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Abstract

We consider the problem of estimating the optimal transport map between two
probability distributions, P and Q in Rd, on the basis of i.i.d. samples. All existing
statistical analyses of this problem require the assumption that the transport map
is Lipschitz, a strong requirement that, in particular, excludes any examples where
the transport map is discontinuous. As a first step towards developing estimation
procedures for discontinuous maps, we consider the important special case where the
data distribution Q is a discrete measure supported on a finite number of points in Rd.
We study a computationally efficient estimator initially proposed by [PNW21], based on
entropic optimal transport, and show in the semi-discrete setting that it converges at the
minimax-optimal rate n−1/2, independent of dimension. Other standard map estimation
techniques both lack finite-sample guarantees in this setting and provably suffer from
the curse of dimensionality. We confirm these results in numerical experiments, and
provide experiments for other settings, not covered by our theory, which indicate that
the entropic estimator is a promising methodology for other discontinuous transport
map estimation problems.

1 Introduction

The theory of optimal transport (OT) defines a natural geometry on the space of probability
measures [San15, Vil09] and has become ubiquitous in modern data-driven tasks. In this area,
optimal transport maps are a central object of study: suppose P and Q are two probability
distributions with finite second moments, with P having a density with respect to the
Lebesegue measure on Rd. Then, Brenier’s theorem (see Section 2.1) states that there exists

*Pooladian and Divol contributed equally to this work.
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a convex function φ0 whose gradient defines a unique optimal transport map between P and
Q. This map is optimal in the sense that it minimizes the following objective function:

∇φ0 := argmin
T∈T (P,Q)

∫
1
2
∥x− T (x)∥2 dP (x) , (1)

where T (P,Q) := {T : Rd → Rd | X ∼ P, T (X) ∼ Q} is the set of transport maps between
P and Q. The optimal value of the objective function in Equation (1) is called the (squared)
2-Wasserstein distance, written explicitly as

S0(P,Q) =

∫
1
2
∥x−∇φ0(x)∥2 dP (x) ,

though a more general formulation is available (see Section 2.1). Computing or approximating
S0(P,Q) as well as ∇φ0 has found use in several academic communities, such as economics
[CCG16, CGHH17, TGR21, GX21], computational biology [BSG+21, BKC22, LBG+22,
SST+19, MSF+21, DSSS22, YDV+20], and computer vision [SPKS16, SDGP+15, FCVP17],
among many others.

Practitioners seldom have access to P or Q, but instead have access to i.i.d. samples
X1, . . . , Xn ∼ P and Y1, . . . , Yn ∼ Q. On the basis of these samples, practitioners face both
computational and statistical challenges when estimating ∇φ0. From a theoretical perspective,
the statistical task of estimating optimal transport maps has attracted much interest in the
last few years [HR21, MVB+21, MBNWW21, DGS21, PNW21, DNWP22, GS22].

The first finite-sample analysis of this problem was performed by [HR21], who proposed
an estimator for ∇φ0 under the assumption that φ0 is s+ 1-times continuously differentiable,
for s > 1. They showed that a wavelet-based estimator φ̂W satisfies

E∥∇φ̂W −∇φ0∥2L2(P ) ≲ n− 2s
2s+d−2 log2(n) ,

and that this rate is minimax optimal up to logarithmic factors. Their analysis requires that
P and Q have bounded densities with compact support Ω ⊆ Rd, and that φ0 be both strongly
convex and smooth. Implementing the estimator φ̂W is computationally challenging even in
moderate dimensions, and is practically infeasible for d > 3. Follow up work has proposed
alternative estimators which improve upon φ̂W either in computational efficiency or in the
generality in which they apply. Though these subsequent works go significantly beyond the
setting considered by [HR21], none has eliminated the crucial assumption that φ0 is smooth,
i.e., that the transport map ∇φ0 is Lipschitz.

We highlight two estimators proposed in this line of work that are particularly practical.
[MBNWW21] study the 1-Nearest Neighbor estimator T̂1NN. This estimator is obtained by
solving the empirical optimal transport problem between the samples, which is then extended
to a function defined on Rd using a projection scheme; see Section 4 for more details. Given
n samples from the source and target measures in Rd, T̂1NN has a runtime of O(n3) via the
Hungarian Algorithm [see PC19, Chapter 3], and, for d ≥ 5, achieves the rate

E∥T̂1NN −∇φ0∥2L2(P ) ≲ n− 2
d (2)

whenever the optimal Brenier potential φ0 is smooth and strongly convex, and under mild
regularity conditions on P . In another work, [PNW21] conducted a statistical analysis of
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an estimator originally proposed by [SDF+18] based on entropic optimal transport. The
efficiency of Sinkhorn’s algorithm for large-scale problems [Cut13, PC19] makes this estimator
attractive from a computational perspective, and [PNW21] also give statistical guarantees,
though these fall short of being minimax-optimal.

Despite this progress, none of the aforementioned results can be applied in situations
where ∇φ0 is not Lipschitz. And in practice, even requiring the continuity of the transport
map can be far too stringent. It is indeed too much to hope for that an underlying data
distribution (e.g. over the space of images) has one single connected component; this is
supported by recent work that stipulates that the underlying data distribution is the union of
disjoint manifolds of varying intrinsic dimension [BCR+22]. In such a setting, the transport
map ∇φ0 will not be continuous, demonstrating the need of considering the problem of the
statistical estimation of discontinuous transport maps to get closer to real-world situations.

As a first step, we choose to focus on the case where the target distribution Q =
∑J

j=1 qjδyj
is discrete while the source measure P has full support, often called the semi-discrete setting
in the optimal transport literature. In this setting, the optimal transport map ∇φ0 is constant
over regions known as Laguerre cells (each cell corresponding to a different atom of the
discrete measure), while displaying discontinuities on their boundaries (see Section 2.1.1 for
more details). Figure 1 provides such an example. Semi-discrete optimal transport therefore
provides a natural class of discontinuous transport maps.

Figure 1: An illustration of a semi-discrete optimal transport map. The support of P , the
whole rectangle, is partitioned into regions, each of which is transported to one of the atoms
of the discrete target measure Q. The resulting map is discontinuous at the boundaries of
each cell.

We focus on this setting for two reasons. First, it has garnered a lot of attention in recent
years, in both computational and theoretical circles [see, e.g., MSS21, ANWS22, CAN22],
due in particular to its connection with the quantization problem [GL07]. Second, the
semi-discrete setting is intriguing from a statistical perspective: existing results show that
statistical estimation problems involving semi-discrete optimal transport can escape the curse
of dimensionality [FHN+19, dBL19, dBGSL22, HSM22]. For example, [HSM22, Theorem
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3.2] show that if Pn and Qn are empirical measures consisting of i.i.d. samples from P and Q,
then the semi-discrete assumption implies

E|S0(P,Q)− S0(Pn, Qn)| ≲ n−1/2 .

These results offer the tantalizing possibility that semi-discrete transport maps can be
estimated at the rate n−1/2, in sharp contrast to the dimension-dependent rates obtained
in bounds such as (2). However, the optimal rates of estimation for semi-discrete transport
maps are not known, and no estimators with finite-sample convergence guarantees exist.

Main Contributions

We show that the computationally efficient estimator T̂ε based on entropically regularized
optimal transport, originally studied in [SDF+18, PNW21], provably estimates discontinuous
semi-discrete optimal transport maps at the optimal rate. More precisely, our contributions
are the following:

1. For Q discrete and P with full support on a compact, convex set, we show that T̂ε
achieves the following dimension-independent convergence rate to the optimal transport
map (see Theorem 3.1)

E∥T̂ε −∇φ0∥2L2(P ) ≲ n−1/2 , (3)

when the regularization parameter ε ≍ n−1/2. We further show (Proposition 4.1) that
this rate is minimax optimal.

2. As a by-product of our analysis, we give new parametric rates of convergence to the
entropic Brenier map Tε, a result which improves exponentially on prior work in the
dependence on ε (see Theorem 3.7 and Remark 3.8).

3. Our proof technique requires several new results, including a novel stability bound for
the entropic Brenier maps (Proposition 3.9), and a new stability result for the entropic
dual Brenier potentials in the semi-discrete case (Proposition 3.11).

