

Implications of anomalous relative sea-level rise for the peopling of Remote Oceania

Juliet P. Sefton^{a,b,1} , Andrew C. Kemp^a, Simon E. Engelhart^c , Joanna C. Ellison^d , Makan A. Karegar^e , Blair Charley^f, and Mark D. McCoy^g

Edited by Patrick Kirch, University of Hawaii at Manoa, Berkeley, CA; received June 28, 2022; accepted October 31, 2022

Beginning ~3,500 to 3,300 y B.P., humans voyaged into Remote Oceania. Radiocarbon-dated archaeological evidence coupled with cultural, linguistic, and genetic traits indicates two primary migration routes: a Southern Hemisphere and a Northern Hemisphere route. These routes are separated by low-lying, equatorial atolls that were settled during secondary migrations ~1,000 y later after their exposure by relative sea-level fall from a mid-Holocene highstand. High volcanic islands in the Federated States of Micronesia (Pohnpei and Kosrae) also lie between the migration routes and settlement is thought to have occurred during the secondary migrations despite having been above sea level during the initial settlement of Remote Oceania. We reconstruct relative sea level on Pohnpei and Kosrae using radiocarbon-dated mangrove sediment and show that, rather than falling, there was a ~4.3-m rise over the past ~5,700 y. This rise, likely driven by subsidence, implies that evidence for early settlement could lie undiscovered below present sea level. The potential for earlier settlement invites reinterpretation of migration pathways into Remote Oceania and monument building. The UNESCO World Heritage sites of Nan Madol (Pohnpei) and Leluh (Kosrae) were constructed when relative sea level was ~0.94 m (~770 to 750 y B.P.) and ~0.77 m (~640 to 560 y B.P.) lower than present, respectively. Therefore, it is unlikely that they were originally constructed as islets separated by canals filled with ocean water, which is their prevailing interpretation. Due to subsidence, we propose that these islands and monuments are more vulnerable to future relative sea-level rise than previously identified.

sea level | Micronesia | mangrove | archaeology | Oceania

Settlement of remote Pacific islands began ~3,500 to 3,300 B.P. and marked one of the final major phases of premodern human migration into uninhabited regions. This migration required formidable long-distance ocean voyaging, and the geographic pattern and timing of settlement has long fascinated Western scholars (1). Models for the migration of people into “Remote Oceania” (2), and the relationship between these voyagers and modern people, are built upon absolute dating of archaeological remains (3, 4), artifact analyses (5), historical linguistics (6), oral histories (7), human genetics (8, 9), computer simulations of voyaging (10, 11), and the history of commensal plants and animals that accompanied humans (12, 13). These data indicate that settlement progressed in two simultaneous, but largely independent, expansions (Fig. 1). The Southern Hemisphere route saw migration from Taiwan via New Guinea into island groups south of the equator. This route is marked by a shared Lapita-styled pottery and was foundational to settling of parts of Melanesia, Polynesia, and Eastern Micronesia. The Northern Hemisphere route saw migration out of the Philippines, or other nearby island groups, and was foundational to settlement of islands in Western Micronesia (including Palau and the Mariana Islands).

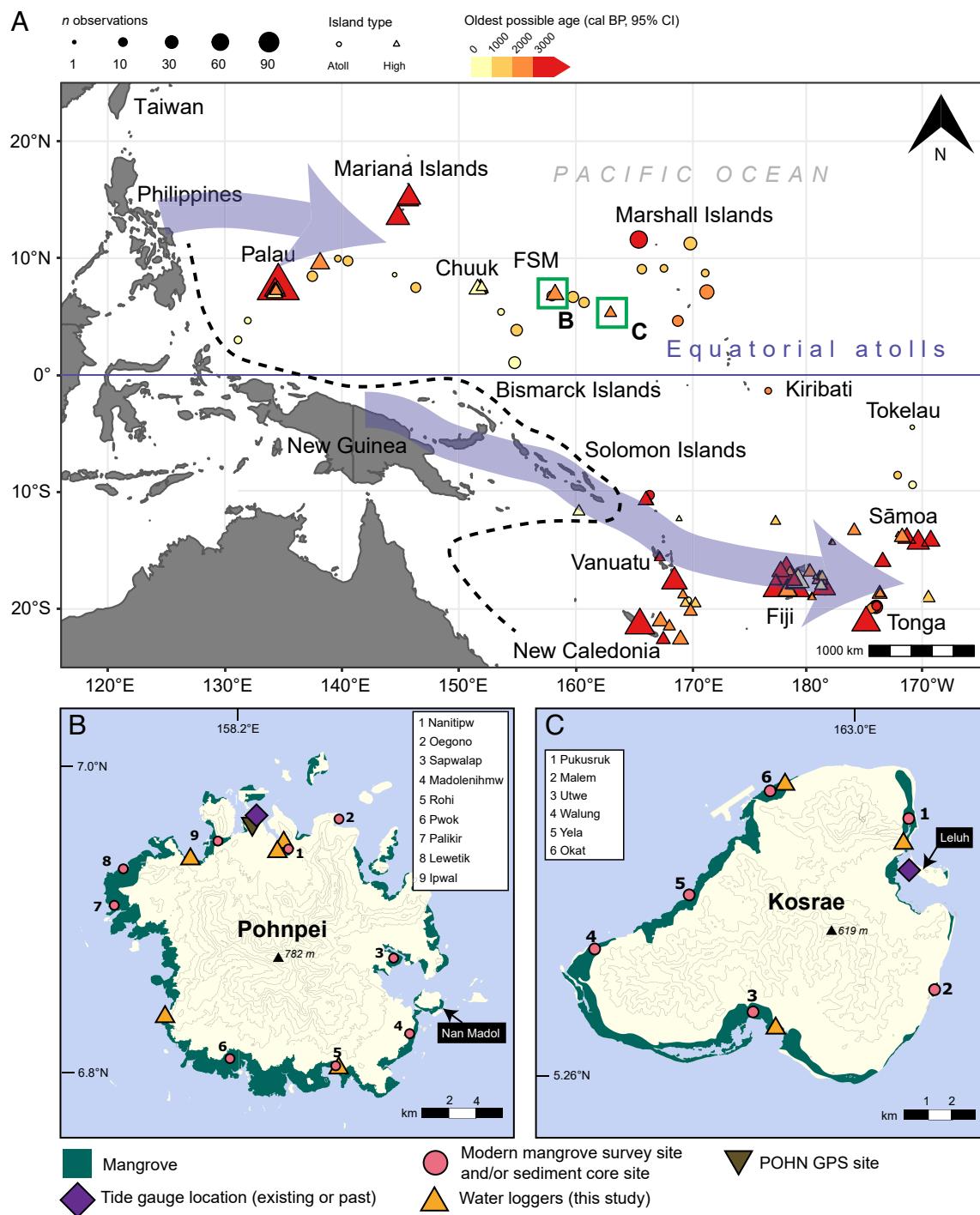
Separation of the two migrations routes is inferred from the apparent delayed settlement of low-lying, equatorial atolls and high volcanic islands (e.g., Pohnpei and Kosrae) in the region between them. People appear to have arrived in this region at least ~1,000 y after settlement of high islands to the west (~3,300 B.P.) and south (~3,500 B.P.) as part of a secondary migration (likely from the south; 14). This interpretation assumes that relative sea level (RSL) fell from a mid-Holocene highstand caused by the spatially variable response of Earth’s crust to the transfer of mass from high-latitude continents to the global ocean through ice melt (15, 16). The occurrence of the mid-Holocene highstand and subsequent RSL fall in the equatorial Pacific Ocean is a robust feature of Earth-ice model predictions (16) and is supported by proxy evidence such as raised coral reefs and beach sediments (17, 18). RSL fall increases the likelihood that archaeological evidence of initial coastal settlement (19) is preserved and accessible on land. Delayed human settlement of the low-lying equatorial atolls is consistent with their exposure by RSL fall (20–21). The rapid discovery and settlement of low-lying atolls after exposure is sometimes offered as an example of a natural “autocatalysis” ((22, 23):13) for exploration of the unoccupied regions: in this case the area between the migration routes. However, the late settlement

Significance

Settlement of Remote Oceania began ~3,500 to 3,300 y ago and coincided with falling sea level across the equatorial Pacific Ocean. Archaeological evidence suggests that people arrived on Pohnpei and Kosrae (high islands in Micronesia) ~1,000 y later than on other high islands. We reconstruct sea level on Pohnpei and Kosrae using mangrove sediment and find that rather than falling, sea level rose by ~4.3 m over the past ~5,700 y because of subsidence. This rise likely submerged coastal evidence for the initial settlement and current estimates of when people arrived are therefore biased young. Our results allow reconsideration of the pathways and interactions between voyaging groups across Remote Oceania, and the interpretation of the Nan Madol and Leluh monuments.

Author contributions: J.P.S., A.C.K., S.E.E., and J.C.E. designed research; J.P.S., A.C.K., S.E.E., J.C.E., M.A.K., and M.D.M. performed research; J.P.S., A.C.K., S.E.E., J.C.E., M.A.K., B.C., and M.D.M. contributed new reagents/analytic tools; J.P.S., A.C.K., J.C.E., M.A.K., and M.D.M. analyzed data; and J.P.S., A.C.K., and M.D.M. wrote the paper.

The authors declare no competing interest.


This article is a PNAS Direct Submission.

Copyright © 2022 the Author(s). Published by PNAS. This article is distributed under [Creative Commons Attribution-NonCommercial-NoDerivatives License 4.0 \(CC BY-NC-ND\)](https://creativecommons.org/licenses/by-nc-nd/4.0/).

¹To whom correspondence may be addressed. Email: juliet.sefton@monash.edu.

This article contains supporting information online at <https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2210863119/-DCSupplemental>.

Published December 19, 2022.

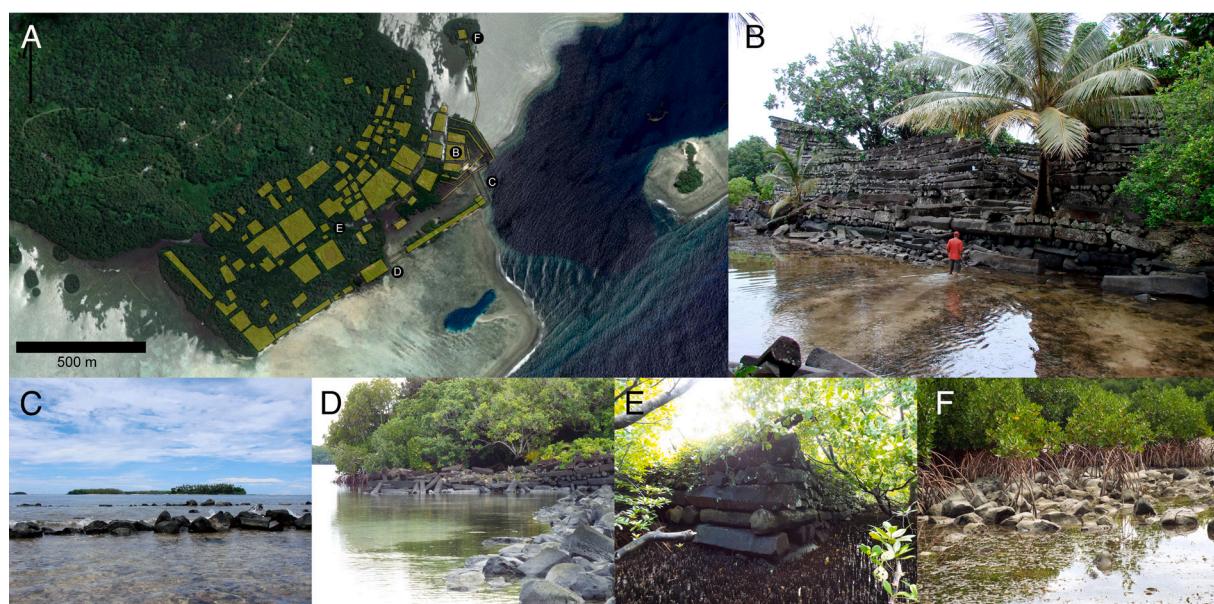
Fig. 1. (A) Distribution of calibrated radiocarbon ages on archaeological samples across Remote Oceania (excluding eastern margins; Dataset S4). Oldest ages (in calendar years before present, 95% credible interval; cal BP 95% CI) and number of observations at an island scale (circles = atolls, triangles = high islands) are represented by color and size. The green squares highlight the high volcanic islands of the Federated States of Micronesia (FSM); (Pohnpei and Kosrae, west to east) of focus in this study. Arrows represent the approximate route taken by the Southern Hemisphere and Northern Hemisphere migrations into Remote Oceania. The black dotted line denotes the boundary between Near Oceania and Remote Oceania. (B and C) Location of modern mangrove surveys (from this study) and sites (numbered) with RSL data compiled in the database of sea-level index points for Pohnpei and Kosrae (Dataset S3).

of the high volcanic islands of Pohnpei and Kosrae is puzzling. Their elevation means they were not just habitable but likely desirable for settlement long before they were inhabited. Thus, while people on the Southern and Northern Hemisphere migration routes possessed the long-distance voyaging capacity to reach the islands (24, 25), the absence of evidence for earlier settlement has been taken as proof of their settlement as part of the secondary migrations onto equatorial atolls.

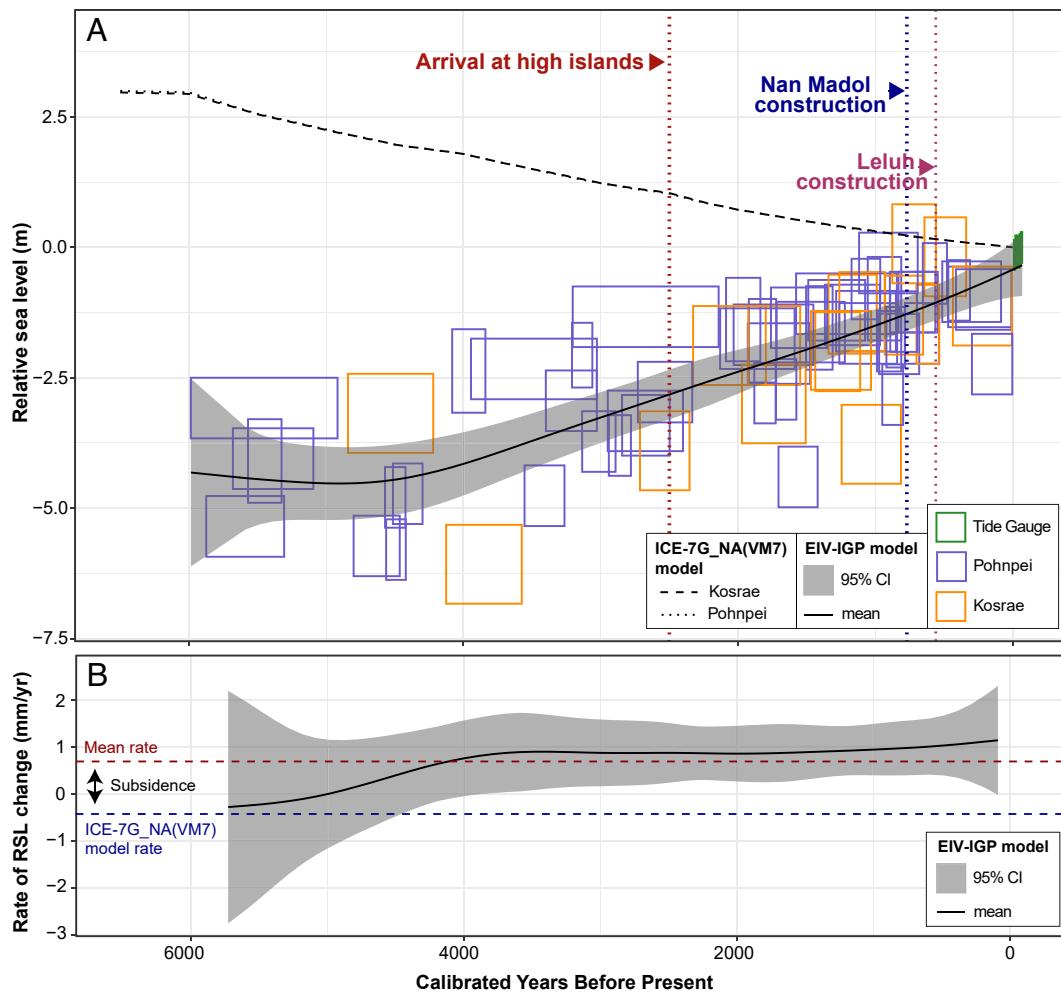
We reconstruct RSL on Pohnpei and Kosrae using radiocarbon-dated mangrove sediments. In contrast to other islands in Remote Oceania, RSL at Pohnpei and Kosrae did not fall but rather rose steadily over the past ~5,000 y. This sustained rise submerged coastal areas that may hold archaeological evidence for the initial settlement of the islands. The resulting bias in the visibility of the archaeological record may explain the apparent delay in settling these high islands and suggests reconsideration of the degree of

separation between the Southern and Northern Hemisphere migration routes. The reconstructed RSL rise also has implications for the interpretation of coastal monumental architecture. We propose that the UNESCO World Heritage Site of Nan Madol (on Pohnpei; Fig. 2) and Leluh (on Kosrae) were originally built on land, rather than on islets separated by hallmark canals filled with ocean water.

