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Generating quasirandom points with high uniformity is a fundamental task in many 
fields. Existing number-theoretic approaches produce evenly distributed points in [0, 1]d

in asymptotic sense but may not yield a good distribution for a given set size. It is also 
difficult to extend those techniques to other geometries like a disk or a manifold. In 
this paper, we present a novel physics-informed framework to transform a given set of 
points into a distribution with better uniformity. We model each point as a particle and 
assign the system with a potential energy. Upon minimizing the energy, the uniformity 
of distribution can be improved correspondingly. Two kinds of schemes are introduced: 
one based on molecular dynamics and another based on deep neural networks. The new 
physics-informed framework serves as a black-box transformer that is able to improve 
given distributions and can be easily extended to other geometries such as disks, spheres, 
complex manifolds, etc. Various experiments with different geometries are provided to 
demonstrate that the new framework is able to transform poorly distributed input into 
one with superior uniformity.

 2022 Elsevier Inc. All rights reserved.

1. Introduction

Generating quasirandom points with good uniformity plays a key role in various applications, such as numerical in-
tegration [1,2], computer graphics [3,4], image reconstruction [5], machine learning [6,7], etc. For example, in numerical 
integration, quasi-Monte Carlo methods aim to improve the convergence rate of Monte Carlo by using points that are evenly 
distributed in the unit cube [0, 1]d . A large amount of work is devoted to the study of uniformity of distribution in [0, 1]d , 
measured by the concept of discrepancy [8,9,1,2,10]. A set with low discrepancy is considered to have good uniformity. Vari-
ous formulas have been developed to generate points with low discrepancy, including Halton sequence [11], Sobol′ sequence 
[12], digital sequence [9,1], lattice points [13,14], etc. Those points are shown to have a discrepancy that converges to zero 
in a certain rate as the number of points approaches infinity (cf. [1,10] or Section 2.2).

Despite the proved uniformity in the asymptotic sense, it is well-known that (cf. [15,16,10]), for a fixed set size N , the 
N points produced by existing formulas may display poor uniformity. For example, the two-dimensional Halton sequence 
with relatively prime bases b1, b2 is given by

xn = (φb1(n − 1),φb2(n − 1)), n = 1,2, . . . ,
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Fig. 1. Points from the Halton sequence with different bases (left) and set sizes (right) can possess contrasting degrees of uniformity.

Fig. 2. Transforming random samples in [0,1]2 (left) and a poor distribution in a disk (right) into better distributions.

where φb(n) =
∞∑

k=1
nkb−k ∈ [0, 1) denotes the base b radical inverse function and n =

∞∑

k=1
nkbk−1 is the representation of n in 

base b (only finitely many nk ’s are nonzero). Though the infinite set {xn}∞n=1 is shown to have low discrepancy, the finite N
points x1, . . . , xN may have poor uniformity due to the choice of N or the bases. Fig. 1 illustrates this issue. The two plots in 
Fig. 1a show the first 20 points of the Halton sequences with two different pairs of bases. It is easy to see that the set with 
bases (2,3) demonstrates much better uniformity than the one with bases (11,13). Fig. 1b shows that different set sizes (first 
N points) of the Halton sequence (with bases 11,13) can display varying degrees of the uniformity, where N = 66 points 
achieve extraordinary uniformity while N = 30 points are not distributed evenly at all. When N = 250, the distribution 
has low discrepancy but there is a strong correlation between certain points which impairs the quasirandomness of the 
distribution.

We see from above that in the pre-asymptotic regime, points in a low discrepancy sequence may not necessarily possess 
good uniformity. To remedy a poor distribution, permutation or scrambling techniques have been proposed [15,17–19]. The 
new set of points obtained by applying those number-theoretic techniques can achieve significantly better uniformity. Those 
techniques are closely related to the construction of low discrepancy sequences and often assume that the input point set 
is from a low discrepancy sequence. In this paper, we are interested in the more general case where the input points can 
be unstructured random samples or poorly distributed in a domain as illustrated in Fig. 2. Note that even though existing 
work only focuses on studying distributions in the unit cube, the problem of improving poor distributions is also of great 
interest for other geometries like a disk, a sphere or more complex manifolds, for which the concept of discrepancy is not
defined and existing machineries can not be applied.

In this paper, we consider the problem of improving the uniformity of a given set of possibly poorly distributed points 
(see Fig. 2). We present a novel physics-informed framework based on physics principles to transform a given distribu-
tion for better quasirandomness. It serves as a versatile tool complementary to existing number-theoretic approaches and, 
furthermore, naturally extends to improving distributions over a disk or a manifold.

Methodology and contributions. We introduce a physics-informed framework to modify a given distribution for better 
uniformity. Entirely different from existing approaches, we model each point as a particle and associate the system of 
particles with a potential energy. Adjusting the distribution for better uniformity corresponds to moving particles in the 
physical system towards a state with low potential energy. Based on this principle, we present two different schemes 
for transforming the given point set: (1) molecular dynamics(MD) simulation; (2) deep neural networks(DNN). The MD 
simulation is commonly used to study the interaction between particles and the evolution of particle systems governed by 
certain physics laws (cf. [20–24]). It has also been used to sample the potential energy surfaces [25,26]. In those applications, 
to study the interaction between different particles and the structure of molecules, of importance are chemical bonds, 
electric charges, van der Waals forces, etc. Different from existing work in MD simulations, we are interested in transforming 
the configuration and the only quantity that matters is the location of each particle instead of radius, chemical bond, charge, 
etc. Thus we model each point as a particle with equal mass and ignore the radius of the particle. The MD simulation is 
used to shift particles so as to resolve clumps and fill in holes in the system, thus creating a better distribution. We remark 
that using MD to achieve better uniformity has existed “informally” in the MD community, but no work has been done to 
investigate it systematically and quantitatively.
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Contrary to MD simulation, in the DNN approach, we completely ignore the kinetic energy and approximate the equilib-
rium state by minimizing the total potential energy of all particles, where each particle is represented as a neural network. 
This enables the use of modern deep learning techniques to search for a state with low energy.

Compared to classical number-theoretic approaches, introducing energy into the study of distributions offers a lot more 
flexibility. It can be directly applied to improving the uniformity of poorly distributed points. When applied to random 
samples, the energy-based distribution transformer can efficiently improve the uniformity and thus can be used to generate 
quasirandom points. It offers a straightforward generalization to improving distributions on a disk, a sphere or a general 
manifold, whereas existing methods are limited to the unit cube. Generally speaking, the new framework presents a dy-
namical characterization of distributions and can potentially transfer the study of uniform distribution to other distributions 
of particular interest by simply changing the potential energy. Specifically, it can be used to

• improve the quasirandomness of points in a low discrepancy sequence;
• transform random samples into a distribution with better uniformity;
• transform given points on a disk or a manifold into a better distribution.

The rest of the manuscript is organized as follows. Section 2 reviews existing work on generating quasirandom points or 
low discrepancy sequences. The new physics-informed framework is presented in Section 3, where two kinds of distribution 
transformers, based on molecular dynamics and deep neural networks, respectively, are introduced. Section 4 presents the 
distribution transformers for disks, spheres, and manifolds in general. Section 5 investigates theoretically the potential en-
ergy and distributions. Numerical experiments are presented in Section 6 followed by a discussion in Section 7. A conclusion 
is drawn in Section 8.

Notation. Throughout the presentation, we use | · | to denote the magnitude of a vector (i.e. Euclidean norm). #X denotes 
the cardinality of a finite set X .

2. Low discrepancy sequences in [0, 1]d

In Section 2.1, we review the definition of discrepancy for a finite set of points in the unit cube [0, 1]d . Then we review 
in Section 2.2 existing techniques to construct low discrepancy points. Section 2.3 discusses limitations associated with 
existing approaches, which motivate the work in this manuscript.

2.1. Discrepancy

Discrepancy is a concept that measures the uniformity of a finite set of points in the unit cube [0, 1]d . Smaller discrep-
ancy indicates better uniformity. Quasi-Monte Carlo methods consist in the design and use of low discrepancy points in 
place of random samples in the Monte Carlo method in order to improve the convergence rate for approximating integrals.