4. We show that, unlike T̂ε, the 1-Nearest-Neighbor estimator is provably suboptimal in
the semi-discrete setting (see Proposition 4.2) by exhibiting a discrete measure Q such
that the risk suffers from the curse of dimensionality:

E∥T̂1NN −∇φ0∥2L2(P ) ≳ n−1/d .

5. In Section 4, we verify our theoretical findings on synthetic experiments. We also show
by simulation that the entropic estimator appears to perform well even outside the
semi-discrete setting, suggesting it as a promising choice for estimating other types of
discontinuous maps.
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Notation

The Euclidean ball centered at a with radius r > 0 is written as B(a; r). The symbols C and
c denote positive constants whose value may change from line to line. Write a ≲ b and a ≍ b
if there exist constants c, C > 0 such that a ≤ Cb and cb ≤ a ≤ Cb, respectively. For an
integer N ∈ N, we let [N ] := {1, . . . , N}. For a function f and a probability measure ρ, we
write ∥f∥2L2(ρ)

:= EX∼ρ∥f(X)∥2 . Similarly, we write Varρ(f) := EX∼ρ[(f(X)−EX∼ρ[f(X)])2]
for the variance of f with respect to ρ.

2 Background on optimal transport

2.1 Optimal transport

We define P(Ω) to be the space of probability measures whose support lies in a compact
subset Ω ⊆ Rd. If a probability measure P has a density with respect to the Lebesgue
measure on Rd with support Ω ⊆ Rd, then we write P ∈ Pac(Ω).

For two probability measures P,Q ∈ P(Ω), we define the (squared) 2-Wasserstein distance
to be [Kan42]

S0(P,Q) := min
π∈Γ(P,Q)

∫∫
1
2
∥x− y∥2 dπ(x, y) , (4)

where π ∈ Γ(P,Q) ⊆ P(Ω× Ω) such that for any event A,

π(A× Ω) = P (A) , π(Ω× A) = Q(A) .

We call Γ(P,Q) the set of couplings between P and Q. In this work, we focus on the
squared-Euclidean cost but Equation (4) is well-defined for convex, lower-semicontinuous
costs; see [Vil09, San15] for more information on optimal transport under general costs.

Equation (4) is a convex optimization problem on the space of joint measures, and a
minimizer, denoted π0, always exists; we call π0 an optimal plan from P to Q. Moreover,
Equation (4) possesses the following dual formulation,

S0(P,Q) =
1
2
M2(P ) +

1
2
M2(Q)− inf

(φ,ψ)∈Φ

∫
φ dP +

∫
ψ dQ (5)

where M2(P ) :=
∫
∥x∥2 dP (x) (similarly for M2(Q)) and the functions (φ, ψ) ∈ Φ ⊆ L1(P )×

L1(Q) satisfy

⟨x, y⟩ ≤ φ(x) + ψ(y) for all x, y ∈ Ω ,

As with the primal formulation, the infimum in Equation (5) is attained at functions (φ0, ψ0).
These minimizers are called (optimal) Brenier potentials. In particular, at optimality, we
have that these Brenier potentials are convex conjugates of one another, i.e. the Legendre
transform of one of the potentials gives the other:

φ∗
0(y) := sup

x
{⟨x, y⟩ − φ0(x)} = ψ0(y) , (6)
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and vice-versa.
Apart from these two formulations of optimal transport under the squared-Euclidean cost,

there exists a third, known as the Monge problem:

T0 := argmin
T∈T (P,Q)

∫
1
2
∥x− T (x)∥2 dP (x) , (7)

where T (P,Q) is the set of admissible transport maps, i.e. for X ∼ P , T (X) ∼ Q. This
optimization problem is non-convex in T , and a solution is not always guaranteed to exist for
arbitrary P and Q.

The following theorem unifies these three formulations of optimal transport under the
squared-Euclidean cost:

Theorem 2.1 (Brenier’s theorem; Bre91). Let P ∈ Pac(Ω) and let Q ∈ P(Ω), then

1. the solution to Equation (7) exists and is of the form T0 = ∇φ0, where φ0 solves
Equation (5)

2. π0 is also uniquely defined as

dπ0(x, y) = dP (x)δ{∇φ0(x)}(y) .

When we want to place emphasis on the underlying measures, we will write φ0 = φP→Q
0 ,

ψ0 = ψP→Q
0 and T0 = T P→Q

0 .

2.1.1 OT in the semi-discrete case

In optimal transport, the semi-discrete setting refers to the case where P has as density
with respect to the Lebesgue measure on Rd, and Q is a discrete measure supported on
points. The following theorem characterizes the optimal transport map in this situation,
which exhibits a particular structure compared to the general results in the previous section.
Let [J ] = {1, . . . , J}.
Proposition 2.2 (AHA98). If P ∈ Pac(Ω) and Q is a discrete measure supported on the
points y1, . . . , yJ , then the optimal transport map ∇φ0 is given by

∇φ0(x) := argmax
j∈[J ]

{⟨x, yj⟩ − ψ0(yj)} , (8)

where ψ0 is the dual to φ0 in the sense of Equation (6).

Here, the optimal dual Brenier potential ψ0 can be identified with a vector in RJ , defined
by the number of atoms, and the optimal Brenier potential is consequently given by

φ0 := max
j∈[J ]

{⟨x, yj⟩ − ψ0(yj)} .

Although φ0 is not differentiable, only subdifferentiable, we still use the gradient notation as
∇φ0 is well-defined P -almost everywhere.

The map ∇φ0 partitions the space into J convex polytopes Lj := ∇φ−1
0 ({yj}) called

Laguerre cells ; recall Figure 1. From this definition, it is clear that for a given x ∈ Lj,
x 7→ ∇φ0(x) = yj is the optimal transport mapping. The difficulty in finding this map lies in
determining the cells Lj, or equivalently the dual variables ψ0(yj).
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2.2 Entropic optimal transport

Entropic regularization was introduced to both optimal transport and machine learning
communities in the seminal paper by [Cut13], allowing approximate optimal transport
distances to be computed at unprecedented speeds. Entropic optimal transport (EOT) is
defined as the following regularized version of Equation (4): for ε > 0

Sε(P,Q) := min
π∈Γ(P,Q)

∫∫
1
2
∥x− y∥2 dπ(x, y) + εKL(π∥P ⊗Q) , (9)

where KL(µ∥ν) =
∫
log dµ

dν
dµ when µ ∈ P(Ω) is absolutely continuous with respect to

ν ∈ P(Ω). This speedup is due to the elegant connection of (9) to Sinkhorn’s algorithm; we
refer the interested reader to [PC19, Chapter 4] for more information. The computational
tractability of Sε compared to S0 when dealing with many samples lends itself to being a central
object of study in its own right [see, e.g., GCB+19, MNW19, CRL+20, RS22, GSLNW22].

Equation (9) admits the following dual formulation, which is now an unconstrained
optimization problem [Gen19, MG20]

Sε(P,Q) =
1
2
M2(P ) +

1
2
M2(Q)− inf

φ,ψ

(∫
φ dP +

∫
ψ dQ

+ ε

∫∫
(e(⟨x,y⟩−φ(x)−ψ(y))/ε − 1) dP (x) dQ(y)

)
,

(10)

where (φ, ψ) ∈ L1(P ) × L1(Q). When P and Q have finite second moments, Equation (9)
admits a unique minimizer, πε and we have the existence of minimizers to Equation (10),
which we denote as (φε, ψε). We call πε the entropic optimal plan and (φε, ψε) are called
entropic Brenier potentials. The following optimality relation further relates these primal
and dual solutions [Csi75]:

dπε(x, y) := e(⟨x,y⟩−φε(x)−ψε(y))/ε dP (x) dQ(y) .

