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environment have evolved. The redox power of the bulk silicate Earth (BSE) can be measured in terms
of its redox budget, RB, relative to a reference state of the predominant valences of redox-sensitive
elements in the mantle. 824+4% (1.94+0.5 x 1023 moles) of the redox power resides in the mantle and
18+4% (4.240.5 x 1022 moles) in the exosphere. Vigorous outfluxes of oxidized species from the mantle

Keywords: (3.840.7 x 10'3 mol/yr) can replenish the exosphere reservoir in 1.10.2 Ga, which requires efficient
redox long-term recycling of redox power via subduction. Within uncertainties, recent (last 200 Ma) mantle RB
oxygen fugacity outfluxes and subduction influxes (4.9+1.3 x 10'3 mol/yr) are balanced, but outfluxes likely exceeded
deep volatile cycles influxes earlier in Earth history. CO; is 66+20% of the RB outfluxes but only 24+13% of the influxes. This
deep Earth oxygen cycle is largely because of conjugate intervalence reactions; one in the shallow mantle creates carbonate at

the expense of Fe;03 and the other creates Fe;O3 from CO; on the surface by a combination of organic
carbon fixation and oxidative weathering.
Scaling of mantle oxygen fugacity, fop, to redox mass balance is approximately A log(Fe**/peT)Peridotite ~
1/4A log( foz)™ae | Consequently, inferences of secular evolution of mantle oxygen fugacity from the
Archaean to the Proterozoic, amounting to about 1.5 log units in fop, imply that the Archaean mantle had
an Fe3+/FeT ratio <0.02, rather than the modern value of 0.0440.01. Oceanic basalts derive from sources
with greater redox budgets than mid-ocean ridges, and this is partly expressed as higher source Fe3*/FeT
ratios, but more importantly, as greater source CO, concentrations. In combination, these require that
plumes in the deep upper mantle have Fe3*/FeT ratios significantly greater than the depleted mantle.
The oxidative inventory of the BSE originated by a combination of H,O disproportionation in the
atmosphere, leading to H, escape, and FeO disproportionation in the deep mantle, with loss of Fe to
the core. FeO disproportionation in a deep magma ocean inevitably produces a significant fraction of
the BSE RB, but additional contributions are likely required. Further Fe loss could be from bridgemanite
crystallization followed by Fe escape through a basal magma ocean. Gradual mixing of the resulting deep
oxidized layer may account for secular oxidation of the mantle source regions of igneous rocks from
3 to 2 Ga. HO disproportionation assisted in accumulation of the oxidized surface species, but was
not a significant source of mantle oxidative power, as mechanisms of oxidative influx are quantitatively
insufficient.

© 2023 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY-NC

license (http://creativecommons.org/licenses/by-nc/4.0/).

1. Introduction and fluxes of redox power between the interior and the surface.
In many respects, the reservoirs and fluxes of oxidative power

Earth’s oxidized surface and interior reservoirs are essential fea- between the interior and surface are analogous to Earth’s deep
tures of its chemical geodynamics. In the exosphere (the crust,  ygjatile cycles, which are key to the maintenance of equable sur-

surface, and fluid envelopes), abundant oxidized species, Fe;0s3,
carbonate, sulfate, and dioxygen, are salient features of Earth’s ge-
ology, climate, and biogeochemistry. In the mantle, oxidized iron
and carbon affect geophysical properties, the locus of melting,

face conditions and are coupled to the geodynamics and geochem-
istry of the solid planet (Dasgupta and Hirschmann, 2010; Kore-
naga et al, 2017). Therefore, the origin and evolution of Earth’s
oxidative reservoirs constitute a deep Earth oxygen cycle.
The redox evolution of Earth’s exosphere is a critical feature of
E-mail address: mmh@umn.edu. the planet’s history, as exemplified by the multi-stage rise of at-
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mospheric dioxygen (Lyons et al., 2014). The advent of dioxygen
was preceded and accompanied by accumulation of much larger
reservoirs of condensed oxidized species (carbonate, Fe;0s3, sul-
fate) in rocks and sediments (Hayes and Waldbauer, 2006). The
formation of the oxidized Fe-C-S surface reservoirs has been at-
tributed to volcanogenic fluxes originating in the mantle (Kasting
et al., 1993; Holland, 2002; Kump and Barley, 2007; Gaillard et al.,
2011; Kadoya et al., 2020), and/or selective return of reduced ma-
terial via subduction (Hayes and Waldbauer, 2006), or by loss of Hy
to space (Catling et al., 2001; Kasting, 2013; Zahnle et al., 2019). If
the oxidized surface derived from a net flux of oxidants from the
interior, the mantle should have become correspondingly reduced.
Yet, evidence from mantle-derived rocks has found either negligi-
ble temporal change (Canil, 1997; Delano, 2001) or evidence for
secular oxidation with time (Aulbach and Stagno, 2016; Nicklas et
al,, 2018, 2019; Stagno and Aulbach, 2022). The opposite has also
been considered, that the mantle has become oxidized by return
of surface material (Lecuyer and Ricard, 1999; Kump et al., 2001;
Evans, 2012), and surface-derived oxidants are evident in recycled
sources of oceanic island basalts (OIB) (Moussallam et al., 2019).
Mutual oxidation of the surface and interior, or oxidation of the
surface with constant mantle redox power, are seemingly inconsis-
tent with closed system behavior for the combined reservoirs and
would require net external redox fluxes, either by hydrogen es-
cape to space or supply of oxidized material from the deep Earth
(Andrault et al, 2018; Nicklas et al., 2019; O’Neill and Aulbach,
2022; Stagno and Aulbach, 2022). Alternatively, they may reflect
closed-system changes in mantle oxygen fugacity (fo2) owing to
secular decreases in mantle temperature or changing conditions in
the source regions of mantle-derived magmas (Gaillard et al., 2015;
Gaetani, 2016).

As is also true for deep planetary volatile cycles, essential as-
pects of the deep Earth oxygen cycle are the processes and circum-
stances by which the bulk silicate Earth (BSE) acquired its inven-
tory of oxidative power. The silicate portions of terrestrial planets
originated in the presence of plentiful Fe-rich alloy, as evidenced
by the metal content of primitive meteorites and by the planets’
large metallic cores. Earth is not the sole terrestrial planet with an
oxidized surface, but it is the only one known to have apprecia-
ble ferric iron in its mantle, which potentially represents a much
larger reservoir. The high net oxidation state of the bulk silicate
Earth could have originated by H,O disproportionation, leading to
H; escape (Kasting et al.,, 1993; Catling et al., 2001; Zahnle et al.,,
2019), and by FeO disproportionation, either associated with bridg-
manite crystallization in the lower mantle (Frost et al., 2004) or in
a deep magma ocean (Hirschmann, 2012; Armstrong et al., 2019;
Hirschmann, 2022).