There are several definitions for describing the discrepancy (cf. [1,27]) and the most commonly used ones are the star 
discrepancy and the extreme discrepancy.

Definition 1. The star discrepancy D∗
N (X) of X = {x1, . . . , xN } in [0, 1]d is defined by D∗

N (X) := sup
J∈J ∗

|#(X ∩ J )/N − λ( J )|, 

where λ denotes the Lebesgue measure in Rd and J ∗ is the family of all subintervals in [0, 1)d of the form 
∏d

i=1[0, ai).

Definition 2. The extreme discrepancy D N (X) of X = {x1, . . . , xN } in [0, 1]d is defined by D N (X) := sup
J∈J

|#(X ∩ J )/N −λ( J )|, 

where J is the family of all subintervals in [0, 1)d of the form 
∏d

i=1[ai, bi).

Roughly speaking, if the number of points in X ∩ J is more or less proportional to the measure of J for any box J , then 
the discrepancy of X is small. If there are many clumps in X , then its discrepancy will be large. The star discrepancy in 
Definition 1 is also known as the L∞-star discrepancy since the measure sup | · | can be viewed as the L∞ norm (cf. [28]). 
More generally, the Lp-star discrepancy is defined by using Lp norm to measure the difference #(X ∩ J )/N − λ( J ). As can be 
seen from the definition, the calculation of discrepancy is not straightforward in general. However, the L2-star discrepancy 
for X = {xi}N

i=1 can be calculated directly using Warnock’s formula [29]:

D∗
L2,N = 1

3d
− 21−d

N

N∑

i=1

#d
k=1(1 − (x(k)

i )2) + 1
N2

N∑

i, j=1

Ck,i, j, (1)

where Ck,i, j = min(1 − x(k)
i , 1 − x(i)

j ) and x(k)
i denotes the kth component of xi . This discrepancy will be used in performing 

experiments in Section 6. We review in the next subsection some representative sets and sequences with low discrepancy.
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2.2. Low discrepancy sets and sequences

Extensive research has been done to construct a set or a sequence of points x1, x2, · · · ∈ [0, 1]d such that D∗
N (x1, . . . , xN )

is small when N is sufficiently large. The point set is considered to have low discrepancy if D∗
N(x1, . . . , xN ) = O (N−1(log N)d)

for sufficiently large N . The topic is relatively mature and we follow the presentations in [1,10].
There are in general two classes of approaches in constructing low discrepancy points in [0, 1]d . Examples from the first 

class include Halton sequence [11], digital net [9,1], digital sequence [9,1], Sobol′ sequence [12,30], etc. The second class 
consists of lattice points [13,14,31].

Definition 3 (Halton sequence). Let φb(n) = φb

(
∞∑

k=1
nkbk−1

)

=
∞∑

k=1
nkb−k be the radical inverse function in base b. The Halton 

sequence in the pairwise relatively prime bases b1, . . . , bd is defined as

xn = (φb1(n − 1), . . . ,φbd (n − 1)) ∈ [0,1)d, n = 1,2, . . . .

Definition 4 (Elementary interval). For an integer b ≥ 2, a subinterval E of [0, 1)d of the form E =
d∏

i=1
[aib−pi , (ai + 1)b−pi )

with non-negative integers ai, pi such that ai < bpi (1 ≤ i ≤ d) is called an elementary interval in base b.

Definition 5 (Digital net). Let 0 ≤ t ≤ m be integers. A (t, m, d)-net in base b is a set X of bm points in [0, 1)d such that the 
cardinality of X ∩ E is bt for every elementary interval E in base b with λ(E) = bt−m .

Note that the size of a digital net can not be arbitrary (the cardinality can only be bm). Hence it is not extensible, meaning 
that we can not specify an arbitrary set size or add an arbitrary number of points to the set. The extensible version of a 
digital net is the so-called digital sequence.

Definition 6 (Digital sequence). Let b ≥ 2 and t ≥ 0 be integers. A sequence x0, x1, . . . of points in [0, 1)d is a (t, d)-sequence 
in base b if, for all integers k ≥ 0 and m > t , the point set consisting of the xn with kbm ≤ n < (k + 1)bm is a (t, m, d)-net in 
base b.

The popular Sobol′ sequence [12] is a (t, d)-sequence in base b = 2. According to discrepancy theory [1,27], the above 
sets or sequences all have low discrepancy in the sense that D∗

N (X) = O (N−1(log N)d), where X can be one of the following: 
(1) the first N terms of a Halton sequence; (2) a (t, m, d)-net in base b with m > 0; (3) the first N terms of a (t, d)-sequence 
in base b.

A different way of constructing low discrepancy points is given by the lattice rule [13,14,32–34]. The lattice points have 
a periodic structure and are associated with a generating vector.

Definition 7 (Lattice point set). Let g ∈Zd and N ∈Z+ . For k = 0, 1, . . . , N − 1, define xk to be the fractional part of kg
N . The 

point set XN = {x0, x1, . . . , xN−1} in [0, 1)d is called a lattice point set and g is called the generating vector of XN .

Definition 8 (Lattice sequence). Let g ∈ Zd and φb be the radical inverse function in base b. The lattice sequence xk (k =
0, 1, . . . ) in base b is defined as the fractional part of φb(k)g.

The quality of a lattice set or sequence hinges on the choice of the generating vector g. As described in the theorem 
below (cf. [1]), it can be shown that there does exist a good generating vector g such that the resulting lattice points have 
low discrepancy. In practice, constructing good generating vectors is nontrivial. Efficient algorithms for computing good 
generating vectors for the lattice rule can be found in [31,34].

Theorem 1. There exists a generating vector g such that the lattice point set in Definition 7 has discrepancy D N(XN ) = O (N−1(log N)d).

Even though the low discrepancy points above are proved to achieve good uniformity as N approaches infinity, it is 
possible that, for a finite set size, the points are not evenly distributed. As shown in Fig. 1, the quality of low discrepancy 
points depends on the set size and parameters in the generating formula. In Section 2.3, we review the limitations of 
existing low discrepancy sequences.

2.3. Limitations

Low discrepancy sequence displays good uniformity in [0, 1]d as the number of points becomes large enough. For a fixed 
size N , the uniformity of the N points from a low discrepancy sequence is unpredictable.
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Pre-asymptotic regime Theoretically, the concept of low discrepancy is discussed in asymptotic sense only (cf. Section 2.2). 
For a finite set, as we have seen in Section 1, the points drawn from a low discrepancy sequence may not be distributed 
evenly.

Improving uniformity Permutation and scrambling techniques [15,17–19] can be used to significantly improve a set of poorly 
distributed low discrepancy points. For a general set of points which are not generated by any formula or are located on a 
disk or a manifold, however, those techniques may not be effective.

Geometry Note that discrepancy is only defined for the unit cube [0, 1]d . The low discrepancy sets and sequences in Sec-
tion 2.2 all hinge on the special properties of the unit cube [0, 1]d , such as periodicity, tensor product structure, etc. In 
general, it is quite difficult to extend the algebraic or combinatoric machinery to generating good distributions over other 
geometries like a disk, a sphere, etc, which are of great interest in many applications (cf. [35–37]).

We aim to develop a general black-box distribution transformer that does not require any generating formula for the 
input data and has the potential to be extended to different geometries. An efficient distribution transformer enables a new 
way to construct quasirandom points, i.e., by simply transforming random samples.

3. Physics-informed distribution transformers

In this section, we present a versatile framework to deal with distributions from a new perspective. The key lies in 
assigning the given set of points with a potential energy and modeling the points as particles with pairwise interactions 
dictated by the potential. Due to the strong repulsive forces between particles that are too close, the system will evolve 
towards a state with lower potential energy, which corresponds to a better distribution with more evenly spaced points. 
The incorporation of interaction energy into the study of distributions greatly extends the scope of existing machinery and 
can be used to study various distributions without resorting to any algebraic or analytic formula.

