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The deep Earth oxygen cycle addresses the origin and long-term exchange of oxidized species between 
the mantle and exosphere and creates the geochemical context in which the interior and surface 
environment have evolved. The redox power of the bulk silicate Earth (BSE) can be measured in terms 
of its redox budget, RB, relative to a reference state of the predominant valences of redox-sensitive 
elements in the mantle. 82±4% (1.9±0.5 × 1023 moles) of the redox power resides in the mantle and 
18±4% (4.2±0.5 × 1022 moles) in the exosphere. Vigorous outfluxes of oxidized species from the mantle 
(3.8±0.7 × 1013 mol/yr) can replenish the exosphere reservoir in 1.1±0.2 Ga, which requires efficient 
long-term recycling of redox power via subduction. Within uncertainties, recent (last 200 Ma) mantle RB
outfluxes and subduction influxes (4.9±1.3 × 1013 mol/yr) are balanced, but outfluxes likely exceeded 
influxes earlier in Earth history. CO2 is 66±20% of the RB outfluxes but only 24±13% of the influxes. This 
is largely because of conjugate intervalence reactions; one in the shallow mantle creates carbonate at 
the expense of Fe2O3 and the other creates Fe2O3 from CO2 on the surface by a combination of organic 
carbon fixation and oxidative weathering.
Scaling of mantle oxygen fugacity, fO2, to redox mass balance is approximately Δ log(Fe3+/Fe�)peridotite ≈
1/4Δ log( fO2)mantle . Consequently, inferences of secular evolution of mantle oxygen fugacity from the 
Archaean to the Proterozoic, amounting to about 1.5 log units in fO2, imply that the Archaean mantle had 
an Fe3+/FeT ratio <0.02, rather than the modern value of 0.04±0.01. Oceanic basalts derive from sources 
with greater redox budgets than mid-ocean ridges, and this is partly expressed as higher source Fe3+/FeT

ratios, but more importantly, as greater source CO2 concentrations. In combination, these require that 
plumes in the deep upper mantle have Fe3+/FeT ratios significantly greater than the depleted mantle.
The oxidative inventory of the BSE originated by a combination of H2O disproportionation in the 
atmosphere, leading to H2 escape, and FeO disproportionation in the deep mantle, with loss of Fe to 
the core. FeO disproportionation in a deep magma ocean inevitably produces a significant fraction of 
the BSE RB, but additional contributions are likely required. Further Fe loss could be from bridgemanite 
crystallization followed by Fe escape through a basal magma ocean. Gradual mixing of the resulting deep 
oxidized layer may account for secular oxidation of the mantle source regions of igneous rocks from 
3 to 2 Ga. H2O disproportionation assisted in accumulation of the oxidized surface species, but was 
not a significant source of mantle oxidative power, as mechanisms of oxidative influx are quantitatively 
insufficient.

© 2023 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY-NC 
license (http://creativecommons .org /licenses /by-nc /4 .0/).
1. Introduction

Earth’s oxidized surface and interior reservoirs are essential fea-
tures of its chemical geodynamics. In the exosphere (the crust, 
surface, and fluid envelopes), abundant oxidized species, Fe2O3, 
carbonate, sulfate, and dioxygen, are salient features of Earth’s ge-
ology, climate, and biogeochemistry. In the mantle, oxidized iron 
and carbon affect geophysical properties, the locus of melting, 
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and fluxes of redox power between the interior and the surface. 
In many respects, the reservoirs and fluxes of oxidative power 
between the interior and surface are analogous to Earth’s deep 
volatile cycles, which are key to the maintenance of equable sur-
face conditions and are coupled to the geodynamics and geochem-
istry of the solid planet (Dasgupta and Hirschmann, 2010; Kore-
naga et al., 2017). Therefore, the origin and evolution of Earth’s 
oxidative reservoirs constitute a deep Earth oxygen cycle.

The redox evolution of Earth’s exosphere is a critical feature of 
the planet’s history, as exemplified by the multi-stage rise of at-
le under the CC BY-NC license (http://creativecommons .org /licenses /by-nc /4 .0/).
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mospheric dioxygen (Lyons et al., 2014). The advent of dioxygen 
was preceded and accompanied by accumulation of much larger 
reservoirs of condensed oxidized species (carbonate, Fe2O3, sul-
fate) in rocks and sediments (Hayes and Waldbauer, 2006). The 
formation of the oxidized Fe-C-S surface reservoirs has been at-
tributed to volcanogenic fluxes originating in the mantle (Kasting 
et al., 1993; Holland, 2002; Kump and Barley, 2007; Gaillard et al., 
2011; Kadoya et al., 2020), and/or selective return of reduced ma-
terial via subduction (Hayes and Waldbauer, 2006), or by loss of H2
to space (Catling et al., 2001; Kasting, 2013; Zahnle et al., 2019). If 
the oxidized surface derived from a net flux of oxidants from the 
interior, the mantle should have become correspondingly reduced. 
Yet, evidence from mantle-derived rocks has found either negligi-
ble temporal change (Canil, 1997; Delano, 2001) or evidence for 
secular oxidation with time (Aulbach and Stagno, 2016; Nicklas et 
al., 2018, 2019; Stagno and Aulbach, 2022). The opposite has also 
been considered, that the mantle has become oxidized by return 
of surface material (Lecuyer and Ricard, 1999; Kump et al., 2001; 
Evans, 2012), and surface-derived oxidants are evident in recycled 
sources of oceanic island basalts (OIB) (Moussallam et al., 2019). 
Mutual oxidation of the surface and interior, or oxidation of the 
surface with constant mantle redox power, are seemingly inconsis-
tent with closed system behavior for the combined reservoirs and 
would require net external redox fluxes, either by hydrogen es-
cape to space or supply of oxidized material from the deep Earth 
(Andrault et al., 2018; Nicklas et al., 2019; O’Neill and Aulbach, 
2022; Stagno and Aulbach, 2022). Alternatively, they may reflect 
closed-system changes in mantle oxygen fugacity ( fO2) owing to 
secular decreases in mantle temperature or changing conditions in 
the source regions of mantle-derived magmas (Gaillard et al., 2015; 
Gaetani, 2016).

As is also true for deep planetary volatile cycles, essential as-
pects of the deep Earth oxygen cycle are the processes and circum-
stances by which the bulk silicate Earth (BSE) acquired its inven-
tory of oxidative power. The silicate portions of terrestrial planets 
originated in the presence of plentiful Fe-rich alloy, as evidenced 
by the metal content of primitive meteorites and by the planets’ 
large metallic cores. Earth is not the sole terrestrial planet with an 
oxidized surface, but it is the only one known to have apprecia-
ble ferric iron in its mantle, which potentially represents a much 
larger reservoir. The high net oxidation state of the bulk silicate 
Earth could have originated by H2O disproportionation, leading to 
H2 escape (Kasting et al., 1993; Catling et al., 2001; Zahnle et al., 
2019), and by FeO disproportionation, either associated with bridg-
manite crystallization in the lower mantle (Frost et al., 2004) or in 
a deep magma ocean (Hirschmann, 2012; Armstrong et al., 2019; 
Hirschmann, 2022).