As a consequence, the following relationship holds at optimality:

Sε(P,Q) =
1
2
M2(P ) +

1
2
M2(Q)−

∫
φε dP −

∫
ψε dQ ,

and, moreover, we can define versions of φε and ψε such that the following relationships hold
[see MNW19, NW22] over all x ∈ Rd and y ∈ Rd, respectively:

φε(x) = ε log

∫
e(⟨x,y⟩−ψε(y))/ε dQ(y) , (11)

ψε(y) = ε log

∫
e(⟨x,y⟩−φε(x))/ε dP (x) , (12)

which are smoothed version of the Legendre transform, see Appendix A for details. In what
follows, we always assume that we have selected φε and ψε so that these identities hold.
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2.2.1 Entropic Brenier Map

If (X, Y ) ∼ πε, we may define the conditional probability πxε of Y given that X = x, with
density

dπxε
dQ

(y) ∝ exp ((⟨x, y⟩ − ψε(y))/ε) . (13)

The barycentric projection of the optimal entropic coupling πε, or entropic Brenier map,
is a central object of study in several works e.g. [GKRS22, PNW21, dBGSLNW22, RS22],
defined as

Tε(x) =

∫
y dπxε (y) = ∇φε(x) , (14)

where πxε is as in Equation (13). Note that this quantity is well defined for all x ∈ Rd as long
as the source and target measures have compact support; in particular, it applies to both
discrete and continuous measures. The second equality follows from Equation (11) and the
dominated convergence theorem. As in the unregularized case, we will write φε = φP→Q

ε ,
ψε = ψP→Q

ε and Tε = T P→Q
ε when we want to emphasize on the dependency with respect to

the underlying measures.
This particular barycentric projection was proposed as a tool for large-scale optimal

transport by [SDF+18], but analyzed statistically for the first time by [PNW21] as an
estimator for the optimal transport map. We mention some of their results to highlight the
differences with our new results for the semi-discrete setting in Section 3. First, they prove
the following approximation result for Tε.

Proposition 2.3 (PNW21, Corollary 1). Let P,Q be compactly supported absolutely contin-
uous measures on a compact set Ω ⊆ Rd with densities p and q, that are bounded away from
0 and ∞. Assume that φ0 is smooth and strongly convex, and that φ∗

0 is at least C3. Then,

∥Tε −∇φ0∥2L2(P ) ≲ ε2 . (15)

Their main statistical result is the following theorem:

Proposition 2.4 (PNW21, Theorem 3). Suppose the same assumptions as Proposition 2.3,
and let Pn and Qn denote the empirical measures of P and Q constructed from i.i.d. samples.
Let T̂ε = T Pn→Qn

ε denote the entropic Brenier map from Pn to Qn and let T0 = ∇φ0 be the

optimal transport map from P to Q. Then, if ε ≍ n− 1
d′+3

E∥T̂ε − T0∥2L2(P ) ≲ n
− 3

2(d′+3) log(n) , (16)

where d′ = 2⌈d/2⌉.

Note that in particular the the rate of convergence of the entropic estimator critically
depends on the ambient dimension d in the continuous-to-continuous case.
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2.2.2 Related work

Characterizing the convergence of entropic objects (e.g. potentials, cost, plans) to their
unregularized counterparts in the ε→ 0 regime has been a topic of several works in recent years.
Convergence of the costs Sε to S0 with precise rates was investigated in [Pal19, CRL+20, CT21].
The works [CDPS17, Léo12, BGN22, GNB22] study the convergence of the minimizers πε to
π0 under varying assumptions. Convergence of the potentials in a very general setting was
established in [NW22], though without a rate of convergence in ε. In the semi-discrete case,
this gap was closed in [ANWS22] followed closely by [Del22], which gave non-asymptotic
rates. The Sinkhorn Divergence, a non-negative, symmetric version of Sε, was introduced
in [GPC18], was statistically analysed in [GKRS22] and also in [GSLNW22, dBGSLNW22],
and was connected to the entropic Brenier map in [PCNW22]. The recent pre-print by [RS22]
proved parametric rates of estimation between the empirical entropic Brenier map and its
population counterpart, though with an exponentially poor dependence on the regularization
parameter (see Remark 3.8). Using covariance inequalities, the entropic Brenier potentials
were used give a new proof of Caffarelli’s contraction theorem; see [CP22]; this approach was
recently generalized in [Con22]. Entropic optimal transport has also come into contact with
the area of deep generative modelling through the following works [FGOP20, DBTHD21],
among others.

3 Statistical performance of the entropic estimator in

the semi-discrete setting

Let Pn and Qn be the empirical measures associated with two n-samples from P and Q. We
make the following regularity assumptions on P , already introduced by [Del22].

(A) The measure P has a compact convex support Ω ⊆ B(0;R), with a density p satisfying
0 < pmin ≤ p ≤ pmax <∞ for positive constants pmin, pmax and R.

For example, P can be the uniform distribution over Ω, or a truncated Gaussian distribution.
Furthermore, we will need the following assumption on Q.

(B) The discrete probability measure Q =
∑J

j=1 qjδyj is such that qj ≥ qmin > 0 and
yj ∈ B(0;R) for all j ∈ [J ].

The goal of this section is to prove the following theorem:

Theorem 3.1. Let P satisfy (A) and let Q satisfy (B). Let T̂ε = T Pn→Qn
ε . Then, for

ε ≍ n−1/2 and n large enough,

E∥T̂ε − T0∥2L2(P ) ≲ n−1/2 . (17)

Remark 3.2. We remark that the hidden constants in Theorem 3.7 and related results depend
on J, pmin, pmax, qmin and R.
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Remark 3.3 (Fixing the support via rounding). At present, the entropic map need not
necessarily map exactly to one of {y1, . . . , yJ}. In fact, T̂ε : Rd → conv({Y1, . . . , Yn}), where
conv(A) is the convex hull for some set A. In turn, the support of the entropic map does
not in general match that of Q. However, this can be readily fixed with a rounding scheme.
We can replace our estimator by T̄ε which is obtained by mapping the output of T̂ε to its
nearest neighbor in the support of Q – this projection step is easy to compute, given that
we essentially know the support of Q via samples. By viewing this as a projection onto an
appropriate set (namely, the set of transport maps with codomain equal to the support of
Q), and applying the triangle inequality, it holds that

E∥T̄ε − T0∥2L2(P ) ≤ 2E∥T̂ε − T0∥2L2(P )

but T̄ε matches the support of Q.

Let Tε = T P→Q
ε denote the entropic Brenier map associated to P and Q. Our proof relies

on the following bias-variance decomposition:

E∥T̂ε − T0∥2L2(P )≲ E∥T̂ε − Tε∥2L2(P )+∥Tε − T0∥2L2(P ) .

Following the next two results (Theorem 3.4 and Theorem 3.7) and the preceding decomposi-
tion, the proof of Theorem 3.1 is merely a balancing act in the regularization parameter ε.

Theorem 3.4. Let P satisfy (A) and let Q satisfy (B). Then, for ε small enough,

∥Tε − T0∥2L2(P ) ≲ ε . (18)

The proof of Theorem 3.4 relies on the following qualitative picture: if a point x belongs
to some Laguerre cell Lj , and is far away from the boundary of Lj , then the entropic optimal
plan πε will send almost all of its mass towards the point yj = T0(x), sending an exponentially
small amount of mass to the other points yj. Such a picture is correct as long as x is at
distance at least ε from the boundary of the Laguerre cell Lj , incurring a total error of order
ε. A rigorous proof of Theorem 3.4 can be found in Appendix B.

Note that this rate is slower than the rate appearing in Proposition 2.3 in the continuous-
to-continuous case. The following example shows that the dependency in ε is optimal in
Theorem 3.4, indicating that the presence of discontinuities necessarily affects the approxima-
tion properties of the entropic Brenier map.

Example 3.5. Let P be a probability measure on R having a symmetric bounded density p
continuous at 0, and let Q = 1

2
(δ−1 + δ1). Following [ANWS22, Section 3], one can check that

the entropic Brenier map in this setting is the following scaled sigmoidal function

Tε(x) = tanh(2x/ε) ,

whereas the optimal transport map T0(x) = sign(x). Then, performing a computation

∥Tε − T0∥2L2(P ) = 2

∫ ∞

0

(1− tanh(2x/ε))2p(x) dx

= ε

∫ ∞

0

(1− tanh(u))2p(uε/2) du

= εp(0)(log(4)− 1) + o(ε) ,

10



where in the last step we invoked the dominated convergence theorem, and computed the
limiting integral.

Remark 3.6. Assumption (A) can be relaxed for Theorem 3.4 to hold. More precisely, it can
be replaced by Assumptions 2.2 and 2.9 of [ANWS22], that hold for unbounded measures
such as the normal distribution.