Results


Mangroves inhabit low-energy coastlines in the (sub)tropics and are widespread on Pohnpei and Kosrae (Fig. 1 *B* and *C*). The elevation range of mangrove environments is intrinsically linked to the tides, which allows RSL to be reconstructed by dating mangrove sediment preserved in the stratigraphic record (29–31). We measured the modern elevation range of mangroves on Pohnpei and Kosrae using field surveys along transects and combined our results with existing survey data (32) to create a regional-scale dataset. Tidal datums were calculated from water-level measurements made by tide gauges (see *Materials and Methods*). Survey data were linked to the local tidal datums by correlating water-level measurements from loggers deployed during fieldwork to tide-gauge measurements. The elevation of mangroves is 0.12 ± 0.62 m MTL (mean tide level; 95% CI) on Pohnpei ($n = 233$) and -0.04 ± 0.63 m MTL on Kosrae ($n = 31$; *SI Appendix*, Fig. S2).

RSL rise creates accommodation space that is filled in by in-situ accretion of mangrove sediment, which allows the mangrove sediment surface to maintain its elevation in the tidal frame. This process can result in thick sequences of mangrove sediment (33) that record the position of RSL over time. Reports from the literature (34–36) and our own field observations show that Holocene sequences of mangrove sediment up to 6-m thick are preserved on Pohnpei and Kosrae. In the absence of RSL rise, the thickness of mangrove sediment is limited to approximately one

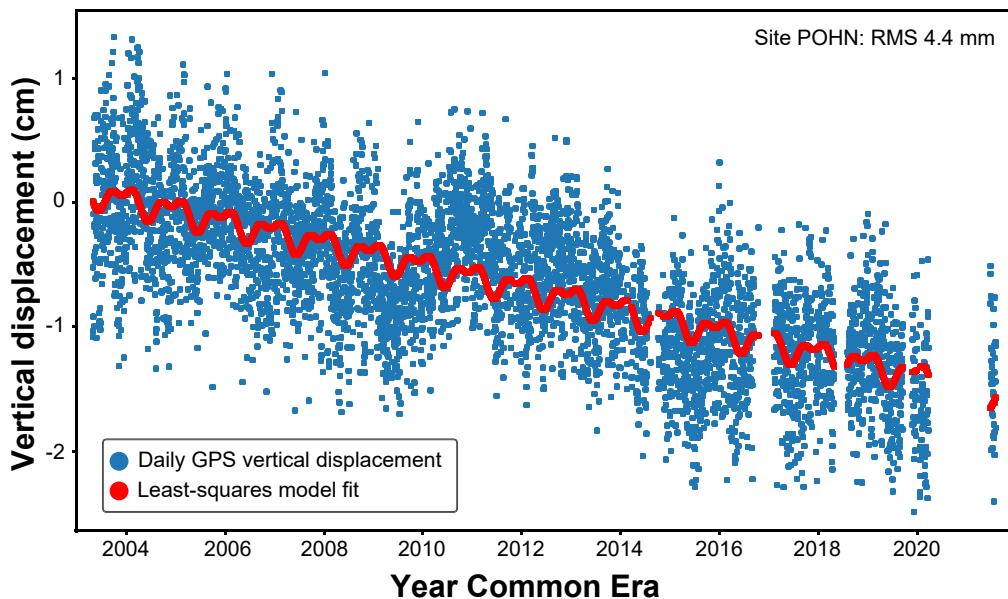

half of the tidal range (37, 38). Given (great diurnal) tidal ranges of 0.88 m on Pohnpei and 1.17 m on Kosrae (see *Materials and Methods*), this stratigraphic observation suggests that sustained and substantial late Holocene RSL rise occurred (39, 40).

We compiled radiocarbon ages from mangrove sediments on Pohnpei and Kosrae (see *Materials and Methods*) following recommendations made by the HOLSEA working group (*Dataset S3*; (41)). We used the modern distribution of mangroves on Pohnpei and Kosrae as analogs for interpreting mangrove sediment preserved in the stratigraphic record, which along with the radiocarbon age measurements enabled us to produce “sea-level index points” that constrain the unique position of RSL in time and space with vertical and chronological uncertainty. In total, we generated 68 sea-level index points from nine sites on Pohnpei and six sites on Kosrae (Fig. 1 *B* and *C*).

Given the similarity of sea-level index points from multiple sites on Pohnpei and Kosrae (Fig. 3*A*), we combined results from all sites and both islands into a single dataset. This decision is supported by Earth-ice models which predict almost indistinguishable Holocene RSL histories for these islands (Fig. 2*A*; 16). To provide a quantitative RSL history with a probabilistic assessment of uncertainties, we used a statistical model (42) that fits 2,000, equally likely RSL histories to the sea-level index points and decadally averaged tide-gauge observations from Pohnpei for 1970 to 2019 CE (Fig. 3*A*). Reported values are the mean ($\pm 1\sigma$) of the 2,000 individual members in the model ensemble. RSL rose by 4.3 ± 0.4 m from ~5,700 y B.P. to present (Fig. 3*A*), at a mean rate of ~0.7 mm/y (Fig. 3*B*). The consistency of RSL reconstructions across multiple sites and both islands indicates that sustained RSL rise is not the result of local-scale processes (*SI Appendix*, Fig. S3). Comparison of basal (unlikely to be compacted) and nonbasal (susceptible to compaction) sea-level index points (*SI Appendix*, Fig. S3*A*) demonstrates that the rise cannot be attributed to post-depositional lowering of the samples used to reconstruct RSL (43).

Fig. 2. (A) Satellite imagery of Nan Madol (6.84°N, 158.34°E) with polygons showing the position and shape of building foundations (26). Sometimes called the “Venice of the Pacific”, prevailing interpretation has been that monumental architecture found at this former island capital was built as artificial islets connected by a series of canals. (B) Image of a “canal” next to the tomb of the island’s first rulers a structure called Nandowas, identified as feature #113 in refs. (27) and (28). We present evidence that demonstrates that 800 to 600 y ago when Nan Madol, and a similar site called Leluh on the neighboring island of Kosrae, were constructed, relative sea level was significantly lower. Both sites were originally built on dry land only to become submerged by rising RSLs. The impacts of anomalous sea level rise described in this study, and encroaching mangrove, continue to threaten the integrity of architecture across the site, as seen at (C) Leluh (#120), (D) Lemenkau (#129), (E) Peitaup (#44), and (F) Peinot (#118). Image credit: Osamu Kataoka (Kansai Gaidai University, Japan).

Fig. 3. (A) RSL reconstructed for Pohnpei (purple) and Kosrae (orange) using radiocarbon-dated mangrove sediment. Each of the 68 sea-level index points is presented as a box that captures vertical and chronological uncertainty. Decadally averaged tide gauge data (green) are also presented as boxes. Application of the EIV-IGP statistical model (42) was applied to this dataset to generate a relative sea-level history (shaded envelope represents the 95% credible interval; CI). The dashed line is relative sea level predicted by the ICE-7G_NA (VM7) Earth-ice model (16) for Pohnpei and Kosrae. For reference, the vertical dashed lines show the approximate timing of the initial settlement on high islands Pohnpei and Kosrae, the construction of Nan Madol (Pohnpei) and Leluh (Kosrae) (B) Rate of RSL change at Pohnpei and Kosrae as calculated by the EIV-IGP model (50th percentile and 95% credible interval).


We also compiled radiocarbon ages on samples that were interpreted (at the time of their publication) to represent human activity on islands throughout Remote Oceania (Datasets S4 and S5). The median calibrated age for the oldest archaeological samples on Pohnpei and Kosrae is $\sim 2,500$ y B.P., and our analysis indicates that RSL rose by 2.5 ± 0.4 m since this time (Fig. 3A). RSL rose by 0.94 ± 0.3 m and 0.77 ± 0.3 m since the construction of Nan Madol (770 to 750 y B.P.; (44)) and Leluh (640 to 560 y B.P.; (45)), respectively.

Discussion

Absence of a Mid-Holocene Highstand. All reasonable combinations of Earth models and ice-melt histories predict a mid-Holocene RSL highstand in the equatorial Pacific Ocean (15, 16), although its timing (approximately 6,000 to 2,500 y B.P.) and magnitude (approximately 0.6 to 2.5 m above present) varies among models. Geological proxies (e.g., elevated coral reefs) across the region record the occurrence of the mid-Holocene highstand (20, 46). In contrast, we reconstruct sustained late Holocene RSL rise on Pohnpei and Kosrae (Fig. 3A), which we attribute to ongoing subsidence. Five additional lines of evidence support our interpretation that Holocene RSL did not exceed present on

Pohnpei and Kosrae. First, several studies (39,40,47) and our own field observations failed to find convincing geomorphic or sedimentary evidence of a RSL highstand despite explicitly searching for it. There is no proposed evidence for a highstand on Pohnpei in the literature. On Kosrae, the proposed evidence is radiocarbon-dated allochthonous coral fragments in beach rock (48, 49). Beach rock can form quickly through transport of allochthonous material during storms and rapid cementation (50). For example, (40) identified cemented beach rock above contemporary sea level in Micronesia during fieldwork in the 1960s and noted that it contained material from World War II alongside older allochthonous coral, which indicates that dating the coral would return unreliable ages of formation. In a wider context, the only proposed evidence for a highstand at Chuuk (a high island archipelago ~700 km west of Pohnpei) is an undated notch cut into resistant basalt (51), that may not be above the influence of present storm surges and sea spray (40). Furthermore, there is no evidence of a Last Interglacial (~125 ky B.P.) shoreline preserved above present sea level, in contrast to other islands in Remote Oceania (52, 53).

Second, a GPS CORS (Continuously Operating Reference Station) on Pohnpei measured subsidence of 1.0 ± 0.2 mm/y since 2003 CE (1σ error; Fig. 4). There is no GPS CORS on Kosrae.

Fig. 4. Vertical land motion measured by a GPS Continuously Operating Reference Station (POHN) on Pohnpei. Data points are vertical positions, and the red line is a least-squares (LSQ) model fit to the time series. The LSQ rate is -0.9 mm/y and the MIDAS rate is -1.0 mm/y (see *SI Appendix, Supplementary Text* for LSQ and MIDAS rates definitions; [Dataset S6](#)).

Although a short time series, this rate is approximately the difference between RSL predicted by Earth-ice models (-0.4 mm/y , i.e., RSL fall) and reconstructed from mangrove sediments (-0.7 mm/y ; Fig. 3B). This subsidence trend is anomalous in the wider context of equatorial Pacific islands that are not on active tectonic margins (54), which suggests that the mechanism of subsidence is unique to the high islands.

Third, analysis of RSL measurements made by the Pohnpei tide-gauge reveals subsidence. Decomposition of the observed trend following (55) estimates the temporally linear contribution to be 0.59 mm/y (0.1 to 1.0 mm/y ; 66% credible interval; (56); *SI Appendix, Fig. S6A*). This contribution includes Earth-ice processes and subsidence and is therefore comparable in composition and magnitude to our long-term estimate of RSL rise at -0.7 mm/y derived from mangrove sediment. It is notably fast in the context of the equatorial Pacific Ocean outside of islands experiencing active tectonism and/or volcanism (*SI Appendix, Fig. S6A*). For example, at Kapingamarangi atoll ($\sim 750 \text{ km}$ away) where Earth-ice models predict that RSL is almost indistinguishable from that at Pohnpei and Kosrae, there is modest net emergence of -0.1 mm/y (-0.7 to 0.5 mm/y ; 66% credible interval). This pattern suggests that subsidence is likely restricted to high islands rather than being regional in scale. The difference between the rate of sea-level change measured at one location by satellite altimetry and a tide gauge is proportional to the rate of vertical land motion (57). The difference (1.7 mm/y ; (58); *SI Appendix, Fig. S6B*) at Pohnpei indicates subsidence and is anomalously large for an island in the equatorial Pacific not undergoing active tectonic forcing, although quantifying an absolute rate of subsidence is challenging using this approach (57). For comparison, the difference at Kapingamarangi is 0.2 mm/y indicating relative stability.

Fourth, the distribution of U/Th ages on coral used to construct mortuary buildings at Leluh is skewed toward younger ages (45). This distribution may support RSL rise because the most accessible construction material is likely young coral in shallow water, while older material is less accessible since it is in deeper water. RSL fall from a highstand would have left relatively old coral on land as

accessible construction material resulting in older ages for fill. This interpretation assumes that the people building Leluh consciously chose the most conveniently located material to use as fill. However, the columnar basalts used to construct the outward-facing structures at Nan Madol are evidence of the willingness and ability to move large volumes of heavy material considerable distances (59). The presence of coral fragments from a range of species representative of a complete coral colony, their unweathered condition, and oral histories indicate that coral living in shallow water (rather than dead coral that was, for example, left exposed by RSL fall) was harvested for construction material at Leluh (45). We propose that the age, type, and condition of construction materials used at Leluh are compatible with RSL rise on Kosrae.

Fifth, much of the earliest archaeological evidence on Pohnpei and Kosrae was excavated from intertidal or fully submerged sites (60–62). These diverse and independent lines of evidence support our result that late Holocene RSL rose on Pohnpei and Kosrae due to island-scale subsidence out-pacing the regional-scale RSL fall from a mid-Holocene highstand. As part of the Caroline Seamount Chain, Pohnpei and Kosrae are islands formed by hotspot volcanism (63, 64) that ceased when plate motion moved the islands away from the upwelling mantle reservoir. Subsidence of hotspot volcanic islands is well documented globally, although at many islands — including Pohnpei and Kosrae — observed subsidence rates are greater than would be expected given hotspot swell bathymetry, overriding plate motion, and the age of the lavas (which for Pohnpei and Kosrae are ~ 5.2 and 1.4 My , respectively; 61, 62, 63). High subsidence rates specific to Pohnpei and Kosrae may point to localized subsidence processes resulting from, for example, coral loading, or the viscoelastic relaxation of the lithosphere in response to volcanic loading (65, 66), although an exact mechanism has not yet been determined for these islands.

Archaeological Evidence for Human Arrival on Pohnpei and Kosrae. On Pohnpei, the oldest age (median of calibrated range) associated with pottery, a definitive marker of human settlement across Remote Oceania, is $1,863 \text{ y B.P.}$ (67). The oldest age for ceramic-bearing cultural layers on Kosrae is $1,895 \text{ y B.P.}$

(58; Beta-30787, [Dataset S4](#)). Recent assessment of these earliest ages indicates that Pohnpei and Kosrae were continuously settled since 2,000 to 1,800 y B.P. ;(68). However, on Pohnpei, a charcoal fragment in a sediment core (interpreted to have an anthropogenic origin since the wet climate makes wildfire rare; (60, 69)) yielded an age of 2,540 y B.P. (Gak-7647; [Dataset S4](#)), but the sample was not recovered from an artifact-bearing horizon. On Kosrae, charcoal fragments and changes in pollen assemblages in sediment cores (with an age of 2,430 y B.P.; Beta-31733, [Dataset S4](#)) are interpreted as evidence of human modification of natural forest including cultivation of breadfruit and use of fire (36). These ages point to settlement of Pohnpei and Kosrae at least 1,000 y (and possibly more than 1,500 y) after high islands to the west and south (Fig. 1A). There are ample radiocarbon ages from archaeological sites on Pohnpei ($n = 16$) to suggest that these apparent young ages are unlikely caused by insufficient sampling. While there are fewer ages from archaeological sites on Kosrae ($n = 5$), based on this suite of ages, Pohnpei and Kosrae appear to have been settled at the same time as the atolls between the Southern and Northern Hemisphere migration routes in a secondary pulse of migration within Remote Ocean at ~2,000 y B.P. (Fig. 1A).

This proposed timing and geographic pattern of settlement of Pohnpei and Kosrae is puzzling. If these high islands were settled at the same time as the equatorial atolls, then atoll emergence was indeed an autocatalysis for the discovery of Pohnpei and Kosrae ((22), (23):13) and earlier voyagers did not find (or at least chose not to settle) these islands. However, we argue that it is unlikely that two high volcanic islands (separated by ~500 km) were missed by people on either the Southern or Northern Hemisphere routes during the initial phase of settlement beginning ~3,500 to 3,300 y B.P. only to be settled near-simultaneously. People migrating along both routes possessed the long-distance voyaging technologies and skills required to locate Pohnpei and Kosrae ((24), (25)), although we note that these technologies and strategies changed during the period of migration. Although proximity is not always a good predictor of settlement of small islands in the vastness of the Pacific Ocean, the central location of Pohnpei and Kosrae places them on shortest voyage trajectories between several island groups, and prevailing winds or ocean currents would not make them less likely to be discovered (10, 11), depending on where voyages began from. Equatorial atolls were settled during a later, secondary migration not only because atoll existence relied on RSL fall from a mid-Holocene highstand (70), but because they are less desirable for settlement than high islands. Atolls have poor access to freshwater, poor-quality coralline soils for agriculture, limited building material (in amount and variety), and are vulnerable to storm surges compared with high islands (71). Therefore, the high islands of Pohnpei and Kosrae were desirable targets for settlement.