Based on the energy principle, we introduce two different approaches to improve the quality of a given distribution: 
molecular dynamics(MD) simulations and deep neural networks(DNN). The MD approach relies on classical molecular 
dynamics simulations, where the system is equipped with both potential energy and kinetic energy and particles move 
according to Newton’s law of motion. The DNN approach ignores the kinetic energy and searches for the equilibrium state 
via minimizing the potential energy, where the state is represented by a deep neural network. We first review the basics of 
molecular dynamics simulations and deep neural networks in Section 3.1. Then we introduce the corresponding distribution 
transformers in Section 3.2 and Section 3.3.

3.1. Review of molecular dynamics and neural networks

3.1.1. Molecular dynamics (MD)
Molecular dynamics(MD) is a popular tool to simulate the motion of particles in fluid dynamics, material sciences, chem-

ical engineering, and biology. The system of particles are subject to pairwise interactions and the evolution of the system is 
obtained by numerically solving Newton’s law of motion with time stepping. In practical applications, the simulation may 
involve millions of time steps and a large number of particles. For large-scale simulations, many high performance software 
packages have been developed, such as Desmond [38], GROMACS [39], LAMMPS [40,41], NAMD [42], OpenMM [43], etc. We 
review in the following some basic notions and algorithms in MD.

The evolution of a system of interacting particles is determined by the Newton’s law of motion: mi
d2xi

dt2 = Fi , where mi

and xi denote the mass and location of the ith particle, respectively, and Fi denotes the force imposed on particle i. Given 
a potential function U (x, y) and a system of N particles x1, . . . , xN ∈Rd , the potential field and force on particle i are given 
by

Ui =
n∑

j=1
j )=i

U (x j, xi), Fi = −∇xi Ui, (2)

respectively. The numerical scheme to compute approximate solution to the Newton’s equation is called an integrator. There 
are several integrators for molecular dynamics simulations. The most popular class of integrators in molecular dynamics 
are the Verlet algorithms, including the basic Verlet algorithm [44], the Verlet leapfrog algorithm [45], the velocity Verlet 
algorithm [46]. The velocity Verlet algorithm is based on the following update formula, which is widely used in practice 
due to the computational efficiency.

x(t + $t) = x(t) + v(t)$t + F
2m

$t2, v(t + $t) = v(t) + F (t + $t) + F (t)
2m

$t,

where x denotes the location of a particle, v denotes the velocity and $t denotes the step size for time discretization. The 
complete algorithm is shown in Algorithm 1. Compared to other schemes, the velocity Verlet algorithm is easy to implement 
and memory-efficient. Algorithm 1 will be used in Section 3.2 to design the MD-based distribution transformer.
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Algorithm 1 Velocity Verlet Algorithm.
Input: Initial positions {xi}N

i=1 and velocities {vi}N
i=1

Parameters: Potential U , mass m, step size $t , maximum iteration number M
Output: Positions xi and velocities vi after M time steps
1: For each particle i, compute the force Fi = −∇xi Ui as in (2)
2: Update the positions xi = xi + vi$t + Fi

2m $t2

3: Update the velocities partially vi = vi + Fi
2m $t

4: Update the force field Fi using the new positions xi
5: Complete the update of velocities vi = vi + Fi

2m $t
6: Go back to Step 1 unless the number of iterations reaches M
7: return {xi}N

i=1, {vi}N
i=1

3.1.2. Deep neural networks (DNN)
The past decade has seen unprecedented success for the applications of deep neural networks. Due to the expressive 

power and flexible architecture, deep neural networks have been an indispensable tool in a variety of fields, such as image 
processing, patter recognition, natural language understanding, artificial intelligence, etc. DNN is also used as a tool for 
solving scientific computing problems such as partial differential equations (cf. [47–49]). In the following, we review the 
basics of feedforward deep networks. Mathematically, a neural network is a mapping Fθ :Rm →Rn defined as a composition 
of a sequence of affine and nonlinear mappings, i.e.,

Fθ = σ ◦ AL ◦ σ ◦ AL−1 ◦ · · ·σ ◦ A2 ◦ σ ◦ A1(x), (3)

where σ :R →R is called the activation function and is applied elementwisely to the input vector or matrix, and each Ak is 
an affine transformation in the form of Ak(x) := Wkx + bk . Here the matrix Wk is called the weight matrix and the vector bk
is the bias vector. The symbol θ in (3) denotes the set of all parameters, including weight matrices and bias vectors. Vector 
input in each composition corresponds to a layer, where the input layer is x, the output layer is σ ◦ AL , and the intermediate 
ones are called hidden layers. The number L measures the depth of the neural network. The length of vector bk is called the 
width of the kth layer. A deep neural network is a neural network with more than one hidden layer.

The activation function σ is usually a nonlinear monotone function. Some commonly used activation functions include 
ReLU σ (x) = max(x, 0), Sigmoid σ (x) = 1/(1 + e−x), hyperbolic tangent σ (x) = tanh(x), etc. It is well-known that deep 
neural networks can approximate any smooth functions [50,51]. Because of the universal approximation property, neural 
networks are used extensively to model possibly complicated mappings. The parameter set θ is determined by training the 
neural network, i.e., minimizing a loss function. The definition of the loss function depends on the particular application. The 
loss function is in general a complicated nonconvex function and a variety of optimization techniques have been developed, 
such as stochastic gradient descent (SGD) [52,53], ADAGRAD [54], Adam [55], extragradient method [56,57], etc. In practice, 
due to the large number of parameters and complicated loss function, there is no guarantee that those techniques can find 
any global or local minimum. A solution that significantly reduces the initial loss to a certain level is considered acceptable.

3.2. Distribution transformer via MD

We present two distribution transformers based on molecular dynamics. The first one in Algorithm 2 transforms the 
input points directly, while the second one in Algorithm 3 applies a random shift to the input points before the transforma-
tion.

Basic MD-based distribution transformer. The basic MD-based distribution transformer is given in Algorithm 2. It applies 
the velocity Verlet algorithm to the particles with several modifications. Firstly, the proposed transformer in Algorithm 2
contains the confinement potential in the definition of total energy, which is not included in the velocity Verlet algorithm 
in Algorithm 1. Namely, in Algorithm 2, we define the potential field on particle i as

Ui = γ V (xi) +
n∑

j=1
j )=i

U (x j, xi) (4)

with V the confinement potential and γ the confinement strength. Secondly, since the updated position of a particle can go 
out of the cube [0, 1]d , for each updated position x, we compute x = x − -x. to ensure that each particle lies inside [0, 1]d

during the transformation in Algorithm 2. Here -x. denotes the floor function and is applied componentwisely to vector x. 
A similar but slightly different strategy is used in the lattice rule, where instead of using the floor function, the fractional 
part of a point is chosen to obtain an admissible point in [0, 1]d . A discussion of the two approaches and why we use the 
floor function is given in Remark 3.1.

Given a set of points, Algorithm 2 is easy to implement and only requires the locations of points. The MD-based model is 
quite flexible as the user is free to modify the model by adjusting the potential function and model parameters $t, M, ρ, m, 
etc. We discuss the choice of parameters later in this section.

6
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Algorithm 2 Distribution transformer via molecular dynamics.
Input: N points x1, . . . , xN ∈ [0, 1]d

Parameters: Potentials U , V , confinement strength γ , mass m, step size $t , maximum iteration number M , energy reduction rate ρ ∈ (0, 1]
Output: N transformed points y1, . . . , yN ∈ [0, 1]d

1: Initialize velocities vi = 0 for i = 1, . . . , N
2: Compute the potential Ui in (4) and force field Fi = −∇xi Ui for all points

3: Compute the total potential energy E∗ =
N∑

i, j=1
i< j

U (xi , x j) + γ
N∑

i=1
V (xi)

4: Set the mass of each particle to be

m = 100$t2 N
1
d −1(

N∑

i=1

|Fi |2)1/2, (5)

where | · | denotes the magnitude of a vector
5: Run the velocity Verlet algorithm in Algorithm 1 with an extra step x = x − -x. every time after a position is updated. In each time step, compute the 

total potential energy E of the system. If E < ρE∗ , update E∗ = E and record the locations of points
6: return The configuration y1, . . . , yN with the lowest energy

Applying the MD-based transformer to random samples yields an efficient way of generating quasirandom points. Com-
pared to low discrepancy sequences in Section 2.2, the new dynamical approach is more flexible as it is not based on any 
strict formula and allows points to shift in the domain. The new model is less sensitive to parameters due to the continuous 
framework.