Evaluation of the deep Earth oxygen cycle demands quantifica-
tion of the net fluxes of oxidized species between the surface and
interior reservoirs. Accrual of the oxidized surface reservoir at the
expense of the mantle requires extended periods in which oxidized
outfluxes exceeded influxes. In contrast, oxidation of the mantle by
import of oxidants produced by atmospheric H, escape (Zahnle et
al., 2019) requires sustained periods of greater influx. Compared
to many such studies focused on deep Earth volatile cycles, deep
redox fluxes have received less attention. Biogeochemical mass
balance treatments examining redox fluxes between lithosphere
and fluid envelopes (e.g., Hayes and Waldbauer, 2006; Stolper et
al., 2021) do not account for all fluxes to and from the mantle.
Evans (2012) evaluated the detailed redox influxes to the mantle
at modern subduction zones and also summed redox outfluxes at
ridges and oceanic islands. Also, Brounce et al. (2019) conducted
a redox mass balance focused on the Marianas subduction zone.
Evans (2012) concluded that modern influxes exceed outfluxes, im-
plying net oxidation of the mantle. Both influxes and outfluxes
merit reevaluation, especially in light of new constraints on volatile
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fluxes averaged over the last 200 Ma of tectonic history (Wong et
al., 2019).

Exosphere redox dynamics are generally appraised in terms of
mass balance, quantifying net oxidant/reductant fluxes and accu-
mulations (Berner, 2003; Hayes and Waldbauer, 2006). Mantle re-
dox is more typically quantified with foy (Cottrell et al., 2021;
Stagno and Aulbach, 2022), which doesn’t provide direct informa-
tion about mass balance. Therefore, relating coupled redox mantle-
exosphere evolution and dynamics requires scaling between man-
tle fop and redox mass balance. For example, this is needed to
calculate the change in RB corresponding to inferred shifts in man-
tle fop from the Archaean to the present (Aulbach and Stagno,
2016; Nicklas et al., 2019). Such scaling has been calculated previ-
ously (Parkinson and Arculus, 1999; Evans, 2012; Luth and Stachel,
2014), but not applied to evidence for secular redox evolution of
the mantle.

The goals of this paper are to evaluate the mass balances and
fluxes underpinning Earth’s deep oxygen cycle and the origin of
Earth’s oxidized redox budget. The specific coupling between the
solid Earth and atmospheric oxygen (see Kasting, 2013; Stolper et
al.,, 2021) is not addressed directly here. Rather, the aim is to bet-
ter illuminate the large-scale context in which redox evolution has
occurred.

2. Reference states and redox budgets
2.1. Reference state redox budget

In quantifying redox mass balances, it is necessary to establish
a reference valence state for each redox-sensitive element (Evans,
2012; Kasting, 2013). For the deep Earth oxygen cycle, the princi-
pal elements of interest are Fe, S, C, Cr, and H, and the reference
valence states are those that predominate in the upper mantle:
Fe?t, s2—, €% cr3t, and H*. An important distinction between
the treatment here and some studies focused on surficial oxida-
tive reservoirs is that C**, as carbonate or CO,, is considered to be
an oxidized species (Hayes and Waldbauer, 2006; Evans, 2012) be-
cause the predominant state of C in the mantle is neutral C (Stagno
et al., 2013).

To quantify the redox mass balances of the mantle and ex-
osphere, we adopt the Redox Budget (RB) formalism of Evans
(2012), where the RB is given in moles of electrons required to
bring the mass back to the reference state:

RB=Zn,~V,~, (1)

where n; is the number of moles of a species i in a reservoir and
vi is the number of electrons required to take one atom of species
i to its reference state. RB, positive for materials more oxidized
than the reference state and negative for those more reduced, is
an extensive quantity, applicable to reservoirs and fluxes. It is also
useful to consider the redox budget per unit mass of rock, m,
55 Zi Tl,'Vi

RB= (2)
m

with units of moles/gram.
2.2. Exosphere oxidized budget

Appreciable oxidized species in the exosphere include dioxygen,
sulfate and pyrite, carbonate, and ferric iron. The net exosphere RB
is 42405 x 1022 moles. Atmospheric O, accounts for only 0.4%
of the exosphere RB, whereas carbonate accounts for 71.4%, crustal
Fe,03 24.6%, and sulfate and pyrite combined 3.6% (Table 1, Fig. 1).
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Table 1
Redox Budget (RB) of the exosphere.
RB factor’ Species RB % of total
moles X 108 moles
/mole
Exosphere
C0Oy? 4 7510£1280 30,000£5100 714
F6203b 2 5170+965 10,300+1930 24.6
S05¢ 8 16650 13304400 3.2
FeS;¢ 2 90427 179454 0.4
0,¢ 4 37 148 0.4
Sum 42,040+5470

Mantle (see Supplement for sources)

Fe;03 2 9000025000 180,000+50,000 95.7
CO, 4 600+£100 -€

Sulfide 0.4 27500+£2500 1100041000 59
CrO -1 —3000£3000 —3000+£3000 -16
Sum 190,000=:50,000

* number of electrons per molecule relative to reference state for species.

4 Hirschmann (2018). Note that organic carbon, with approximate stoichiometry
of CH,O0, is redox-neutral compared to the assumed reference state.

b Lecuyer and Ricard (1999).

¢ Rickard (2014).

d Stolper et al. (2021).

¢ The contribution of CO, to mantle is incorporated into the Fe,03 value (see
Supplement).
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Fig. 1. Redox budget (RB) reservoirs and fluxes for the recent (~200 Ma) deep Earth
oxygen cycle. Values are in moles of electrons relative to the reference oxidation
states of the elements (see text and Evans, 2012). Exosphere and mantle reservoir
RB values from Table 1 and fluxes from Tables 2 and 3. The net influx at subduction
zones is the sum of fluxes into the mantle after taking into account the return
of oxidants to the surface environment from volcanic and non-volcanic arc fluxes
(Evans, 2012). Reservoirs and outfluxes are color-coded by chemical species, but
minor contributions (e.g., atmospheric O, pyrite, sulfate, CrO) are not necessarily
illustrated or labeled.