Finally, we present the sample-complexity result:

Theorem 3.7. Let P satisfy (A) and let Q satisfy (B). Then, for 0 < ε ≤ 1 such that
log(1/ε) ≲ n/ log(n)

E∥T̂ε − Tε∥2L2(P ) ≲ ε−1n−1 . (19)

Remark 3.8. In [RS22], the authors show that if P and Q are merely compactly supported
with supp(P ), supp(Q) ⊆ B(0;R), then

E∥T̂ε − Tε∥2L2(P ) ≲ ecR
2/εε−1n−1 , (20)

where c > 0 is some absolute positive constant. Thus, under the additional structural
assumptions of the semi-discrete formulation, we are able to significantly improve the rate of
convergence between the empirical and population entropic Brenier maps.

The proof of Theorem 3.7 relies on a novel stability result, reminiscent of [MBNWW21,
Theorem 6], which is of independent interest. We provide the proof in Appendix C.

Proposition 3.9. Let µ, ν, µ′, ν ′ be four probability measures supported in B(0;R). Then the
entropic maps T µ→ν

ε and T µ
′→ν′

ε satisfy

ε

8R2
∥T µ→ν

ε − T µ
′→ν′

ε ∥2L2(µ) ≤
∫

(φµ
′→ν′

ε − φµ→ν
ε ) dµ+

∫
(ψµ

′→ν′

ε − ψµ→ν
ε ) dν + εKL(ν∥ν ′)

Remark 3.10. The right side of the bound in Proposition 3.9 is equal to

Sε(µ, ν)− Sε(µ
′, ν ′) +

∫
fµ

′→ν′

ε d(µ′ − µ) +

∫
gµ

′→ν′

ε d(ν ′ − ν) + εKL(ν∥ν ′) ,

where fµ
′→ν′

ε = 1
2
∥ · ∥2 −φµ

′→ν′
ε and gµ

′→ν′
ε = 1

2
∥ · ∥2 −ψµ

′→ν′
ε . Proposition 3.9 is therefore the

entropic analogue of the stability bounds of [MBNWW21, Theorem 6] and [GS22, Lemma
5.1]. Unlike those results, Proposition 3.9 allows both the source and target measure to be
modified, and does not require any smoothness assumptions.

Proof sketch of Theorem 3.7

To prove Theorem 3.7, we first consider the one-sample setting, where we assume that we only
have access to samples Y1, . . . , Yn ∼ Q, but we have full access to P . We then consider the
one-sample entropic estimator T P→Qn

ε . We apply Proposition 3.9 with µ = µ′ := P , ν := Qn

and ν ′ := Q, yielding (see Corollary C.1 for details)

ε

8R2
E∥T P→Qn

ε − Tε∥2L2(µ) ≤ E
(∫

(ψε − ψP→Qn
ε ) d(Qn −Q) + εKL(Qn∥Q)

)
.

11



Let χ2(P∥Q) denote the χ2-divergence between probability measure. Young’s inequality
(see Lemma H.1) and the inequality KL(Qn∥Q) ≤ χ2(Qn∥Q) yield the following bound:

E∥T P→Qn
ε − Tε∥2L2(P ) ≤

8R2

ε

(E[VarQ(ψP→Qn
ε − ψε)]

2
+

E[χ2(Qn∥Q)]
2

)
+ 8R2E[χ2(Qn∥Q)] .

To complete our proof sketch, we use a new stability result on the entropic dual Brenier
potentials, catered for the semi-discrete setting.

Proposition 3.11. Let µ be a measure that satisfies (A). Let ν, ν ′ be two discrete probability
measures supported on {y1, . . . , yJ}, with ν ′ ≥ λν for some λ > 0. Then, for 0 < ε ≤ 1,

Varν(ψ
µ→ν′

ε − ψµ→ν
ε ) ≤ C

λ2
χ2(ν ′∥ν), (21)

where C depends on R, pmin and pmax.

Moreover, a computation provided in Lemma H.2 shows that E[χ2(Qn∥Q)] = J−1
n

, which
is enough to conclude the proof of the one-sample case, see Appendix E for details.

The two-sample setting is tackled using similar reasoning, where we ultimately prove in
Appendix F that the risk E∥T̂ε − T P→Qn

ε ∥2L2(P ) is upper bounded by

8R2

ε
E
∫

(φP→Qn
ε − φPn→Qn

ε ) d(Pn − P ) .

Such a quantity can again be related to the estimation of the dual potentials ψP→Qn
ε and

ψPn→Qn
ε . Using the same reasoning as before, we expect a parametric rate of convergence for

this term as well. Merging the two results completes the proof of Theorem 3.7. We refer to
Appendix F for full details.

4 Comparing against the 1NN estimator

4.1 Rate optimality of the entropic Brenier map

The upper bound of Theorem 3.7 shows that our estimator achieves the n−1/2 rate. In fact,
the following simple proposition tells us that this rate is optimal in the semi-discrete case.

Proposition 4.1. Let P be the uniform distribution on [−1/2, 1/2]d and for any J ≥ 2, let QJ

denote the space of of probability measures with at most J atoms, supported on [−1/2, 1/2]d.
Define the minimax rate of estimation

Rn(QJ) = inf
T̂

sup
Q∈QJ

EQn [∥T̂ − T P→Q
0 ∥2L2(P )] .

Then, it holds that Rn(QJ) ≥ n−1/2/64.

12



Proof. Let e be a vector of the canonical basis of Rd, scaled by 1/2. Fix 0 < r < 1/2 and let
Q0 =

1
2
δ−e+

1
2
δe andQ1 = (1

2
−r)δ−e+(1

2
+r)δe. A computation gives ∥T P→Q0

0 −T P→Q1

0 ∥2L2(P ) =

r. Therefore, by Le Cam’s lemma [see, e.g., Wai19, Chapter 15],

Rn(QJ,R) ≥
r

8
(1− dTV(Q

n
0 , Q

n
1 )). (22)

Let dH2(Q0, Q1) denote the (squared) Hellinger distance between measures. We have

dTV(Q
n
0 , Q

n
1 )

2 ≤ dH2(Qn
0 , Q

n
1 ) ≤ ndH2(Q0, Q1) .

Furthermore, a computation gives

dH2(Q0, Q1) =

(√
1
2
− r −

√
1
2

)2

+

(√
1
2
+ r −

√
1
2

)2

= 2− (
√
1 + 2r +

√
1− 2r)

≤ 4r2.

We obtain the conclusion by picking r = n−1/2/4.

4.2 The 1NN estimator is proveably suboptimal

The 1-Nearest-Neighbor estimator, henceforth denoted T̂1NN, was proposed by [MBNWW21]
as a computational surrogate for estimating optimal transport maps in the low smoothness
regime. Written succinctly, their estimator is T̂1NN(x) =

∑n
i=1 1Vi(x)Yπ̂(i), where (Vi)

n
i=1 are

Voronoi regions i.e.

Vi := {x ∈ Rd : ∥x−Xi∥ ≤ ∥x−Xk∥ , ∀ k ̸= i} ,

and π̂ is the optimal transport plan between the empirical measures Pn and Qn, which amounts
to a permutation. Computing the closest Xi to a new sample x has runtime O(n log(n)),
though the complexity of this estimator is determined by computing the plan π̂, which takes
O(n3) time via, e.g., the Hungarian Algorithm [see PC19, Chapter 3].

When φ0 is smooth and strongly convex, [MBNWW21] showed that, for d ≥ 5,

E∥T̂1NN −∇φ0∥2L2(P ) ≲ n−2/d .

In contrast to the rate optimality of the entropic Brenier map, we now show that T̂1NN

is proveably suboptimal in the semi-discrete setting. Not only does it fail to recover the
minimax rate obtained by the entropic Brenier map, but its performance in fact degrades in
comparison to the smooth case. A proof appears in Appendix G.

Proposition 4.2. There exist a measure P satisfying (A) and a discrete measure Q satisfying
(B) such that for d ≥ 3

E∥T̂1NN − T P→Q
0 ∥2L2(P ) ≳ n−1/d .

13
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Figure 2: Left: T̂ε versus T̂1NN for J = 2 and d = 10. Right: T̂ε versus T̂1NN for J = 10 and
d = 50.