Evaluation of the deep Earth oxygen cycle demands quantifica-
tion of the net fluxes of oxidized species between the surface and 
interior reservoirs. Accrual of the oxidized surface reservoir at the 
expense of the mantle requires extended periods in which oxidized 
outfluxes exceeded influxes. In contrast, oxidation of the mantle by 
import of oxidants produced by atmospheric H2 escape (Zahnle et 
al., 2019) requires sustained periods of greater influx. Compared 
to many such studies focused on deep Earth volatile cycles, deep 
redox fluxes have received less attention. Biogeochemical mass 
balance treatments examining redox fluxes between lithosphere 
and fluid envelopes (e.g., Hayes and Waldbauer, 2006; Stolper et 
al., 2021) do not account for all fluxes to and from the mantle. 
Evans (2012) evaluated the detailed redox influxes to the mantle 
at modern subduction zones and also summed redox outfluxes at 
ridges and oceanic islands. Also, Brounce et al. (2019) conducted 
a redox mass balance focused on the Marianas subduction zone. 
Evans (2012) concluded that modern influxes exceed outfluxes, im-
plying net oxidation of the mantle. Both influxes and outfluxes 
merit reevaluation, especially in light of new constraints on volatile 
2

fluxes averaged over the last 200 Ma of tectonic history (Wong et 
al., 2019).

Exosphere redox dynamics are generally appraised in terms of 
mass balance, quantifying net oxidant/reductant fluxes and accu-
mulations (Berner, 2003; Hayes and Waldbauer, 2006). Mantle re-
dox is more typically quantified with fO2 (Cottrell et al., 2021; 
Stagno and Aulbach, 2022), which doesn’t provide direct informa-
tion about mass balance. Therefore, relating coupled redox mantle-
exosphere evolution and dynamics requires scaling between man-
tle fO2 and redox mass balance. For example, this is needed to 
calculate the change in RB corresponding to inferred shifts in man-
tle fO2 from the Archaean to the present (Aulbach and Stagno, 
2016; Nicklas et al., 2019). Such scaling has been calculated previ-
ously (Parkinson and Arculus, 1999; Evans, 2012; Luth and Stachel, 
2014), but not applied to evidence for secular redox evolution of 
the mantle.

The goals of this paper are to evaluate the mass balances and 
fluxes underpinning Earth’s deep oxygen cycle and the origin of 
Earth’s oxidized redox budget. The specific coupling between the 
solid Earth and atmospheric oxygen (see Kasting, 2013; Stolper et 
al., 2021) is not addressed directly here. Rather, the aim is to bet-
ter illuminate the large-scale context in which redox evolution has 
occurred.

2. Reference states and redox budgets

2.1. Reference state redox budget

In quantifying redox mass balances, it is necessary to establish 
a reference valence state for each redox-sensitive element (Evans, 
2012; Kasting, 2013). For the deep Earth oxygen cycle, the princi-
pal elements of interest are Fe, S, C, Cr, and H, and the reference 
valence states are those that predominate in the upper mantle: 
Fe2+ , S2− , C0, Cr3+ , and H+ . An important distinction between 
the treatment here and some studies focused on surficial oxida-
tive reservoirs is that C4+ , as carbonate or CO2, is considered to be 
an oxidized species (Hayes and Waldbauer, 2006; Evans, 2012) be-
cause the predominant state of C in the mantle is neutral C (Stagno 
et al., 2013).

To quantify the redox mass balances of the mantle and ex-
osphere, we adopt the Redox Budget (RB) formalism of Evans 
(2012), where the RB is given in moles of electrons required to 
bring the mass back to the reference state:

RB =
∑

i

ni V i, (1)

where ni is the number of moles of a species i in a reservoir and 
v i is the number of electrons required to take one atom of species 
i to its reference state. RB, positive for materials more oxidized 
than the reference state and negative for those more reduced, is 
an extensive quantity, applicable to reservoirs and fluxes. It is also 
useful to consider the redox budget per unit mass of rock, m,

RB =
∑

i ni V i

m
(2)

with units of moles/gram.

2.2. Exosphere oxidized budget

Appreciable oxidized species in the exosphere include dioxygen, 
sulfate and pyrite, carbonate, and ferric iron. The net exosphere RB
is 4.2±0.5 × 1022 moles. Atmospheric O2 accounts for only 0.4% 
of the exosphere RB, whereas carbonate accounts for 71.4%, crustal 
Fe2O3 24.6%, and sulfate and pyrite combined 3.6% (Table 1, Fig. 1).
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Table 1
Redox Budget (RB) of the exosphere.

RB factor* Species RB % of total

moles X 1018 moles
/mole

Exosphere
CO2

a 4 7510±1280 30,000±5100 71.4
Fe2O3

b 2 5170±965 10,300±1930 24.6
SO3

c 8 166±50 1330±400 3.2
FeS2c 2 90±27 179±54 0.4
O2

d 4 37 148 0.4
Sum 42,040±5470

Mantle (see Supplement for sources)
Fe2O3 2 90000±25000 180,000±50,000 95.7
CO2 4 600±100 -e

Sulfide 0.4 27500±2500 11000±1000 5.9
CrO −1 −3000±3000 −3000±3000 −1.6
Sum 190,000±50,000

* number of electrons per molecule relative to reference state for species.
a Hirschmann (2018). Note that organic carbon, with approximate stoichiometry 

of CH2O, is redox-neutral compared to the assumed reference state.
b Lecuyer and Ricard (1999).
c Rickard (2014).
d Stolper et al. (2021).
e The contribution of CO2 to mantle is incorporated into the Fe2O3 value (see 

Supplement).

Fig. 1. Redox budget (RB) reservoirs and fluxes for the recent (∼200 Ma) deep Earth 
oxygen cycle. Values are in moles of electrons relative to the reference oxidation 
states of the elements (see text and Evans, 2012). Exosphere and mantle reservoir 
RB values from Table 1 and fluxes from Tables 2 and 3. The net influx at subduction 
zones is the sum of fluxes into the mantle after taking into account the return 
of oxidants to the surface environment from volcanic and non-volcanic arc fluxes 
(Evans, 2012). Reservoirs and outfluxes are color-coded by chemical species, but 
minor contributions (e.g., atmospheric O2, pyrite, sulfate, CrO) are not necessarily 
illustrated or labeled.

2.3. Mantle redox reservoir

Although there is redox heterogeneity in the mantle (Cottrell et 
al., 2021; Stagno and Aulbach, 2022), the initial assumption here, 
revisited in Section 4.7, is that it is not vertically stratified and 
3

Table 2
Redox Budget (RB) outfluxes from mantle.