2.3. Mantle redox reservoir

Although there is redox heterogeneity in the mantle (Cottrell et
al,, 2021; Stagno and Aulbach, 2022), the initial assumption here,
revisited in Section 4.7, is that it is not vertically stratified and

Table 2
Redox Budget (RB) outfluxes from mantle.
Ridges Oceanic Continental Sum % of
Islands total
Volume (km?) 239423 11+0.2 2.5+18

Species fluxes x 102 mol/yr

Fe;03 5.0+£0.7 05401  1x07 6.5+1
€0, 33£0.7 15£06  15+12 63£15
S03~ - 0.01 0.002 0.01

RB fluxes x 10'? molfyr
Fe;03 10+£14 09402  2+15 1342 34
€O, 13£3 6+3 6+5 25+6 65.7
Now - 0.09 0.02 01 03
Sum 2343 743 815 38+7
% of total 61 18 21

All values from this work, as described in the main text and Supplement.

therefore that the whole mantle RB can be characterized from
observations in the upper mantle. The well-known decrease in
fo2 with depth, caused by pressure-dependent changes in inter-
mineral partitioning of Fe3* (Frost and McCammon, 2008), and
ferrous iron disproportionation to Fe® and Fe;03 (Frost et al., 2004)
occurs at constant RB, i.e., the RB is equal on either side of the re-
action

3FeO = Fe,03 + Fe. 3)

The RB of the consequential redox-sensitive elements in the man-
tle, Fe, C, S, and Cr, are tabulated in Table 1, with additional details
in the Supplement. Iron is nearly entirely Fe?* (~96+1%; see Sup-
plement). The majority of carbon in the mantle is neutral, occur-
ring as diamond, carbide, or dissolved in sulfide liquid (Stagno et
al.,, 2013; Zhang et al., 2019), but there is a small shallow portion
of the uppermost mantle in which carbonate is stable. Sulfur oc-
curs as sulfide liquid (Zhang et al., 2019) with an effective valence
close to S2~, but allowing for non-stoichiometric M/S ratios in real
oxysulfide liquids makes a small contribution to upper mantle RB.
Cr occurs almost entirely as Cr3* (>96%; Hirschmann, 2022), and
hydrogen is assumed to occur solely as H* (i.e.,, H;0 or OH™). The
total RB of the mantle amounts to 1.940.5 x 1023 moles (Table 1)
and the RB is 5 x 107> mol/g, with 95.7% coming from Fe;Os,
5.9% from oxysulfide liquid, and —1.6% from Cr2*.

2.4. Redox outfluxes and influxes

Outfluxes of oxidants from the mantle, summarized in Ta-
ble 2 and Fig. 1, include Fe;03, CO3, and so}; dissolved as mag-
matic species, from ridges, oceanic islands, and intracontinental
provinces. Fluxes from arcs are best considered as a factor in
the inefficient return of oxidants to the mantle via subduction
(Evans, 2012). Averaged over the last 200 Ma, magmatic produc-
tion at ridges and intracontinental sources, 23.9+2.3 and 2.5+1.7
km?3/yr, as well as the rate of oxidant influxes at subduction zones,
are greater than modern rates (Wong et al., 2019), as detailed in
the Supplement. For oceanic islands, the magmatic volume flux,
1140.2 km3/yr, is calculated from well-studied inputs in Hawaii
(Lipman and Calvert, 2013) and scaled globally based on the frac-
tion (21%) of buoyancy flux that Hawaii contributes to the global
total (King and Adam, 2014).

2.4.1. Redox outfluxes

Redox outfluxes are given in Table 2 and described in the Sup-
plement. Here we briefly highlight the fluxes of CO, from oceanic
islands and continental rifts, though further details of these esti-
mates are also in the Supplement.

On the basis of CO,/He ratios, Marty and Tolstikhin (1998) cal-
culated an upper limit for the oceanic island CO; flux of <3.3 x
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Table 3
Subduction Influxes.
4t Fe3+ other? Sum
RB Fluxes x 10’2 mol/yr
Sediments 4.842.4° 1.5+0.3¢ 0.9+0.1¢ 72425
AOC 8.241.2P 16.6+£8.1¢ 7.440.4¢ 32.2+8.2
Serp 5.343.20 9.74+7.6¢ 4.6+.6° 19.748.3
Arc —6.3+-3.7" -6.0+£2.9¢ —2.7+.6° —15.0+5.1
non-volcanic fluids —0.3+0.23¢ - 53+4.1°¢ 5.0+4.1
Sum 11.8+5.7 21.8+11.5 15.6+4.2 491+134

4 other=RB fluxes from S, H, and non-carbonate C.

b Carbonate or CO; fluxes averaged over the last 200 Ma from Wong et al. (2019).

¢ modern fluxes of Fe, S, H, and non-carbonate C from Evans (2012), multiplied
by a factor of 1.45 to take into account greater average rates of subduction (strike
length X orthogonal convergence rate) over the last 200 Ma from Wong et al. (2019).
Fluxes from Evans (2012) are taken from the midpoints of given “maximum” and
“minimum” assessments.

10'2 mol/yr. In contrast, Wong et al. (2019) estimated a flux of
0.5+£0.25 x 10'2 mol/yr CO, from a compilation of OIB locali-
ties for which published data were available, though they warned
that this was an incomplete survey of worldwide sources. Hauri
et al. (2019) estimated a total OIB flux of 0.17-0.35 x 102
mol/yr by combining melt inclusion CO;/Ba and CO,/Rb ratios
with total intraplate basalt and Ba fluxes derived from seamount
ocean bathymetry. Unfortunately, this approach omits both intru-
sive magmatic inputs and the limiting effects of isostasy on the
expression of total magmatic output for oceanic islands and large
seamounts. The new estimate, 1.5+0.6 x 102 mol/yr (Table 2)
also uses CO,/Ba ratios, but constrains Ba outfluxes from a survey
of OIB, weighted by hotspot buoyancy fluxes (Table S1).

It has been recognized recently that passive, non-volcanic de-
gassing at rifts is a large fraction of global CO, outflux, possibly
exceeding that at ridges by a factor of 2-3. (Brune et al., 2017;
Wong et al., 2019). This corresponds to RB fluxes over the last 200
Ma as great as 2.5 x 10'3 mol/yr, or potentially about half the
global outflux. However, the estimates are dominated by high CO,
outgassing observed in the East African rift and Italy, which may
not apply to the global 26,000 km array of rifts. We favor a con-
servative approach, proposed by Brune et al. (2017), with smaller
estimated overall fluxes (6 x 102 mol/yr; Table 2).

2.4.2. Subduction influxes

Treatment of subduction redox fluxes begins with the survey
of modern rates from Evans (2012). We consider the total subduc-
tion RB influx as the difference between the incoming subducted
lithosphere minus fluxes returned to the surface via arcs and meta-
morphic belts, and this approach is not affected by redox depletion
that can occur by deep convection of mantle wedges (Brounce et
al,, 2019). Here we update, including net deep CO, fluxes over the
last 200 Ma from Wong et al. (2019), (RB influx=1.24+0.6 x 10'3
mol/yr Table 3). No similar time-dependent constraints are avail-
able for other redox carriers (other forms of C, Fe, S, H). For these
we take the means of maximum and medium modern rates cata-
loged by Evans (2012), and multiply them by 1.45 (3.7+1.2 x 1013
mol/yr Table 3), the factor between the subduction rate averaged
over the last 200 Ma and the modern rate (Wong et al., 2019).