Implications for Human Migration into Remote Oceania. On Pohnpei and Kosrae, archaeological deposits bearing ceramics were recovered below present sea level (68), and there are two possibilities to explain the submerged archaeological material. Under an assumption that a mid-Holocene RSL highstand (and subsequent RSL fall) occurred, some researchers proposed that the high islands were settled by people living in houses built on stilts over the shallow coral reef (68, 72). However, there is no direct evidence of stilted houses on Pohnpei or Kosrae. Our results support an alternative explanation, where people lived on the coast as they did elsewhere in Remote Oceania (19, 73), particularly given the steep terrain that characterizes the interior of both islands. Therefore, the submerged archaeological evidence is the result of RSL rise (Fig. 3A). We argue that evidence of earlier settlements was submerged by this anomalous RSL rise, and that

the current estimates of initial settlement are systematically skewed young because of the difficulty accessing submerged and buried evidence, coupled with land above sea level being the target of previous archaeological investigations because of the assumption of RSL fall.

There is another example of local RSL trends obscuring evidence for human settlement in Remote Oceania. In Sāmoa, the earliest evidence for settlement (at ~2,750 y BP) is a pottery-bearing horizon discovered nearly 2 m below present sea level during construction of a dock (74). Sāmoa's location on an active tectonic boundary makes it prone to vertical land motion, including episodic subsidence during earthquakes (75). Although the mechanism for subsidence is likely different to Pohnpei and Kosrae (which are located far from active plate boundaries and show no evidence for episodic vertical motion), the impact on the archaeological record (submergence of evidence) is similar. Sāmoa also has multiple, independent lines of evidence for anomalous, subsidence-driven RSL rise including direct measurement by a GPS CORS (54, 76) and the presence of thick sequences of mangrove sediment (77). IPCC AR6 sea-level projections for Sāmoa include 1.3 mm/y of subsidence estimated from tide-gauge measurements (56).

Evidence of earlier settlement on Pohnpei and Kosrae may yet be uncovered in shallow marine environments (61). The age and nature of such evidence could provide new information on the interactions between Lapita voyagers on the Southern Hemisphere route and their Northern Hemisphere counterparts who settled the Palau and Mariana archipelagos. Ancient DNA of commensal animals, notably pigs (78), dogs (79), and chickens (80), suggest these began as largely independent, parallel migrations into Remote Oceania. At present, the only artifact indicating a direct link between the islands of the Federated States of Micronesia (FSM) and those settled during the Southern Hemisphere migration is a stone adze uncovered through reef dredging on Pohnpei (61, 81).

Studies of human genetics offer insight into the long-term history of human migration across Remote Oceania (9,82). Newly reported DNA from people living on Pohnpei and the Chuuk archipelago coupled with ancient DNA from eight burials at Nan Madol defined a “Central Micronesian” population (82). Comparison of this Central Micronesia population with others in Remote Oceania suggests a genetic origin rooted in migration of people from the south, although a genetic contribution from the west cannot be excluded (82). The DNA of individuals buried at the Nan Madol mortuary complex at 500 to 300 y B.P. may, or may not, be representative of a population that arrived earlier on Pohnpei, but whose remains were submerged along with other archaeological evidence by sustained RSL rise. Thus, it is possible that the high islands in Central Micronesia were part of the earlier initial migration into Remote Oceania from the west, prior to major migration from the south.

More directly dated material evidence (including human remains) is required to parse between competing models of interaction between the Northern Hemisphere and Southern Hemisphere migrations. This evidence may lie submerged around Pohnpei and Kosrae.

Implications for Monumental Architecture. Nan Madol (sometimes described as the “Venice of the Pacific”) is an administrative and mortuary architectural complex on Pohnpei (Fig. 2). It is characterized by artificial islets constructed from columnar basalt, boulders, and corals, and surrounded by narrow “canals” currently filled with sea water and shallow coral reef (26). Nan Madol’s massive sea break walls are interpreted as being

constructed to shield the site from storm surges (68). Columnar basalt was sourced from locations across Pohnpei and U-Th ages on coral fill places construction of the tomb of the island's first rulers at ~770 to 750 y B.P. (44). The prevailing interpretation is that Nan Madol was intentionally constructed in a shallow marine environment to allow the political elite to isolate themselves from mainstream society on Pohnpei (68), and that this isolation was greater at the time of construction than observed today because of subsequent RSL fall. Modern flooding of the lowest lying buildings at Nan Madol during high tides was thought to indicate that the islets subsided since construction (83). Leluh is a monument on Kosrae that shares many architectural characteristics with Nan Madol. U-Th ages on coral from three mortuary buildings show construction began at ~640 to 560 y B.P. (45).

Based on our RSL reconstruction, we propose that Nan Madol and Leluh were built on land above the reach of the high tides (and likely most storm surges). We estimate that RSL rose by 0.94 ± 0.3 m and 0.77 ± 0.3 m since the construction of Nan Madol and Leluh, respectively (Fig. 3A). We surveyed the bottom of the canal adjacent to one of the main mortuary buildings at Nan Madol (islet H113; (26)) to be approximately -0.2 m MTL (-0.68 m relative to mean higher high water, MHHW). Assuming a stationary tidal regime and no sedimentation of canals, this location was at ~ 0.26 m above MHHW when Nan Madol was constructed. Over the 1983 to 2001 tidal epoch (see *Materials and Methods*), the 1% inundation level for the Pohnpei tide gauge is 0.23 m above MHHW, and the single highest water level was 0.63 m above MHHW. Therefore, the canals at Nan Madol were likely dry when constructed, except during rare and transitory events when water depths of just a few centimeters could have occurred. Due to ongoing RSL rise, low points surrounding buildings at Nan Madol would have become increasingly flooded, leading to the formation of individual buildings as "islets" and the famous "canals" separating them. However, this was a slow process on human timescales. When the rulers of Nan Madol were overthrown at ~ 350 y B.P. (84), and the site was no longer the primary seat of political power over the island, it is unlikely that the islet we examined would have been surrounded by a permanent canal as it exists today (although sections of it were likely flooded at high tide).

Subsidence-driven RSL rise through the late Holocene indicates that these sites (and modern socio-economic activity on Pohnpei and Kosrae) may be more vulnerable to future rise than previously anticipated (38, 41, 85), since current projections underestimate the contribution from subsidence (56). Thus, our results have implications for both the interpretation and ongoing care of these World Heritage Sites, and more broadly for the island nation of the FSM.

Conclusions

Models for human migration into Remote Oceania beginning $\sim 3,500$ to 3,300 y B.P. assume that the equatorial Pacific Ocean experienced RSL fall from a mid-Holocene highstand. Separation and isolation of Southern and Northern Hemisphere migration routes is inferred from the delayed (by at least $\sim 1,000$ y) settlement of equatorial atolls and high volcanic islands (including Pohnpei and Kosrae) in the region between them. While emergence of atolls in response to RSL fall made them more habitable through time, the apparent late settlement of high islands is puzzling because they represent desirable, available, and reachable targets for settlement. It is possible that Pohnpei and Kosrae, like more distant targets such as the Hawaiian Islands, were beyond the seafaring strategies and technologies of people during the initial stages of settlement in Remote Oceania. However, given the

similar settlement timing for Pohnpei and Kosrae, we suggest that this shared pattern is due to a shared RSL history. Using mangrove sediment, we find that Pohnpei and Kosrae experienced sustained RSL rise of ~ 4.3 m during the past $\sim 5,700$ y at a rate of ~ 0.7 mm/y because of island-scale subsidence. We suggest that estimates of when these high islands were settled are systematically biased young because RSL rise submerged evidence for the initial occupation of low-lying coastal sites. This finding invites reexamination of the degree of separation between the Southern and Northern Hemisphere migration routes. The new RSL history also has implications for interpreting the long-term sociopolitical and architectural histories of monuments. In contrast to prevailing interpretations, the administrative centers of Nan Madol and Leluh were originally built on land only to become inundated over subsequent generations due to ongoing RSL rise. Our study highlights the importance of site-specific reconstructions of past environments and RSL, as local environmental changes can depart from those predicted by broad-scale models.

Materials and Methods

Tide Analysis.

Pohnpei. We downloaded hourly water-level measurements (expressed relative to station datum) made by the Pohnpei-B tide gauge from the University of Hawaii Sea Level Center ((86); last accessed May 12, 2022). From these measurements, we calculated tidal datums following the National Oceanic and Atmospheric Administration definitions and using the national tidal datum epoch (currently 1983 to 2001). We isolated high and low tides from using the VulnToolKit package (87) for R (*SI Appendix*, Fig. S1A and *Dataset S1*). In this step, each tide was identified as a higher high, lower high, higher low, or lower low and means for these groups provide the elevation of tidal datums (relative to station datum) for the location of the Pohnpei tide gauge (in Kolonia; Fig. 1B).

To determine if tides vary around Pohnpei, we deployed pressure transducer water loggers at five sites across two field seasons (two sites in 2016 between July 4 to 8th, and three sites in 2019 between July 19 to 28th; Fig. 1C). Each logger was deployed in open water immediately adjacent to the seaward edge of the mangrove at low tide to ensure that all subsequent low and high tides were measured by the loggers. Water-level measurements at 6-min intervals were corrected for atmospheric pressure changes measured by an additional logger that was simultaneously deployed close by. Comparison of water levels among sites and with those made by the Pohnpei-C tide gauge (hourly measurements) indicates that the timing and magnitude of tides do not vary between them, hence tidal datums established at the tide gauge (*Dataset S1*) are applicable elsewhere on Pohnpei. By correcting for the difference between water-level measured by the tide gauge (relative to station datum) and each water-level logger (depth), we established the elevation of each water logger relative to tidal datums.

The United States Geological Survey also deployed water-level loggers at two sites on Pohnpei from July 2016 to March 2017 (32). Water-level measurements made by these instruments are reported relative to the EGM2008 geoid. The uncertainty of the EGM2008 geoid is typically ± 0.05 to 0.1 m (88). The two water loggers were deployed at elevations where they could only measure high tides, and alignment of the two time series shows no spatial difference in water level variability and that measurements showed near-identical variability to the Pohnpei tide gauge. This further confirms our conclusion that tides are invariable around Pohnpei, and that the relationship among tidal datums established at the tide gauge are applicable elsewhere. Through differencing these water-level measurements with those made simultaneously by the Pohnpei-C tide gauge, we estimate that EGM2008 lies at -0.92 m MTL (0.18 below station datum for the Pohnpei-B tide gauge).

Kosrae. There are no published and accessible tide-gauge data for Kosrae. However, the National Institute of Water & Atmospheric Research/Taihoro Nukurangi installed a tide gauge at Leluh which collected observations between 2011 and 2016 (89). We used these data from Leluh (which is measured relative to the Kosrae Local Datum) to calculate tidal datums as for Pohnpei, except that 2011 to 2016 rather than 1983 to 2001 was used as the tidal epoch out of necessity (*SI Appendix*, Fig. S1B and *Dataset S1*). To determine any spatial variability

in tides around Kosrae, we deployed water-level loggers at three mangrove sites around Kosrae (July 8 to 15, 2019). Water-level measurements were corrected for atmospheric pressure changes measured by an additional logger that was simultaneously deployed close by. We observed no changes in timing and magnitude of tides around Kosrae. Therefore, tidal datums established at the site of the Kosrae tide gauge can be applied at other sites on the island, with the caveat that the 2011 to 2016 window of measurements is shorter than the 19-y window typically used to calculate datums. We established the elevation of each water logger relative to tidal datums by applying a correction to measured depths to remove the difference to simultaneous water-level measurements made by the tide gauge.

Elevation of the Mangrove Modern Analogue. We used two sources of data to estimate the elevation occupied by mangroves in Micronesia. First, surveys by the United States Geological Survey (32,38) investigated the elevations of mangroves at seven sites around Pohnpei. Mangrove surfaces were surveyed using several methods and elevations are reported relative to EGM2008 and converted to orthometric elevation. We applied the 0.92-m adjustment (established empirically from water-level logger and tide-gauge measurements; see *Tide Analysis*) to each EGM2008 elevation observation to express it relative to MTL (from which correction to other tidal datums is achieved using the relationships determined over the tidal epoch, [Dataset S1](#)). Our analysis is limited to observations from 2019 that are noted to have mangrove plant species present at the measurement site (and therefore are measurements of sediment surfaces within a mangrove).

The USGS survey is inherently a conservative dataset to use for estimating the paleo-elevation at which mangrove sediment preserved in the stratigraphic record accumulated. In Micronesian mangroves (and elsewhere), site geomorphology dictates that a large proportion of the change in elevation between the lower and upper limits occurs in a spatially-narrow band close to the landward edge of the mangrove. Consequently, the majority of mangrove surface area lies within a smaller subset of elevational range (see for example Fig. 7 in ref. (32) and Fig. 5 in ref. (38)) and the probability that a sample of mangrove sediment recovered in a core accumulated within the narrow band at the seaward or most landward edge of the mangrove is low (in the absence of additional proxy evidence to refine the environment of deposition).

Second, we conducted surveys of modern mangrove distribution at five sites on Pohnpei and two sites on Kosrae (Fig. 1 *B* and *C*). We used an autolevel and staff to measure surface elevation at points located along transect through each site. Transects began inland of the upper limit of mangroves and extended to the seaward edge of the mangrove where shallow, subtidal environments occur. The elevation of each point surface station was established relative to tidal datums by autolevel survey to water-loggers or by taking timed water-level measurements using the autolevel and staff, which were compared with simultaneous measurements made by the Pohnpei-C tide gauge.

We combined these two sources of data into a single dataset ($n = 233$ for Pohnpei and $n = 31$ for Kosrae). Since tidal range is different on Pohnpei and Kosrae, we expressed elevation as a standardized water level index (SWLI) value:

$$\text{SWLI} = \left(\frac{\text{sample elevation (m MTL)}}{\text{MHHW elevation (m MTL)}} \times 100 \right) + 100$$

where a value of 100 SWLI is equivalent to local mean tide level (MTL) and a value of 200 SWLI corresponds to local MHHW. Mangroves on Pohnpei and Kosrae occur at elevations of 7 to 249 SWLI (95% CI). For Pohnpei this corresponds to elevations of 0.12 ± 0.62 m MTL. For Kosrae, this corresponds to elevations of -0.04 ± 0.63 m MTL ([SI Appendix, Fig. S2](#)).

Mangrove Radiocarbon Ages. Mangrove sites were selected based on existing literature that describes the coastal stratigraphy around both Pohnpei and Kosrae (e.g., ref. (34)). We selected sites that showed the deepest mangrove sequences (to potentially obtain the longest, highest resolution records), as well as those that showed mangrove sediments overlying incompressible substrate (e.g., carbonate reefs) to assess any postdepositional compaction on the sediment sequence. One mangrove sediment core (Pwok) was collected using a Eijelkamp peat sampler, and core top elevations were surveyed using differential leveling from timed water level measurements. Three mangrove sediment cores were collected using a Hiller corer and elevation obtained using a Trimble differential GPS (32,38). Bulk mangrove sediment samples were prepared for radiocarbon

analyses by pretreatment with acid to remove carbonate and were measured at the U.S. National Ocean Sciences Accelerator Mass Spectrometry Facility and Beta Analytic. Reported radiocarbon ages were calibrated individually using the Intcal20 calibration curve (90) using the BCron package for R (91). Data are available in [Dataset S2](#).

RSL Database Construction and Analysis. To reconstruct RSL, we collated and standardized published radiocarbon ages from coastal sediment samples on Pohnpei and Kosrae into a database following the protocols developed by the HOLSEA program (41), including ourAQ radiocarbon ages. Inclusion in the database required each sample to have: 1) a geographic location; 2) an age (with uncertainty) of sample formation (in this case a radiocarbon age with a unique identifier); 3) an estimate (based on sample type) of tidal elevation at the time of formation with uncertainty (termed the reference water level); and 4) a modern altitude relative to sea level. Samples were excluded from the database if any of these attributes could not be estimated. Radiocarbon ages were individually calibrated using the IntCal20 dataset for terrestrial material (which includes mangrove sediment).

The susceptibility of each sample to physical compaction was categorized based on its stratigraphic context (92); base of basal (sample overlies, within 10 cm, an incompressible layer, compaction unlikely), basal (sample is from lower stratigraphic unit, compaction possible), intercalated (sample is from intercalated stratigraphic unit, compaction possible), surface peat (sample is from upper stratigraphic unit, compaction possible), and unknown (no suitable stratigraphic details were available to assign sample a compaction class).

For each sample in the database RSL is reconstructed as:

$$\text{RSL} = \text{Altitude} - \text{Reference Water Level}$$

where altitude is measured directly as depth in core, and core top elevation is expressed relative to tidal datums. If the sample had a thickness, we used the mid-point in our calculation of RSL and treated the thickness as a source of uncertainty. Frequently, core-top elevation was not reported, but rather a core top was qualitatively described as being in a mangrove. In those instances, we used the elevation range of modern mangrove environments established from the modern surveys as the core top elevation (with uncertainty). The reference water level for samples determined to have formed in a mangrove is also the range of modern mangroves established from modern surveys (see *Elevation of the mangrove modern analogue*). The proxies used to confirm that a sample formed in a mangrove environment are principally descriptions of sediment texture, although a small subset of samples present other evidence (e.g., pollen assemblages). The age of each sample in calendar years is from calibration of the radiocarbon age. The result of this approach is the creation of individual sea-level index points which constrain the unique position of RSL in time and space, with vertical and chronological uncertainty. The creation of individual sea-level index points assumes a stationary tidal prism over time. The database and references are available in [Dataset S3](#) and [SI Appendix, SI References](#), and the general locality of relative sea-level data is presented in Fig. 1 *B* and *C*.