4.3 Experiments

We briefly verify our theoretical findings on synthetic experiments. To create the following
plots, we draw two sets of n i.i.d. points from P , (X1, . . . , Xn) and (X ′

1, . . . , X
′
n), and create

target points Yi = T0(X
′
i), where T0 is known to us in advance in order to generate the data.

Our estimators are computed on the data (X1, . . . , Xn) and (Y1, . . . , Yn), and we evaluate the
Mean-Squared error criterion

MSE(T̂ ) = ∥T̂ − T0∥2L2(P )

of a given map estimator T̂ using Monte Carlo integration, using 50000 newly sampled
points from P . We plot the means across 10 repeated trials, accompanied by their standard
deviations.

4.3.1 Semi-discrete example #1

First consider P = Unif([0, 1]d) and create atoms {y1, . . . , yJ} by partitioning the points
along the first coordinate for all j ∈ [J ]:

(yj)[1] =
(j − 1/2)

J
, (yj)[2] = · · · = (yj)[d] = 0.5 .

We choose uniform qj = 1/J for j ∈ [J ]. In this case, it is easy to see that the optimal
transport map T0(x) is uniquely defined by the first coordinate of x1. Figure 2 illustrates
the rate-optimal performance of the entropic Brenier map, and the proveably suboptimal
performance of the 1-Nearest-Neighbor estimator.

4.3.2 Semi-discrete example #2

We now consider a synthetic experiment with far less symmetry. Let P = Unif([0, 1]d), and
fix J ∈ N. We randomly generate y1, . . . , YJ ∈ [0, 1]d, and also randomly generate ψ0 ∈ RJ ,
and consider the optimal transport map T0(x) = argminj∈[J ]{x⊤yj − (ψ0)j}. We define
Q = (T0)♯P , leading to the same setup as before, but with a less structured optimal transport
map. We consider J = 5 and d = 50, and repeat the procedure of the preceding section to
generate our data, and the resulting estimator. Figure 3 contains plots the MSE as a function
of n, where again we see a log-linear slope of around −0.5, which agrees with our theory.

14
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Figure 3: T̂ε versus T̂1NN for with ψ0 random in d = 50

4.3.3 Discontinuous example

We turn our attention to a discontinuous transport map, where for x ∈ Rd, all the coordinates
are fixed except for the first one

T0(x) = 2sign(x[1])⊗ x[2]⊗ · · · ⊗ x[d] .

We choose P = Unif([−1, 1]d) to exhibit a discontinuity in the data. Focusing on d = 10, we
see in Figure 4 that the entropic map estimator avoids the curse of dimensionality and enjoys
a faster convergence rate, with better constants.

102 103
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2 × 100

3 × 100

4 × 100

6 × 100

M
SE

T  slope=-0.294
T1NN slope=-0.205

Figure 4: T̂ε versus T̂1NN for d = 10
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5 Conclusion

Understanding optimal transport maps in the semi-discrete case is a natural stepping-stone
to understanding the case for general discontinuous transport maps. In this work, we propose
a tractable, minimax optimal estimator of the Brenier map in the semi-discrete setting, where
the rate of estimation is dimension independent. To prove our result, we require several new
results and techniques, and, as a by-product of our analysis, give the first parametric rates of
estimation the entropic Brenier map, without exponential dependence in the regularization
parameter. Our synthetic experiments indicate that the entropic Brenier map might be useful
in estimating other variants of discontinuous transport maps, which constitutes an interesting
direction for future research.
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A Reminders on semi-discrete entropic optimal trans-

port

We recall in this section some known results on entropic optimal transport that will be needed
later. Let µ, ν ∈ P(Ω), where Ω ⊂ B(0;R) is a compact set.

Lemma A.1 (GCB+19). The entropic potential (φµ→ν
ε , ψµ→ν

ε ) have a bounded amplitude, in
the sense that

max
x∈Ω

φµ→ν
ε −min

x∈Ω
φµ→ν
ε ≤ cR (23)

for some absolute constant c, and similarly for ψµ→ν
ε .

Assume now that ν =
∑J

j=1 νjδyj is a discrete measure. In this situation, only the values
of the dual potential ψµ→ν

ε on the points y1, . . . , yJ are relevant. We therefore consider ψµ→ν
ε

as a vector in RJ . The potentials φµ→ν
ε and ψµ→ν

ε are dual of one another, in the sense of the
ε-Legendre transform. Given a finite measure ρ, the ε-Legendre transform of a function h
with respect to ρ is given by

Φρ
ε(h)(x) = ε log

∫
e(⟨x,y⟩−h(x))/ε dρ(x). (24)

Relations (11) and (12) express that φµ→ν
ε = Φν

ε(ψ
µ→ν
ε ) and vice-versa. In the semi-discrete

setting, it is also convenient to introduce the ε-Legendre transform with respect to the
counting measure σ on {y1, . . . , yJ}. For a vector ψ ∈ RJ , we have

Φε(ψ)(x) := Φσ
ε (ψ)(x) = ε log

∑
e(⟨x,yj⟩−ψ(yj))/ε. (25)

The Φε transform and the Φν
ε transform are linked through the relation

Φν
ε(ψ) = Φε(ψ̃) where ψ̃(yj) = ψ(yj)− ε log νj , (26)

where we call ψ̃ a shifted potential. With this notation, the optimality condition on the
potentials can be rephrased. Let

F µ→ν
ε : ψ ∈ RJ →

∫
Φε(ψ) dµ+

∫
ψ dν . (27)

Then, the function F µ→ν
ε is minimized at ψ̃µ→ν

ε . For ψ ∈ RJ and x ∈ Rd, we introduce the
probability measure supported on {y1, . . . , yJ} given by

∀i ∈ [J ], πxε [ψ](yi) =
e(⟨x,yi⟩−ψ(yi))/ε∑J
j=1 e

(⟨x,yj⟩−ψ(yj))/ε
= e(⟨x,yi⟩−Φε(ψ)(x)−ψ(yi))/ε. (28)

A computation gives ∇F µ→ν
ε (ψ) =

∫
πxε [ψ] dµ(x)− ν, so that at optimality, we have∫
πxε [ψ̃

µ→ν
ε ] dµ(x) = ν. (29)

In this case, πxε = πxε [ψ̃
µ→ν
ε ] is the conditional distribution of the second marginal of πε given

that the first is equal to x, as in Section 2.2.1. More generally, for any potential ψ, the first
order condition implies that ψ is equal to ψ̃

µ→νψ
ε , the optimal dual potential between µ an

νψ =
∫
πxε [ψ] dµ(x).
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B Bound on the approximation error

Proof of Theorem 3.4. Let i, j ∈ [J ]. We define the jth slack at x ∈ Li by

1

2
∆ij(x) = −⟨x, yj⟩+ φ0(x) + ψ0(yj). (30)

As φ0 is the Legendre transform of ψ0, we have ∆ij(x) ≥ 0. If the cells Li and Lj have a
nonempty intersection, the set Hij(t) = {x ∈ Li : ∆ij(x) = t} represents the trace on Li of
the hyperplane spanned by the boundary between Li and Lj, shifted by t. It is stated in
[ANWS22] that for every nonnegative measurable function f : R → R+,∫

Li

f(∆ij(x))p(x) dx =
1

2∥yi − yj∥

∫ ∞

0

f(t)hij(t) dt, (31)

where hij(t) =
∫
Hij(t)

p(x) dHd−1(x) and Hd−1 is the (d− 1)-dimensional Hausdorff measure.

In particular, wij = hij(0) is the (weighted) surface of the boundary between the ith and jth

Laguerre cells (should it exist). Given x ∈ Li, let s(x) = minj ̸=i
1
2
∆ij(x). When the point

x is sufficiently inside its Laguerre cell, the conditional probability πxε becomes extremely
concentrated around the point yi, as the next lemma shows. Note that πx0 = δyi when x ∈ Li.

Lemma B.1. Let x ∈ Li. For ε small enough, it holds that for every j ∈ [J ], |πxε (yj) −
πx0 (yj)| ≤ ce−s(x)/ε, where c depends on J , the distances ∥yi − yj∥ and on the quantities wij.

Such a result was already stated in [Del22, Corollary 2.2], although while requiring that
the source measure P has a Hölder continuous density. Only assumption (A) is needed here.