2.5. Total RB reservoirs and fluxes

The total BSE (=mantle+exosphere) RB is 2.3+0.5 x 1023
moles, of which 82+4% is in the mantle and 18+4% in the ex-
osphere. The total RB flux from the mantle to the exosphere is
3.840.7 x 10'3 mol/yr (Table 2), which is greater than estimated
by Evans (2012) (2.3+0.6 x 10'> mol/yr), who adopted a smaller
CO; flux from ridges and did not incorporate continental sources.
CO, accounts for 66% of the RB outflux, Fe,03 for 34%, and soﬁ—
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Fig. 2. Calculated oxygen fugacity (log fo) relative to the QFM buffer for garnet
and spinel peridotite as a function of bulk peridotite Fe;03 content and Fe3+/FeT
ratio. For spinel and garnet peridotite, calculations at indicated conditions are con-
ducted using the oxybarometers of Wood and Virgo (1989) and Stagno et al. (2013),
with further details in the Supplement. Fe;03 contents of garnet and spinel as a
function of bulk peridotite composition are calculated from inter-mineral partition
coefficients, as detailed in the Supplement. Absolute values of AQFM diminish with
increasing pressure, but at any fixed conditions, the log-log slopes are all close to
0.25.

less than 1%. 61% of the RB flux comes from ridges, 18% from
oceanic islands, and 21% from intracontinental regions. The net
RB influx at subduction zones averaged over the last 200 Ma is
49+1.3 x 10'3 mol/yr, consisting of 44+22% Fe,03, 244+13% car-
bonate, and the balance from S, H, and non-carbonate C species. It
is similar to the modern rate (4.64+12 x 10'> mol/yr) appraised
by Evans (2012), owing to a smaller contribution from subducting
carbonate and a correspondingly greater influx of Fe;03

3. Relationship between fo; and mantle Fe,03

To relate the mantle redox budget with variations in man-
tle fo,, we present calculations for fertile lherzolite in spinel
peridotite and garnet peridotite facies mantle. Calculations are
based on spinel and garnet oxybarometers (Wood and Virgo, 1989;
Stagno et al,, 2013) combined with inter-mineral partition coef-
ficients and peridotite mineral modes, as detailed in the Supple-
mentary Information. Calculated values of fpy in units of AQFM
(=logarithmic difference from the quartz-fayalite-magnetite buffer)
depend logarithmically on Fe3*/FeT and therefore on bulk peri-
dotite Fe;03 (Fig. 2). Though volume effects induce more reduced
conditions relative to QFM with increased pressure, spinel and gar-
net peridotite display composition- fo, slopes in log-log space that
are near-constant and similar to 0.25, as all mineral and melt iron
redox buffers have a simplified stoichiometry of

FeO + 1/40, = FeO1 5 (4)

(O'Neill et al., 1993). Therefore, for each log unit change in fo, the
Fe3* /FeT ratio (approximately similar to the Fe3*/Fe?t ratio when
Fe3t concentrations are small) changes by a factor of ~1.8 (10"/4).

A ]Og(Fe3+/FeT)peridotite ~ 1/4A log(foz)mantle (5)

The significant consequence is that at reduced conditions (low to-
tal Fe;03), small changes in Fe;03 contents produce large effects
on AQFM, and at more oxidized conditions, shifts in AQFM are
commensurately smaller.
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4. Discussion
4.1. Photosynthesis and the development of the exosphere RB

Readers are likely to note that photosynthesis and the great
oxygenation event are not emphasized in this work. Though es-
sential to the rise of high Py of Earth’s surface, in the context of
development of the exosphere RB reservoir, photosynthesis plays
no direct role. This is partly because the photosynthetic reaction

CO; + Hy0 = CH,0 + 05 (6)

is neutral with respect RB, as it transfers +4 electrons/mole RB
from CO, to O;. More generally, chemical reactions occurring
within the exosphere cannot modify the exosphere RB without
subsequent fluxes of either oxidized or reduced reaction products
to the interior or to space. A common paradigm is that photosyn-
thesis produces an oxidized surface when coupled to burial (i.e.,
subduction) of organic carbon (Berner, 2003; Hayes and Waldbauer,
2006; Stolper et al., 2021). However, CH,O is neutral with respect
to RB in the mantle reference state, as it has the same RB as C +
H, 0. Therefore, in Reaction 6, it is the original supply of CO, that
provides the positive exosphere RB and formation of the exosphere
reservoir of CO; is the essential prerequisite for photosynthetic de-
velopment of high Pp; on the surface. The processes of interest in
the present work are those that produced and maintained a posi-
tive RB reservoir (CO, + Fe;03) in Earth’s exosphere.

4.2. Fluxes

The estimated RB mantle outflux, 3.84+0.7 x 103 mol/yr, is
sufficient to accrue the entire exosphere RB in 1.1£0.2 Ga. The
combination of short exosphere replenishment time and predom-
inance of the mantle RB reservoir (Fig. 1) is consistent with sig-
nificant recycling of RB to the mantle, as is also true for the deep
carbon cycle (Hirschmann, 2018), highlighting the strong coupling
between the two. Combining the outflux of 3.840.7 x 10'3 mol/yr
with the recent deep subduction RB flux, 4.9+13 x 10'3 mol/yr,
yields a net influx of 11415 x 10'®> mol/yr, apparently smaller
than that, 2.3+1.3 x 10'3 mol/yr, surmised by Evans (2012). Thus,
within uncertainty, either modern outfluxes and influxes are nearly
balanced or influxes could be modestly greater than outfluxes.

CO; dominates the RB outflux (66=£20%), but makes a lesser
contribution to the influx (24+13%). This is owing partly to com-
plementary intervalence reactions between C and Fe creating car-
bonate during upwelling to the shallow mantle

C +2Fey03= C(COy

reduced silicate  carbonate

+ 4 FeO , (7)
silicate

and the net reaction combining organic carbon fixation (Reaction

6) and oxidative weathering on the surface

CO, +4 FeO +H,0 = CH,0 + 2Fe;0s. (8)

vapor silicate organic C silicate

Reaction (7) is intimately associated with melting in the upper
mantle, with important geophysical and geochemical consequences
(Hirschmann, 2010; Stagno et al., 2013), whereas reaction (8) is
foundational to the biogeochemical carbon cycle (Hayes and Wald-
bauer, 2006). Surficial formation of sulfate and mantle reduction
to sulfide contribute additional intervalence coupling to the deep
oxygen cycle.

Considering the long-term history of redox exchange, RB in-
fluxes may have been smaller in proportion to outfluxes during
earlier periods of Earth history. Fe;03 and CO, outfluxes scale with
global magmatic production, which was greater on an earlier hot-
ter Earth, as do CO, influxes via subduction, which are controlled
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mostly by plate spreading rates (Sleep and Zahnle, 2001). However,
the largest single modern influx of RB, Fe;03 in altered oceanic
crust (Table 3), was significantly smaller before the Phanerozoic,
when oceans lacked oxygenated bottom water (Stolper and Keller,
2018). Therefore, lower net influxes of Fe;O3; prevailed in the
Neoproterozoic. In the Archaean and Paleoproterozoic (3.8-1.7 Ga;
Johnson and Molnar, 2019), banded iron formations (BIF) could
have contributed significant RB influxes. Thompson et al. (2019)
evaluated the Archean carbon-iron cycle associated with BIF for-
mation and estimated methane production at 2.5 Ga of 3.2 + 2.5 x
10'2 mols/yr, which produces enough Fe,03 to support an RB in-
flux of 1.34+1.0 x 10'3 mols/yr, about the same as recent Fe,;03 in-
fluxes in altered oceanic crust. In summary, though the magnitude
of net RB exchange between the surface and interior through Earth
history remains uncertain, net influxes previous to the Phanero-
zoic were either smaller than or similar to present rates. Relevant
to the discussion below, there is no evidence or identified mecha-
nism to infer extended periods where net influxes greatly exceeded
present-day values.