A RSL history was generated by applying the errors-in-variables integrated Gaussian process (EIV-IGP) model (42) to the database of 68 sea-level index points ([Dataset S3](#)). The model was developed specifically to analyze late Holocene RSL reconstructions characterized by vertical and temporal uncertainties, and an uneven distribution of observations through time. Based on the coherence in RSL histories between Pohnpei and Kosrae, among sites on each island, and stratigraphic context (susceptibility to compaction), we analyzed all sea-level index points as a single dataset. In addition, we calculated decadal average RSL from the Pohnpei tide gauge measurements to include in the EIV-IGP model. Hourly tide-gauge measurements were binned into 10-y increments (starting in 1970) and averaged. The temporal position for each 10-y average is the mid-point (e.g., 1975) with an age error of ± 5 y. The vertical error is the 95% CI of the measurements. The EIV-IGP model estimated RSL and the rate of RSL change with uncertainty (95% CI) at timesteps of 100 y from $\sim 5,730$ y B.P. to present.

Data, Materials, and Software Availability. All study data are included in the article and/or [SI Appendix](#).

ACKNOWLEDGMENTS. This work was supported by NSF awards OCE-1831382 and OCE-1831405 to A.C.K. and S.E.E., respectively. We thank Byron Halavik and Madeline Varney for their assistance in surveying and collecting the mangrove

cores from Pohnpei and Kosrae. Access to field sites on Pohnpei was made possible by Saimon Lihpai (Department of Land and Natural Resources, Pohnpei State Government). We are especially grateful to Maxson Nithan (Kosrae Island Resource Management Authority) and Yosta Hirata (Department of Land and Natural Resources) for their expertise in navigating the mangrove sites and helping with sample collection. We thank Fred Taylor for his help on fieldwork, expertise on the geology of the Pacific Islands, mentoring and friendship. The Beta Analytic radiocarbon ages presented in [Dataset S2](#) and associated fieldwork were enabled by the Micronesia Conservation Trust and the Conservation Society of Pohnpei. We thank two anonymous reviewers for their comments and suggestions that helped improve the manuscript. This paper is a contribution to

PALSEA (Palaeo-Constraints on Sea-Level Rise) and the International Geoscience Programme (IGCP) Projects 639 "Sea-Level Change from Minutes to Millennia" and 725 "Forecasting Coastal Change: From Cores to Code".

Author affiliations: ^aDepartment of Earth and Ocean Sciences, Tufts University, Medford, MA 02155; ^bSchool of Earth, Atmosphere, and Environment, Monash University, Clayton, VIC 3800, Australia; ^cDepartment of Geography, Durham University, Durham DH1 3LE, UK; ^dSchool of Geography, Planning, and Spatial Sciences, University of Tasmania, Launceston 7520, Australia; ^eInstitute of Geodesy and Geoinformation, University of Bonn, Bonn, 53115 Germany; ^fKosrae Island Resource Management Authority, Kosrae State Government, Tofol, Kosrae 82F5+XG6, Federated States of Micronesia; and ^gDepartment of Anthropology, Southern Methodist University, Dallas, TX 76275

1. J. S. C. d'Urville, 'Sur les îles du grand Océan. *Bull. Soc. Géogr.* **17**, 1–21 (1832).
2. R. Green, Linguistic, biological, and cultural origins of the original inhabitants of remote Oceania. *New Zealand J. Archaeol.* **17**, 5–27 (1995).
3. T. Denham, C. B. Ramsey, J. Specht, Dating the appearance of Lapita pottery in the Bismarck Archipelago and its dispersal to Remote Oceania. *Archaeol. Ocean.* **47**, 39–46 (2012).
4. F. Petchar *et al.*, Testing the human factor: Radiocarbon dating the first peoples of the South Pacific. *J. Archaeol. Sci.* **38**, 29–44 (2011).
5. P. V. Kirch, *The Lapita Peoples: Ancestors of the Oceanic World* (Blackwell Publishers, 1997).
6. A. Pawley, M. Ross, Austronesian historical linguistics and culture history. *Annu. Rev. Anthropol.* **22**, 425–459 (1993).
7. E. Hau'ofa, Our sea of islands. *Contemp. Pac.* **6**, 148–161 (1994).
8. J. S. Friedlaender *et al.*, The genetic structure of Pacific Islanders. *PLOS Genet.* **4**, e19 (2008).
9. I. Pugach *et al.*, Ancient DNA from Guam and the peopling of the Pacific. *Proc. Natl. Acad. Sci. U.S.A.* **118**, e202112118 (2021).
10. G. Irwin, *The Prehistoric Exploration and Colonisation of the Pacific* (Cambridge University Press, 1992), 10.1017/CBO9780511518225 (February 15, 2022).
11. Á. Montenegro, R. T. Callaghan, S. M. Fitzpatrick, Using seafaring simulations and shortest-hop trajectories to model the prehistoric colonization of Remote Oceania. *Proc. Natl. Acad. Sci. U.S.A.* **113**, 12685–12690 (2016).
12. C.-S. Chang *et al.*, A holistic picture of Austronesian migrations revealed by phylogeography of Pacific paper mulberry. *Proc. Natl. Acad. Sci. U.S.A.* **112**, 13537–13542 (2015).
13. E. Matisoo-Smith, J. H. Robins, Origins and dispersals of Pacific peoples: Evidence from mtDNA phylogenies of the Pacific rat. *Proc. Natl. Acad. Sci. U.S.A.* **101**, 9167–9172 (2004).
14. P. V. Kirch, *On the Road of the Winds: An Archaeological History of the Pacific Islands before European Contact, Revised and Expanded* (University of California Press, ed. 2, 2017).
15. J. X. Mitrovica, G. A. Milne, On the origin of late Holocene sea-level highstands within equatorial ocean basins. *Quaternary Sci. Rev.* **21**, 2179–2190 (2002).
16. W. R. Peltier, The ICE-7G_NA (VM7) Ice thickness and paleotopography 0–26 ka (2020). <https://doi.org/10.5683/SP2/ZCDLY1>. Accessed 9 March 2022.
17. W. R. Dickinson, Paleoshoreline record of relative Holocene sea levels on Pacific islands. *Earth Sci. Rev.* **55**, 191–234 (2001).
18. C. H. Fletcher, A. T. Jones, Sea-level highstand recorded in Holocene shoreline deposits on Oahu, Hawaii. *J. Sedimentary Res.* **66**, 632–641 (1996).
19. W. R. Dickinson, Beach ridges as favored locales for human settlement on Pacific islands. *Gearchaeology* **29**, 249–267 (2014).
20. W. R. Dickinson, Impact of mid-Holocene hydro-isostatic highstand in regional sea level on habitability of islands in Pacific Oceania. *J. Coastal Res.* **19**, 489–502 (2003).
21. H. Kayanne, T. Yasukochi, T. Yamaguchi, H. Yamano, M. Yoneda, Rapid settlement of Majuro Atoll, central Pacific, following its emergence at 2000 years CalBP. *Geophys. Res. Lett.* **38**, 1–5 (2011).
22. W. F. Keegan, J. M. Diamond, "Colonization of islands by humans: A biogeographical perspective" in *Advances in Archaeological Method and Theory*, M. B. Schiffer, Ed. (Academic Press, 1987), pp. 49–92.
23. M. F. Napolitano, R. J. Dinapoli, J. H. Stone, "Introduction: The archaeology of island colonization" in *The Archaeology of Island Colonization: Global Approaches to Initial Human Settlement*, M. F. Napolitano, R. J. Dinapoli, J. H. Stone, Eds. (University Press of Florida, 2021).
24. M. T. Carson, Peopling of Oceania: Clarifying an initial settlement horizon in the Mariana Islands at 1500 BC. *Radiocarbon* **62**, 1733–1754 (2020).
25. G. Clark, A. Anderson, D. Wright, Human colonization of the Palau islands, western Micronesia. *J. Island Coast. Archaeol.* **1**, 215–232 (2006).
26. M. D. McCoy, H. A. Alderson, A. Thompson, A new archaeological field survey of the site of Nan Madol, Pohnpei. *Rapa. Nui.* **1**, 5–22 (2015).
27. Federated States of Micronesia, Nan Madol: Ceremonial center of Eastern Micronesia, nomination file (2016). <https://whc.unesco.org/en/list/1503/documents/>.
28. P. Hambruch, "Ergebnisse der Südsee Expedition, 1908–1920" in *Ponape*, G. Thilenius, Ed. (Hamburgische Wissenschaftliche Stiftung, Hamburg; L. Friederichsen, 1932), vol. 1.
29. J. C. Ellison, Mangrove retreat with rising sea-level, Bermuda. *Estuar. Coast. Shelf Sci.* **37**, 75–87 (1993).
30. C. D. Woodroffe, B. G. Thom, J. Chappell, Development of widespread mangrove swamps in mid-Holocene times in northern Australia. *Nature* **317**, 711–713 (1985).
31. S. A. Woodroffe, A. J. Long, G. A. Milne, C. L. Bryant, A. L. Thomas, New constraints on late Holocene eustatic sea-level changes from Mahé, Seychelles. *Quat. Sci. Rev.* **115**, 1–16 (2015).
32. K. J. Buffington *et al.*, *Mangrove Species' Response to Sea-Level Rise across Pohnpei*, Federated States of Micronesia (U.S. Geological Survey, 2021).
33. K. L. McKee, D. R. Cahoon, I. Feller, Caribbean mangroves adjust to rising sea level through biotic controls on soil elevation change. *Global Ecol. Biogeogr.* **16**, 545–556 (2007).
34. K. Fujimoto *et al.*, The relationships among community type, peat layer thickness, belowground carbon storage and habitat age of mangrove forests in Pohnpei island, Micronesia. *Open J. Forestry* **5**, 48 (2015).
35. K. Fujimoto, T. Miyagi, T. Kikuchi, T. Kawana, Mangrove habitat formation and response to Holocene sea-level changes on Kosrae island, Micronesia. *Mangroves and Salt Marshes* **1**, 47–57 (1996).
36. J. V. Ward, "Sediment coring and palynology" in *Landscape Archaeology: Prehistoric Settlement, Subsistence, and Environment of Kosrae, Eastern Caroline Islands, Micronesia*, J. S. Athens, Ed. (International Archaeological Research Institute, 1995), pp. 299–335.
37. T. Kikuchi, Y. Mochida, T. Miyagi, K. Fujimoto, S. Tsuda, Mangrove forests supported by peaty habitats on several islands in the western Pacific. *Tropics* **8**, 197–205 (1999).
38. J. C. Ellison *et al.*, Elevations of mangrove forests of Pohnpei, Micronesia. *Estuar. Coast. Shelf Sci.* **268**, 107780 (2022).
39. A. L. Bloom, Paludal stratigraphy of Truk, Ponape, and Kusaie, eastern Caroline Islands. *Geol. Soc. Am. Bull.* **81**, 1895–1904 (1970).
40. F. P. Shepard *et al.*, Holocene changes in sea level: Evidence in Micronesia. *Science* **157**, 542–544 (1967).
41. N. S. Khan *et al.*, Inception of a global atlas of sea levels since the Last Glacial Maximum. *Quat. Sci. Rev.* **220**, 359–371 (2019).
42. N. Cahill, A. C. Kemp, B. P. Horton, A. C. Parnell, Modeling sea-level change using errors-in-variables integrated Gaussian processes. *Ann. Appl. Stat.* **9**, 547–571 (2015).
43. M. J. Brain, "Compaction" in *Handbook of Sea-Level Research*, I. Shennan, A. J. Long, B. P. Horton, Eds. (Wiley, 2015), pp. 452–469.
44. M. D. McCoy, H. A. Alderson, R. Hemm, H. Cheng, R. L. Edwards, Earliest direct evidence of monument building at the archaeological site of Nan Madol (Pohnpei, Micronesia) identified using 230Th/U coral dating and geochemical sourcing of megalithic architectural stone. *Quat. Res.* **86**, 295–303 (2016).
45. Z. T. Richards *et al.*, New precise dates for the ancient and sacred coral pyramidal tombs of Leluh (Kosrae, Micronesia). *Sci. Adv.* **1**, e1400060 (2015).
46. E. E. Grossman, C. H. Fletcher, B. M. Richmond, The Holocene sea-level highstand in the equatorial Pacific: Analysis of the insular paleosea-level database. *Coral Reefs* **17**, 309–327 (1998).
47. J. R. Curran, F. P. Shepard, H. H. Veeh, Late Quaternary sea-level studies in Micronesia: CARMARSEL Expedition. *Geol. Soc. Am. Bull.* **81**, 1865–1880 (1970).
48. T. Kawana, T. Miyagi, K. Fujimoto, T. Kikuchi, "Late Holocene sea-level changes and mangrove development in Kosrae Island, the Carolines, Micronesia" in *Rapid Sea Level Rise and Mangrove Habitat*, T. Kikuchi, Ed. (Institute for Basin Ecosystem Studies, 1995), pp. 1–9.
49. J. S. Athens, "Coastal berm investigations" in *Landscape Archaeology: Prehistoric Settlement, Subsistence, and Environment of Kosrae, Eastern Caroline Islands, Micronesia*, J. S. Athens, Ed. (International Archaeological Research Institute, Micronesia, 1995), pp. 239–251.
50. B. Mauz, M. Vacchi, A. Green, G. Hoffmann, A. Cooper, Beachrock: A tool for reconstructing relative sea level in the far-field. *Mar. Geol.* **362**, 1–16 (2015).
51. W. R. Dickinson, Hydro-isostatic and tectonic influences on emergent Holocene paleoshorelines in the Mariana Islands, western Pacific Ocean. *J. Coastal Res.* **16**, 735–746 (2000).
52. N. Hallmann, G. Camoin, J. M. Webster, M. Humbert, A standardized database of Marine Isotopic Stage 5e sea-level proxies on tropical Pacific islands. *Earth Syst. Sci. Data* **13**, 2651–2699 (2021).
53. C. H. Fletcher, B. M. Richmond, *Climate Change in the Federated States of Micronesia: Food and Water Security, Climate Risk Management, and Adaptive Strategies* (University of Hawai'i Sea Grant College Program, 2010).
54. V. Ballu *et al.*, Vertical land motion in the Southwest and Central Pacific from available GNSS solutions and implications for relative sea levels. *Geophys. J. Int.* **218**, 1537–1551 (2019).
55. R. E. Kopp *et al.*, Probabilistic 21st and 22nd century sea-level projections at a global network of tide-gauge sites. *Earth Future* **2**, 383–406 (2014).
56. B. Fox-Kemper, "Ocean, cryosphere and sea-level change" in *Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change*, V. Masson-Delmotte *et al.*, Eds. (Cambridge University Press, 2021).
57. G. Wöppelmann, M. Marcos, Vertical land motion as a key to understanding sea level change and variability. *Rev. Geophys.* **54**, 64–92 (2016).
58. The Sea Level Explorer. <https://ccar.colorado.edu/altimetry/>. Accessed 2 May 2022.
59. M. D. McCoy, J. S. Athens, Sourcing the megalithic stones of Nan Madol: An XRF study of architectural basalt stone from Pohnpei. *J. Pacific Archaeol.* **3**, 105–114 (2012).
60. P. Rainbird, "Kosrae's Place in Pacific Prehistory" in *Landscape Archaeology: Prehistoric Settlement, Subsistence, and Environment of Kosrae, Eastern Caroline Islands in Micronesia, Archaeology in Oceania*, J. S. Athens, Ed. (Wiley, Oceania Publications, University of Sydney, 1995), pp. 139–145.
61. J. S. Athens, A stone adze from Ponape, eastern Caroline Islands. *Asian Perspect.* **24**, 43–46 (1981).
62. J.-C. Galipaud, Le peuplement initial de Pohnpei. *J. Soc. Océan.* **112**, 49–60 (2001).
63. B. H. Keating *et al.*, Evidence for a hot spot origin of the Caroline Islands. *J. Geophys. Res. Solid Earth* **89**, 9937–9948 (1984).
64. M. G. Jackson *et al.*, Geochemistry of lavas from the Caroline hotspot, Micronesia: Evidence for primitive and recycled components in the mantle sources of lavas with moderately elevated $^{3}\text{He}/^{4}\text{He}$. *Chem. Geol.* **455**, 385–400 (2017).
65. K. L. Huppert, J. P. Taylor, L. H. Royden, Hotspot swells and the lifespan of volcanic ocean islands. *Sci. Adv.* **6**, eaaw6906 (2020).
66. J. Caplan-Auerbach, F. Duennebier, G. Ito, Origin of intraplate volcanoes from guyot heights and oceanic paleodepth. *J. Geophys. Res. Solid Earth* **105**, 2679–2697 (2000).

