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Increasing needs for smaller form factor electronic systems motivate
higher integration of power management circuits. This has led to
growing interest in high-frequency DC-DC converters with smaller
passive components [1-6]. Even though hybrid or resonant switched
capacitor (ReSC) converters show promise, full integration of induc-
tors remains challenging. At frequencies above 10 MHz, magnetic
cores are typically impractical, and even with air-core magnetics, cur-
rent crowding (skin and proximity) effects lead to high AC resistance.
Past work has leveraged capacitive current ballasting with multi-
trace ‘merged LC resonators’ to counteract AC current crowding and
reduce high frequency loss [4]. However, the same concept has not
been previously demonstrated with direct-conversion ReSC topolo-
gies which use lumped rather than distributed LC structures.

Shown in Fig. 1, this work uses direct-conversion ballasting where a
nominally 2:1 SC stage is split into multiple (modular) units with each
switching node Vxi connected to a single trace of a multi-winding on-
chip spiral inductor. Each SC stage presents a unique flying capaci-
tance Cri to the given inductor trace. With each trace width smaller
than the skin depth, the value for capacitance Cri can be set or tuned
to force a desired current density profile which optimally goes in-
versely with trace resistance (or radius in spiral structures) [7]. Con-
ceptually, capacitive ballasting manifests through voltage feedback
in the LC structure: if current is too high, capacitor voltage increases
to reduce current and vice versa. The difference between this work
and the ‘merged LC’ approach in [4] is that here Cri is lumped and
presented to the winding structure in discrete/modular direct-SC unit
cells, thus it can be tuned or adjusted during operation. Direct con-
version architectures have other advantages such as overall lower
AC losses in magnetic components, improving inductor utilization.

Fig. 2 illustrates a portion of the spiral inductor and circuit interface.
The inductor is Tmm? and uses 32 parallel traces with 11.5um width
and 2.5um spacing. The 32 traces are split into 4 groups of 8 traces,
each group being identical but rotated with taps at four corners of the
structure. Each of the 8 traces (per group/corner) connects to a 2:1
SC stage with a unique flying capacitance Cri. The SC stages are
constructed from identical ‘unit cells.” Importantly, each unit cell has
fixed flying capacitance Cr = 9.6pF and bypass capacitance Cio and
Coc each 4.2pF, providing a local path for AC current flow.

To present a unique (optimal) capacitance Cri to each trace, different
numbers ni of unit cells are configured in parallel. Fig 2 tabulates the
number n; of unit cells per trace (out of 230 total/group) used for bal-
lasting the current density profile. However, for LC resonant struc-
tures, capability for tuning is important to enable close-to-resonant
operation, despite variations or deviation from simulation models.
Fig. 3 further details the SC unit cell, showing modifications which
allow for tunability. Notably, the design uses two categories of unit
cells, fixed and tunable. Overall 80% of the cells are fixed, i.e., con-
nected to only a single trace. The remaining 20% are tunable which
enables the cell to be multiplexed between any two traces.

Overall, each unit cell is a self-sufficient converter with its own gate
drivers (GD), boot-strapping (BS), level-shifting (LS), local flying and
bypass capacitance and 1.2V-rated power devices. The GD input is
generated from 2.5V digital logic, which is converted to 1.2V for the
powertrain buffers. Bootstrapping uses a 2.5V NMOS switch to
charge the 1.2V MOS bootstrap capacitor, Css. The GD and BS of
the bottom power FETs M1/M2 are powered/bootstrapped from 1.2V
system supply, V. Devices Ms/M4 are powered/bootstrapped from
Vin. LS control for Ms/M4 uses an additional capacitive level shift with
Ccp charge pump above Vee and/or Vin. While M3 can, in principle,
be driven directly from Vin, a BS circuit is used as S&H to shield the
gate from Vx voltage swing. Local anti-cross conduction precedes
the GD/BS input circuit guarantee (local) non-overlapped clock
phases to the power train from the main clock distribution network.