Ridges Oceanic 
Islands

Continental Sum % of 
total

Volume (km3) 23.9±2.3 1.1±0.2 2.5±1.8

Species fluxes × 1012 mol/yr
Fe2O3 5.0±0.7 0.5±0.1 1±0.7 6.5±1
CO2 3.3±0.7 1.5±0.6 1.5±1.2 6.3±1.5
SO2−

4 - 0.01 0.002 0.01

RB fluxes × 1012 mol/yr
Fe2O3 10±1.4 0.9±0.2 2±1.5 13±2 34
CO2 13±3 6±3 6±5 25±6 65.7
SO2−

4 - 0.09 0.02 0.1 0.3
Sum 23±3 7±3 8±5 38±7
% of total 61 18 21

All values from this work, as described in the main text and Supplement.

therefore that the whole mantle RB can be characterized from 
observations in the upper mantle. The well-known decrease in 
f O2 with depth, caused by pressure-dependent changes in inter-
mineral partitioning of Fe3+ (Frost and McCammon, 2008), and 
ferrous iron disproportionation to Fe0 and Fe2O3 (Frost et al., 2004) 
occurs at constant RB, i.e., the RB is equal on either side of the re-
action

3FeO � Fe2O3 + Fe. (3)

The RB of the consequential redox-sensitive elements in the man-
tle, Fe, C, S, and Cr, are tabulated in Table 1, with additional details 
in the Supplement. Iron is nearly entirely Fe2+ (∼96±1%; see Sup-
plement). The majority of carbon in the mantle is neutral, occur-
ring as diamond, carbide, or dissolved in sulfide liquid (Stagno et 
al., 2013; Zhang et al., 2019), but there is a small shallow portion 
of the uppermost mantle in which carbonate is stable. Sulfur oc-
curs as sulfide liquid (Zhang et al., 2019) with an effective valence 
close to S2− , but allowing for non-stoichiometric M/S ratios in real 
oxysulfide liquids makes a small contribution to upper mantle RB. 
Cr occurs almost entirely as Cr3+ (>96%; Hirschmann, 2022), and 
hydrogen is assumed to occur solely as H+ (i.e., H2O or OH−). The 
total RB of the mantle amounts to 1.9±0.5 × 1023 moles (Table 1) 
and the RB is 5 × 10−5 mol/g, with 95.7% coming from Fe2O3, 
5.9% from oxysulfide liquid, and −1.6% from Cr2+ .

2.4. Redox outfluxes and influxes

Outfluxes of oxidants from the mantle, summarized in Ta-
ble 2 and Fig. 1, include Fe2O3, CO2, and SO2−

4 dissolved as mag-
matic species, from ridges, oceanic islands, and intracontinental 
provinces. Fluxes from arcs are best considered as a factor in 
the inefficient return of oxidants to the mantle via subduction 
(Evans, 2012). Averaged over the last 200 Ma, magmatic produc-
tion at ridges and intracontinental sources, 23.9±2.3 and 2.5±1.7 
km3/yr, as well as the rate of oxidant influxes at subduction zones, 
are greater than modern rates (Wong et al., 2019), as detailed in 
the Supplement. For oceanic islands, the magmatic volume flux, 
1.1±0.2 km3/yr, is calculated from well-studied inputs in Hawaii 
(Lipman and Calvert, 2013) and scaled globally based on the frac-
tion (21%) of buoyancy flux that Hawaii contributes to the global 
total (King and Adam, 2014).

2.4.1. Redox outfluxes
Redox outfluxes are given in Table 2 and described in the Sup-

plement. Here we briefly highlight the fluxes of CO2 from oceanic 
islands and continental rifts, though further details of these esti-
mates are also in the Supplement.

On the basis of CO2/He ratios, Marty and Tolstikhin (1998) cal-
culated an upper limit for the oceanic island CO2 flux of ≤3.3 ×
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Table 3
Subduction Influxes.

C4+ Fe3+ othera Sum

RB Fluxes × 1012 mol/yr
Sediments 4.8±2.4b 1.5±0.3c 0.9±0.1c 7.2±2.5
AOC 8.2±1.2b 16.6±8.1c 7.4±0.4c 32.2±8.2
Serp 5.3±3.2b 9.7±7.6c 4.6±.6c 19.7±8.3
Arc −6.3±−3.7b -6.0±2.9c −2.7±.6c −15.0±5.1
non-volcanic fluids −0.3±0.23c - 5.3±4.1c 5.0±4.1
Sum 11.8±5.7 21.8±11.5 15.6±4.2 49.1±13.4

a other=RB fluxes from S, H, and non-carbonate C.
b Carbonate or CO2 fluxes averaged over the last 200 Ma from Wong et al. (2019).
c modern fluxes of Fe, S, H, and non-carbonate C from Evans (2012), multiplied 

by a factor of 1.45 to take into account greater average rates of subduction (strike 
length X orthogonal convergence rate) over the last 200 Ma from Wong et al. (2019). 
Fluxes from Evans (2012) are taken from the midpoints of given “maximum” and 
“minimum” assessments.

1012 mol/yr. In contrast, Wong et al. (2019) estimated a flux of 
0.5±0.25 × 1012 mol/yr CO2 from a compilation of OIB locali-
ties for which published data were available, though they warned 
that this was an incomplete survey of worldwide sources. Hauri 
et al. (2019) estimated a total OIB flux of 0.17-0.35 × 1012

mol/yr by combining melt inclusion CO2/Ba and CO2/Rb ratios 
with total intraplate basalt and Ba fluxes derived from seamount 
ocean bathymetry. Unfortunately, this approach omits both intru-
sive magmatic inputs and the limiting effects of isostasy on the 
expression of total magmatic output for oceanic islands and large 
seamounts. The new estimate, 1.5±0.6 × 1012 mol/yr (Table 2) 
also uses CO2/Ba ratios, but constrains Ba outfluxes from a survey 
of OIB, weighted by hotspot buoyancy fluxes (Table S1).

It has been recognized recently that passive, non-volcanic de-
gassing at rifts is a large fraction of global CO2 outflux, possibly 
exceeding that at ridges by a factor of 2-3. (Brune et al., 2017; 
Wong et al., 2019). This corresponds to RB fluxes over the last 200 
Ma as great as 2.5 × 1013 mol/yr, or potentially about half the 
global outflux. However, the estimates are dominated by high CO2
outgassing observed in the East African rift and Italy, which may 
not apply to the global 26,000 km array of rifts. We favor a con-
servative approach, proposed by Brune et al. (2017), with smaller 
estimated overall fluxes (6 × 1012 mol/yr; Table 2).

2.4.2. Subduction influxes
Treatment of subduction redox fluxes begins with the survey 

of modern rates from Evans (2012). We consider the total subduc-
tion RB influx as the difference between the incoming subducted 
lithosphere minus fluxes returned to the surface via arcs and meta-
morphic belts, and this approach is not affected by redox depletion 
that can occur by deep convection of mantle wedges (Brounce et 
al., 2019). Here we update, including net deep CO2 fluxes over the 
last 200 Ma from Wong et al. (2019), (RB influx=1.2±0.6 × 1013

mol/yr Table 3). No similar time-dependent constraints are avail-
able for other redox carriers (other forms of C, Fe, S, H). For these 
we take the means of maximum and medium modern rates cata-
loged by Evans (2012), and multiply them by 1.45 (3.7±1.2 × 1013

mol/yr Table 3), the factor between the subduction rate averaged 
over the last 200 Ma and the modern rate (Wong et al., 2019).