67. J. S. Athens, Nan Madol pottery, Pohnpei. *Micronesica* **2**, 17–32 (1990).
68. J. S. Athens, "Archaeology of the Eastern Caroline Islands, Micronesia" in *The Oxford Handbook of Prehistoric Oceania*, T. L. Hunt, E. E. Cochrane, Eds. (Oxford University Press, 2018).
69. W. S. Ayres, A. E. Haun, C. Severence, *Ponape Archaeological Survey: 1978 Research* (Historic Preservation Office, 1981).
70. H. H. Kane, C. H. Fletcher, Rethinking reef island stability in relation to anthropogenic sea level rise. *Earth's Future* **8**, e2020EF001525 (2020).
71. M. I. Weisler, Life on the edge: Prehistoric settlement and economy on Utrökk Atoll, northern Marshall Islands. *Archaeol. Ocean.* **36**, 109–133 (2001).
72. W. S. Ayres, C. J. Scheller, "Status architecture and stone resources on Pohnpei, Micronesia: Experiments in stone transport" in *Fifty Years in the Field. Essays in Honour and Celebration of Richard Shutler Jr's Archaeological Career*, S. Bedford, C. Sand, D. Burley, Eds. (New Zealand Archaeological Association Monograph, 2003), pp. 109–121.
73. E. E. Cochrane *et al.*, Lack of suitable coastal plains likely influenced Lapita (~2800 cal. BP) settlement of Sāmoa: Evidence from south-eastern 'Upolu. *Holocene* **26**, 126–135 (2016).
74. W. R. Dickinson, R. C. Green, Gearchaeological context of Holocene subsidence at the Ferry Berth Lapita site, Mulifanua, Upolu, Samoa. *Gearchaeology* **13**, 239–263 (1998).
75. W. R. Dickinson, Upolu (Samoa): Perspective on island subsidence from volcano loading. *J. Island Coast. Archaeol.* **2**, 236–238 (2007).
76. A. Martínez-Asensio *et al.*, Relative sea-level rise and the influence of vertical land motion at Tropical Pacific Islands. *Glob. Planet. Change* **176**, 132–143 (2019).
77. A. L. Bloom, "Late Quaternary sea-level changes on South Pacific coasts" in *Earth Rheology, Isostasy, and Eustasy*, N. A. Mörner, Ed. (Wiley, 1980), pp. 505–516.
78. G. Larson *et al.*, Phylogeny and ancient DNA of *Sus* provides insights into neolithic expansion in Island Southeast Asia and Oceania. *Proc. Natl. Acad. Sci. U.S.A.* **104**, 4834–4839 (2007).
79. M. Zhang *et al.*, Ancient DNA evidence from China reveals the expansion of Pacific dogs. *Mol. Biol. Evol.* **37**, 1462–1469 (2020).
80. V. A. Thomson *et al.*, Using ancient DNA to study the origins and dispersal of ancestral Polynesian chickens across the Pacific. *Proc. Natl. Acad. Sci. U.S.A.* **111**, 4826–4831 (2014).
81. T. Nagaoka, P. J. Sheppard, New information from an old discovery: Geological analysis of a stone adze found on Pohnpei, Micronesia. *J. Island Coast. Archaeol.* **1**–11 (2021). 10.1080/15564894.2020.1862369
82. Y.-C. Liu *et al.*, Ancient DNA reveals five streams of migration in Micronesia and matrilocality in early Pacific seafarers. *Science* **377**, 72–79 (2022).
83. J. S. Athens, Surface artefact distribution at the Nan Madol site: A preliminary assessment of spatial patterning. *New Zealand J. Archaeol.* **6**, 129–153 (1984).
84. J. S. Athens, "The rise of the Saudeleur: Dating the Nan Madol chiefdom, Pohnpei" in *Vastly Ingenious - The Archaeology of Pacific Material Culture in Honour of Janet M. Davidson*, A. Anderson, K. Green, F. Leach, Eds. (Otago University Press, 2007), pp. 191–208.
85. D. C. Comer *et al.*, Airborne LiDAR reveals a vast archaeological landscape at the Nan Madol world heritage site. *Remote Sens.* **11**, 2152 (2019).
86. University of Hawaii Sea Level Centre (2019). <https://uhslc.soest.hawaii.edu>.
87. T. Hill, S. C. Anisfeld, *VulnToolKit*: An R package for accessing public tide gauge data (2021). <https://doi.org/10.6084/m9.figshare.14161202.v1>.
88. N. K. Pavlis, S. A. Holmes, S. C. Kenyon, J. K. Factor, The development and evaluation of the earth gravitational model 2008 (EGM2008). *J. Geophys. Res. Solid Earth* **117**, 1–38 (2012).
89. A. Willsman, "Trip Report - Climate and Sea Level Monitoring in Kosrae to Underpin Infrastructure Decision-Making and Design" (Client Report No: CHC2012-015, National Institute of Water and Atmospheric Research Ltd, Christchurch, New Zealand, 2012).
90. P. J. Reimer *et al.*, The IntCal20 Northern Hemisphere radiocarbon age calibration curve (0–55 cal kBP). *Radiocarbon* **62**, 725–757 (2020).
91. A. C. Parnell, J. Haslett, J. R. M. Allen, C. E. Buck, B. Huntley, A flexible approach to assessing synchronicity of past events using Bayesian reconstructions of sedimentation history. *Quat. Sci. Rev.* **27**, 1872–1885 (2008).
92. S. E. Engelhart, B. P. Horton, Holocene sea level database for the Atlantic coast of the United States. *Quat. Sci. Rev.* **54**, 12–25 (2012).

Supplementary Information for

Implications of anomalous relative sea-level rise for the peopling of Remote Oceania

Juliet P. Sefton^{1,2*}, Andrew C. Kemp¹, Simon E. Engelhart³, Joanna C. Ellison⁴, Makan A. Karegar⁵, Blair Charley⁶, and Mark D. McCoy⁷

Juliet P. Sefton*

Email: juliet.sefton@monash.edu

This PDF file includes:

Supplementary text

Figures S1 to S6

Legends for Datasets S1 to S6

SI References

Supplementary Information Text

Collation of archaeological site data

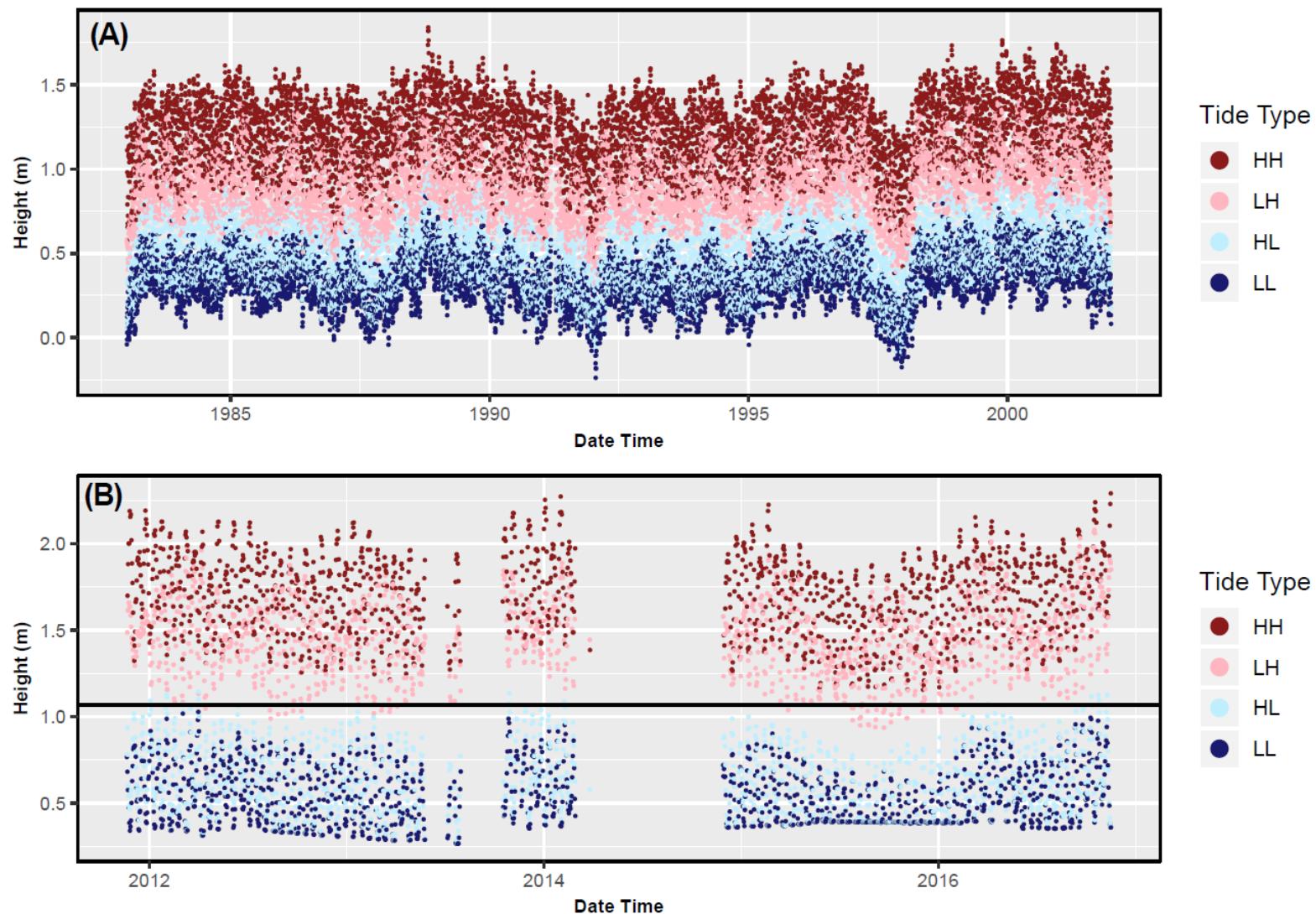
We collated published radiocarbon ages that link to human occupation, by island, across Remote Oceania (within the geographical scope of Figure 1A) (Datasets S4–5). Each island was classified as either high or atoll, where atolls are dominantly coralline and have a characteristic central lagoon, and high islands are dominantly non-coralline (e.g., basaltic) or are described as makatea-type islands (e.g., Tongatapu; Dataset S5). We only included ages on samples that were associated with a unique laboratory ID number (with the exception of Pohnpei ages reported in [\(1\)](#)). Sample types were simplified to be identified as requiring either the terrestrial (Intcal20 or SHCal20; [2](#), [3](#)) or the marine calibration curves [\(4\)](#) to calculate calendar ages. Radiocarbon ages were recalibrated using the R package BChron [\(5\)](#) or included in the database as calendar ages where radiocarbon age and error was not reported. Marine carbonate ages were corrected for reservoir age where published reservoir data was available (e.g., [6](#)), and were calibrated without correcting for reservoir age only if no suitable regional data was available. All original sources of radiocarbon ages are listed in Dataset S4 (and in the SI references), but where we could not access original reports or publications, the secondary source where the data was collated from is reported. Some older radiocarbon ages are likely not corrected for carbon fractionation, and we have not attempted to correct this. We have also not attempted to use a mixed marine/terrestrial curve to calibrate human or other animal bone samples (e.g., dog, pig), and have assumed a 100% terrestrial source for these samples. These assumptions will likely result in less accurate calendar ages for some of the samples in our database, but we accept this level of error as we are more interested in generalized trends in ages at an island scale.

Vertical land motion

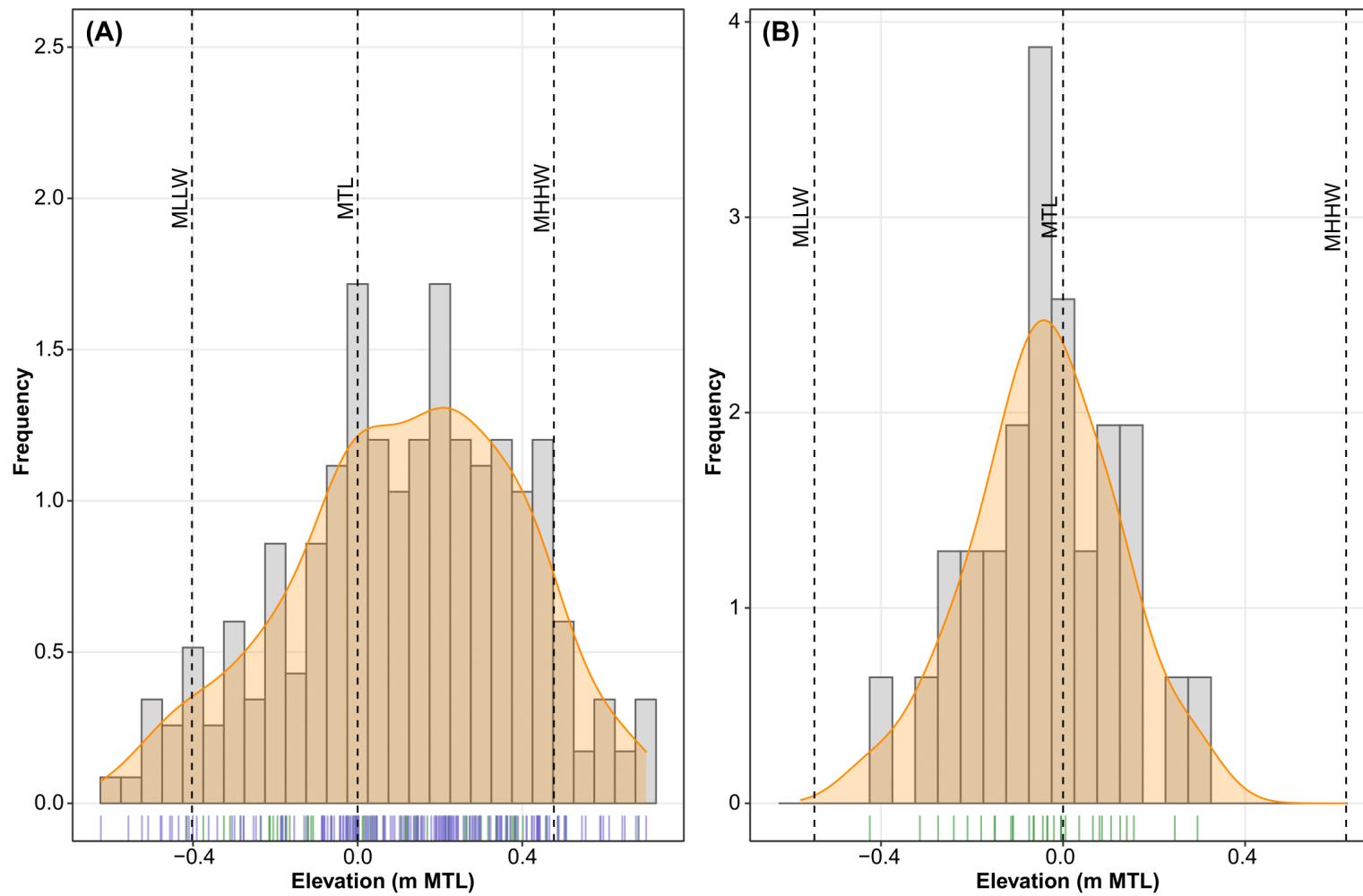
GPS data processing. The precise geodetic GPS sensor on Pohnpei island (site ID Pohn) is operated by Geoscience Australia since May 2003, and is located within NOAA Weather station grounds (Figure S4). It consists of two components; 1) Ashtech UZ-12 GPS receiver installed in May 2003 and replaced with Trimble NETR9 GNSS receiver in December 2011, followed by another replacement with Septentrio POLARX5 GNSS receiver in March 2020; and 2) Ashtech GPS choke ring antenna (ASH701945C M) with a radome for protection which was replaced with Trimble GNSS choke ring (TRM59800.00) in December 2011 and Javad GNSS antenna (JAVRINGANT DM) in December 2017. The antenna is mounted on a concrete pillar with 2.5 m anchoring depth and 1.5 m above the ground surface (Figure S4). This GPS sensor collects carrier phase and pseudorange data with a 30-s rate. The GPS RINEX daily data (up to August 2021) were obtained from the Geoscience Australia's public server (<ftp://data.gnss.ga.gov.au>). We processed GPS data in 24-hour batches following the Precise Point Positioning (PPP) technique [\(7\)](#) with ambiguity resolution and ionosphere-free data using the latest release of software package GipsyX (2.0) developed at the Jet Propulsion Laboratory (JPL) [\(8\)](#). JPL's reprocessed nonfiducial final satellite orbits and clock parameters, and Earth orientation parameters (Repro 3.0) were held fixed to estimate nonfiducial daily antenna coordinates together with receiver clock offsets (white noise), zenith troposphere delays and their horizontal gradients at every 5 minutes. We applied the same processing strategy used in JPL's reanalysis of orbit and clock products (Repro 3.0) to our GPS raw data to isolate effects of inconsistency between orbits/clocks and our solutions. We used the following inputs: 1) nominal troposphere parameters from the Vienna Mapping Functions grids (VMF1) [\(9\)](#). A priori zenith tropospheric delays and horizontal gradients are estimated using the VMF1 tropospheric mapping function as a stochastic random-walk process with random-walk sigmas of 9 mm2/hour and 0.9 mm2/hour, respectively; 2) absolute satellite and receiver antenna phase calibration model igs14.atx [\(10\)](#); 3) daily JPL's single receiver ambiguity resolution products which are based on wide-lane phase bias estimates from the global GPS network as described by [\(11\)](#); 4) daily second-order ionospheric corrections from JPL's IONEX ionospheric model. We use IGS's IONEX files when JPL products are unavailable; 5) IERS 2010 conventions [\(12\)](#) for solid Earth tides, solid Earth and ocean pole tides; 6) amplitudes and phases of tidal ocean loading displacements supplied by Chalmers University's tide loading web service using 11 tidal constituents from the latest version of Ray (1999) global ocean tide model GOT4.8 in the Center of Mass (CM) frame; and 7) daily JPL's X-files including Helmert parameters to transfer the daily coordinates from the JPL nonfiducial frame to the IGS realization (IGS14) of the International Terrestrial Reference Frame (ITRF). The elevation cutoff angle is fixed to 7°, a compromise

to better constrain tropospheric effects but minimize multipath errors. We then cleaned the daily height position time series from outliers using the following criteria; 1) a data point with a formal uncertainty larger than 3 times the root mean square (RMS) scatter of the time series; and 2) a data point that differs from the Least-Squares (LSQ) model fit (including an initial bias, a constant velocity, fixed amplitude annual and semi-annual variations, and in the case of equipment changes, one or more offset parameters) to time the series by more than 3 times the RMS scatter. We iterate these procedures until all outliers are eliminated.