Timing circuitry uses a cascade of a ring voltage-controlled oscillator
(VCO), frequency divider by factor of 4, and tunable dead-time gen-
eration as shown in Fig. 4. The 5-stage ring VCO uses current source
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distribution network to the unit cells.

Another benefit of the modular unit
cell approach is in the layout and
routing of the power train signals. Fig. 4 shows the floorplan of a unit
cells which has both horizontal and vertical mirror symmetry. This
helps in sharing power train signals by placing the cells in the matrix
form as depicted and to reduce routing overheads.

The design is fabricated in 130nm RF SOI CMOS process with active
area 5.5 mm?. The die micrograph is shown above. Flying and by-
pass capacitors are realized using MOS capacitors with instantiated
density ~9.1nF/mm?. Fig. 5 shows measurement results. Peak effi-
ciency is 84.7%, operating at 24MHz resonant frequency for Vin from
2.25-2.75V. Note that direct-ReSC architectures can operate above
resonance; here the design achieves peak current density of
~100mA/mm? at 44MHz with ~75% efficiency. Measured output re-
sistance, Rerr is ~ 550mQ for load current from 50 — 925mA. With
only on-chip bypass capacitance output ripple can be significant;
however with modest (~100nF) off-chip or load-embedded Cour, out-
put ripple is significantly reduced due to high-frequency operation.

Fig. 6 compares this work with current state-of-the-art designs. Im-
portant differences include that this work achieves 2X-3X lower Rerr
due to improved current ballasting (achieves lower ESR in magnet-
ics). While efficiency and power density are comparable to [3], [4],
this work uses only MOS capacitors, smaller die area, and higher
peak current. Thus favorable benefits of this approach include im-
proved utilization of on-chip magnetics leading to lower conduction
loss and higher output current density. The other main contribution
is a modular design/layout approach (standard switching cells +
tunability) that is scalable for different application specs with the po-
tential for partial synthesis and design automation. Thus this design
provides a roadmap and suitable implementation strategy for future
designs in advanced process nodes.
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Fig. 1. Topology overview and comparison to past work.
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Fig. 2. Architecture implementation and multi-trace winding layout.
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Fig. 3. Schematic design of individual switched capacitor unit cell.
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Fig. 5. Measurement results.

Kim Tang Renz McLaughlin | Novello | McLaughlin This Work
JSSC12 | ISSCC19 | ISSCC19 | ISSCC20 ISsCC21 IsscC22
Topology 3-Level SIC ReSC ReSC Class-DLC ReSC ReSC
Vi, (V) 2.4 1.2 3.0-45 24-44 1-3.6 3.3-6.6 2.25-275
Vou (V) 04-14|06-09 | 15-1.8 1.0-22 04-16 0.8-2.2 0.7-1.39
Technolo 130nm 65nm 130nm 180nm 180nm 180nm 130nm RF
9y CMOs CMOS BCD CMOs CMOs CMOs SOl
fow (MHZ) 50 — 240 450 35.5 47.5 1250 30 24-45
Cyy (NF) 18 1.72 2 34 0.46 5.4 9
C,, (nF) NR NR | 018+ off 7 0 42 42
chip
Cout (NF) 10 3.1 10 7 0 5.8 4.2
k(%) @ laen | 77 @ 64 @ 85@ 855@ 67 @ 783 @ 847 @
(A/mm?) 0.06 0.369" 0.015 0.025 NR 0.013 0.028
laonp (A/MM?2) | 0.16@ | 0.708 @ | 0.015@ | 0.058 @ 0.056 @ 0.105 @
@n (%) 63 @ 52@ 85@ 745@ NR 61@ 75.0 @
@ Py (W) 1 0.2761 0.22 0.868 0.67 0.542
Ipk (A) 0.8 0.533 0.12 0.52 NR 0.49 0.925
Resr (Q)* NR NR 0.833* 1.24 >1.3* 1.5 0.550
Area (mm?) 5 0.65 7.83 8.93 1.61 8.7 55

*Estimated, **Reported where Ip« is achieved, THere reporting at 2:1 conversion to
match other works in comparison

Fig. 6. Comparison table with state-of-the-art works.