Proof. According to [ANWS22, Proposition 4.6], for ε small enough,

ε−1∥ψ̃ε − ψ0∥∞ ≤ C, (32)

where ψ̃ε is the shifted version of ψε (see (25)) and C depends on the distances ∥yi − yj∥ and
on the wijs. Following [Del22, Proof of Corollary 2.2] and (28), we have for j ̸= i

|πxε (yj)− πx0 (yj)| = πxε (yj) =
e(⟨x,yj⟩−ψ̃ε(yj))/ε∑J

j′=1 e
(⟨x,yj′ ⟩−ψ̃ε(yj′ ))/ε

≤ e2C
e(⟨x,yj⟩−ψ0(yj))/ε∑J

j′=1 e
(⟨x,yj′ ⟩−ψ0(yj′ ))/ε

≤ e2Ce−s(x)/ε.

A similar computation yields that |πxε (yi)− πx0 (yi)| = |πxε (yi)− 1| ≤ Je2Ce−s(x)/ε.

We can bound for any x ∈ Li,

∥Tε(x)− T0(x)∥ = ∥
J∑
j=1

yj(π
x
ε (yj)− πx0 (yj))∥ ≤ c

J∑
j=1

∥yj∥e−s(x)/ε. (33)

Therefore, letting C ′ denote a constant, which may depend on J , whose value may change
from line to line, we obtain

∥Tε − T0∥2L2(P ) =
J∑
i=1

∫
Li

∥Tε(x)− T0(x)∥2 dP (x) ≤ C ′
J∑
i=1

∫
Li

J∑
j=1

e−2s(x)/ε dP (x) (34)

≤ C ′
∑
i̸=j

∫
Li

e−∆ij(x)/ε dP (x) ≤ C ′
∑
i̸=j

1

2∥yi − yj∥

∫ ∞

0

e−t/εhij(t) dt , (35)

18



where in the second equality, we used the definition of s(x). Assumption (A) ensures that
the functions hijs are bounded, which implies that the right-hand side in (35) is of order
ε.

C Stability of entropic transport plans

Proof of Proposition 3.9. Note that we may assume without loss of generality that ν ≪ ν ′

and that KL(ν∥ν ′) < ∞, for otherwise the bound is vacuous. For notational convenience,
we omit the dependence on ε in the subscripts. Write πµ,ν = γµ,ν(x, y)dµ(x)dν(y) for the
entropic optimal plan between µ and ν, where γµ,ν = exp

(
1
ε
(⟨x, y⟩ − φµ→ν(x)− ψµ→ν(y))

)
,

and analogously define γµ
′,ν′ = exp

(
1
ε
(⟨x, y⟩ − φµ

′→ν′(x)− ψµ
′→ν′(y))

)
.

Consider the measure γµ
′,ν′(x, y) dµ(x) dν ′(y). The first-order optimality condition for

(φµ
′→ν′ , ψµ

′→ν′) implies that ∫
γµ

′,ν′(y) dν ′(y) = 1 ∀x ∈ Ω , (36)

so that γµ
′,ν′(x, y) dν ′(y) is a probability measure. Let us write dπx(y) = γµ,ν(x, y) dν(y) and

dρx(y) = γµ
′,ν′(x, y) dν ′(y).

We make the following observations: first, T µ→ν(x) =
∫
y dπx(y) and T µ

′→ν′(x) =∫
y dρx(y). Second, the support of ρx lies inside B(0;R); since any Lipschitz function

f on B(0;R) satisfies supx f(x)− infx f(x) ≤ 2R, Hoeffding’s lemma [see BLM13, Lemma
2.2] implies that if f is Lipschitz and

∫
f dρx = 0, then∫

etf dρx ≤ e2R
2t2 ∀t ∈ R .

This implies [BG99, Theorem 3.1] that

W1(π
x, ρx)2 ≤ 8R2KL(πx∥ρx) . (37)

Third, Jensen’s inequality implies that for any coupling γ between πx and ρx,∫
∥y − y′∥ dγ(y, y′) ≥

∥∥∥∥∫ (y − y′) dγ(y, y′)

∥∥∥∥ = ∥T µ→ν(x)− T µ
′→ν′(x)∥ , (38)

so that in particular, ∥T µ→ν(x)− T µ
′→ν′(x)∥ ≤ W1(π

x, ρx). Combining these facts, we obtain

1

8R2
∥T µ→ν(x)− T µ

′→ν′(x)∥2 ≤ KL(πx∥ρx) =
∫

log

(
γµ,ν

γµ′,ν′
(x, y)

dν

dν ′
(y)

)
γµ,ν(x, y) dν(y) .

(39)
Integrating both sides of this equation with respect to µ yields

1

8R2
∥T µ→ν(x)− T µ

′→ν′(x)∥2L2(µ) ≤
∫

log

(
γµ,ν

γµ′,ν′
(x, y)

dν

dν ′
(y)

)
dπµ,ν(x, y) . (40)

Expanding the definition of γµ,ν and γµ
′,ν′ and using that∫

log
dν

dν ′
(y) dπµ,ν(x, y) =

∫
log

dν

dν ′
(y) dν(y) = KL(ν∥ν ′)

yields the claim.
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We now record two corollaries of this bound, which apply when either the source or the
target measures of the entropic maps agree.

Corollary C.1. For any µ, ν, ν ′ supported in B(0;R),

1

8R2
∥T µ→ν

ε − T µ→ν′

ε ∥2L2(µ) ≤ ε−1

∫
(ψµ→ν′

ε − ψµ→ν
ε ) d(ν − ν ′) +KL(ν∥ν ′) (41)

Proof. We apply Proposition 3.9 with µ = µ′, which yields (once again omitting the depen-
dency in ε)

1

8R2
∥T µ→ν

ε −T µ→ν′

ε ∥2L2(µ) ≤ ε−1

(∫
(φµ→ν′ − φµ→ν) dµ+

∫
(ψµ→ν′ − ψµ→ν) dν

)
+KL(ν∥ν ′) .

(42)
By definition, (φµ→ν′ , ψµ→ν′) minimizes the expression∫

φ dµ+

∫
ψ dν ′ + ε

∫∫
e(⟨x,y⟩−φ(x)−ψ(y))/ε dµ(x) dν ′(y)− ε

, so, recalling that
∫∫

e(⟨x,y⟩−φ
µ→ν′ (x)−ψµ→ν′ (y))/ε dµ(x) dν ′(y) = 1, we have in particular∫

φµ→ν′ dµ+

∫
ψµ→ν′ dν ′ ≤

∫
φµ→ν dµ+

∫
ψµ→ν dν ′ + ε

∫∫
e(⟨x,y⟩−φ

µ→ν(x)−ψµ→ν(y))/ε dµ(x) dν ′(y)− ε

=

∫
φµ→ν dµ+

∫
ψµ→ν dν ′ ,

where we have used that the first-order optimality condition for (φµ→ν , ψµ→ν) implies that∫∫
e(⟨x,y⟩−φ

µ→ν(x)−ψµ→ν(y))/ε dµ(x) dν ′(y) = 1 as well (see (11)). This implies∫
(φµ→ν′ − φµ→ν) dµ ≤ −

∫
(ψµ→ν′ − ψµ→ν) dν ′ . (43)

Applying this inequality to (42) yields

1

8R2
∥T µ→ν

ε − T µ→ν′

ε ∥2L2(µ) ≤ ε−1

∫
(ψµ→ν′ − ψµ→ν) d(ν − ν ′) + KL(ν∥ν ′).