MD-based distribution transformer with random shift. The transformer in Algorithm 2 works well for random input 
but may not be effective for input distributions with a high level of symmetry, such as the rightmost distribution in Fig. 1b. 
This is because the forces imposed on each particle may cancel out due to the symmetry and thus the overall force on 
each particle is extremely small. As a result, directly applying Algorithm 2 may hardly change the distribution. To resolve 
this issue, inspired by the random scrambling techniques [17,18] for improving low discrepancy sequences, we propose a 
modified MD-based transformer with random shift. The key step is to perform a random shift to the input before applying 
the MD-based transformer in Algorithm 2. The full scheme is summarized in Algorithm 3. As we will see in Section 6, the 
random shift version is very effective for improving the quasirandomness of distributions with certain symmetry, for which 
the basic MD-based transformer in Algorithm 2 does not work well.

Algorithm 3 MD-based distribution transformer with random shift.
Input: N points x1, . . . , xN ∈ [0, 1]d

Parameters: Random shift size ν , potential U , V , confinement strength γ , mass m, step size $t , maximum iteration number M , energy reduction rate 
ρ ∈ (0, 1]
Output: N transformed points y1, . . . , yN ∈ [0, 1]d

1: Apply random shift to each input point: x̂i = xi + νti , where ti ∈ [0, 1] is random
2: Restrict each point to [0, 1]d: x̂i = x̂i − -x̂i.
3: Apply Algorithm 2 to x̂1, . . . , ̂xN to obtain the transformed points y1, . . . , yN
4: return y1, . . . , yN

Choice of parameters The step size $t is usually a small number compared to the length scale of the domain, for example, 
0.0001 to 0.001 for the unit square.

The choice of mass affects how fast each particle moves in each time step and consequently the speed of the transforma-
tion. Larger mass yields slower move while smaller mass yields faster and more dramatic change of locations in each time 
step. Using a large mass may lead to a large number of iterations for the system to attain a good distribution, while a small 
mass may cause the system to go out of control since the change can be too wild during each iteration. We choose the 
mass to be given by (5) for the following reason. In each time step, we’d like the shift contributed from forces F

2m $t2 to be 
comparable to the scale of O (N−1/d), which is the scale of spacing for equispaced grid points in [0, 1]d . Hence m is chosen 

to be of order O (N1/d|F |$t2), where |F | = N−1
(

N∑

i=1
|Fi |2

)1/2

denotes the average magnitude of force. The coefficient 100

in (5) is not essential and can be replaced by other suitable values. One can also choose a different mass other than the 
one in (5). Numerical results in Section 6 show that the choice of mass in (5) yields rapid convergence from given random 
samples to a quasirandom distribution (after only a few time steps). Nevertheless, it is interesting to investigate the impact 
of mass on the performance of the algorithm as well as the interplay between m and other quantities like N, $t, M . A more 
comprehensive study of the model parameters will be reported in a later date.

The energy reduction rate ρ ∈ (0, 1] affects which configuration the user needs to keep. If ρ = 1, then every time we 
reach a state with a potential energy lower than the current E∗ , the state is stored and E∗ is updated. If ρ is small, this 
means that we only save the state that leads to a noticeable reduction in energy. In Section 6, good test results are obtained 
with ρ = 0.99 and a dramatic decrease in energy is uncommon if the input points are random samples, which spread over 
the domain with potentially multiple holes and clumps, but are not considered too poorly distributed.

7
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Fig. 3. Deep neural network as a distribution transformer.

Remark 3.1. The two techniques for restricting a point to [0, 1]d - using the floor function and choosing fractional part - are 
slightly different. To see this, consider a scalar number x. If x ≥ 0, then x − -x. is equal to the fractional part of x. If x < 0, 
for example, x = −0.1, then x − -x. = −0.1 − (−1) = 0.9, while the fractional part of x is 0.1. We choose to use x − -x.
due to its physical interpretation. Assume that we tile the unit cube [0, 1]d to make a periodic structure that fills the whole 
space. Then the location of x −-x. in [0, 1]d is equal to the relative location of x inside the cube that contain x. For example, 
if we consider d = 1, then the relative location of x = −0.1 in [−1, 0] is same as x − -x. = 0.9 in [0, 1].

Remark 3.2. Note that both the technique x = x − -x. in Algorithm 2 and the fractional part selection in lattice rule [13,32,
34] are limited to the special geometry of [0, 1]d . They become invalid for dealing with points in other geometries such as 
spheres or more complex manifolds. The neural network-based approach introduced in Section 3.3 enables a more flexible 
treatment of different geometries.

3.3. Distribution transformer via DNN

Different from the molecular dynamics approach, we can also completely ignore the kinetic energy of the system and 
search for a state with low potential energy. This is achieved via parametrizing the desired low-energy state as a neural 
network and minimizing a loss function representing the total energy. An illustration of the basic model is shown in Fig. 3. 
The full algorithm is presented in Algorithm 4.

Basic idea. For a point x ∈ [0, 1]d , we represent the corresponding transformed output y as a residual neural network 
(ResNet) [58] y = x + G(x; θ), where G is a neural network parametrized by θ . The output y will be determined after the 
ResNet x + G(x; θ) is trained to minimize the loss function, defined as the total interaction energy:

E(x1, . . . , xN) =
N∑

i, j=1
i< j

U (xi, x j) + γ
N∑

i=1

V (xi), (6)

where U (x, y) denotes the interaction potential, V (x) denotes the confinement potential, and γ ≥ 0 is a parameter for 
confinement strength.

There are several choices of the interaction potential and the confinement potential. In this manuscript, we consider the 
following interaction potentials.

Coulomb potential: U (x, y) = 1
|x − y| ; Yukawa potential: U (x, y) = e−µ|x−y|

|x − y| , (7)

where the constant µ is the damping factor (also called screening strength) in the screened interaction. If U is chosen as 
the Coulomb potential, a confinement potential is often needed, i.e. γ > 0 in (6). If U is chosen as the Yukawa potential, we 
can choose γ = 0 as discussed in Section 5.

The confinement potential V is usually in the form of V (x) = |x − c|k , where c is the center of the region and k > 0 is 
an even number. In [59,60], V (x) = |x − c|2; in [61], V (x) = |x − c|4. In general, V (x) is a non-negative function such that 
the closer x is to the boundary of the domain, the larger V (x) is.

Note that the output of ResNet y = x + G(x; θ) is not guaranteed to stay in the unit cube [0, 1]d , so the model can not be 
used directly since the output y has to be restricted to the unit cube. One simple remedy is to apply a sigmoid activation 
function σ (whose range is (0, 1)) to the ResNet as follows:

y = σ (x + G(x; θ)). (8)

However, this destroys the ResNet architecture (as the identity map can not be recovered in the “short connection” [58]) 
and will yield unsatisfying results as demonstrated in Section 6. This is consistent with the finding in [58] on the improved 
stability and faster convergence provided by the ResNet architecture. To circumvent this issue, we propose in the following 
an unconstrained model.

8



D. Cai Journal of Computational Physics 468 (2022) 111511

Unconstrained model. To ensure that the output is always inside the unit cube, we parametrize each point x as x =
1
2 + 1

2 sinα, where both ‘+’ and ‘sin’ are applied componentwisely. Since x ∈ [0, 1]d is always guaranteed and the mapping 
is surjective, α ∈Rd is a free variable without any constraint. The energy function in the free latent variables becomes

Ec(α1, . . . ,αN ) =
N∑

i, j=1
i< j

U ( 1
2 + 1

2 sinαi,
1
2 + 1

2 sinα j) + γ
N∑

i=1

V ( 1
2 + 1

2 sinαi), αi ∈Rd. (9)

Given x ∈ [0, 1]d , we can compute the free variable as α = arcsin(2x − 1). In order to transform x, it suffices to transform α
into β and set y = 1

2 + 1
2 sin β . We use a ResNet to model the transformation of the free variable α:

β = α + G(α; θ). (10)

The neural network is trained via minimizing the energy Ec(β1, . . . , βN ) and the output distribution in [0, 1]d is set to be 
yi = 1

2 + 1
2 sinβi . The full deep neural network (DNN)-based algorithm for transforming a given distribution is presented in 

Algorithm 4.