Notably, S does not contribute significantly to mantle oxidant
outfluxes. Great emphasis has been placed on a possible shift from
volcanogenic H;S to SO, from mantle-derived magmas, and its ef-
fect on atmospheric oxidation (Holland, 2002; Kump and Barley,
2007; Gaillard et al., 2011; Kadoya et al., 2020). However, the sul-
fur emanating from the mantle has always been dominated by
$2= (Section 2.3). A shift from venting of SO, as compared to
H,S, as may occur owing to degassing of subareal and hotter mag-
mas rather than submarine or cooler volcanism (Kump and Barley,
2007; Gaillard et al., 2011; Kadoya et al., 2020), occurs in crustal
magma chambers or volcanic conduits, as SO, is produced at the
expense of Fe;03:

FeS + 3Fe;03 = SO, + 7 FeO , 9)
magma magma vapor magma
(Brounce et al., 2017). This provides an oxidant that is more readily
available to biogeochemical cycles, favoring atmospheric or ocean
oxidation, but does not influence directly the redox mass balance
of the surface reservoir.

4.3. Origin of bulk silicate Earth RB inventory

The Earth accreted from materials rich in metal, and silicate
equilibrated with metal at low pressure would have had negligi-
ble RB. The net oxidizing power of the BSE was produced by some
combination of FeO and H,O disproportionation (Fig. 3). H,O dis-
proportionation proceeds according to reaction (3) and

2H,0=2H; + O, (10)
vapor vapor  vapor

(Hamano et al., 2013; Pahlevan et al., 2019; Zahnle et al., 2019), or

equivalently

H,0+ 2 FeO = H; + Fe;0s. (11)
vapor silicate vapor vapor
FeO disproportionation occurs at high pressure, either in a deep
magma ocean (Hirschmann, 2012, 2022; Armstrong et al., 2019), or
from bridgmanite crystallization (Frost et al., 2004) and increases
mantle RB if the alloy is removed to the core. Disproportionation
of H,O could have occurred in early reducing atmospheres from
the time of the magma ocean (Hamano et al.,, 2013) to as recently
as the Paleoproterozoic (Zahnle et al.,, 2019) and increases BSE RB
when atmospheric H, escapes to space (Fig. 3).

Based on the equation of state of Deng et al. (2020), Hirschmann
(2022) found that FeO disproportionation in a deep magma ocean
can produce Fe3* /FeT ratios of 0.03-0.1 for reasonable estimates of
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Fig. 3. Origin and evolution of Earth’s Redox Budget (RB). (A) During the magma
ocean stage at ~4.5 Ga, Fe;03 is produced by FeO disproportionation in a deep
magma ocean, as silicate and core-destined alloy interact. Magma ocean degassing
potentially forms a thick CO,-rich atmosphere. Also, H,O disproportionation fol-
lowed by H; escape increases the oxidation state at the surface. (B) Between ~4.5
and 4.4 Ga, crystallization of the magma ocean leads to precipitation of alloy (and
bridgmanite) in the lower mantle. A portion of the alloy segregates to the core,
possibly by sinking through a basal magma ocean, forming a lower mantle region
that is enriched in Fe;03. The basal magma ocean may persist past 4.4 Ga. Late
accretion of metalliferous planetesimals adds significant reduced material, neutral-
izing much of the oxidized budget of the surface and near-surface. Impactors also
ablate the thick post-magma-ocean atmosphere. Volcanogenic outfluxes contribute
to mantle-exosphere RB exchange. Influxes of oxidants (carbonate) or reductants
(accreted alloy) to the mantle are also likely, but not shown in diagram. (C) After
cessation of significant late accretion, from 4.4 to ~2 Ga, evolution of the RB occurs
owing to continued H,O disproportionation and loss of H, to space and to gradual
convective mixing of the deep mantle oxidized layer with the shallower mantle. To-
gether with Hy escape, volcanogenic outfluxes build the surface RB inventory, which
is stored in sediments and in the crust. Tectonic processes also recycle oxidants back
to the mantle.

core-forming conditions, but that these are diminished by ~0.04
by subsequent oxidation of CrO to Cr,Os3 during crystallization,
which diminishes mantle RB by ~1.5 x 10?3 moles. Therefore, FeO
disproportionation in a magma ocean had the potential to supply
to the early-solidified mantle FepO3 comparable to the present-day
value (Fe3*/FeT = 0.04+0.01) only if core formation occurred at
high temperature (>4000 K) (Hirschmann, 2022). If core-forming
conditions were not so extreme, or if significant reductants were
added to the mantle during post-magma ocean late-accretion (see
section 4.4), additional sources of mantle RB were required from
either bridgmanite crystallization or Hy escape.

A recent experimental study (Kuwahara et al., 2023) suggests
that disproportionation of the terrestrial magma ocean produced
a mantle with an Fe3*/FeT ratio of 0.3540.15, which corresponds
to a BSE RB of 1.640.7 x 10%* moles, or 4-10 times greater than
is observed at present. This is far greater than the plausible neg-
ative RB contributed by Cr oxidation or added by late accretion
(—0.24£0.1 x 10%* moles, see section 4.4 below). If accurate, the
results of Kuwahara et al. (2023) represent a profound challenge
to present understanding of the evolution of mantle redox mass
balance.

Previous work has placed different emphasis on the relative
roles of iron versus H,O disproportionation in the overall net oxi-
dation state of the Earth (Kasting et al., 1993; Catling et al., 2001;
Armstrong et al., 2019; Pahlevan et al., 2019; Zahnle et al., 2019;
Sossi et al., 2020; Hirschmann, 2022). During the magma ocean
stage, Hy escape from a steam atmosphere could produce a max-
imum mantle RB of 3.5 x 10*2 moles (Hamano et al, 2013),
less than 20% of the present-day BSE value. To supply the rest
of the present-day mantle RB by subsequent downward penetra-
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tion of HpO-disproportionated oxidant, as advocated by Zahnle et
al. (2019), would require large influx rates. The mantle appears to
have reached its present-day RB inventory at about 2 Ga (Stagno
and Aulbach, 2022), and so supply of oxidant from the surface to
the interior in the previous 2.5 Ga would require a net influx of
~1 x 10" mols/yr, about 4-10 times greater than the recent net
influx value (11415 x 10' mol/y). As noted in section 4.3, there
is no evidence or known mechanism for such enhanced ancient
influxes, and so H,O disproportionation was subordinate to FeO
disproportionation in the accrual of the interior RB reservoir.