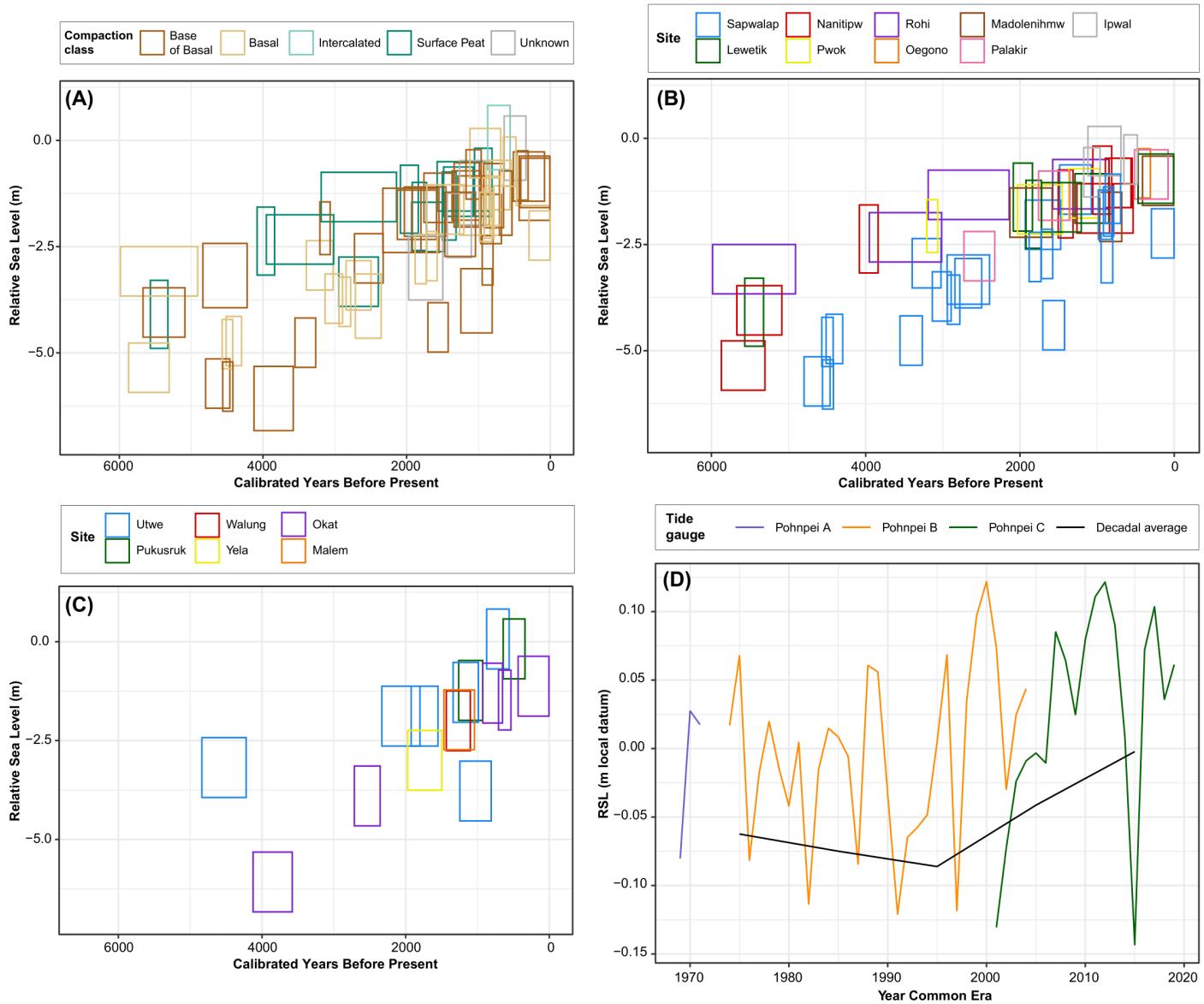
Estimating rate of vertical land motion and its uncertainty. To estimate the rate of vertical land motion, we use Median Interannual Difference Adjusted for Skewness algorithm (MIDAS; (13) which is based on Theil-Sen estimator. The Theil-Sen estimator calculates the median of all linear trends (slopes of lines) obtained between all possible pairs of data points within the time series, and therefore it is more robust than least squares estimator to skewed and heteroscedastic data and less sensitive to outliers and step discontinuities in the time series. To isolate the effect of annual periodicity on the linear trend (v), MIDAS algorithm modifies the Theil-Sen median trend estimator by limiting to slopes between all data pairs (i and j , $i < j$) separated by 1 year:

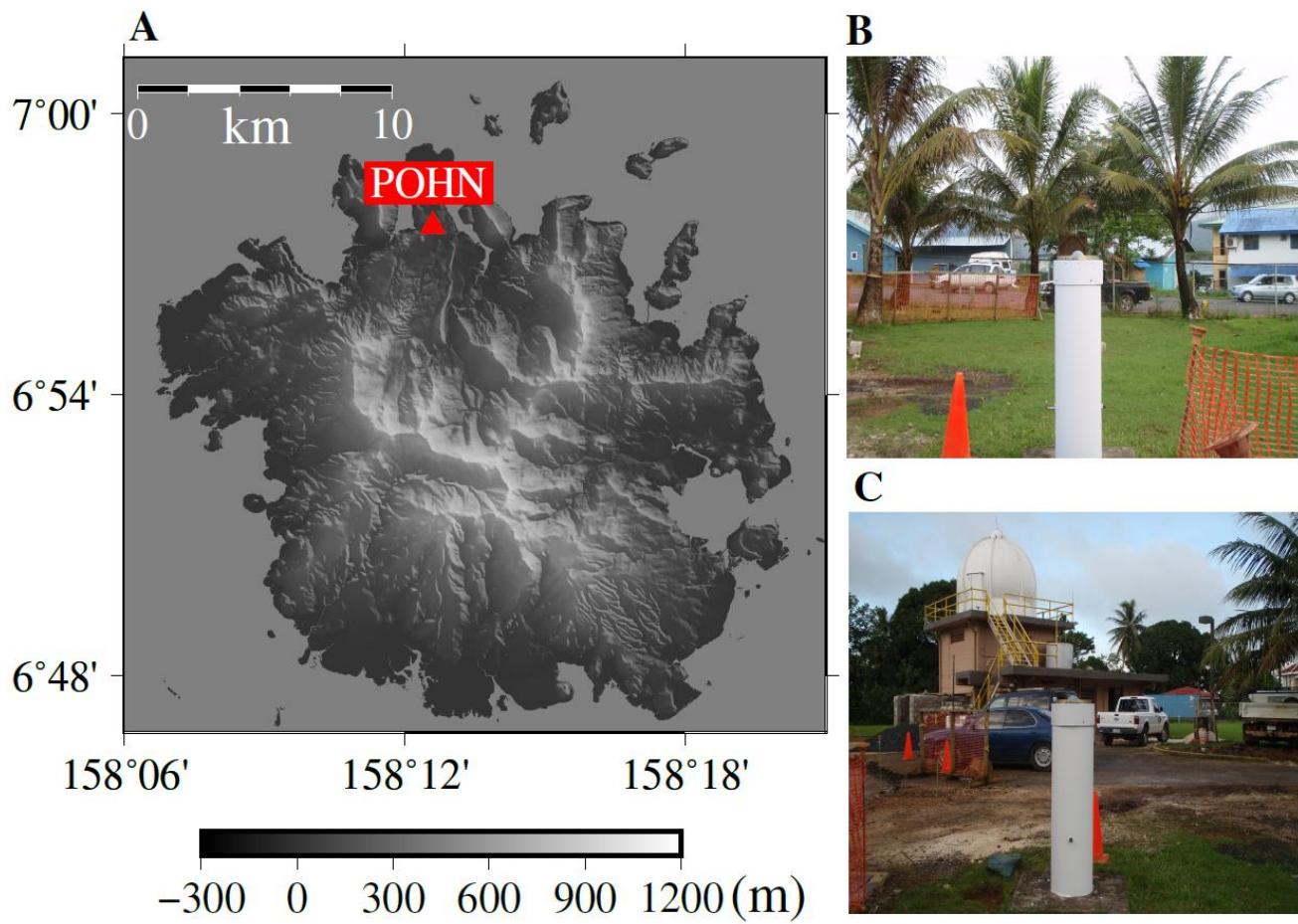

$$v = \text{median} \left(\frac{u_j - u_i}{t_j - t_i} \right) \forall (t_j - t_i) = 1 \text{ year}$$

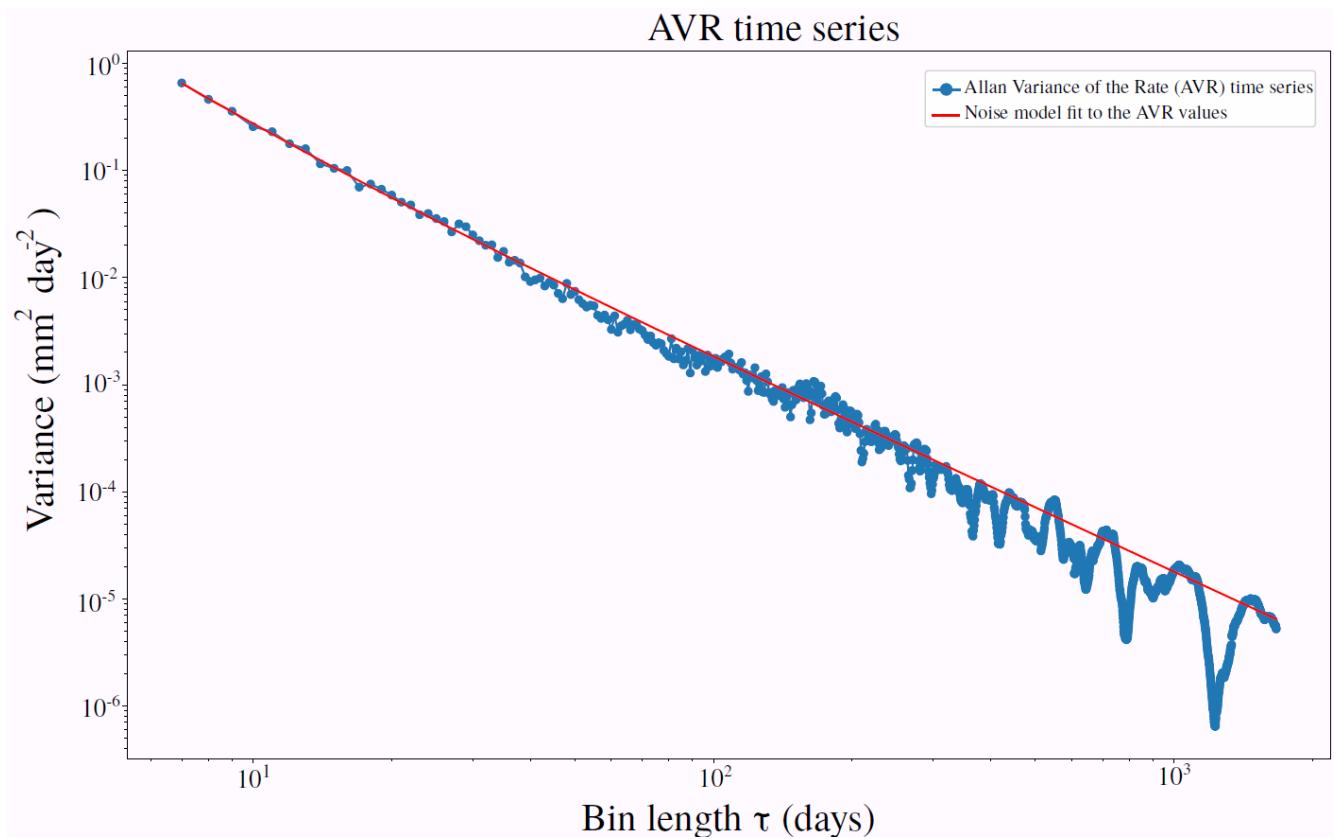
The MIDAS trend estimator is likely to preserve the linear trend from unknown step discontinuities in the time series which is a common problem in the LSQ model fit (described above). LSQ estimation works well if the timing of offsets due to documented equipment changes (antenna or receiver), earthquakes and any unexplained reasons are known, therefore offsets can be estimated together with velocity. However, the challenge lies in identifying offsets occurring at unknown times which bias linear trends in the GPS position time series (14, 15). The MIDAS rate is -1.0 mm/yr and LSQ rate (after correcting for offsets due to antenna changes) is -0.9 mm/yr. This indicates that possible effects of unknown offsets on rate estimation are minor for this site.


MIDAS uses the standard deviation of the median as a formal error and scales this pure white noise estimate by empirical factor 3 to account for serial correlation in time series without modeling noise in the time series. Using 50 simulated position time series, (13) concluded that scaling of the standard error by the factor of 3 results in a realistic estimate of trend uncertainty. Our independent estimates of rates uncertainty based on Allan Variance of the Rate (AVR) are consistent with MIDAS uncertainties; however, the MIDAS rate uncertainty is slightly larger (± 0.4 mm/yr) than AVR estimates (± 0.2 mm/yr). (16, 17) found that MIDAS tends to overestimate the rate uncertainty. The GPS time series at the site Pohn indicate significant temporally correlated noise (Figure 3) resulting mostly from monument instability, seasonal and non-seasonal climate forcing. Thus, we need to estimate velocity uncertainties by modeling noise characteristics rather than using an inflation factor to scale the white noise. In contrast with the MIDAS approach, the AVR method relies on a noise model that best described the Allan variance $\sigma^2(\tau)$, i.e. the variance of the slope differences of consecutive bins of length τ within the time series (18):

$$\sigma^2(\tau) = \frac{1}{2(n-1)} \sum_i^n [v_{i+1}(\tau) - v_i(\tau)]^2$$


where n is the number of bins with length τ and $v_i(\tau)$ is the velocity (slope) of the time series in the i th cluster calculated by linear regression. To reach a statistically significant value of the variance we calculated AVR values $\sigma^2(\tau)$ for bin length τ ranging from six bin pairs to $1/4$ of the total length of the time series (T) (19). The rate uncertainty corresponding to the full length of the time series $\sigma^2(\tau)$ is calculated by fitting a noise model to AVR values and extrapolating to the full length of the time series. White noise, flicker noise, random walk as well as power law noise models can be fitted to the AVR time series (19). We found that combination of white noise, power law noise, and an annual signal provides optimum fits to AVR values calculated, in agreement with previous studies (19–23). These parameters are determined using a least-squares fit to the AVR time series (Figure S5).


Fig. S1. (A–B) Extracted high and low tides from Pohnpei (Pohnpei-B tide gauge) and Kosrae (24), respectively. HH = highest high, LH = lowest high, HL = highest low, LL = lowest low.


Fig. S2. (A) Mangrove survey results for Pohnpei ($n = 233$). Elevation (m mean tide level; MTL) and the frequency of mangrove occurrence (grey histogram with orange density plot) give a mangrove elevation range of 0.12 ± 0.62 m MTL (95% confidence interval). Rug plot shows additional distribution of survey data at finer scale than histogram, where purple represents data from (25) and green data from this study ($n = 59$). Dashed lines indicate tidal datums (MLLW = Mean Lower Low Water, MHHW = Mean Higher High Water). (B) Mangrove survey results for Kosrae ($n = 31$), giving a mangrove elevation range of -0.04 ± 0.63 m MTL (95% confidence interval). Datums, abbreviations, and formatting as for (A).