Corollary C.2. For any µ, µ′, ν supported in B(0;R),

1

8R2
∥T µ→ν

ε − T µ
′→ν

ε ∥2L2(µ) ≤ ε−1

∫
(φµ

′→ν
ε − φµ→ν

ε ) d(µ− µ′) . (44)

Proof. We apply Proposition 3.9 with ν = ν ′, yielding (dropping the dependency on ε)

1

8R2
∥T µ→ν − T µ

′→ν∥2L2(µ) ≤ ε−1

(∫
(φµ

′→ν − φµ→ν) dµ+

∫
(ψµ

′→ν − ψµ→ν) dν

)
. (45)

An argument analogous to the one used in the proof of Corollary C.1 gives the inequality∫
φµ

′→ν dµ′ +

∫
ψµ

′→ν dν ≤
∫
φµ→ν dµ′ +

∫
ψµ→ν dν , (46)

or, equivalently, ∫
(ψµ

′→ν − ψµ→ν) dν ≤ −
∫
(φµ

′→ν − φµ→ν) dµ′ , (47)

and combining this inequality with (45) proves the claim.
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D Strong convexity of the entropic semi-dual problem

Proposition D.1 (Strong convexity of F µ→ν
ε ). Let ν =

∑J
j=1 νjδyj be a measure supported

on {y1, . . . , yJ} ⊆ B(0;R) and let µ supported on a compact convex set Ω ⊆ B(0;R) with
a density p satisfying pmin ≤ p ≤ pmax for some pmax ≥ pmin > 0. For ψ ∈ RJ , define
νψ =

∫
πxε [ψ] dµ(x) and assume that νψ ≥ λν for some 0 < λ ≤ 1. Then, we have for

ε ∈ (0, 1)
F µ→ν
ε (ψ)−min

ψ
F µ→ν
ε ≥ Cλ · Varν(ψ − ψµ→ν

ε ), (48)

where C =
(
e2R

2 pmax

pmin
+ ε
)−1

pmin

pmax
.

Proof. As µ and ε are fixed, we will simply write ψν instead of ψµ→ν
ε , and write similarly

Fν = F µ→ν
ε . Recall the definition (25) of the shifted potential ψ̃ν(yj) = ψν(yj) − ε log νj.

According to [Del22, Theorem 3.2], the functional Fν is minimized at the vector ψ̃ν , with

∀v ∈ RJ , Varν(v) ≤
(
e2R

2 pmax

pmin

+ ε

)
v⊤∇2Fν(ψ̃ν)v. (49)

For t ∈ [0, 1], let ψt = ψ̃ν + t(ψ − ψ̃ν) and let νt =
∫
πxε [ψt] dµ(x). The potential ψt is the

(shifted) entropic Brenier potential between µ and νt, so that it minimizes the functional Fνt
(see Appendix A). Also, note that ∇2Fν does not depend on ν, so that

v⊤∇2Fν(ψt)v = v⊤∇2Fνt(ψt)v ≥
(
e2R

2 pmax

pmin

+ ε

)−1

Varνt(v). (50)

Let v = ψ − ψµ→ν
ε . A Taylor expansion of Fν gives

Fν(ψ)− Fν(ψ̃ν) =

∫ 1

0

v⊤∇2Fν(ψt)v dt ≥
(
e2R

2 pmax

pmin

+ ε

)−1 ∫ 1

0

Varνt(v) dt. (51)

Lemma D.2. Write νt =
∑J

j=1 νt,jδyj . Then, for all t ∈ [0, 1] and j ∈ [J ], we have

νt,j ≥ pmin

pmax
ν1−t0,j ν

t
1,j.

This lemma is enough to conclude the proof. Indeed, ν1 = νψ ≥ λν, so that it implies
that Varνt(v) ≥ pmin

pmax
λVarν(v).

Proof of Lemma D.2. According to [Del22, Proof of Proposition 4.1],

Φε(ψt)(tx+ (1− t)y) ≤ tΦε(ψ̃
µ→ν
ε )(x) + (1− t)Φε(ψ)(y). (52)

Therefore, if we let ht(x) = e(⟨x,yj⟩−ψt(yj)−Φε(ψt)(x))/ε, then we have ht(tx + (1 − t)y) ≥
h0(x)

th1(y)
1−t. By the Prékopa-Leindler inequality,

νt,j =

∫
ht(x) dµ(x) ≥ pmin

∫
X
ht(x) dx ≥ pmin

(∫
X
h0(x) dx

)t(∫
X
h1(x) dx

)1−t

≥ pmin

pmax

νt0,jν
1−t
1,j .
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Proof of Proposition 3.11. As in the previous proof, we drop the ε and µ dependency in our
notation. Write νk =

∑J
j=1 νk,jδyj for k = 0, 1, and define as before the shifted potentials

ψ̃νk(yj) = ψν1(yj)− ε log νk,j . Let θ > 0 be a parameter to fix. According to Proposition D.1,
Lemma H.1, and using the inequality Fν1(ψ̃ν1) ≤ Fν1(ψ̃ν0), we have

CλVarν0(ψ̃ν1 − ψ̃ν0) ≤ Fν0(ψ̃ν1)− Fν0(ψ̃ν0) ≤ Fν0(ψ̃ν1)− Fν1(ψ̃ν1) + Fν1(ψ̃ν0)− Fν0(ψ̃ν0)

=

∫
(ψ̃ν1 − ψ̃ν0)( dν0 − dν1)

≤ θ

2
Varν0(ψ̃ν1 − ψ̃ν0) +

1

2θ
χ2(ν1∥ν0).

We pick θ = Cλ to conclude that

Varν0(ψ̃ν1 − ψ̃ν0) ≤
1

(Cλ)2
χ2(ν1∥ν0). (53)

Therefore, using the inequality | log(a/b)| ≤ |a− b|/min{a, b} for a, b > 0,

Varν0(ψ1 − ψ0) ≤ 2Varν0(ψ̃1 − ψ̃0) + 2
J∑
j=1

ν0,j

(
log

(
ν1,j
ν0,j

))2

≤ 2

(Cλ)2
χ2(ν1∥ν0) + 2

J∑
j=1

ν0,j

(
ν1,j − ν0,j

min{ν0,j, ν1,j}

)2

≤ 2

(Cλ)2
χ2(ν1∥ν0) +

2

λ2

J∑
j=1

1

ν0,j
(ν1,j − ν0,j)

2 ≤
(

2

(Cλ)2
+

2

λ2

)
χ2(ν1∥ν0).

E Control of the fluctuations in the one-sample case

Lemma E.1 (Sample complexity in the one-sample case). Assume that P satisfy (A) and
that Q satisfy (B). Then, it holds that E∥T P→Qn

ε − Tε∥2L2(P ) ≲ ε−1n−1.

Proof. To ease notation, we write Tε,n = T P→Qn
ε and ψε,n = ψP→Qn

ε . As explained in Section 3,
the stability result Proposition 3.9 implies that

E∥Tε,n − Tε∥2L2(P ) ≤
8R2

ε

(E[VarQ(ψε,n − ψε)]

2
+

E[χ2(Qn∥Q)]
2

)
+ 8R2E[χ2(Qn∥Q)] . (54)

Write Q =
∑J

j=1 qjδyj and Qn =
∑J

j=1 q̂jδyj , and introduce the event E = {∀j ∈ [J ], q̂j ≥
qj/2}. If E is satisfied, we have Qn ≥ Q/2, so that Proposition 3.11 yields

VarQ(ψε,n − ψε) ≤ Cχ2(Qn∥Q). (55)

If E is not satisfied, we use the fact that the entropic potentials have a bounded amplitude
(see Lemma A.1), to obtain that

VarQ(ψε,n − ψε) ≤ C ′. (56)
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Lemma E.2. Let E be the event that Qn ≥ Q/2. Then P(Ec) ≤ Je−cqminn for some c > 0.

Proof. By [Ver18, Exercise 2.3.2], we have P(Ec) ≤
∑J

j=1 P(q̂j < qj/2) ≤ Je−cqminn for some
c > 0.

We obtain

E∥T̂ε,n − Tε∥2L2(P ) ≲
R2

ε
E[χ2(Qn∥Q)] +

R2

ε
Je−cqminn ≲ ε−1n−1 (57)

by Lemma H.2.

F Control of the fluctuations in the two-sample case

The goal of this section is to prove Theorem 3.7. We will actually prove a more general
result, and show that for any discrete measure ν =

∑J
j=1 νjδyj supported on {y1, . . . , yJ}

with νj ≥ νmin > 0 for all j ∈ [J ], we have for log(1/ε) ≲ n/ log(n),

E∥T Pn→ν
ε − T P→ν

ε ∥2L2(P ) ≲ ε−1n−1. (58)

Theorem 3.7 follows from (58) by conditioning on Qn. Let E be the event that Qn ≥ Q/2.
Then, by Lemma E.2,

E∥T̂ε − T P→Qn
ε ∥2L2(P ) ≤ E

[
E[∥T̂ε − T P→Qn

ε ∥2L2(P )|Qn]1{E}
]
+R2P(Ec)

≤ Cε−1n−1 +R2Je−cqminn ≲ ε−1n−1.