2.5. Total RB reservoirs and fluxes

The total BSE (=mantle+exosphere) RB is 2.3±0.5 × 1023

moles, of which 82±4% is in the mantle and 18±4% in the ex-
osphere. The total RB flux from the mantle to the exosphere is 
3.8±0.7 × 1013 mol/yr (Table 2), which is greater than estimated 
by Evans (2012) (2.3±0.6 × 1013 mol/yr), who adopted a smaller 
CO2 flux from ridges and did not incorporate continental sources. 
CO2 accounts for 66% of the RB outflux, Fe2O3 for 34%, and SO2−
4

4

Fig. 2. Calculated oxygen fugacity (log fO2) relative to the QFM buffer for garnet 
and spinel peridotite as a function of bulk peridotite Fe2O3 content and Fe3+/FeT

ratio. For spinel and garnet peridotite, calculations at indicated conditions are con-
ducted using the oxybarometers of Wood and Virgo (1989) and Stagno et al. (2013), 
with further details in the Supplement. Fe2O3 contents of garnet and spinel as a 
function of bulk peridotite composition are calculated from inter-mineral partition 
coefficients, as detailed in the Supplement. Absolute values of �QFM diminish with 
increasing pressure, but at any fixed conditions, the log-log slopes are all close to 
0.25.

less than 1%. 61% of the RB flux comes from ridges, 18% from 
oceanic islands, and 21% from intracontinental regions. The net 
RB influx at subduction zones averaged over the last 200 Ma is 
4.9±1.3 × 1013 mol/yr, consisting of 44±22% Fe2O3, 24±13% car-
bonate, and the balance from S, H, and non-carbonate C species. It 
is similar to the modern rate (4.6±1.2 × 1013 mol/yr) appraised 
by Evans (2012), owing to a smaller contribution from subducting 
carbonate and a correspondingly greater influx of Fe2O3

3. Relationship between fO2 and mantle Fe2O3

To relate the mantle redox budget with variations in man-
tle fO2, we present calculations for fertile lherzolite in spinel 
peridotite and garnet peridotite facies mantle. Calculations are 
based on spinel and garnet oxybarometers (Wood and Virgo, 1989; 
Stagno et al., 2013) combined with inter-mineral partition coef-
ficients and peridotite mineral modes, as detailed in the Supple-
mentary Information. Calculated values of fO2 in units of �QFM 
(=logarithmic difference from the quartz-fayalite-magnetite buffer) 
depend logarithmically on Fe3+/FeT and therefore on bulk peri-
dotite Fe2O3 (Fig. 2). Though volume effects induce more reduced 
conditions relative to QFM with increased pressure, spinel and gar-
net peridotite display composition- fO2 slopes in log-log space that 
are near-constant and similar to 0.25, as all mineral and melt iron 
redox buffers have a simplified stoichiometry of

FeO+ 1/4O2 � FeO1.5 (4)

(O’Neill et al., 1993). Therefore, for each log unit change in fO2, the 
Fe3+/FeT ratio (approximately similar to the Fe3+/Fe2+ ratio when 
Fe3+ concentrations are small) changes by a factor of ∼1.8 (101/4).

� log(Fe3+/Fe�)peridotite ≈ 1/4� log( fO2)
mantle (5)

The significant consequence is that at reduced conditions (low to-
tal Fe2O3), small changes in Fe2O3 contents produce large effects 
on �QFM, and at more oxidized conditions, shifts in �QFM are 
commensurately smaller.
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4. Discussion

4.1. Photosynthesis and the development of the exosphere RB

Readers are likely to note that photosynthesis and the great 
oxygenation event are not emphasized in this work. Though es-
sential to the rise of high PO2 of Earth’s surface, in the context of 
development of the exosphere RB reservoir, photosynthesis plays 
no direct role. This is partly because the photosynthetic reaction

CO2 + H2O = CH2O + O2 (6)

is neutral with respect RB, as it transfers +4 electrons/mole RB
from CO2 to O2. More generally, chemical reactions occurring 
within the exosphere cannot modify the exosphere RB without 
subsequent fluxes of either oxidized or reduced reaction products 
to the interior or to space. A common paradigm is that photosyn-
thesis produces an oxidized surface when coupled to burial (i.e., 
subduction) of organic carbon (Berner, 2003; Hayes and Waldbauer, 
2006; Stolper et al., 2021). However, CH2O is neutral with respect 
to RB in the mantle reference state, as it has the same RB as C +
H2O. Therefore, in Reaction 6, it is the original supply of CO2 that 
provides the positive exosphere RB and formation of the exosphere 
reservoir of CO2 is the essential prerequisite for photosynthetic de-
velopment of high PO2 on the surface. The processes of interest in 
the present work are those that produced and maintained a posi-
tive RB reservoir (CO2 + Fe2O3) in Earth’s exosphere.

4.2. Fluxes

The estimated RB mantle outflux, 3.8±0.7 × 1013 mol/yr, is 
sufficient to accrue the entire exosphere RB in 1.1±0.2 Ga. The 
combination of short exosphere replenishment time and predom-
inance of the mantle RB reservoir (Fig. 1) is consistent with sig-
nificant recycling of RB to the mantle, as is also true for the deep 
carbon cycle (Hirschmann, 2018), highlighting the strong coupling 
between the two. Combining the outflux of 3.8±0.7 × 1013 mol/yr 
with the recent deep subduction RB flux, 4.9±1.3 × 1013 mol/yr, 
yields a net influx of 1.1±1.5 × 1013 mol/yr, apparently smaller 
than that, 2.3±1.3 × 1013 mol/yr, surmised by Evans (2012). Thus, 
within uncertainty, either modern outfluxes and influxes are nearly 
balanced or influxes could be modestly greater than outfluxes.

CO2 dominates the RB outflux (66±20%), but makes a lesser 
contribution to the influx (24±13%). This is owing partly to com-
plementary intervalence reactions between C and Fe creating car-
bonate during upwelling to the shallow mantle

C
reduced

+ 2Fe2O3
silicate

� CO2
carbonate

+ 4 FeO
silicate

, (7)

and the net reaction combining organic carbon fixation (Reaction 
6) and oxidative weathering on the surface

CO2
vapor

+ 4 FeO
silicate

+H2O� CH2O
organic C

+ 2Fe2O3
silicate

. (8)

Reaction (7) is intimately associated with melting in the upper 
mantle, with important geophysical and geochemical consequences 
(Hirschmann, 2010; Stagno et al., 2013), whereas reaction (8) is 
foundational to the biogeochemical carbon cycle (Hayes and Wald-
bauer, 2006). Surficial formation of sulfate and mantle reduction 
to sulfide contribute additional intervalence coupling to the deep 
oxygen cycle.

Considering the long-term history of redox exchange, RB in-
fluxes may have been smaller in proportion to outfluxes during 
earlier periods of Earth history. Fe2O3 and CO2 outfluxes scale with 
global magmatic production, which was greater on an earlier hot-
ter Earth, as do CO2 influxes via subduction, which are controlled 
5

mostly by plate spreading rates (Sleep and Zahnle, 2001). However, 
the largest single modern influx of RB, Fe2O3 in altered oceanic 
crust (Table 3), was significantly smaller before the Phanerozoic, 
when oceans lacked oxygenated bottom water (Stolper and Keller, 
2018). Therefore, lower net influxes of Fe2O3 prevailed in the 
Neoproterozoic. In the Archaean and Paleoproterozoic (3.8-1.7 Ga; 
Johnson and Molnar, 2019), banded iron formations (BIF) could 
have contributed significant RB influxes. Thompson et al. (2019)
evaluated the Archean carbon-iron cycle associated with BIF for-
mation and estimated methane production at 2.5 Ga of 3.2 ± 2.5 ×
1012 mols/yr, which produces enough Fe2O3 to support an RB in-
flux of 1.3±1.0 × 1013 mols/yr, about the same as recent Fe2O3 in-
fluxes in altered oceanic crust. In summary, though the magnitude 
of net RB exchange between the surface and interior through Earth 
history remains uncertain, net influxes previous to the Phanero-
zoic were either smaller than or similar to present rates. Relevant 
to the discussion below, there is no evidence or identified mecha-
nism to infer extended periods where net influxes greatly exceeded 
present-day values.