Following magma ocean solidification, lower mantle crystalliza-
tion drove FeO disproportionation that produced additional Fe;0s.
The very great stability of Fe3T in bridgmanite exceeds that in sil-
icate melt at any given temperature, pressure, and foy; i.e. the
minimum Fe3*/FeT of crystalline “pyrolite” at 25 GPa and 1973
K at metal saturation is >0.2 (Huang et al., 2021) whereas a sil-
icate liquid at similar conditions has a ratio no greater than 0.04
(Hirschmann, 2022). Consequently, bridgmanite precipitation from
the cooling magma ocean forced additional Fe;03 production and
alloy precipitation. This buffered the Fe,O3 content of the crys-
tallizing magma, which invalidates models that treat Fe;03 as a
compatible or incompatible species during lower mantle differen-
tiation (Maurice et al., 2023). Removal of a small amount of the
alloy to the core can account for much of the BSE not produced in
the magma ocean. For example, removal of metal amounting to 0.1
wt.% of the mantle mass would enhance the BSE RB by 1.4 x 1023,
or about 3/4 of the present-day value.

4.4. Early surface RB reservoir and late accretion

The redox conditions of the Earth’s early surface, after the dra-
matic events of Earth’s differentiation, degassing, and solidification,
have long been debated, with particular emphasis on the relation-
ship between redox conditions, early climate, and the potential for
prebiotic chemistry (Miller and Urey, 1959; Walker, 1977; Catling
and Zahnle, 2020). Two competing contributions are development
of a thick oxidized atmosphere descended from a magma ocean
(Hirschmann, 2012; Armstrong et al., 2019; Sossi et al., 2020) and
production of a reduced surface from addition of a “late veneer”
after the last giant impact (Schaefer and Fegley, 2010; Pahlevan et
al,, 2019; Zahnle et al., 2020; Itcovitz et al,, 2022) (Fig. 3). A mas-
sive magma ocean atmosphere with a CO, pressure of 10 MPa,
possibly abetted by graphite precipitation on cooling (Sossi et al.,
2020), would amount to an RB (~5 x 1022 moles), similar in mag-
nitude to the modern surface RB reservoir, but most would be
ablated by impacts (Schlichting et al.,, 2015; Sinclair et al., 2020)
or removed by weathering and early rapid recycling (Sleep and
Zahnle, 2001). On the other hand, late-accreted material was likely
derived from the inner solar system and metal rich (Hopp et al.,
2020; Zahnle et al., 2020; Itcovitz et al., 2022). If late accreted bod-
ies totaled 0.7£0.2 wt.% of the BSE mass (Jacobson et al., 2014)
and averaged 20+10% metal, similar to enstatite chondrites, this
could add an RB of —2.141.2 x 103 moles, a quantity compara-
ble in magnitude but of opposite sign to the present-day BSE RB.
The proportions of this material delivered directly to the surface
and mantle depended on the size distribution of impactors, but
the larger magnitude RB of the late accreted material as compared
to a potential thick CO;-atmosphere indicates that the early sur-
face reservoir RB was negative and therefore reduced (Zahnle et
al,, 2020).

The destruction of a negative RB surface reservoir occurred from
a combination of Hy escape, oxidized fluxes from the interior, and
burial of the early protocrust by subsequent magmatism. The latter,
aided by impacts (Borgeat and Tackley, 2022), could have con-
tributed a flux of reductants to the interior. We know from plat-
inum group element concentrations and isotopes that late accreted
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material was eventually transferred to the mantle (Maier et al.,
2009; Creech et al., 2017; Fischer-Godde et al., 2020), but whether
much of its reductive power was first neutralized on the surface
is more difficult to gauge. If significant Fe alloy was transferred to
the mantle, the large remaining positive RB of the modern mantle
suggests that the early mantle had yet more abundant oxidizing
power.

4.5. Secular evolution of the surface and the mantle

In the aftermath of late accretion, the surface RB reservoir was
negligible or possibly negative and so it has grown through geo-
logic time by a combination of fluxes from the mantle and Hy loss
to space. At the same time, evolution of the mantle RB reservoir
can be considered.

If the surface reservoir became oxidized entirely owing to H,O
disproportionation and H; escape, then the total HyO lost would
have been equivalent to approximately 1/4 exospheres (1 exosphere
H,0=16 x 102! grams, Hirschmann and Dasgupta, 2009). De-
pending on continental area, this amounts to 700-1000 meters re-
duction in continental freeboard from the beginning of the Hadean
to the Paleoproterozoic, when the more oxidized atmosphere ter-
minated effective H, escape (Zahnle et al., 2019), or less if some
portion of the H,O was supplied from the mantle. The correspond-
ing amount of H, escaped to space is equivalent to 8 modern
atmospheres (800 kPa), which is well within the limits given by
D/H ratios and fractionation of Xe isotopes by hydrodynamic es-
cape (Pahlevan et al., 2019; Zahnle et al., 2019).

Though the accrual of the surface RB chiefly from H; escape is
plausible, it is likely that a significant fraction derived from the in-
terior because nearly 3/4 of the modern surface RB is in the form
of carbonate (Fig. 1), which accumulated from volcanogenic out-
gassing of CO, (Hayes and Waldbauer, 2006). Evidence that the
mantle was about 1.5 log units more reduced in the Archaean
(Aulbach and Stagno, 2016; Nicklas et al., 2018, 2019) does not
change this inference, as under those mildly reducing conditions,
the predominant carbonic gas would also have been CO, (Gaillard
et al,, 2022).

Alternatively, if the entire present-day surface RB came from
the mantle, then the mantle Fe;03 concentration has diminished
by 0.09 wt.% since the early Hadean; i.e., a Hadean Fe3t/FeT ratio
of 0.05+0.01 compared to 0.04+0.01 today. This would correspond
to approximately 0.4 log units of secular decrease in mantle fo)
(Fig. 2). No such trend is evident in mantle redox proxies, though
its small magnitude may not be resolvable. It seems likely that
the oxidized surface RB mass comes from a combination of inte-
rior fluxes and Hy escape, and that any record of reduction of the
mantle owing to RB outfluxes is small and overwhelmed by other
effects.

Early work (Canil, 1997; Delano, 2001; Trail et al., 2011) de-
tected no measurable change in mantle fo, since the early Hadean.
More recently, studies of olivine/bulk rock V partitioning of pi-
crites and komatiites (Nicklas et al., 2018, 2019) and of V/Sc and
Fe3*/FeT ratios in eclogites and ophiolitic basalts (Aulbach and
Stagno, 2016; Aulbach et al., 2019) indicate that mantle fpy has
increased by ~1.5 log units since the Archaean, with most of the
change happening between 3.5 and 2 Ga (Fig. 4). Although V-based
oxybarometers may not be uniquely attributable to differences in
mantle foy (Laubier et al., 2014; Cottrell et al., 2021), we consider
the ramifications if the inferred secular mantle oxidation occurred.
The alternative hypothesis, that mantle fp; has been near constant,
is discussed further in the Supplementary Information.