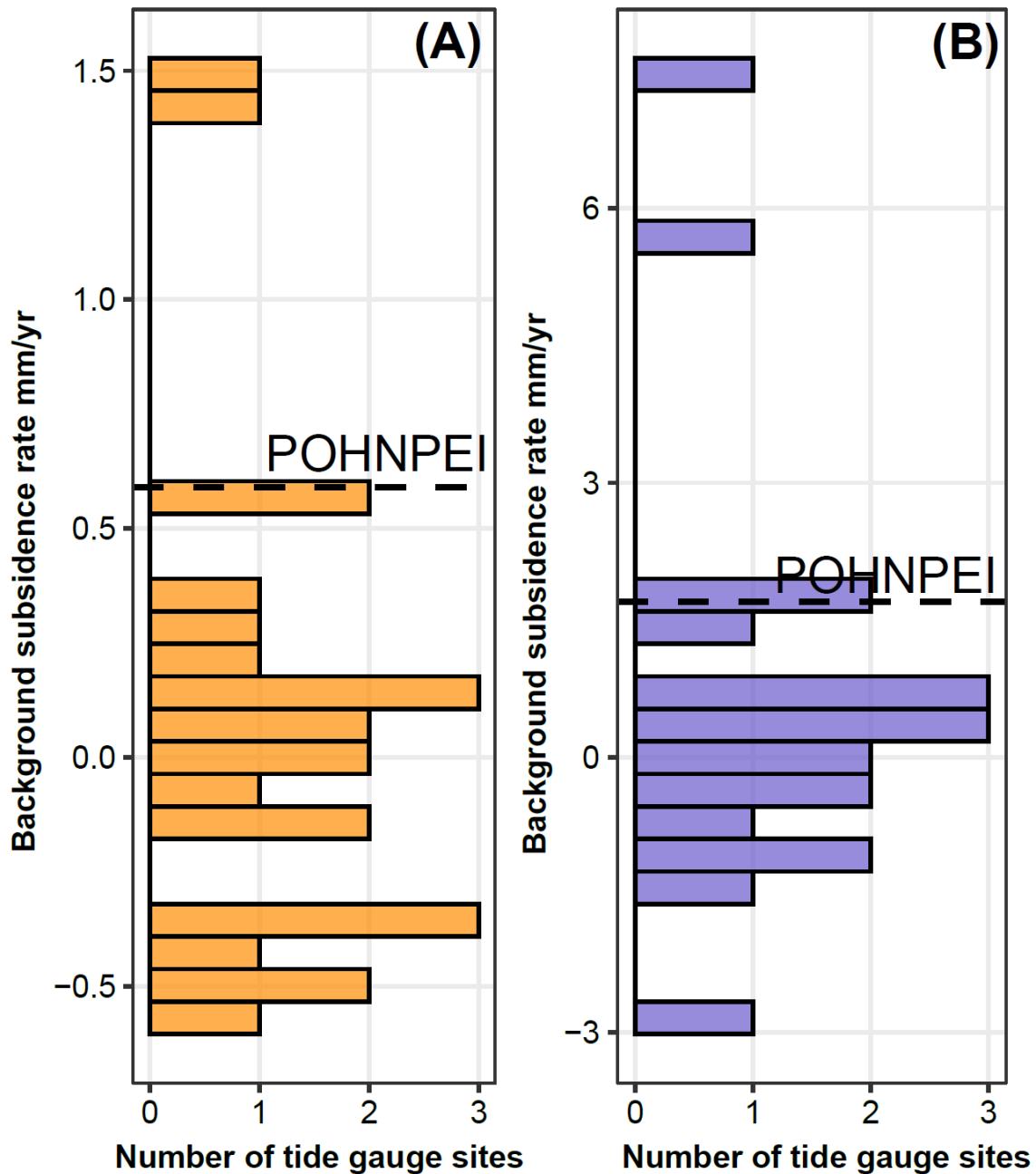

Fig. S3. (A) Sea-level index points for Pohnpei and Kosrae with color representing compaction class (base of basal to surface peat). (B) Sea-level index points for Pohnpei with color representing individual sites (see Figure 1B). (C) Sea-level index points for Kosrae with color representing individual sites (see Figure 1C). (D) Annual and decadal averages of Pohnpei tide gauge measurements (tide gauges A through C, with calculated decadal averages).

Fig. S4. (A) Location of POHN GPS CORS (Continuously Operating Reference Station; 6° 57' 35.79" N, 158° 12' 36.42" E) on Pohnpei. (B–C) Site views of GPS antenna and its monument.

Fig. S5. The Allan Variance of the Rate (AVR) time series (blue dots) and power law noise model fit to the AVR values (red line). The variance of the velocity is extrapolated to the entire length of the time series ($T = 6674$ days). The corresponding standard deviation (uncertainty of rate) is 0.20 mm/yr.

Fig. S6. (A) Tide gauge-derived rates of background subsidence (from both vertical land motion and Earth-ice processes; mm/yr) as calculated in (26) for tide-gauge sites within the geographic scope of Figure 1A. Pohnpei has a relatively high rate of subsidence for the region (0.59 mm/yr). (B) Difference between satellite altimetry geocentric sea-level trend and tide gauge relative sea-level trends (mm/yr) as determined by (27) for sites within the geographic scope of Figure 1A. The difference is proportional to the rate of vertical land motion (about 1.7 mm/yr at Pohnpei).

Dataset S1 (separate file). Tidal datums calculated for Pohnpei and Kosrae in meters local datum. HAT = highest astronomical tide, MHHW = mean higher high water, MHW = mean high water, MTL = mean tide level, MLW = mean low water, MLLW = mean lower low water, LAT = lowest astronomical tide. Since Pohnpei has a semi-diurnal tidal regime (experiencing two high tides and two low tides each tidal day), MHHW is the average of highest water level achieved in each tidal day and MLLW is the average of the lowest water level achieved each tidal day. Great diurnal tidal range is the difference between MHHW and MLLW. MHW is the average of both high tides and MLW is the average of both low tides. MTL is the arithmetic mean of MHW and MLW.

Dataset S2 (separate file). Table of new radiocarbon ages reported in this study.

Dataset S3 (separate file). Database of sea-level index points collated from published literature and from new data reported in this study.

Dataset S4 (separate file). Table of radiocarbon ages from archaeological sites collated from published literature, displayed in Figure 1A.

Dataset S5 (separate file). Summary of archaeological data by island (calculated from Supplementary Table 4), displayed in Figure 1A.

Dataset S6 (separate file). GPS time series data for the Pohnpei (POHN) GPS site.

SI References

1. J. S. Athens, Nan Madol pottery, Pohnpei. *Micronesica Supplementary* **2** (1990).
2. A. G. Hogg, *et al.*, SHCal20 Southern Hemisphere calibration, 0–55,000 years cal BP. *Radiocarbon* **62**, 759–778 (2020).
3. P. J. Reimer, *et al.*, The IntCal20 Northern Hemisphere radiocarbon age calibration curve (0–55 cal kBP). *Radiocarbon* **62**, 725–757 (2020).
4. T. J. Heaton, *et al.*, Marine20—the marine radiocarbon age calibration curve (0–55,000 cal BP). *Radiocarbon* **62**, 779–820 (2020).
5. A. C. Parnell, J. Haslett, J. R. M. Allen, C. E. Buck, B. Huntley, A flexible approach to assessing synchronicity of past events using Bayesian reconstructions of sedimentation history. *Quaternary Science Reviews* **27**, 1872–1885 (2008).
6. F. Petchey, A. Anderson, A. Zondervan, S. Ulm, A. Hogg, New marine ΔR values for the South Pacific Subtropical Gyre region. *Radiocarbon* **50**, 373–397 (2008).
7. J. F. Zumberge, M. B. Heflin, D. C. Jefferson, M. M. Watkins, F. H. Webb, Precise point positioning for the efficient and robust analysis of GPS data from large networks. *Journal of Geophysical Research: Solid Earth* **102**, 5005–5017 (1997).
8. W. Bertiger, *et al.*, GipsyX/RTGx, a new tool set for space geodetic operations and research. *Advances in Space Research* **66**, 469–489 (2020).
9. J. Boehm, A. Niell, P. Tregoning, H. Schuh, Global Mapping Function (GMF): A new empirical mapping function based on numerical weather model data. *Geophysical Research Letters* **33** (2006).
10. P. Rebischung, R. Schmid, IGS14/igs14. atx: a new framework for the IGS products in (2016).
11. W. Bertiger, *et al.*, Single receiver phase ambiguity resolution with GPS data. *J Geod* **84**, 327–337 (2010).
12. G. Petit, B. Luzum, “IERS Conventions (2010)” (Bureau International des Poids et Mesures Sevres (France), 2010) (April 28, 2022).
13. G. Blewitt, C. Kreemer, W. C. Hammond, J. Gazeaux, MIDAS robust trend estimator for accurate GPS station velocities without step detection. *J Geophys Res Solid Earth* **121**, 2054–2068 (2016).
14. J. Gazeaux, *et al.*, Detecting offsets in GPS time series: First results from the detection of offsets in GPS experiment. *Journal of Geophysical Research: Solid Earth* **118**, 2397–2407 (2013).
15. J. Griffiths, J. Ray, Impacts of GNSS position offsets on global frame stability. *Geophysical Journal International* **204**, 480–487 (2016).
16. M. A. Karegar, K. M. Larson, J. Kusche, T. H. Dixon, Novel Quantification of Shallow Sediment Compaction by GPS Interferometric Reflectometry and Implications for Flood Susceptibility. *Geophysical Research Letters* **47**, e2020GL087807 (2020).
17. J. Langbein, Methods for Rapidly Estimating Velocity Precision from GNSS Time Series in the Presence of Temporal Correlation: A New Method and Comparison of Existing Methods. *Journal of Geophysical Research: Solid Earth* **125**, e2019JB019132 (2020).

18. D. W. Allan, Statistics of atomic frequency standards. *Proceedings of the IEEE* **54**, 221–230 (1966).
19. M. Hackl, R. Malservisi, U. Hugentobler, R. Wonnacott, Estimation of velocity uncertainties from GPS time series: Examples from the analysis of the South African TrigNet network. *Journal of Geophysical Research: Solid Earth* **116** (2011).
20. A. R. Amiri-Simkooei, C. C. J. M. Tiberius, P. J. G. Teunissen, Assessment of noise in GPS coordinate time series: Methodology and results. *Journal of Geophysical Research: Solid Earth* **112** (2007).
21. M. A. Karegar, T. H. Dixon, R. Malservisi, A three-dimensional surface velocity field for the Mississippi Delta: Implications for coastal restoration and flood potential. *Geology* **43**, 519–522 (2015).
22. A. Santamaría-Gómez, M.-N. Bouin, X. Collilieux, G. Wöppelmann, Correlated errors in GPS position time series: Implications for velocity estimates. *Journal of Geophysical Research: Solid Earth* **116** (2011).
23. S. D. P. Williams, The effect of coloured noise on the uncertainties of rates estimated from geodetic time series. *Journal of Geodesy* **76**, 483–494 (2003).
24. A. Willsman, “Trip report - climate and sea level monitoring in Kosrae to underpin infrastructure decision-making and design” (National Institute of Water and Atmospheric Research, 2012).
25. K. J. Buffington, *et al.*, “Mangrove species’ response to sea-level rise across Pohnpei, Federated States of Micronesia” (U.S. Geological Survey, 2021).
26. B. Fox-Kemper, *et al.*, “Ocean, cryosphere and sea-level change” in *Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change*, V. Masson-Delmotte, *et al.*, Eds. (Cambridge University Press, 2021).
27. , The Sea Level Explorer (May 2, 2022).
28. D. J. Addison, T. S. Asua, 100 new dates from Tutuila and Manu'a: Additional data addressing chronological issues in Samoan prehistory. *Journal of Samoan Studies* **2**, 95–117 (2006).
29. A. Anderson, C. Sand, F. J. Petchey, T. H. Worthy, Faunal extinction and human habitation in New Caledonia: Initial results and implications of new research at the Pindai Caves. **1**, 89–109 (2010).
30. A. Anderson, G. Clark, The Age of Lapita Settlement in Fiji. *Archaeology in Oceania* **34**, 31–39 (1999).
31. J. S. Athens, Surface artefact distribution at the Nan Madol site: a preliminary assessment of spatial patterning. *New Zealand Journal of Archaeology* **6**, 129–153 (1984).
32. J. S. Athens, J. Stevenson, Pohnpei Coring Records: The Natural Distribution of Cyrtosperma chamissonis and Neolithic Charcoal Particles. *Journal of Pacific Archaeology* (2012) (July 9, 2021).
33. S. Bedford, M. Spriggs, R. Shing, “By all means let us complete the exercise”: the 50-year search for Lapita on Aneityum, southern Vanuatu and implications for other “gaps” in the Lapita distribution. *Archaeology in Oceania* **51**, 122–130 (2016).
34. S. Bedford, M. Spriggs, R. Regenvanu, The Teouma Lapita site and the early human settlement of the Pacific Islands. *Antiquity* **80**, 812–828 (2006).
35. T. Bonhomme, J. L. Craib, Radiocarbon dates from Unai Bapot, Saipan — implication for the prehistory of the Mariana islands. *The Journal of the Polynesian Society* **96**, 95–106 (1987).

36. D. V. Burley, Mid-sequence archaeology at the Sigatoka Sand Dunes with interpretive implications for Fijian and oceanic culture history. *Asian Perspectives* **44**, 320–348 (2005).
37. D. V. Burley, S. P. Connaughton, G. Clark, Early cessation of ceramic production for ancestral Polynesian society in Tonga. *PLoS One* **13**, e0193166 (2018).
38. D. V. Burley, M. I. Weisler, J. Zhao, High precision U/Th dating of first Polynesian settlement. *PLOS ONE* **7**, e48769 (2012).
39. D. V. Burley, D. E. Nelson, R. Shutler, A radiocarbon chronology for the eastern Lapita frontier in Tonga. *Archaeology in Oceania* **34**, 59–70 (1999).
40. D. V. Burley, S. P. Connaughton, First Lapita settlement and its chronology in Vava'u, Kingdom of Tonga. *Radiocarbon* **49**, 131–137 (2007).
41. B. M. Butler, Early prehistoric settlement in the Mariana Islands: New evidence from Saipan. *Man and Culture in Oceania* **10**, 15–38 (1994).
42. B. M. Butler, New radiocarbon dates from Palau. *The Outrigger: Newsletter on Micronesian Archaeology* **4**, 2–3 (1985).
43. M. T. Carson, “Early-period material culture at House of Taga in Tinian” in *First Settlement of Remote Oceania: Earliest Sites in the Mariana Islands*, SpringerBriefs in Archaeology., M. T. Carson, Ed. (Springer International Publishing, 2014), pp. 119–134.
44. M. T. Carson, “Earliest site inventory” in *First Settlement of Remote Oceania: Earliest Sites in the Mariana Islands*, Springer Briefs in Archaeology., M. T. Carson, Ed. (Springer International Publishing, 2014), pp. 21–43.
45. M. T. Carson, Radiocarbon chronology with marine reservoir correction for the Ritidian Archaeological Site, northern Guam. *Radiocarbon* **52**, 1627–1638 (2010).
46. M. T. Carson, Refining Earliest Settlement in Remote Oceania: Renewed Archaeological Investigation at Unai Bapot, Saipan. *The Journal of Island and Coastal Archaeology* **3**, 115–139 (2008).
47. M. Chikamori, H. Takasugi, “Archaeology on Rennell Island” (Department of Archaeology and Ethnology, 1985).
48. G. Clark, A 3000 year culture sequence from Palau, Western Micronesia. *Asian Perspectives* **44**, 349–380 (2005).
49. G. Clark, Radiocarbon dates from American Samoa. *Radiocarbon* **35**, 323–330 (1993).
50. G. Clark, C. Reepmeyer, N. Melekiola, The rapid emergence of the archaic Tongan state: the royal tomb of Paepaeotelea. *Antiquity* **90**, 1038–1053 (2016).
51. G. Clark, F. J. Petachy, O. Winter, M. T. Carson, P. O'Day, New radiocarbon dates from the Bapot-1 Site in Saipan and Neolithic dispersal by stratified diffusion. *Journal of Pacific Archaeology* **1**, 21–35 (2010).
52. G. Clark, A. Anderson, D. Wright, Human colonization of the Palau islands, western Micronesia. *The Journal of Island and Coastal Archaeology* **1**, 215–232 (2006).
53. G. Clark, A. Anderson, “Site chronology and a review of radiocarbon dates from Fiji” in *The Early Prehistory of Fiji*, G. Clark, A. Anderson, Eds. (ANU Press, 2009), pp. 153–182.

54. G. Clark, C. Reepmeyer, Last millennium climate change in the occupation and abandonment of Palau's Rock Islands. *Archaeology in Oceania* **47**, 29–38 (2012).

55. G. Clark, D. Wright, On the periphery? Archaeological investigations at Ngelong, Angaur Island, Palau. *Micronesica* **38**, 67–91 (2005).

56. E. E. Cochrane, *et al.*, Lack of suitable coastal plains likely influenced Lapita (~2800 cal. BP) settlement of Sāmoa: Evidence from south-eastern 'Upolu. *The Holocene* **26**, 126–135 (2016).

57. E. E. Cochrane, T. M. Rieth, W. R. Dickinson, Plainware ceramics from Sāmoa: Insights into ceramic chronology, cultural transmission, and selection among colonizing populations. *Journal of Anthropological Archaeology* **32**, 499–510 (2013).

58. J. L. Craib, Early occupation at Unai Chulu, Tinian, Commonwealth of the Northern Mariana Islands. *Bulletin of the Indo-Pacific Prehistory Association* **13**, 116–134 (1993).