Notably, S does not contribute significantly to mantle oxidant 
outfluxes. Great emphasis has been placed on a possible shift from 
volcanogenic H2S to SO2 from mantle-derived magmas, and its ef-
fect on atmospheric oxidation (Holland, 2002; Kump and Barley, 
2007; Gaillard et al., 2011; Kadoya et al., 2020). However, the sul-
fur emanating from the mantle has always been dominated by 
S2− (Section 2.3). A shift from venting of SO2 as compared to 
H2S, as may occur owing to degassing of subareal and hotter mag-
mas rather than submarine or cooler volcanism (Kump and Barley, 
2007; Gaillard et al., 2011; Kadoya et al., 2020), occurs in crustal 
magma chambers or volcanic conduits, as SO2 is produced at the 
expense of Fe2O3:

FeS
magma

+ 3Fe2O3
magma

� SO2
vapor

+ 7 FeO
magma

, (9)

(Brounce et al., 2017). This provides an oxidant that is more readily 
available to biogeochemical cycles, favoring atmospheric or ocean 
oxidation, but does not influence directly the redox mass balance 
of the surface reservoir.

4.3. Origin of bulk silicate Earth RB inventory

The Earth accreted from materials rich in metal, and silicate 
equilibrated with metal at low pressure would have had negligi-
ble RB. The net oxidizing power of the BSE was produced by some 
combination of FeO and H2O disproportionation (Fig. 3). H2O dis-
proportionation proceeds according to reaction (3) and

2H2O
vapor

� 2 H2
vapor

+ O2
vapor

(10)

(Hamano et al., 2013; Pahlevan et al., 2019; Zahnle et al., 2019), or 
equivalently

H2O
vapor

+ 2 FeO
silicate

� H2
vapor

+ Fe2O3
vapor

. (11)

FeO disproportionation occurs at high pressure, either in a deep 
magma ocean (Hirschmann, 2012, 2022; Armstrong et al., 2019), or 
from bridgmanite crystallization (Frost et al., 2004) and increases 
mantle RB if the alloy is removed to the core. Disproportionation 
of H2O could have occurred in early reducing atmospheres from 
the time of the magma ocean (Hamano et al., 2013) to as recently 
as the Paleoproterozoic (Zahnle et al., 2019) and increases BSE RB
when atmospheric H2 escapes to space (Fig. 3).

Based on the equation of state of Deng et al. (2020), Hirschmann 
(2022) found that FeO disproportionation in a deep magma ocean 
can produce Fe3+/FeT ratios of 0.03-0.1 for reasonable estimates of 
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Fig. 3. Origin and evolution of Earth’s Redox Budget (RB). (A) During the magma 
ocean stage at ∼4.5 Ga, Fe2O3 is produced by FeO disproportionation in a deep 
magma ocean, as silicate and core-destined alloy interact. Magma ocean degassing 
potentially forms a thick CO2-rich atmosphere. Also, H2O disproportionation fol-
lowed by H2 escape increases the oxidation state at the surface. (B) Between ∼4.5 
and 4.4 Ga, crystallization of the magma ocean leads to precipitation of alloy (and 
bridgmanite) in the lower mantle. A portion of the alloy segregates to the core, 
possibly by sinking through a basal magma ocean, forming a lower mantle region 
that is enriched in Fe2O3. The basal magma ocean may persist past 4.4 Ga. Late 
accretion of metalliferous planetesimals adds significant reduced material, neutral-
izing much of the oxidized budget of the surface and near-surface. Impactors also 
ablate the thick post-magma-ocean atmosphere. Volcanogenic outfluxes contribute 
to mantle-exosphere RB exchange. Influxes of oxidants (carbonate) or reductants 
(accreted alloy) to the mantle are also likely, but not shown in diagram. (C) After 
cessation of significant late accretion, from 4.4 to ∼2 Ga, evolution of the RB occurs 
owing to continued H2O disproportionation and loss of H2 to space and to gradual 
convective mixing of the deep mantle oxidized layer with the shallower mantle. To-
gether with H2 escape, volcanogenic outfluxes build the surface RB inventory, which 
is stored in sediments and in the crust. Tectonic processes also recycle oxidants back 
to the mantle.

core-forming conditions, but that these are diminished by ∼0.04 
by subsequent oxidation of CrO to Cr2O3 during crystallization, 
which diminishes mantle RB by ∼1.5 × 1023 moles. Therefore, FeO 
disproportionation in a magma ocean had the potential to supply 
to the early-solidified mantle Fe2O3 comparable to the present-day 
value (Fe3+/FeT = 0.04±0.01) only if core formation occurred at 
high temperature (>4000 K) (Hirschmann, 2022). If core-forming 
conditions were not so extreme, or if significant reductants were 
added to the mantle during post-magma ocean late-accretion (see 
section 4.4), additional sources of mantle RB were required from 
either bridgmanite crystallization or H2 escape.

A recent experimental study (Kuwahara et al., 2023) suggests 
that disproportionation of the terrestrial magma ocean produced 
a mantle with an Fe3+/FeT ratio of 0.35±0.15, which corresponds 
to a BSE RB of 1.6±0.7 × 1024 moles, or 4-10 times greater than 
is observed at present. This is far greater than the plausible neg-
ative RB contributed by Cr oxidation or added by late accretion 
(−0.2±0.1 × 1024 moles, see section 4.4 below). If accurate, the 
results of Kuwahara et al. (2023) represent a profound challenge 
to present understanding of the evolution of mantle redox mass 
balance.

Previous work has placed different emphasis on the relative 
roles of iron versus H2O disproportionation in the overall net oxi-
dation state of the Earth (Kasting et al., 1993; Catling et al., 2001; 
Armstrong et al., 2019; Pahlevan et al., 2019; Zahnle et al., 2019; 
Sossi et al., 2020; Hirschmann, 2022). During the magma ocean 
stage, H2 escape from a steam atmosphere could produce a max-
imum mantle RB of 3.5 × 1022 moles (Hamano et al., 2013), 
less than 20% of the present-day BSE value. To supply the rest 
of the present-day mantle RB by subsequent downward penetra-
6

tion of H2O-disproportionated oxidant, as advocated by Zahnle et 
al. (2019), would require large influx rates. The mantle appears to 
have reached its present-day RB inventory at about 2 Ga (Stagno 
and Aulbach, 2022), and so supply of oxidant from the surface to 
the interior in the previous 2.5 Ga would require a net influx of 
∼1 × 1014 mols/yr, about 4-10 times greater than the recent net 
influx value (1.1±1.5 × 1013 mol/y). As noted in section 4.3, there 
is no evidence or known mechanism for such enhanced ancient 
influxes, and so H2O disproportionation was subordinate to FeO 
disproportionation in the accrual of the interior RB reservoir.