Evidence for secular increases in foy is apparent both in plate
margin basaltic lithologies, derived from the upper mantle, and ko-
matiites, sourced from the lower mantle (McKenzie, 2020). There-
fore, inferred temporal fo, shifts apply to a significant mantle
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Fig. 4. Secular change in mantle fo, and corresponding Fe3*/FeT through geologic
time. Oxygen fugacities, from V/Sc and Fe>*/Fe' ratios recorded in komatiitic and
basaltic rocks, are relative to values recorded in recent picrites, with data compiled
by Stagno and Aulbach (2022). The scale on the right side of the diagram indicates
the value of log fo, relative to that recorded by V/Sc ratios for modern mantle,
assuming that the latter correspond to a mantle Fe3*/FeT of 0.04, as indicated on
the left side of the diagram. Mantle Fe3*/FeT ratios are the corresponding ratios
calculated from the slope shown in Fig. 2 relative to the assumed modern value of
0.04. The approximately 1.5 log unit fop change since the Archaean indicates mantle
source regions for komatiitic and basaltic magmas with Fe3*/FeT less than 0.02.

mass fraction. Relative to the modern mantle with an assumed
Fe3* [FeT ratio of 0.0440.01, the paleooxybarometers imply that
the mantle at 3 Ga had an Fe3*/FeT ratio of <0.02 (Fig. 4). There-
fore, a ~1.5 log unit fpy change through the Archaean/Proterozoic
transition (Fig. 4) could require that the early Archaean mantle
had less than half of its present-day RB and that half of the RB
in magma source regions was gained since.

It is generally considered that the mantle approached com-
paratively oxidizing conditions, a “great mantle oxidation event”
(Scaillet and Gaillard, 2011), in the early Hadean and then either
experienced little subsequent change (e.g., Trail et al., 2011) or ex-
perienced comparatively small changes in the intervening 4.4 Ga
(Aulbach and Stagno, 2016; Nicklas et al., 2018, 2019). This view,
justified from the point of view of foo, may be inaccurate in terms
of RB. Rather, the significant oxidation relative to cosmochemical
precursors, evident from the earliest Hadean mantle may have re-
quired only small amounts of RB, and the modest changes in fo>
in the subsequent 4 Ga (if verified), suggest increases in mantle RB
of equal or perhaps greater magnitude.

Taken at face value, the large change in mantle RB that cor-
responds to the apparent secular increase in fop (Fig. 4) requires
mixing of an appreciable mass of oxidized material into the source
regions of mafic and ultramafic magmas from the Archaean to the
Paleoproterozoic. If together these sources represent the majority
of the mantle mass, then as noted in section 4.2, it is doubtful that
this magnitude change could derive from surface influx. Therefore,
if the increases in mantle redox inferred from ancient basalts and
komatiites are accurate, an internal source, such as gradual mix-
ing of a deep oxidized layer originating in the lower mantle by
iron disproportionation (Andrault et al,, 2018; O’Neill and Aulbach,
2022) is more probable (Fig. 3). The required time scale for this
mixing is similar to that suggested by the gradual mantle homog-
enization of 1#2Nd isotopic anomalies evident in Archaean but not
younger rocks (Hyung and Jacobsen, 2020).

Mass balance considerations of a deep oxidized layer can be
evaluated from the following scenario. Assume that the earliest
solidified mantle had an Fe3* [FeT of 0.02 (Fig. 4) and that the ox-
idized surface reservoir at this time was negligible. In the lower
mantle, this bulk composition was expressed as a combination of
minerals with a net Fe3*/FeT ratio >0.02 and some fraction of dis-
proportionated Fe alloy. According to the thermodynamic model of
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Fig. 5. Model calculation showing the fraction of Fe alloy that would have to be lost
to the core from a lower mantle layer of a given mass, relative to the whole-mantle
mass, in order to account for the total BSE RB. The alloy would be formed by dispro-
portionation during bridgmanite crystallization. The calculation assumes that prior
to this loss of alloy, the bulk mantle Fe3* /FeT ratio was 0.02, and that afterwards, it
is 0.04+0.01. At a ratio of 0.02, the lower mantle consists of bridgmanite, ferroper-
iclase, and 0.09% alloy. For a thin layer, all of this metal would need to drain to the
core. If loss occurred throughout the lower mantle (0.75 mass of the mantle), then
the required fraction of alloy lost would be 0.12%.

Huang et al. (2021), this alloy fraction would be ~0.9 wt.%. Com-
plete loss of this alloy to the core throughout the lower mantle
would have produced a BSE RB of 1.3 x 10%* moles, more than 5
times the present value. Therefore, loss had to be partial, consis-
tent with the conclusion that the present-day lower mantle today
contains ~0.6 wt.% alloy (Huang et al., 2021). Partial loss of the
alloy to the core would produce an oxidized mantle layer that
through convective mixing, enhanced Fe3*/FeT in the upper man-
tle and ultimately supplied the RB of the oxidized surface reservoir
(O’Neill and Aulbach, 2022). The fraction of necessary alloy loss de-
pends on the thickness of the deep layer that experienced metal
extraction (Fig. 5). For example, if the layer comprised the lower
50% (by mass) of the mantle, then 0.184+0.07 wt.% alloy, ~1/4 of
that available in the layer, was lost to the core. Alternatively, for
near-total metal extraction the layer would have had to been lim-
ited to about 10% of the mass of the mantle, or a layer above the
CMB ~500 km thick.

This exercise demonstrates that secular mantle redox evolution
could have arisen from an oxidized deep layer created by export
of disproportionated alloy to the core, provided that the scope of
alloy loss was limited. The mechanism that allowed only a small
portion of lower mantle alloy to escape to the core is unknown,
but could have been a permeability threshold for metallic liquid.
Alternatively, during solidification of a basal magma ocean, al-
loy coprecipitating with bridgmanite may have sunk to the core
(Fig. 3). More complex scenarios are also feasible, as the earliest
solidified mantle may have been redox stratified, owing either to
the effects of late accretion (Zahnle et al., 2020), making shallow
regions more reduced, or magma ocean fractional crystallization in
the upper mantle (Maurice et al., 2023), making them more oxi-
dized.

