Furthermore, the evolution of the KH instability is extended over longer periods of
time, so the transition to turbulence is delayed.
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Figure 16. Cumulative (a) mixing (solid line) and dissipation (dotted line), and (b) mixing efficiencies
calculated over an entire mixing event for different values of d. Error bars are standard error of the mean.

Mashayek & Peltier (2013) explained that when Re0 is sufficiently large, the early
emerging 3-D secondary instabilities can suppress pairing. Pairing would also be
suppressed by gravity at higher Ri0 (Smyth 2003; Mashayek & Peltier 2012a), and tends to
be either unchanged or suppressed with an increase in Pr (Salehipour et al. 2015; Rahmani,
Seymour & Lawrence 2016). Our study provides an additional explanation as to why
pairing is rarely observed in geophysical flows. When the boundary effect is negligible,
the linear phase speeds of the KH and subharmonic modes are virtually identical and
equal to zero. When the shear layer is close to the boundary, on the other hand, the KH
and subharmonic phase speeds diverge so that phase locking is prevented and pairing is
therefore suppressed.
During the time when the primary KH instability is growing exponentially, CCI triggers

3-D motions in the cores of the billows. This is because the vortex at the central core tilts,
resulting in energy extraction from the background shear via Reynolds stress. At this stage,
CCI dominates for all boundary proximities.
When the boundary effect is negligible, SCI becomes the dominant 3-D secondary

instability. The buoyancy production is greatly enhanced because unstable sublayers are
formed within the billows. The boundary effect suppresses SCI because the roll up of the
billows is counteracted by bottom drag. In contrast to the suppression of SCI, CCI remains
dominant throughout the preturbulent stage. By forcing an alternate route for the transition
of a 2- KH billow to 3-D turbulence, the boundary effect inevitably changes the resulting
mixing.
The suppression of pairing weakens the conversion from Pa to Pb and reduces

irreversible mixing. Although the suppression of pairing leads to a decline in dissipation,
it is likely that dissipation near the boundary is amplified when d is smaller. Therefore,
instantaneous mixing efficiency is reduced. Furthermore, the suppression of SCI by
the boundary also diminishes the mixing rate and mixing efficiency. The cumulative
irreversible mixing, dissipation and mixing efficiency, as well as turbulent diffusivity,
decrease monotonically with decreasing distance from the shear layer to the boundary.
This study has been confined to a small subset of the continuum of initial states for

practical reasons. Experiments with large Re0 and Pr are expected to be affected by the
boundary but the effect may manifest differently because the route to turbulent mixing
is inherently different. Both the threshold value for d at which boundary effects become
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strong and the onset time of 3-D secondary instability are expected to be sensitive to the
value of the Reynolds number. As mentioned in § 4, Mashayek & Peltier (2013) show that
3-D secondary instability grows more rapidly when Re0 is large, therefore, t3d is expected
to be smaller and pairing is, therefore, less likely. The effects of increasing Re0 on tsub and
on the threshold value of d are subjects for future study.
The cores of the KH billows are referred to as ‘quiet’ in observations of the high-Re0 and

high-Pr flow of a salt-stratified estuary by Geyer et al. (2010). The DNS experiments have
shown that, with large Re0 and Pr, there is no density variance in the core of the billows
but only in the periphery and the braid (Salehipour et al. 2015). This is potentially because
the core of the billows is already well mixed due to previous 3-D secondary instability. In
contrast, our results show that pairing and CCI play an important role during the evolution
of the KH instability and the resulting mixing. A comprehensive understanding of the
boundary effects on shear instability and the resulting turbulent mixing, particularly in the
geophysical cases, will require the exploration of large Re0 and Pr cases.
We have considered a classical KH instability to understand the boundary proximity

effect. However, KH is not the only instability that may arise in a stratified shear flow.
When buoyancy gradients are sufficiently sharp, the flow may be susceptible to the
Holmboe instability (Holmboe 1962). Furthermore, flows with asymmetric background
profiles may exhibit instabilities with a mixture of KH- and Holmboe-like behaviour
(e.g. Carpenter, Lawrence & Smyth 2007; Yang, Tedford & Lawrence 2019; Olsthoorn,
Kaminski & Robb 2023). Understanding how boundary proximity affects these processes
may provide insights on future parameterizations of mixing in the ocean near boundaries.
Studying beyond shear-driven turbulence and whether the alternative mechanisms have
similar mixing properties may also be of future interest.
We note that the flow profiles considered here differ from real-world boundary layer

flows in two key ways. The first is our choice of a hyperbolic–tangent shear and
stratification. Classical turbulent boundary layer flows often exhibit logarithmic profiles
with elevated shear at the boundary (e.g. Marusic et al. 2013; Bluteau et al. 2018),
although the specific details of the flow vary with surface roughness, ambient stratification
and external pressure gradients. While the profiles considered here differ from these
classical boundary layers, we make this choice so as to facilitate comparison between
our simulations and the isolated hyperbolic–tangent shear layer commonly studied in the
KH literature. Secondly, the bottom boundary layer or the surface layer in the ocean is
often turbulent. While the effect of boundary proximity on KH instability is pronounced,
pre-existing turbulence should be taken into account for KH instabilities (Brucker & Sarkar
2007; Kaminski & Smyth 2019), especially near boundaries, where mixed layers are not
initially laminar.
The flat bottom boundary is a simplification, as the real-world topography can be much

more complex. Shear instability may occur near a ridge or a sloping topography. Internal
waves may be generated near those boundaries, where the base flow may be altered and
the boundary effect is not uniform. A nearby surface boundary, e.g. where the shear is
created by wind stress in a diurnal warm layer (Hughes et al. 2021), can similarly reduce
the growth rate of the instability. However, the frictional effect on the shear instability is
smaller at the surface than at the bottom, as represented in our model by the free-slip top
boundary (§ 2.1). We have shown that SCI is suppressed by a no-slip boundary because the
boundary drag counteracts the roll up of the billows. Nonetheless, the no-slip condition
results in higher dissipation near the boundary, potentially altering the evolution of the
billows (Baglaenko 2016). With a free-slip boundary, however, no drag counteracts the
roll-up process. Therefore, the suppression of SCI due to the free-slip boundary is expected
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to be smaller. The effects of different boundary types (e.g. free slip, free surface) should
be a focus for future research.
This study can potentially provide insights into future measurements near boundaries in

the atmosphere and oceans. The dependence of mixing efficiency on boundary proximity
can be estimated via microstructure measurements. Furthermore, acoustic backscatter
measurements can delineate how the geometry of the KH billows varies with boundary
proximity (e.g. Holleman et al. 2016; Tu et al. 2020).
While pairing is rarely detected in geophysical flows, the related phenomena called

‘tubes’ and ‘knots’ are commonly observed in the atmosphere (Thorpe 2002; Smyth
& Moum 2012; Fritts et al. 2022). Tubes and knots arise when KH billow cores are
misaligned. Unlike pairing in our study, knots often appear locally in the spanwise
direction. Fritts et al. (2022) has found that the transition to turbulence is accelerated
and turbulence is significantly stronger in tubes and knots than in other types of secondary
instabilities (e.g. SCI). Future studies should address the effects of boundary proximity
on tubes and knots. In particular, the question of whether boundary proximity suppresses
tubes and knots by reducing the misalignment of the KH billow cores will be of interest.
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