Following magma ocean solidification, lower mantle crystalliza-
tion drove FeO disproportionation that produced additional Fe2O3. 
The very great stability of Fe3+ in bridgmanite exceeds that in sil-
icate melt at any given temperature, pressure, and fO2; i.e. the
minimum Fe3+/FeT of crystalline “pyrolite” at 25 GPa and 1973 
K at metal saturation is >0.2 (Huang et al., 2021) whereas a sil-
icate liquid at similar conditions has a ratio no greater than 0.04 
(Hirschmann, 2022). Consequently, bridgmanite precipitation from 
the cooling magma ocean forced additional Fe2O3 production and 
alloy precipitation. This buffered the Fe2O3 content of the crys-
tallizing magma, which invalidates models that treat Fe2O3 as a 
compatible or incompatible species during lower mantle differen-
tiation (Maurice et al., 2023). Removal of a small amount of the 
alloy to the core can account for much of the BSE not produced in 
the magma ocean. For example, removal of metal amounting to 0.1 
wt.% of the mantle mass would enhance the BSE RB by 1.4 × 1023, 
or about 3/4 of the present-day value.

4.4. Early surface RB reservoir and late accretion

The redox conditions of the Earth’s early surface, after the dra-
matic events of Earth’s differentiation, degassing, and solidification, 
have long been debated, with particular emphasis on the relation-
ship between redox conditions, early climate, and the potential for 
prebiotic chemistry (Miller and Urey, 1959; Walker, 1977; Catling 
and Zahnle, 2020). Two competing contributions are development 
of a thick oxidized atmosphere descended from a magma ocean 
(Hirschmann, 2012; Armstrong et al., 2019; Sossi et al., 2020) and 
production of a reduced surface from addition of a “late veneer” 
after the last giant impact (Schaefer and Fegley, 2010; Pahlevan et 
al., 2019; Zahnle et al., 2020; Itcovitz et al., 2022) (Fig. 3). A mas-
sive magma ocean atmosphere with a CO2 pressure of 10 MPa, 
possibly abetted by graphite precipitation on cooling (Sossi et al., 
2020), would amount to an RB (∼5 × 1022 moles), similar in mag-
nitude to the modern surface RB reservoir, but most would be 
ablated by impacts (Schlichting et al., 2015; Sinclair et al., 2020) 
or removed by weathering and early rapid recycling (Sleep and 
Zahnle, 2001). On the other hand, late-accreted material was likely 
derived from the inner solar system and metal rich (Hopp et al., 
2020; Zahnle et al., 2020; Itcovitz et al., 2022). If late accreted bod-
ies totaled 0.7±0.2 wt.% of the BSE mass (Jacobson et al., 2014) 
and averaged 20±10% metal, similar to enstatite chondrites, this 
could add an RB of −2.1±1.2 × 1023 moles, a quantity compara-
ble in magnitude but of opposite sign to the present-day BSE RB. 
The proportions of this material delivered directly to the surface 
and mantle depended on the size distribution of impactors, but 
the larger magnitude RB of the late accreted material as compared 
to a potential thick CO2-atmosphere indicates that the early sur-
face reservoir RB was negative and therefore reduced (Zahnle et 
al., 2020).

The destruction of a negative RB surface reservoir occurred from 
a combination of H2 escape, oxidized fluxes from the interior, and 
burial of the early protocrust by subsequent magmatism. The latter, 
aided by impacts (Borgeat and Tackley, 2022), could have con-
tributed a flux of reductants to the interior. We know from plat-
inum group element concentrations and isotopes that late accreted 
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material was eventually transferred to the mantle (Maier et al., 
2009; Creech et al., 2017; Fischer-Gödde et al., 2020), but whether 
much of its reductive power was first neutralized on the surface 
is more difficult to gauge. If significant Fe alloy was transferred to 
the mantle, the large remaining positive RB of the modern mantle 
suggests that the early mantle had yet more abundant oxidizing 
power.

4.5. Secular evolution of the surface and the mantle

In the aftermath of late accretion, the surface RB reservoir was 
negligible or possibly negative and so it has grown through geo-
logic time by a combination of fluxes from the mantle and H2 loss 
to space. At the same time, evolution of the mantle RB reservoir 
can be considered.

If the surface reservoir became oxidized entirely owing to H2O 
disproportionation and H2 escape, then the total H2O lost would 
have been equivalent to approximately 1/4 exospheres (1 exosphere 
H2O=1.6 × 1021 grams, Hirschmann and Dasgupta, 2009). De-
pending on continental area, this amounts to 700-1000 meters re-
duction in continental freeboard from the beginning of the Hadean 
to the Paleoproterozoic, when the more oxidized atmosphere ter-
minated effective H2 escape (Zahnle et al., 2019), or less if some 
portion of the H2O was supplied from the mantle. The correspond-
ing amount of H2 escaped to space is equivalent to 8 modern 
atmospheres (800 kPa), which is well within the limits given by 
D/H ratios and fractionation of Xe isotopes by hydrodynamic es-
cape (Pahlevan et al., 2019; Zahnle et al., 2019).

Though the accrual of the surface RB chiefly from H2 escape is 
plausible, it is likely that a significant fraction derived from the in-
terior because nearly 3/4 of the modern surface RB is in the form 
of carbonate (Fig. 1), which accumulated from volcanogenic out-
gassing of CO2 (Hayes and Waldbauer, 2006). Evidence that the 
mantle was about 1.5 log units more reduced in the Archaean 
(Aulbach and Stagno, 2016; Nicklas et al., 2018, 2019) does not 
change this inference, as under those mildly reducing conditions, 
the predominant carbonic gas would also have been CO2 (Gaillard 
et al., 2022).

Alternatively, if the entire present-day surface RB came from 
the mantle, then the mantle Fe2O3 concentration has diminished 
by 0.09 wt.% since the early Hadean; i.e., a Hadean Fe3+/FeT ratio 
of 0.05±0.01 compared to 0.04±0.01 today. This would correspond 
to approximately 0.4 log units of secular decrease in mantle fO2
(Fig. 2). No such trend is evident in mantle redox proxies, though 
its small magnitude may not be resolvable. It seems likely that 
the oxidized surface RB mass comes from a combination of inte-
rior fluxes and H2 escape, and that any record of reduction of the 
mantle owing to RB outfluxes is small and overwhelmed by other 
effects.

Early work (Canil, 1997; Delano, 2001; Trail et al., 2011) de-
tected no measurable change in mantle fO2 since the early Hadean. 
More recently, studies of olivine/bulk rock V partitioning of pi-
crites and komatiites (Nicklas et al., 2018, 2019) and of V/Sc and 
Fe3+/FeT ratios in eclogites and ophiolitic basalts (Aulbach and 
Stagno, 2016; Aulbach et al., 2019) indicate that mantle fO2 has 
increased by ∼1.5 log units since the Archaean, with most of the 
change happening between 3.5 and 2 Ga (Fig. 4). Although V-based 
oxybarometers may not be uniquely attributable to differences in 
mantle fO2 (Laubier et al., 2014; Cottrell et al., 2021), we consider 
the ramifications if the inferred secular mantle oxidation occurred. 
The alternative hypothesis, that mantle fO2 has been near constant, 
is discussed further in the Supplementary Information.