59. J. L. Craib, Settlement on Ulithi Atoll, Western Caroline Islands. *Asian Perspectives* **24**, 47–55 (1981).

60. J. Davidson, New evidence about the date of colonisation of Nukuoro Atoll, a Polynesian outlier in the Eastern Caroline Islands. *The Journal of the Polynesian Society* **101**, 293–298 (1992).

61. J. Davidson, "Archaeology on Nukuoro Atoll, a Polynesian Outlier in the eastern Caroline Islands" (Auckland Institute and Museum, 1971).

62. D. G. DeFant, Early human burials from the Naton Beach site, Tumon Bay, Island of Guam, Mariana islands. *The Journal of Island and Coastal Archaeology* **3**, 149–153 (2008).

63. T. Denham, C. B. Ramsey, J. Specht, Dating the appearance of Lapita pottery in the Bismarck Archipelago and its dispersal to Remote Oceania. *Archaeology in Oceania* **47**, 39–46 (2012).

64. A. Di Piazza, Te Bakoa site: Two old Earth ovens from Nikunau Island (Republic of Kiribati). *Archaeology in Oceania* **34**, 40–42 (1999).

65. A. Di Piazza, E. Pearthree, Voyaging and basalt exchange in the Phoenix and Line archipelagoes: the viewpoint from three mystery islands. *Archaeology in Oceania* **36**, 146–152 (2001).

66. W. R. Dickinson, *et al.*, Geomorphic and archaeological landscapes of the Sigatoka Dune Site, Viti Levu, Fiji: interdisciplinary investigations. *Asian Perspectives* **37**, 1–31 (1998).

67. T. S. Dye, Marine turtle bones from an archaeological site in Polynesia yield reliable age determinations. *Radiocarbon* **32**, 143–147 (1990).

68. J. S. Field, Environmental and climatic considerations: a hypothesis for conflict and the emergence of social complexity in Fijian prehistory. *Journal of Anthropological Archaeology* **23**, 79–99 (2004).

69. S. M. Fitzpatrick, Early human burials in the western Pacific: evidence for c.3000 year old occupation on Palau. *Antiquity* **77**, 719–731 (2003).

70. S. M. Fitzpatrick, A radiocarbon chronology of Yapese stone money quarries in Palau. *Micronesica* **34**, 227–242 (2002).

71. S. M. Fitzpatrick, N. P. Jew, Radiocarbon dating and Bayesian modelling of one of Remote Oceania's oldest cemeteries at Chelechol ra Orrak, Palau. *Antiquity* **92** (361), 149–164 (2018).

72. J. L. Flexner, *et al.*, Preliminary results of the South Vanuatu Archaeological Survey: cultural landscapes, excavation, and radiocarbon dating. *Asian Perspectives* **57**, 244–266 (2018).

73. K. Fujimara, W. H. Alkire, “Archaeological test excavations on Faraulep, Woleai, and Lamotrek in the Caroline Islands of Micronesia” in *Caroline Islands Archaeology: Investigations on Fefan, Faraulep, Woleai, and Lamotrek*, Pacific Anthropological Records., Y. H. Sinoto, Ed. (1984).

74. K. Fujimoto, *et al.*, The relationships among community type, peat layer thickness, belowground carbon storage and habitat age of mangrove forests in Pohnpei island, Micronesia. *Open Journal of Forestry* **05**, 48 (2015).

75. K. Fujimoto, *et al.*, Belowground carbon storage of Micronesian mangrove forests. *Ecol Res* **14**, 409–413 (1999).

76. K. Fujimoto, T. Miyagi, T. Kikuchi, T. Kawana, Mangrove habitat formation and response to Holocene sea-level changes on Kosrae island, Micronesia. *Mangroves and Salt Marshes* **1**, 47–57 (1996).

77. K. Fujimoto, T. Miyagi, T. Kikuchi, “Formative and maintainable mechanisms of mangrove habitats in Micronesia and the Philippines” in *Rapid Sea Level Rise and Mangrove Habitat*, T. Kikuchi, Ed. (Institute for Basin Ecosystem Studies, 1995), pp. 9–18.

78. J.-C. Galipaud, Le peuplement initial de Pohnpei. *Journal de la Société des Océanistes*, 49–60 (2001).

79. R. C. Green, A reappraisal of the dating for some Lapita sites in the Reef/Santa Cruz group of the southeast Solomons. *The Journal of the Polynesian Society* **100**, 197–207 (1991).

80. R. C. Green, J. M. Davidson, Radiocarbon dates for Western Samoa. *The Journal of the Polynesian Society* **74**, 63–69 (1965).

81. M. Harris, M. Weisler, Two millennia of mollusc foraging on Ebon Atoll, Marshall Islands: Sustained marine resource use on a Pacific atoll. *Archaeology in Oceania* **53**, 41–57 (2018).

82. T. L. Hunt, P. V. Kirch, An archaeological survey of the Manu'a Islands, American Samoa. *The Journal of the Polynesian Society* **97**, 153–183 (1988).

83. M. Intoh, Ongoing archaeological research on Fais Island, Micronesia. *Asian Perspectives* **47**, 121–138 (2008).

84. G. Irwin, *et al.*, Further Investigations at the Naigani Lapita site (VL 21/5), Fiji: Excavation, Radiocarbon Dating and Palaeofaunal Extinction. *Journal of Pacific Archaeology* **2**, 66–78 (2011).

85. N. P. Jew, T. Dodrill, S. M. Fitzpatrick, Evaluating the efficacy of the mollusk *Tridacna crocea* for reconstructing ancient sea-surface temperatures in the Rock Islands of Palau, Micronesia. *Archaeology in Oceania* **54** (2), 107-119 (2019).

86. S. Jones, D. W. Steadman, P. M. O'Day, Archaeological investigations on the small islands of Aiwa Levu and Aiwa Lailai, Lau group, Fiji. *The Journal of Island and Coastal Archaeology* **2**, 72–98 (2007).

87. P. Kirch, Rapport préliminaire sur les recherches archéologiques effectuées aux îles Wallis et Futuna (Polynésie occidentale). *Journal de la Société des Océanistes* **32**, 307–310 (1976).

88. P. V. Kirch, *Niuatoputapu: the prehistory of a Polynesian chiefdom* (Burke Museum, 1988) (April 4, 2022).

89. P. V. Kirch, J. A. Swift, New AMS radiocarbon dates and a re-evaluation of the cultural sequence of Tikopia Island, Southeast Solomon Islands. *The Journal of the Polynesian Society* **126**, 313–336 (2017).
90. R. Kuhiken, A. Crosby, Agricultural Terracing at Nakauvadra, Viti Levu: A Late Prehistoric Irrigated Agrosystem in Fiji. *Asian Perspectives* **38**, 62–89 (1999).
91. H. Kurashina, D. Moore, O. Kataoka, R. Clayshulte, E. Ray, Prehistoric and protohistoric cultural occurrences at Tarague, Guam. *Asian Perspectives* **24**, 57–68 (1984).
92. T. N. Ladefoged, J. Wall, P. Black, W. R. Dickinson, Exotic and Indigenous: ceramic sherds from the island of Rotuma. *The Journal of the Polynesian Society* **107**, 301–311 (1998).
93. F. Leach, G. Ward, Archaeology on Kapingamarangi Atoll : a Polynesian outlier in the eastern Caroline Islands. *University of Otago studies in prehistoric anthropology* **16** (1981).
94. M. J. Levin, K. Seikel, A. Miles, A partial chronological sequence of human habitation for Pingelap Atoll (Pohnpei state, Federated States of Micronesia). *Radiocarbon* **61**, 765–776 (2019).
95. J. Liston, An assessment of radiocarbon dates from Palau, western Micronesia. *Radiocarbon* **47**, 295–354 (2005).
96. W. B. Masse, Radiocarbon dating, sea-level change, and the peopling of Belau. *Micronesica Supplement* **2**, 213–230 (1990).
97. W. B. Masse, J. Liston, J. Carucci, J. S. Athens, Evaluating the effects of climate change on environment, resource depletion, and culture in the Palau Islands between AD 1200 and 1600. *Quaternary International* **151**, 106–132 (2006).
98. E. Matsumoto, Y. Matsushima, T. Miyata, “Holocene sea-level studies by swampy coastal plains in Truk and Ponape, Micronesia” in *Sea-Level Changes and Tectonics in the Middle Pacific*, Report of the HIPAC project in 1984 and 1985., (Kobe University, 1986), pp. 95–110.
99. T. Miyagi, T. Kikuchi, K. Fujimoto, “Late Holocene sea level changes and the mangrove peat accumulation/habitat dynamics in the western Pacific area” in *Rapid Sea Level Rise and Mangrove Habitat*, T. Kikuchi, Ed. (Institute for Basin Ecosystem Studies, 1995), pp. 19–26.
100. T. Miyagi, K. Fujimoto, Geomorphological situation and stability of mangrove habitat of Truk Atoll and Ponape Island in the Federated States of Micronesia. *The Science Reports of the Tohoku University, 7th series, Geography* **39**, 25–52 (1989).
101. A. E. Morrison, E. E. Cochrane, T. Rieth, M. Horrocks, Archaeological and sedimentological data indicate Lapita settlement on a newly formed coastal plain: Tavua Island, Mamanuca Group, Fiji. *The Holocene* **28**, 44–55 (2018).
102. M. F. Napolitano, S. M. Fitzpatrick, G. Clark, J. H. Stone, New investigations of early prehistoric settlement on Yap, western Caroline Islands. *The Journal of Island and Coastal Archaeology* **14**, 101–107 (2019).
103. P. D. Nunn, *et al.*, Human occupations of caves of the Rove peninsula, southwest Viti Levu island, Fiji (2005) <https://doi.org/10.1071/SP05003>.
104. P. D. Nunn, S. Matararaba, T. Ishimura, R. Kumar, E. Nakoro, Reconstructing the Lapita-era geography of Northern Fiji - a newly-discovered Lapita site on Yadua Island and its implications. *New Zealand Journal of Archaeology* **26**, 41–55 (2004).

105. P. D. Nunn, F. J. Petchey, Bayesian re-evaluation of Lapita settlement in Fiji: radiocarbon analysis of the Lapita occupation at Bourewa and nearby sites on the Rove Peninsula, Viti Levu Island. *Journal of Pacific Archaeology* **4**, 21–34 (2013).

106. S. J. O'Day, P. O'Day, D. W. Steadman, Defining the Lau context: recent findings on Nayau, Lau Islands, Fiji. *New Zealand Journal of Archaeology* **25**, 31–56 (2003).

107. K. Omoto, Radiocarbon dating reports of Nihon University, No.4. **32**, 1–14 (1997).

108. D. Osbourne, Archaeological test excavations, Palau Islands, 1968–1969. *Micronesica Supplement 1* (1979).

109. P. L. Parker, T. F. King, Recent and current archaeological research on Moen Island, Truk. *Asian Perspectives* **24**, 11–26 (1981).

110. F. Petchey, M. Spriggs, S. Bedford, F. Valentin, H. Buckley, Radiocarbon dating of burials from the Teouma Lapita cemetery, Efate, Vanuatu. *Journal of Archaeological Science* **50**, 227–242 (2014).

111. F. Petchey, *et al.*, Testing the human factor: radiocarbon dating the first peoples of the South Pacific. *Journal of Archaeological Science* **38**, 29–44 (2011).

112. F. Petchey, D. J. Addison, A. McAlister, Re-interpreting old dates: radiocarbon determinations from the Tokelau Islands (South Pacific). *Journal of Pacific Archaeology* **1**, 161–167 (2010).

113. F. Petchey, P. V. Kirch, The importance of shell: Redating of the To'aga site (Ofu Island, Manu'a) and a revised chronology for the Lapita to Polynesian Plainware transition in Tonga and Sāmoa. *PLOS ONE* **14**, e0211990 (2019).

114. F. J. Petchey, Radiocarbon determinations from the Mulifanua Lapita Site, Upolu, western Samoa. *Radiocarbon* **43**, 63–68 (2001).

115. S. Phear, Painted Pottery in Palau: new evidence challenges past interpretations. *Antiquity* (2003) (March 31, 2022).

116. M. Pietruszewsky, J. Galipaud, F. Leach, A skeleton from the Lapita site at Kone, Foue Peninsula, New Caledonia. *New Zealand Journal of Archaeology*, 25–74 (1998).

117. A. S. Poteate, S. M. Fitzpatrick, W. S. Ayres, A. Thompson, First Radiocarbon Chronology for Mwoakilloa (Mokil) Atoll, Eastern Caroline Islands, Micronesia. *Radiocarbon* **58**, 169–178 (2016).

118. G. K. Pregill, M. I. Weisler, Lizards from prehistoric sites on Ebon Atoll, Marshall Islands. *Micronesica* **39**, 107–116 (2007).

119. P. Rainbird, "Kosrae's Place in Pacific Prehistory" in *Landscape Archaeology: Prehistoric Settlement, Subsistence and Environment of Kosrae, Eastern Caroline Islands, Micronesia*, Archaeology in Oceania., J. S. Athens, Ed. ([Wiley, Oceania Publications, University of Sydney], 1995), pp. 139–145.

120. T. M. Rieth, A. E. Morrison, D. J. Addison, The temporal and spatial patterning of the initial settlement of Sāmoa. *The Journal of Island and Coastal Archaeology* **3**, 214–239 (2008).

121. M. E. Rosenthal, The archaeological excavation of an outrigger canoe at the Nasilai site, Rewa Delta, Viti Levu, Fiji. *Asian Perspectives* **34**, 91–118 (1995).

122. C. Sand, "Walpole, a 'mystery island' in southeast New Caledonia?" (2004).

123. C. Sand, La datation du premier peuplement de Wallis et Futuna : contribution à la définition de la chronologie Lapita en Polynésie occidentale. *Journal de la Société des Océanistes* **111**, 165–172 (2000).
124. C. Sand, The chronology of Lapita ware in New Caledonia. *Antiquity* **71**, 539–547 (1997).
125. C. Sand, *et al.*, Geological subsidence and sinking islands: the case of Manono (Samoa). *Archaeology in Oceania* **51**, 99–107 (2016).
126. C. Sand, *et al.*, Oceanic rock art: first direct dating of prehistoric stencils and paintings from New Caledonia (Southern Melanesia). *Antiquity* **80**, 523–529 (2006).
127. P. J. Sheppard, S. Chiu, R. Walter, Re-dating Lapita movement into Remote Oceania. *Journal of Pacific Archaeology* **6**, 26–36 (2015).
128. K. Shun, J. S. Athens, Archaeological investigations on Kwajalein Atoll, Marshall Islands, Micronesia. *Micronesica Supplement* **2**, 231–240 (1990).
129. D. H. R. Spennemann, J. M. Head, Tongan pottery chronology, 14C dates and the hardwater effect. *Quaternary Science Reviews* **17**, 1047–1056 (1998).
130. M. Spriggs, S. K. Wickler, Archaeological research on Erromango: recent data on southern Melanesian prehistory. *Bulletin of the Indo-Pacific Prehistory Association* **9**, 68–91 (1989).
131. C. F. Streck, Prehistoric settlement in eastern Micronesia: archaeology on Bikini Atoll, Republic of the Marshall Islands. *Micronesica Supplement* **2**, 247–260 (1990).
132. J. Takayama, Archaeological research in Micronesia during the past decade. *Indo-Pacific Prehistory Association Bulletin* **3**, 95–114 (1982).
133. R. Walter, A. Anderson, Archaeology of Niue Island: initial results. *The Journal of the Polynesian Society* **104**, 471–481 (1995).
134. J. V. Ward, “Sediment coring and palynology” in *Landscape Archaeology: Prehistoric Settlement, Subsistence, and Environment of Kosrae, Eastern Caroline Islands, Micronesia*, International Archaeological Research Institute., J. S. Athens, Ed. (1995), pp. 299–335.
135. J. V. Ward, Palynology of Kosrae, eastern Caroline Islands: recoveries from pollen rain and Holocene deposits. *Review of Palaeobotany and Palynology* **55**, 247–271 (1988).
136. M. I. Weisler, Life on the edge: prehistoric settlement and economy on Utrōk Atoll, northern Marshall Islands. *Archaeology in Oceania* **36**, 109–133 (2001).
137. M. I. Weisler, The antiquity of aroid pit agriculture and significance of buried A horizons on Pacific atolls. *Geoarchaeology* **14**, 621–654 (1999).
138. M. I. Weisler, H. Yamano, Q. Hua, A multidisciplinary approach for dating human colonization of Pacific atolls. *The Journal of Island and Coastal Archaeology* **7**, 102–125 (2012).
139. M. I. Weisler, J. K. Lum, S. L. Collins, W. S. Kimoto, Status, health, and ancestry of Late Prehistoric burial from Kwajalein Atoll, Marshall Islands. *Micronesica* **32**, 191–220 (2000).
140. T. Yamaguchi, H. Kayanne, H. Yamano, Archaeological investigation of the landscape history of an oceanic atoll: Majuro, Marshall Islands. *Pacific Science* **63**, 537–565 (2009).
141. L. R. Berger, *et al.*, Small bodied humans from Palau, Micronesia. *PLoS ONE* **3** (3) e1780 (2008).

142. J. H. Stone, S. M. Fitzpatrick, M. F. Napolitano, Disproving claims for small-bodied humans in the Palauan archipelago. *Antiquity* **91** (360), 1546-1560 (2017).