Algorithm 4 Distribution transformer via deep neural network.
Input: N points x1, . . . , xN ∈ [0, 1]d

Output: N transformed points y1, . . . , yN ∈ [0, 1]d

1: Compute αi = arcsin(2xi − 1) for all xi , where arcsin is applied componentwisely
2: Let βi = αi + G(αi; θ) be the ResNet in (10) parametrized by θ
3: Train the ResNet via minimizing Ec(β1, . . . , βN ) to obtain θ∗ and β∗

i = αi + G(αi; θ∗)
4: return yi = 1

2 + 1
2 sin β∗

i for i = 1, . . . , N

One advantage of DNN-based approach compared to the MD-based approach in Section 3.2 is that it is able to yield 
highly uniform distributions similar to equispaced grid points. See Section 6 for numerical results. The framework can be 
applied to dealing with distributions in a general domain as long as the system energy is chosen suitably. In Section 4, we 
will consider disks, spheres, and manifolds in general.

Remark 3.3. It should be noted that, when training a deep neural network, it is almost impossible in practice to find the 
exact global minimum, so θ∗ in Algorithm 4 is not a minimizer in general. In fact, there is no need to find the global 
minimum. As long as the computed solution significantly reduces the energy and improves the distribution, it serves as a 
desirable output.

Remark 3.4 (Relationship between the MD and DNN approaches). The DNN-based approach optimizes the energy function with 
respect to parameters in the neural network. As a comparison, the MD-based approach can be viewed as optimizing with 
respect to the output space directly. In fact, the time step $t in the MD-based approach in Algorithm 2 can be interpreted 
as the learning rate (or its variant like the square root of the learning rate, up to some multiplicative constants) in gradient 
descent algorithms; the force field is exactly the negative gradient of the objective - the potential energy; the velocity 
Verlet algorithm in Algorithm 1 can be viewed as a gradient descent algorithm with momentum, where the updates in 
Steps 2 and 3 of Algorithm 1 constitute a momentum update. We see that the update in the MD-based approach resembles 
applying a gradient descent-type algorithm to the energy function over the output space. It should be pointed out that 
directly applying gradient descent algorithms over the output space is generally invalid because each time, the new update 
can lie outside the geometry of interest. Hence postprocessing as in Algorithm 2 (Step 5) is needed to restrict the point to 
the domain of interest. Overall, this approach can be infeasible if the underlying geometry is too complicated to warrant an 
effective postprocessing step, as mentioned in Remark 3.2. The more flexible DNN-based approach can circumvent this issue 
and be applied to complicated geometries as discussed in Section 4.

4. Distribution transformers on disks, spheres, general manifolds

Generating distributions on a disk, a sphere or a general manifold has vast applications across various disciplines, from 
earth models [62,63], structural chemistry [35,64], to computer graphics [65,37], topology optimization [36], etc. In this 
section, we illustrate the flexibility of the proposed physics-informed framework by transforming distributions on disks, 
spheres, and manifolds in general. We employ the DNN-based model.

Distribution transformer on the unit disk. To transform points in the unit disk, directly minimizing (6) is not easy to 
implement since each point has to be restricted to the disk during the training of the neural network. Similar to Algorithm 4, 
we parametrize each point x in the unit disk using free variables α, β as

x =
( 1

2 cosβ(1 + sinα), 1
2 sinβ(1 + sinα)

)
, α,β ∈R. (11)

9
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The total energy expressed in terms of free variables 
[
αi
βi

]
∈R2 becomes:

Ed

([
α1
β1

]
, . . . ,

[
αN
βN

])
=

N∑

i, j=1
i< j

U (xi(αi,βi), x j(α j,β j)) + γ
N∑

i=1

V (xi(αi,βi)), (12)

where xi(αi, βi) is the parametrization in (11). The interaction potential U and confinement potential V can be chosen as 
discussed in Section 3.3.

We use a ResNet architecture to model the transformation of free variables:
[
α̃
β̃

]
=

[
α
β

]
+ G(

[
α
β

]
; θ). (13)

Then we train the neural network via minimizing the corresponding energy Ed . The full algorithm is presented in Algo-
rithm 5.

Algorithm 5 Distribution transformer on the unit disk.
Input: N points x1, . . . , xN on the unit disk
Output: N transformed points y1, . . . , yN on the unit disk
1: For each xi , set αi = arcsin(2|xi | − 1) and βi the angle of xi

2: Let 
[
α̃
β̃

]
be the ResNet in (13) parametrized by θ

3: Train the ResNet via minimizing Ed

([
α̃1

β̃1

]
, . . . ,

[
α̃N

β̃N

])
to obtain θ∗ and 

[
α̃∗

i
β̃∗

i

]

4: return yi parametrized by α̃∗
i , β̃∗

i as in (11)

The energy-based framework provides a flexible way to manipulate points and generate distributions according the 
specific need. Note that modifying γ will generate point distributions with different levels of concentration towards the 
center of the disk. A larger γ will result in more points near the center while setting γ = 0 will yield a ground state with 
more points near the boundary.

Distribution transformer on the unit sphere. The case of a sphere is very different from a cube or a disk because a 
sphere is a closed surface, i.e., with no boundary. Due to this property, there is no boundary effect and a confinement 
potential is not needed.

To transform the points on the unit sphere, we parametrize each point using the spherical coordinate

x = (sinα cosβ, sinα sinβ, cosα) ∈ S2, α,β ∈R. (14)

The system energy expressed in terms of the free variables αi, βi is

Es

([
α1
β1

]
, . . . ,

[
αN
βN

])
=

N∑

i, j=1
i< j

U (xi(αi,βi), x j(α j,β j)), αi,βi ∈R, (15)

where xi(αi, βi) is the spherical coordinate in (14) and U can be chosen as the Coulomb potential.

Same to (13), we model the transformed free variables 
[
α̃
β̃

]
as a ResNet. The neural network is trained via minimizing 

Es and the transformer is given in Algorithm 6.

Algorithm 6 Distribution transformer on the unit sphere.
Input: N points x1, . . . , xN on the unit sphere
Output: N transformed points y1 . . . yN on the unit sphere
1: For each xi ∈ S2, compute the corresponding angle parameters αi, βi

2: Let 
[
α̃
β̃

]
be the ResNet in (13) parametrized by θ

3: Train the ResNet via minimizing Es

([
α̃1

β̃1

]
, . . . ,

[
α̃N

β̃N

])
to obtain θ∗ and 

[
α̃∗

i
β̃∗

i

]

4: return yi ∈ S2 parametrized by α̃∗
i , β̃∗

i via (14)

Distribution transformer on a manifold. The idea in Algorithm 6 the can be generalized to a general manifold, as 
summarized in Algorithm 7. Assume a manifold , ⊂ Rd is parametrized by ψ : [−1, 1]d−1 → ,. We express each point 
x ∈ , as x = ψ(sinα), α ∈Rd−1. Then we can define a ResNet similar to (13) and optimize the energy function for a system 
of given points. The new locations can eventually be obtained as in Algorithm 7.