Evidence for secular increases in fO2 is apparent both in plate 
margin basaltic lithologies, derived from the upper mantle, and ko-
matiites, sourced from the lower mantle (McKenzie, 2020). There-
fore, inferred temporal fO2 shifts apply to a significant mantle 
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Fig. 4. Secular change in mantle fO2 and corresponding Fe3+/FeT through geologic 
time. Oxygen fugacities, from V/Sc and Fe3+/FeT ratios recorded in komatiitic and 
basaltic rocks, are relative to values recorded in recent picrites, with data compiled 
by Stagno and Aulbach (2022). The scale on the right side of the diagram indicates 
the value of log fO2 relative to that recorded by V/Sc ratios for modern mantle, 
assuming that the latter correspond to a mantle Fe3+/FeT of 0.04, as indicated on 
the left side of the diagram. Mantle Fe3+/FeT ratios are the corresponding ratios 
calculated from the slope shown in Fig. 2 relative to the assumed modern value of 
0.04. The approximately 1.5 log unit fO2 change since the Archaean indicates mantle 
source regions for komatiitic and basaltic magmas with Fe3+/FeT less than 0.02.

mass fraction. Relative to the modern mantle with an assumed 
Fe3+/FeT ratio of 0.04±0.01, the paleooxybarometers imply that 
the mantle at 3 Ga had an Fe3+/FeT ratio of <0.02 (Fig. 4). There-
fore, a ∼1.5 log unit fO2 change through the Archaean/Proterozoic 
transition (Fig. 4) could require that the early Archaean mantle 
had less than half of its present-day RB and that half of the RB
in magma source regions was gained since.

It is generally considered that the mantle approached com-
paratively oxidizing conditions, a “great mantle oxidation event” 
(Scaillet and Gaillard, 2011), in the early Hadean and then either 
experienced little subsequent change (e.g., Trail et al., 2011) or ex-
perienced comparatively small changes in the intervening 4.4 Ga 
(Aulbach and Stagno, 2016; Nicklas et al., 2018, 2019). This view, 
justified from the point of view of fO2, may be inaccurate in terms 
of RB. Rather, the significant oxidation relative to cosmochemical 
precursors, evident from the earliest Hadean mantle may have re-
quired only small amounts of RB, and the modest changes in fO2
in the subsequent 4 Ga (if verified), suggest increases in mantle RB
of equal or perhaps greater magnitude.

Taken at face value, the large change in mantle RB that cor-
responds to the apparent secular increase in fO2 (Fig. 4) requires 
mixing of an appreciable mass of oxidized material into the source 
regions of mafic and ultramafic magmas from the Archaean to the 
Paleoproterozoic. If together these sources represent the majority 
of the mantle mass, then as noted in section 4.2, it is doubtful that 
this magnitude change could derive from surface influx. Therefore, 
if the increases in mantle redox inferred from ancient basalts and 
komatiites are accurate, an internal source, such as gradual mix-
ing of a deep oxidized layer originating in the lower mantle by 
iron disproportionation (Andrault et al., 2018; O’Neill and Aulbach, 
2022) is more probable (Fig. 3). The required time scale for this 
mixing is similar to that suggested by the gradual mantle homog-
enization of 142Nd isotopic anomalies evident in Archaean but not 
younger rocks (Hyung and Jacobsen, 2020).

Mass balance considerations of a deep oxidized layer can be 
evaluated from the following scenario. Assume that the earliest 
solidified mantle had an Fe3+/FeT of 0.02 (Fig. 4) and that the ox-
idized surface reservoir at this time was negligible. In the lower 
mantle, this bulk composition was expressed as a combination of 
minerals with a net Fe3+/FeT ratio >0.02 and some fraction of dis-
proportionated Fe alloy. According to the thermodynamic model of 
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Fig. 5. Model calculation showing the fraction of Fe alloy that would have to be lost 
to the core from a lower mantle layer of a given mass, relative to the whole-mantle 
mass, in order to account for the total BSE RB. The alloy would be formed by dispro-
portionation during bridgmanite crystallization. The calculation assumes that prior 
to this loss of alloy, the bulk mantle Fe3+/FeT ratio was 0.02, and that afterwards, it 
is 0.04±0.01. At a ratio of 0.02, the lower mantle consists of bridgmanite, ferroper-
iclase, and 0.09% alloy. For a thin layer, all of this metal would need to drain to the 
core. If loss occurred throughout the lower mantle (0.75 mass of the mantle), then 
the required fraction of alloy lost would be 0.12%.

Huang et al. (2021), this alloy fraction would be ∼0.9 wt.%. Com-
plete loss of this alloy to the core throughout the lower mantle 
would have produced a BSE RB of 1.3 × 1024 moles, more than 5 
times the present value. Therefore, loss had to be partial, consis-
tent with the conclusion that the present-day lower mantle today 
contains ∼0.6 wt.% alloy (Huang et al., 2021). Partial loss of the 
alloy to the core would produce an oxidized mantle layer that 
through convective mixing, enhanced Fe3+/FeT in the upper man-
tle and ultimately supplied the RB of the oxidized surface reservoir 
(O’Neill and Aulbach, 2022). The fraction of necessary alloy loss de-
pends on the thickness of the deep layer that experienced metal 
extraction (Fig. 5). For example, if the layer comprised the lower 
50% (by mass) of the mantle, then 0.18±0.07 wt.% alloy, ∼1/4 of 
that available in the layer, was lost to the core. Alternatively, for 
near-total metal extraction the layer would have had to been lim-
ited to about 10% of the mass of the mantle, or a layer above the 
CMB ∼500 km thick.

This exercise demonstrates that secular mantle redox evolution 
could have arisen from an oxidized deep layer created by export 
of disproportionated alloy to the core, provided that the scope of 
alloy loss was limited. The mechanism that allowed only a small 
portion of lower mantle alloy to escape to the core is unknown, 
but could have been a permeability threshold for metallic liquid. 
Alternatively, during solidification of a basal magma ocean, al-
loy coprecipitating with bridgmanite may have sunk to the core 
(Fig. 3). More complex scenarios are also feasible, as the earliest 
solidified mantle may have been redox stratified, owing either to 
the effects of late accretion (Zahnle et al., 2020), making shallow 
regions more reduced, or magma ocean fractional crystallization in 
the upper mantle (Maurice et al., 2023), making them more oxi-
dized.