4.6. Secular variation in mantle temperature and redox

Petrologic evidence indicates that the mantle cooled by ~200
degrees over the last 3 Ga (Herzberg et al., 2010), and this po-
tentially could change the fp, of mantle-derived basalt relative
to standard (e.g., QFM) buffers without any open system change
in RB. For example, Gaetani (2016) found that the fg; imposed
by a spinel peridotite source becomes more oxidized for cooler
mantle potential temperatures and Gaillard et al. (2015) suggested
that shallower melting accompanied a cooler mantle should corre-
spond to more oxidized conditions, owing to the well-known effect
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of pressure on fp in garnet peridotite (e.g., Frost and McCam-
mon, 2008). However, other factors also are relevant. For example,
at constant bulk rock Fe3*/FeT, garnet peridotite enforces more
oxidizing conditions compared to spinel peridotite (Stolper et al.,
2020), and so diminishing contributions from garnet peridotite rel-
ative to spinel peridotite would have an influence opposite to the
oxidizing effect of cooling for spinel peridotite alone. Therefore,
Fe,03 could be less compatible in garnet peridotite residua than
spinel peridotite, and consequently, for a source with a given RB,
the Fe,03 released from deeper melting may be greater than the
shallower melting of a cooler mantle. The quantitative effects of
mantle cooling on release of oxidants to the surface, including ef-
fects on the release of carbonate, need further experimental and
thermodynamic investigation.

4.7. Redox heterogeneity in the mantle

As is true for most geochemical parameters, different man-
tle domains record heterogeneities in fop, and therefore in RB.
Apart from well-established fo; diversity associated with conver-
gent margins and continental lithosphere (Cottrell et al., 2021),
studies of oceanic basalts reveal systematic differences between
MORB and OIB in Fe3+FeT ratios (Brounce et al., 2017, 2022; Hart-
ley et al., 2017; Moussallam et al., 2019) and CO, contents (Marty
and Tolstikhin, 1998; Hirschmann, 2018), implying that OIB source
regions also have greater RB.

Fe3t/FeT ratios of OIB range from slightly lower than MORB
(0.14+0.02; Zhang et al, 2018) up to nearly 3 times greater
(Brounce et al., 2017, 2022; Hartley et al., 2017; Moussallam et al.,
2019). This suggests Fe;03 enrichments in OIB source regions, but
is also partly owing to melting effects, as Fe;03 enrichments are
enhanced at smaller degrees of partial melting and at higher pres-
sure. For example, thermodynamic calculations indicate that Fe;03
of incipient partial melts of garnet peridotite at 3.5 GPa is twice
as great as for spinel peridotite at 1.2 GPa, though this difference
diminishes with increasing melt fraction (Jennings and Holland,
2015). For OIB with Fe3*/FeT ratios of 0.2+0.05, typical of OIB lo-
calities with high extents of partial melting such as Hawaii and
Iceland (Brounce et al., 2017; Hartley et al., 2017), source regions
may have Fe3t/FeT ratios between 0.04 and 0.06, or 100-150% of
the MORB source. More compositionally extreme OIB generated
by smaller extents of melting such as from the Canary Islands or
Erebus, with Fe3*/FeT ratios of 0.3-0.35 (Moussallam et al., 2019)
likely require source ratios of 0.06-0.08.

CO; is a relatively minor component of the RB in MORB sources,
but contributes significantly in OIB sources, which have total RB of
between 7.5-15 x 10> mol/g, compared to MORB, with 4-6 x
10> mol/g (Fig. 6). Therefore, in the deep upper mantle beneath
OIB sources, where carbon is reduced and Fe;03 enhanced accord-
ing to the reverse of reaction (7) (Stagno et al., 2013; Moussallam
et al, 2019), approximate Fe3*/FeT ratios range from 0.06-0.07
(Réunion) up to 0.09-0.13 (Canaries) (Fig. 6). Compared to back-
ground mantle with Fe3*/FeT near 0.04 and negligible C, these
deep sources have fp, between 0.75 and 2 log units more oxidized
(Fig. 6). At shallower depths, the conversion of this reduced carbon
to carbonate decreases the available Fe;03 and consequently par-
tially buffers log fo2 in OIB source regions.

The Canary Islands source has strong geochemical signatures of
recycled oceanic lithosphere (Taracsak et al., 2019), and so it is not
surprising that it is also markedly oxidized relative to typical de-
pleted upper mantle. Geochemical markers of recycling in Hawaii
and Iceland are less pronounced and their sources sample rela-
tively primitive 3He-enriched domains. Perhaps such domains are
also more oxidized than the depleted upper mantle, potentially
because they contain deep mantle remnants enhanced by bridg-
manite disproportionation.
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Fig. 6. Relationship between basalt source region Fe3*/FeT ratios (dashed isopleths)
and CO; concentrations and total RB in the mantle source at depth, where carbon
is in reduced form rather than as carbonate (e.g., Stagno et al., 2013). In the deep
mantle, the RB is expressed as an enhanced Fe3* |FeT ratio, owing to interconversion
of Fe and C oxidation states (CO, + 4FeO = 2 Fe;03 + C). The prevailing oxygen
fugacity, relative to a reference mantle at the same depth but with Fe3*/FeT =0.04
and zero COy, is enhanced according to the relationship shown in Fig. 2. For oceanic
islands, source RB includes contributions from inferred Fe3+/FeT of the sources, esti-
mated from ratios measured in erupted glasses (Brounce et al., 2017; Hartley et al.,
2017; Moussallam et al., 2019; Brounce et al., 2022) and source CO, concentrations.
The latter for Hawaii and Canary Islands are from Tucker et al. (2019) and Tarac-
sdk et al. (2019). For Iceland and Réunion, minimum source CO, concentrations are
taken from the maximal value inferred from the nearest plume-affected ridge seg-
ment (Hauri et al., 2019). MORB source CO; is from Rosenthal et al. (2015).

Oceanic Island basalts are thought to sample an enriched por-
tion of the lower mantle amounting to approximately 20% of the
BSE mass (Arevalo et al., 2013). If this region has an average RB
of 1 x 10~* mol/g, then the RB of the mantle and BSE have been
underestimated by about 20%.

5. Conclusions

Deep planetary geochemical cycles entail large scale exchange
of components between the surface and interior, together with key
effects of the exchanged components on surface and interior dy-
namics. In this respect, planetary-scale redox fluxes constitute a
deep Earth oxygen cycle.

82+4% of Earth’s redox budget, RB, resides in the mantle, and
18+4% in the exosphere. Vigorous exchange between surface and
interior reservoirs involves chiefly outfluxes oxidize carbon and
influxes of oxidized iron and carbon. Iron is oxidized on the sur-
face from CO; by a combination of photosynthesis and oxidative
weathering; carbon is oxidized in the interior from Fe;03 by re-
dox melting.

Evidence for secular evolution of mantle oxygen fugacity from
~3 Ga to ~2 Ga implies doubling of the RB of basalt source regions
over that time interval, probably owing to gradual mixing of deep
oxidized mantle that originated by bridgmanite disproportionation.

The oxidized character of the BSE arose owing to a combination
of FeO disproportionation in the deep mantle and H,O dispropor-
tionation in the atmosphere, though the latter likely affected the
surface more than the interior. FeO disproportionation in a deep
magma ocean produced a significant fraction of the modern RB,
but additional contributions from bridgmanite disproportionation
and subsequent loss of metal to the core were likely also essential.

The deep sources of mantle plumes carry a significantly greater
RB than the upper depleted mantle, and much of this signal is
transmitted as enriched CO, in OIB source regions.
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