10
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Algorithm 7 Distribution transformer on a manifold.
Input: N points x1 = ψ(t1), . . . , xN = ψ(tN ) on the manifold , parametrized by ψ : [−1, 1]d−1 → ,

Output: N transformed points y1, . . . , yN on the manifold
1: For each ti ∈ [−1, 1]d−1, compute angle parameters αi ∈ [−π , π ]d−1 such that sinαi = ti
2: Let α̃ = α + G(α; θ) ∈Rd−1 denote the ResNet parametrized by θ
3: Train the ResNet via minimizing Es(α̃1, . . . , ̃αN ) to obtain θ∗ and α̃∗

i
4: return yi = ψ(sin α̃∗

i ) ∈ ,

Metrics for general geometries. For points on a general geometry such as a manifold, the definition of discrepancy is no 
longer valid and metrics not limited to a certain geometry are needed to measure the uniformity of a set X = {x1, . . . , xN }. 
The inverse minimal pairwise distance 1

min
i )= j

|xi−x j | is a simple metric valid for arbitrary geometries. It has been used as a 

metric in meshless methods to avoid the instability for discretizing and solving partial differential equations (cf. [66]). A 
relatively small value indicates good spacing between points. A drawback of this metric is that it depends on the minimal 
distance between two points and the same value can correspond to drastically different configurations with arbitrarily many 
pairs of points achieving the minimal distance. Different from geometric metrics, another metric we can use to indicate 
uniformity is the low-rank approximation error to certain kernel matrix. Recent study [7,67] shows that points with good 
uniformity will benefit the low-rank approximation to kernel matrices and clustered points in small regions impede not only 
accuracy but also numerical stability in low-rank approximations. Inspired by this result, we use X to compute low-rank 
factors to the kernel matrix and then use the approximation error as a metric to indicate the uniformity of X . Formally, 
we compute the low rank approximation error for a large kernel matrix K// = [κ(p, q)]p,q∈/ associated with a smooth 
symmetric kernel κ(x, y) and a set / = {qi}M

i=1 with M 0 N . The artificial set / is created such that it contains X and a 
large number of points randomly distributed on the underlying geometry. Examples of the kernel κ are shown in (21). The 
metric for X is defined as

||K// − K/X K +
X X K T

/X ||/||K//||, (16)

where A+ denotes the pseudoinverse of matrix A, || · || denotes the 2-norm, and K XY := [κ(x, y)]x∈X,y∈Y . It is expected 
that, a set X with better uniformity gives a smaller error. Experiments in [7] and Section 6 show that this algebraic metric 
is able to distinguish good distributions from bad ones (with poor uniformity). Compared to the concept of discrepancy, the 
metrics above work in a much more general setting and can be computed easily. We would like to emphasize that it is still 
unknown which metric works best or should be used for measuring uniformity of a set on a general geometry.

Remark 4.1. Distributing points on a sphere is a classical problem with diverse interests in chemistry, spherical design, 
physics [35,68–70]. The problem of minimizing the total Coulomb potential over a set of points x1, . . . , xN on the unit 
sphere is known as the Thomson problem [69]. The optimal set of points that minimize the energy is referred as Fekete points
[71]. The Coulomb interaction 1

|xi−x j | can be replaced with the more general Riesz s-energy 1
|xi−x j |s . The Thomson problem 

is still an open problem [72]. For some special values of N , the solution is known to be evenly distributed on the sphere. 
For example, when N = 4, the convex hull of the optimal distribution of points is a tetrahedron [68]; when N = 12, the 
convex hull is a icosahedron [73].

Remark 4.2. For simple geometries like a cube or a ball, we can first generate evenly distributed points in the bounding 
box and then remove points outside the geometry. However, this “generate-and-remove” approach does not work for more 
general geometries such as manifolds (a sphere, for example). It is easy to see that, if the underlying geometry is a mani-
fold, points evenly spread the bounding box are unlikely to lie exactly on the manifold. Another issue is that it may not be 
straightforward or computationally efficient to check whether each point belongs to the underlying geometry. On the con-
trary, the DNN-based approach is powerful enough to handle non-cube geometries, as can be seen from various experiments 
in Section 6.

5. Interaction energy

In this section, we consider the Coulomb and Yukawa potentials and discuss the interplay between the total energy and 
the distribution of points.

Coulomb interaction The Coulomb potential between two particles is inverse proportional to their distance. For a system of 
electrons in a bounded region, if the total energy is defined as the sum of all Coulomb interactions, then the equilibrium 
distribution is not the equispaced distribution, as can be seen from the proposition below for the one-dimensional case.

11
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Proposition 1. Let E(x1, . . . , xN ) =
N∑

i, j=1
i< j

1
|xi−x j | be the Coulomb interaction energy of N points in [0, 1]. Then the set of N equispaced 

points x∗
i = (i − 1)h with h := 1

N−1 and 1 ≤ i ≤ N does not minimize E .

Proof. For any N points x1 < x2 < · · · < xN , the partial derivative of E is given by

∂E
∂xi

= −
i−1∑

l=1

1
|xi − xl|2

+
N∑

l=i+1

1
|xi − xl|2

.

At the equispaced points (x∗
1, . . . , x∗

N ), the partial derivative with respect to x2 is

∂E
∂x2

= − 1
h2 +

N∑

l=3

1
(l − 2)2h2 =

N−2∑

k=2

1
k2h2 ≥ 1

4h2 .

We see that the partial derivative is large (assuming N is large), so E is far from being minimal when the N points are 
equispaced.

The result above indicates that, in order to obtain evenly distributed distributions, a confinement potential needs to be 
included in the total energy, as in (6). More precisely, we see from the proof of Proposition 1 that for the equispaced distri-
bution, particles located near the boundary experience large Coulomb forces while those near the center are relatively stable 
due to the cancellation of forces from opposite directions. Hence it is impossible to obtain a nearly uniform distribution at 
equilibrium. To resolve the boundary effect, a confinement potential V is needed in practice, as in (6). It is used to create a 
relatively large energy when the point is close to the boundary.

Yukawa interaction The Yukawa interaction is a screened Coulomb interaction where the long range interaction can be 
suppressed by the damping factor. Consequently, the boundary effect may not be noticeable and the confinement potential 
may not be necessary. A quantitative description is given in the proposition below for Yukawa interaction.

Proposition 2. Let E(x1, . . . , xN ) =
N∑

i, j=1
i< j

K (xi, x j) be the total interaction energy of N points in [0, 1] associated with interaction 

K (·, ·). Define h := 1
N−1 and

µ := −3
2

h−1 ln h. (17)

Then at the equispaced points x∗
i = (i − 1)h,

∂E
∂xi

(x∗
1, . . . , x∗

N) → 0 as N → ∞, i = 2, . . . , N − 1.

Proof. Consider the Yukawa interaction K (x, y) = e−µ|x−y|
|x−y| . Then it can be computed that

∂E
∂xi

=
i−1∑

l=1

(

−e−µril

r2
il

− µe−µril

ril

)

+
N∑

l=i+1

(
e−µril

r2
il

+ µe−µril

ril

)

,

where ril := |xi − xl|. At the equispaced points (x∗
1, . . . , x

∗
N ), we deduce for 2 ≤ i ≤ N − 1 that,

| ∂E
∂xi

| ≤ | ∂E
∂x2

| =
N−2∑

k=2

(
e−µkh

k2h2 + µe−µkh

kh

)

≤ e−2µh

h2

N−2∑

k=2

1
k2 + µe−2µh

h

N−2∑

k=2

1
k
. (18)

Since in this case µ = − 3
2 h−1 ln h, we compute that

e−2µh

h2 = h = 1
N − 1

and
µe−2µh

h
= −3

2
h ln h = 3 ln(N − 1)

2(N − 1)
.

Plug it in to (18), we arrive at

| ∂E
∂xi

| ≤ 1
N − 1

N−2∑

k=2

1
k2 + 2 ln(N − 1)

N − 1

N−2∑

k=2

1
k

<
2

N − 1
+ 2 ln(N − 1)(ln N + 1)

N − 1
, (19)
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where we have used the fact that 
∞∑

k=1

1
k2 = π2

6 < 2 and
N∑

k=1

1
k < ln N + 1. It follows immediately from (19) that 

∂E
∂xi

→ 0

as N → ∞.