4.6. Secular variation in mantle temperature and redox

Petrologic evidence indicates that the mantle cooled by ∼200 
degrees over the last 3 Ga (Herzberg et al., 2010), and this po-
tentially could change the fO2 of mantle-derived basalt relative 
to standard (e.g., QFM) buffers without any open system change 
in RB. For example, Gaetani (2016) found that the fO2 imposed 
by a spinel peridotite source becomes more oxidized for cooler 
mantle potential temperatures and Gaillard et al. (2015) suggested 
that shallower melting accompanied a cooler mantle should corre-
spond to more oxidized conditions, owing to the well-known effect 
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of pressure on fO2 in garnet peridotite (e.g., Frost and McCam-
mon, 2008). However, other factors also are relevant. For example, 
at constant bulk rock Fe3+/FeT, garnet peridotite enforces more 
oxidizing conditions compared to spinel peridotite (Stolper et al., 
2020), and so diminishing contributions from garnet peridotite rel-
ative to spinel peridotite would have an influence opposite to the 
oxidizing effect of cooling for spinel peridotite alone. Therefore, 
Fe2O3 could be less compatible in garnet peridotite residua than 
spinel peridotite, and consequently, for a source with a given RB, 
the Fe2O3 released from deeper melting may be greater than the 
shallower melting of a cooler mantle. The quantitative effects of 
mantle cooling on release of oxidants to the surface, including ef-
fects on the release of carbonate, need further experimental and 
thermodynamic investigation.

4.7. Redox heterogeneity in the mantle

As is true for most geochemical parameters, different man-
tle domains record heterogeneities in fO2, and therefore in RB. 
Apart from well-established fO2 diversity associated with conver-
gent margins and continental lithosphere (Cottrell et al., 2021), 
studies of oceanic basalts reveal systematic differences between 
MORB and OIB in Fe3+/FeT ratios (Brounce et al., 2017, 2022; Hart-
ley et al., 2017; Moussallam et al., 2019) and CO2 contents (Marty 
and Tolstikhin, 1998; Hirschmann, 2018), implying that OIB source 
regions also have greater RB.

Fe3+/FeT ratios of OIB range from slightly lower than MORB 
(0.14±0.02; Zhang et al., 2018) up to nearly 3 times greater 
(Brounce et al., 2017, 2022; Hartley et al., 2017; Moussallam et al., 
2019). This suggests Fe2O3 enrichments in OIB source regions, but 
is also partly owing to melting effects, as Fe2O3 enrichments are 
enhanced at smaller degrees of partial melting and at higher pres-
sure. For example, thermodynamic calculations indicate that Fe2O3
of incipient partial melts of garnet peridotite at 3.5 GPa is twice 
as great as for spinel peridotite at 1.2 GPa, though this difference 
diminishes with increasing melt fraction (Jennings and Holland, 
2015). For OIB with Fe3+/FeT ratios of 0.2±0.05, typical of OIB lo-
calities with high extents of partial melting such as Hawaii and 
Iceland (Brounce et al., 2017; Hartley et al., 2017), source regions 
may have Fe3+/FeT ratios between 0.04 and 0.06, or 100-150% of 
the MORB source. More compositionally extreme OIB generated 
by smaller extents of melting such as from the Canary Islands or 
Erebus, with Fe3+/FeT ratios of 0.3-0.35 (Moussallam et al., 2019) 
likely require source ratios of 0.06-0.08.

CO2 is a relatively minor component of the RB in MORB sources, 
but contributes significantly in OIB sources, which have total RB of 
between 7.5-15 × 10−5 mol/g, compared to MORB, with 4-6 ×
10−5 mol/g (Fig. 6). Therefore, in the deep upper mantle beneath 
OIB sources, where carbon is reduced and Fe2O3 enhanced accord-
ing to the reverse of reaction (7) (Stagno et al., 2013; Moussallam 
et al., 2019), approximate Fe3+/FeT ratios range from 0.06-0.07 
(Réunion) up to 0.09-0.13 (Canaries) (Fig. 6). Compared to back-
ground mantle with Fe3+/FeT near 0.04 and negligible C, these 
deep sources have fO2 between 0.75 and 2 log units more oxidized 
(Fig. 6). At shallower depths, the conversion of this reduced carbon 
to carbonate decreases the available Fe2O3 and consequently par-
tially buffers log fO2 in OIB source regions.

The Canary Islands source has strong geochemical signatures of 
recycled oceanic lithosphere (Taracsák et al., 2019), and so it is not 
surprising that it is also markedly oxidized relative to typical de-
pleted upper mantle. Geochemical markers of recycling in Hawaii 
and Iceland are less pronounced and their sources sample rela-
tively primitive 3He-enriched domains. Perhaps such domains are 
also more oxidized than the depleted upper mantle, potentially 
because they contain deep mantle remnants enhanced by bridg-
manite disproportionation.
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Fig. 6. Relationship between basalt source region Fe3+/FeT ratios (dashed isopleths) 
and CO2 concentrations and total RB in the mantle source at depth, where carbon 
is in reduced form rather than as carbonate (e.g., Stagno et al., 2013). In the deep 
mantle, the RB is expressed as an enhanced Fe3+/FeT ratio, owing to interconversion 
of Fe and C oxidation states (CO2 + 4FeO = 2 Fe2O3 + C). The prevailing oxygen 
fugacity, relative to a reference mantle at the same depth but with Fe3+/FeT =0.04 
and zero CO2, is enhanced according to the relationship shown in Fig. 2. For oceanic 
islands, source RB includes contributions from inferred Fe3+/FeT of the sources, esti-
mated from ratios measured in erupted glasses (Brounce et al., 2017; Hartley et al., 
2017; Moussallam et al., 2019; Brounce et al., 2022) and source CO2 concentrations. 
The latter for Hawaii and Canary Islands are from Tucker et al. (2019) and Tarac-
sák et al. (2019). For Iceland and Réunion, minimum source CO2 concentrations are 
taken from the maximal value inferred from the nearest plume-affected ridge seg-
ment (Hauri et al., 2019). MORB source CO2 is from Rosenthal et al. (2015).

Oceanic Island basalts are thought to sample an enriched por-
tion of the lower mantle amounting to approximately 20% of the 
BSE mass (Arevalo et al., 2013). If this region has an average RB
of 1 × 10−4 mol/g, then the RB of the mantle and BSE have been 
underestimated by about 20%.

5. Conclusions

Deep planetary geochemical cycles entail large scale exchange 
of components between the surface and interior, together with key 
effects of the exchanged components on surface and interior dy-
namics. In this respect, planetary-scale redox fluxes constitute a 
deep Earth oxygen cycle.

82±4% of Earth’s redox budget, RB, resides in the mantle, and 
18±4% in the exosphere. Vigorous exchange between surface and 
interior reservoirs involves chiefly outfluxes oxidize carbon and 
influxes of oxidized iron and carbon. Iron is oxidized on the sur-
face from CO2 by a combination of photosynthesis and oxidative 
weathering; carbon is oxidized in the interior from Fe2O3 by re-
dox melting.

Evidence for secular evolution of mantle oxygen fugacity from 
∼3 Ga to ∼2 Ga implies doubling of the RB of basalt source regions 
over that time interval, probably owing to gradual mixing of deep 
oxidized mantle that originated by bridgmanite disproportionation.

The oxidized character of the BSE arose owing to a combination 
of FeO disproportionation in the deep mantle and H2O dispropor-
tionation in the atmosphere, though the latter likely affected the 
surface more than the interior. FeO disproportionation in a deep 
magma ocean produced a significant fraction of the modern RB, 
but additional contributions from bridgmanite disproportionation 
and subsequent loss of metal to the core were likely also essential.

The deep sources of mantle plumes carry a significantly greater 
RB than the upper depleted mantle, and much of this signal is 
transmitted as enriched CO2 in OIB source regions.
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