From the proof above, it can be seen that, the sum in either (18) is in fact dominated by the first term due to the super-
exponential decay of the sequence with respect to k. Therefore, in order to bound the sum, it suffices to bound the first 
term. This provides a guidance for choosing µ in higher dimensions and the formula (17) still applies with properly defined 
h. For a system of N particles in [0, 1]d , we may choose µ as in (17) with h := O (N−1/d). That is µ = O ( 1

d N1/d log N)

6. Experiments

In this section, we perform numerical experiments to investigate the proposed physics-informed distribution transform-
ers: MD-based one and DNN-based one. The implementation details are presented in Section 6.1. Test results are shown in 
Section 6.2. The deep neural network is implemented with PyTorch [74,75].

6.1. Implementation details

MD-based distribution transformer For the MD-based transformer, we use the Coulomb interaction U (x, y) = 1
|x−y| and the 

quadratic confinement potential V (x) = |x − c|2. The parameters are chosen as follows: time step $t = 0.0002, mass is 
defined in (5), maximum iteration number M = 20, energy reduction rate ρ = 0.99.

DNN-based distribution transformer For all DNN-based transformers, we use Adam [55] as the optimizer with beta parame-
ters (0.5, 0.9) and epsilon parameter 10−6 (cf. [55]). The learning rate is set to be 0.001. The activation function is chosen 
as Leaky ReLU [76]. The loss function is defined according to the geometry and the potential used, which will be detailed in 
each experiment. For the Yukawa potential, the damping factor is chosen as follows according to the discussion in Section 5.

µ = d−1N1/d log N. (20)

6.2. Test results

In this section, we present several experiments to investigate the performance of the proposed distribution transformers 
for improving the uniformity of a given distribution. For Tests 1,2,3, to evaluate the uniformity quantitatively, we compute 
the L2 star discrepancy using Warnock’s formula in (1). The inverse minimum pairwise distance is used in Test 5. For non-
cube geometries as in Tests 6,7,8, we use the kernel matrix approximation error described in (16) to measure the uniformity 
of a configuration quantitatively.

Test 1. DNN-based transformer with unconstrained model. In this test, we compare the performance of DNN-based 
transformers based on two models, one in (8) with original variable restricted to [0, 1]d and one in (10) with unconstrained 
latent variable. We employ the Yukawa potential and define the loss function as the sum of all pairwise Yukawa interactions 
with damping factor in (20). In the neural network, three hidden layers with dimensions 8, 16, 8 are used. The maximum 
number of epochs is set to be 10000. For the given N = 100 random samples, we see from Fig. 4 (top row) that the model 
in (8) with artificial restriction fails to yield a good distribution within 10000 epochs, while the unconstrained model in 
(10) produces highly evenly-spaced points in Fig. 4 (bottom-right). It can be seen that a decent distribution is obtained after 
2000 epochs using the model in (10). Quantitatively, the corresponding discrepancy plot is shown in Fig. 5. The decay of 
discrepancy during the training of neural network is easily seen from the plot.

Test 2. Transforming random samples with MD-based transformer. In this test, we use molecular dynamics (MD)-based 
transformer in Algorithm 2 to improve the distribution of N = 300 random samples in the unit square. The model pa-
rameters are described in Section 6.1. The energy function is the total Coulomb potential plus confinement potential with 
confinement strength γ = 10N . The results are shown in Fig. 6, where we plot the force field (blue arrow) on each particle 
in the 8 interior subfigures, corresponding to the iteration steps 0, 1, 2, 3, 4, 7, 10, 16 in the velocity Verlet algorithm. The 
plot of the corresponding discrepancies is also shown. The length of each blue arrow in Fig. 6 indicates the strength of the 
force field. We see that the particles move in the direction to create better uniformity. Furthermore, it only takes less than 
20 iterations to transform the random input in Fig. 6 to an output with better uniformity.

Test 3. Improving low discrepancy sequence with MD-based transformer (random shift version). We see from Fig. 1b 
(also 1st plot in Fig. 7) that the first 250 points from the Halton sequence with bases 11,13 do not display enough quasir-
andomness due to the strong correlation between points. In this test, we apply the MD-based transformer with random 
shift in Algorithm 3 to the Halton points in order to obtain better quasirandomness. The random shift is chosen as 0.1 and 
other parameters are the same as in Test 2. We plot the distributions at time steps 1, 6, 17 in Fig. 7 along with the output 
and the discrepancies corresponding to those distributions. We see that the output points achieve better quasirandomness 
than the input distribution, with reduced discrepancy. Also, the random shift does help to destroy the symmetric structure 
in the input distribution and contributes to the quasirandomness obtained by Algorithm 3. As a comparison to permutation 
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Fig. 4. Test 1: Restricted model (top) in (8) and unconstrained model (bottom) in (10). Left to right: input distribution, transformed distributions after 
500, 1000, 2000, 5000, 10000 epochs.

Fig. 5. Test 1: discrepancy plot for distributions in Fig. 4(bottom).

Fig. 6. Test 2: MD-based transformation of random samples. Top-left to bottom-right: input, force fields of the system at time steps 0, 1, 2, 3, 7, 10, 16, 
output, discrepancy plot. (For interpretation of the colors in the figure(s), the reader is referred to the web version of this article.)

or scrambling techniques, in Fig. 8, we include the output obtained by the reverse permutation [19]. It is easy to see from 
Fig. 8 that the permutation method does not resolve the high correlations between points as the MD-based method does. In 
general, though number-theory based formulas are easy to compute, they are limited to special input sets and meanwhile 
can not be applied to non-cube geometries. These limitations motivate the development of the methods in this manuscript 
to handle more general input sets and geometries.

Test 4. Transforming points in a disk. We apply Algorithm 5 to transforming N = 100 given points in the unit disk 
in Fig. 9 (left). The energy is chosen as Coulomb interaction plus the confinement potential V (x) = |x|2 with confinement 
strength γ = 3N . In the neural network, four hidden layers with dimensions 4, 16, 32, 8 are used and the maximum number 
of epochs is set to be 50000. Note that since the input distribution in Fig. 9 is extremely poorly distributed in the disk, to 
obtain a good transformation, we expect a larger neural network and more epochs compared to Test 1. It is easy to see 
from Fig. 9 that the DNN-based transformer is able to yield a point distribution with extremely high uniformity despite 
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Fig. 7. Test 3: Transforming 250 Halton points with bases 11, 13. Left to right: input, randomly shifted input, system with force fields at time steps 1, 6, 17, 
output, discrepancy plot.

Fig. 8. Comparison of the number theoretic approach and the proposed approach for Test 3. Left: input Halton set; Middle: output of reverse permutation 
[19]; Right: output of MD-based approach.

Fig. 9. Test 4: Transforming points in a disk. Left to right: input distribution, transformed distributions after 500, 1000, 2000, 10000, 30000, 50000 epochs.

the fact that input points are concentrated in a small region, namely, 1/6 of the domain. This demonstrates the potential of 
DNN-based transformers to generate highly structured points with good uniformity.

Test 5. Transforming points on a sphere. We apply Algorithm 6 to transforming N = 100 given points on the unit sphere 
in Fig. 10 (top-left). The energy is chosen as the total pairwise Coulomb interactions. The neural network contains four 
hidden layers with dimensions 4, 8, 16, 8. The maximum number of epochs is set to be 50000. Fig. 10 shows the distribu-
tions during transformation, where the color of each point is measured by the value of its z component in the Cartesian 
coordinate. We see that the input points (top-left plot) are poorly distributed on the sphere and the output distribution 
(bottom-right plot) is much better. To illustrate the uniformity quantitatively, we compute the inverse minimal pairwise 
distances 1/ min

i )= j
|xi − x j | corresponding to the 7 distributions in Fig. 10 and plot the curve in Fig. 10(bottom-right). We 

see that the minimal pairwise distance of the output distribution is significantly larger than the input distribution, which 
indicates that the points do become more evenly spaced after the transformation.

Test 6. Transforming points on a complex manifold in R3 . We apply Algorithm 7 to 100 points on a complex flower-
shaped manifold in R3. See Fig. 11 (top left) for an illustration of the manifold. As can be seen from the second figure 
(top row) in Fig. 11, a majority of the points are clustered at the bottom of the manifold. To transform the points, we use 
the same neural network architecture as in Test 5. The metric for measuring uniformity is chosen as the kernel matrix 
approximation error as described in (16), where four different kernel functions - Gaussian, multiquadric, inverse quadratic, 
inverse multiquadric - are tested:

e−0.2||x−y||2 ,
√

1 + 0.2||x − y||2, 1
1 + 0.1||x − y||2 ,

1
√

1 + 0.1||x − y||2
. (21)

The results for the transformation and the metric are shown in Fig. 11. Visually, it can be seen from the scatter plots in 
Fig. 11 that during the training, the points clustered at the bottom of the manifold are transformed to disperse over the 
entire manifold. Quantitatively, from Fig. 11 (bottom), we see that the matrix approximation error decays effectively, which 
reflects the improvement of the uniformity of the distribution.
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Fig. 10. Test 5: Transforming points on a sphere. Top-left to bottom-right: input, distributions after 500, 1000, 2000, 10000, 30000, 50000 epochs, inverse 
minimum pairwise distance plot.

Fig. 11. Test 6: Transforming points on a complex manifold in R3. Top left to bottom right: geometry, input points, points at epoch=500k(k = 1, 2, . . . , 6). 
Bottom: matrix approximation errors for kernels in (21) vs epoch.

Test 7. Transforming points on a hypersphere in R4 . We apply Algorithm 7 (with a different interval for parameters) to 
100 poorly distributed points on the unit hypersphere S3 in R4:

(cos u cos v cos w, cos u cos v sin w, cos u sin v, sin u) ∈R4.

The same neural network architecture as in Test 6 is used. The input points are generated with u sampled from U(−π
2 , π2 )

and v , w sampled from U(0, 0.2π), where U(a, b) denotes the uniform distribution on [a, b]. This is to make most points 
cluster in a small region on the hypersphere. The kernel matrix approximation error in (16) is used as the metric. The 
results for the experiment are shown in Fig. 12 and Fig. 13. Fig. 12 shows the matrix approximation errors associated with 
points on the hypersphere in R4 and the projections into three dimensions. Fig. 13 presents visualizations of the three 
dimensional projections: (1,2,3) and (2,3,4) during the transformation. The decay of errors in Fig. 12 reflects the improved 
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Fig. 12. Test 7: Matrix approximation error vs epoch. Top left to bottom right: points on the hypersphere in R4, projections to dimensions (1,2,3), (1,2,4), 
(1,3,4), (2,3,4).

Fig. 13. Test 7: Each row shows 3D projections of 4D points on a hypersphere at epoch=0,200,400,1000. Top: dimension (1,2,3); Bottom: dimension (2,3,4). 
Quantitative results are shown in Fig. 12.

uniformity of the input after the transformation. We see that the improvement is not only reflected in the original four 
dimensional space but also observed in each of the three dimensional projections. It can also be seen that only around 500 
epochs are needed to refine the distribution substantially. The experiment shows that the proposed distribution transformer 
also works for high dimensional geometry.

Test 8. Transforming samples from a distribution. We apply Algorithm 7 (with a different interval for parameters) to 
learn a distribution transformer applied to batches of 100 samples from the following distribution on the unit sphere:

x = (sin(θ/2) cos(φ), sin(θ/2) sin(φ), cos(θ/2)) ,
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Fig. 14. Test 8: Transforming five sets of samples clustered around the north pole on the sphere: input(top) and output(bottom). The title for each plot 
is the metric in (16) for the configuration with kernel κ(x, y) = e−||x−y||2 . Significantly improved approximation accuracy (from 1 digit to 5 or 6 digits) 
reflects improved uniformity of points.

where θ ∼ N (0, 1) is the standard normal distribution and φ ∼ U(0, 2π) is the uniform distribution on [0, 2π ]. Samples 
from this distribution are more likely to cluster at the north pole, where the probability density peaks. We use the algebraic 
metric in (16) to measure the uniformity and the kernel function is chosen as κ(x, y) = e−||x−y||2 . Fig. 14 presents the results 
of transforming five sets of input samples (top row) and to more evenly distributed outputs (bottom row). The metric (low-
rank approximation error) is shown as the title in each configuration plot. A substantially smaller approximation error 
indicates better uniformity of points. From the numeric values in Fig. 14, it can be seen that, each poorly distributed input 
only gives one digit of accuracy at most, while the corresponding output can achieve five to six digits of approximation 
accuracy, reflecting the much improved uniformity.

7. Discussion

7.1. Comparison of MD-based and DNN-based transformers

The MD-based transformer is given by an explicit update formula, which is easy to compute. When applied to random 
samples or points from a low discrepancy sequence, it can quickly improves the quasirandomness. However, it is not able 
to achieve extremely high uniformity as DNN-based transformers do and can not be extended easily to other geometries. 
The DNN-based transformer is able to produce distributions with superior uniformity regardless of the input distribution. It 
can be easily extended to different geometries as long as an unconstrained parametrization is available. However, there are 
several drawbacks. The DNN-based approach requires solving a nonconvex minimization problem and the training of the 
deep neural network is more time-consuming than running MD simulations.

Overall, the MD-based transformer can be used as a fine-tuner to quickly improve the uniformity or quasirandomness of 
a given distribution. If the given distribution is far from being evenly distributed and high uniformity is needed, then the 
DNN-based transformer is a better option. The DNN-based transformer also works for disks and manifolds. Though the basic 
residual network (ResNet) is used in the manuscript, other neural network architectures can also be incorporated into the 
DNN-based transformer. Using the state-of-the-art optimization tools may also improve the performance of the proposed 
transformer.

7.2. Issues and future work

Quadratic complexity The proposed framework requires computing all pairwise interactions between particles and thus 
the computation cost has O (N2) complexity for a system of N particles, which is not optimal. The quadratic cost can 
be circumvented by using fast multipole method or hierarchical matrices (cf. [77–82,67]), which employ a hierarchically 
low-rank representation to approximate the dense kernel matrix and yield O (N) complexity in time and space.

Training of neural network The potential numerical instability in training deep neural networks has long been a challenging 
problem in deep learning [51,52,55]. To transform a large number of points with DNN-based transformer, a large neural 
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network is needed in order to model the complicated system. Deeper and wider hidden layers may cause numerical stability 
issues during the training stage. How to stabilize the training is a major problem to investigate in order to apply the 
proposed method to large-scale datasets.

Neural network architectures In the manuscript, we use a residual neural network (ResNet) to model the transformation. It 
will be our future work to explore appropriate architectures for the distribution transformer leveraging the state-of-the-art 
development in neural networks. For example, for generating configurations with good uniformity, generative models such 
as normalizing flows [83–88] appear promising due to its power in modeling complex mappings between distributions.

Choice of energy for other distributions and geometries The choice of energy dictates the final output distribution of the pro-
posed transformers. It is interesting to study which energy should be used to obtain a desired point distribution (not 
necessarily uniform) over a specific geometry. This will greatly expand the scope of applications of the proposed approach, 
for example, to numerical simulations in fluid, mechanical, electromagnetic problems where adaptive discretization (non-
uniform mesh) is often needed in order to resolve singular behaviors of solutions (cf. [89–93]).

8. Conclusion

In this manuscript, we introduce a physics-informed framework for improving given distributions. As an initial attempt to 
leverage physics principles and deep neural networks for improving the quasirandomness of a given distribution, two kinds 
of distribution transformers are introduced: one based on molecular dynamics (MD), another based on deep neural networks 
(DNN). The MD-based transformer serves as an efficient fine-tuner which can quickly improve the uniformity of random 
samples or the quasirandomness of low discrepancy sequence. The DNN-based transformer is more powerful as it is able to 
achieve superior uniformity in different geometries regardless of the given distribution. Various experiments are presented 
to demonstrate the quality of the proposed transformers on improving the given possibly poorly distributed points over 
different geometries. Compared to existing methods, the new approach provides a flexible framework that allows dealing 
with general point distributions instead of points generated by a certain formula. Future work includes improving the 
computational efficiency via incorporating hierarchical matrices, leveraging the state-of-the-art neural network architecture 
to investigate more general geometries.
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