We obtain Theorem 3.7 by combining this bound with Lemma E.1.
To prove (58), we first use Corollary C.2 which yields

E∥T Pn→ν
ε − T P→ν

ε ∥2L2(P ) ≤ 8R2ε−1E
∫
(φPn→ν

ε − φP→ν
ε ) d(Pn − P )

= 8R2ε−1E
∫
(Φε(ψ̃

Pn→ν
ε )− Φε(ψ̃

P→ν
ε )) d(Pn − P ),

(59)

where we recall that for a potential ψ, the shifted potential ψ̃ is given by ψ̃j = ψj − ε log νj.
The remainder of the proof consists in bounding this integral by using localization arguments
and standard bounds on suprema of empirical processes. Our first goal is to show that the
potential ψPn→ν

ε is close to to the potential ψP→ν
ε for the ∞-norm. It will be convenient to

work with the “L∞-variance”

Var∞(ψ) = inf
c∈R

max
j∈[J ]

|ψ(yj)− c|2 =
(
maxψ −minψ

2

)2

. (60)

As the measure ν is lower bounded, it holds that

Varν(ψ) ≥ νminVar∞(ψ). (61)
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Lemma F.1 (Supremum of ε-Legendre transforms). Let ψ0 be a fixed potential and let τ > 0.
Then, for all j ∈ [J ],

E

[
sup

Var∞(ψ−ψ0)≤τ2

∣∣∣∣∫ (πxε (ψ)j − πxε (ψ0)j) d(P − Pn)(x)

∣∣∣∣
]
≤ C

√
J max{log(τ/ε), 1}

n
(62)

E

[
sup

Var∞(ψ−ψ0)≤τ2

∣∣∣∣∫ (Φε(ψ)(x)− Φε(ψ0))(x) d(P − Pn)(x)

∣∣∣∣
]
≤ Cτ

√
J

n
(63)

for some absolute constant C.

Proof. For a metric space (A, d) and u > 0, we let N(u,A, d) be the covering number of A
at scale u, that is the smallest number of balls of radius u needed to cover A. Let B be the
L∞-ball of radius τ in RJ , centered at ψ0, and let ∥ · ∥∞ denote the ∞-norm. For 0 < u ≤ τ ,
we have logN(u,B, ∥ · ∥∞) ≤ J log(τ/u).

We start with the second inequality. Note that ψ 7→ Φε(ψ) is 1-Lipschitz continuous,
and that the functional Φε satisfies Φε(ψ + c) = Φε(ψ) + c for all c ∈ R. Then the set
{ψ : Var∞(ψ − ψ0) ≤ τ 2} is equal to the set {ψ + c : ψ ∈ B, c ∈ R}. As

∫
c d(P − Pn) = 0,

we can therefore restrict the supremum to vectors ψ ∈ B. Furthermore, an envelope function
of the class {Φε(ψ) − Φε(ψ0) : ψ ∈ B} is the constant function equal to τ . Therefore, by
Lemma H.3, we obtain

E

[
sup

∥ψ−ψ0∥∞≤τ

∣∣∣∣∫ (Φε(ψ)− Φε(ψ0))( dP − dPn)

∣∣∣∣
]
≤ c0√

n

∫ c1τ

0

√
J log 2N(u, {Φε(ψ) : ψ ∈ B}, ∥ · ∥∞) du

≤
√
c3Jτ

n
.

We repeat the same argument for the first inequality. The functional πxε is invariant by
translation: πxε (ψ + c) = πxε (ψ) for all c ∈ R. This implies that

sup
Var∞(ψ−ψ0)≤τ2

∣∣∣∣∫ (Φε(ψ)(x)− Φε(ψ0))(x) d(P − Pn)(x)

∣∣∣∣ =
sup

∥ψ−ψ0∥∞≤τ

∣∣∣∣∫ (Φε(ψ)(x)− Φε(ψ0))(x) d(P − Pn)(x)

∣∣∣∣ .
As the function ψ 7→ πxε (ψ)j is ε

−1-Lipschitz continuous for every x ∈ Rd, we have for
0 < u ≤ τ/ε,

logN(u, {x 7→ πxε (ψ)j : ψ ∈ B}, ∥ · ∥∞) ≤ J log(τ/(uε)) .

Remarking furthermore that 0 ≤ πxε (ψ)j ≤ 1 (so that the class of functions {x 7→ πxε (ψ)j :
ψ ∈ B} admits the constant function 1 as an envelope function), we obtain the following
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control using Lemma H.3:

E

[
sup

∥ψ−ψ0∥∞≤τ

∣∣∣∣∫ (πxε (ψ)j − πxε (ψ0)j)( dP − dPn)(x)

∣∣∣∣
]

≤ c0√
n

∫ c1

0

√
J log 2N(u, {x 7→ πxε (ψ)j : ψ ∈ B}, ∥ · ∥∞) du

≤
√
c2J max{log(τ/ε), 1}

n
,

where c0, c1 and c2 are absolute constants, and the last line follows from arguing whether
c1 < τ/ε or not.

Proposition F.2. Assume that P satisfies (A) and let ν =
∑J

j=1 νjδyj be a measure supported
on {y1, . . . , yJ} ⊂ B(0;R), with νj ≥ qmin for all j ∈ [J ]. Then, for all 0 < ε ≤ 1 with
log(1/ε) ≲ n/ log(n), it holds that

EVar∞(ψ̃Pn→ν
ε − ψ̃P→ν

ε ) ≲ n−1. (64)

Proof. To alleviate notation, we will write ψn = ψPn→ν
ε and ψ0 = ψP→ν

ε . Similarly, we write
Fn = F Pn→ν

ε and F0 = F P→ν
ε . Let νn =

∫
πxε (ψ

Pn→ν
ε ) dP (x). Under the event E = {νn ≥ ν/2},

we have according to Proposition D.1 and the fact that ψ̃n minimizes Fn,

CνminVar∞(ψ̃n − ψ̃0) ≤ CVarν(ψ̃n − ψ̃0)

≤ F0(ψ̃n)− F0(ψ̃0)

≤ F0(ψ̃n)− Fn(ψ̃n) + Fn(ψ̃0)− F0(ψ̃0)

=

∫
(Φε(ψ̃n)− Φε(ψ̃0)) d(P − Pn)

(65)

Let us bound P(Ec). As ψ̃n is the minimum of Fn, we have ν =
∫
πxε (ψ̃n)j dPn(x) (see

Appendix A). Therefore, we may write νn,j =
∫
πxε (ψ̃n)j dPn(x) +

∫
πxε (ψ̃n)j d(P − Pn)(x) =

νj + Zj, where

Zj =

∫
πxε (ψ̃n)j d(P − Pn)(x) =

∫
(πxε (ψ̃n)j − πxε (ψ̃0)j) d(P − Pn)(x).

Note that Var∞(ψ̃n − ψ̃0) ≲ R2 (see Lemma A.1), so that by Lemma F.1 and Lemma H.3,

P(Ec) ≤
J∑
j=1

P(|Zj| > νj/2) ≤ J exp

(
−c

√
nqmin

(
√
J log(1/ε) + log n

)
≲ n−1, (66)

under the condition log(1/ε) ≲ n/ log(n).
For k ≥ 0, let ak = 2k/

√
n and fix some p > 2. Let

Ba = sup
Var∞(ψ−ψ̃0)≤a2

∣∣∣∣∫ (Φε(ψ)− Φε(ψ̃0)) d(P − Pn)

∣∣∣∣
25



. Assume that E is satisfied and that Var∞(ψ̃0 − ψ̃n) ∈ [a2, b2]. Then, according to (65), it
holds that Bb ≥ ca2. Using Markov’s inequality, Lemma F.1 and Lemma H.3, we bound

EVar∞(ψ̃n − ψ̃0) ≤ a20 +
∑
k≥0

P(Var∞(ψ̃n − ψ̃0) ∈ [a2k, a
2
k+1] and E)a

2
k+1 + CP(Ec)

≲ n−1 +
∑
k≥0

P
(
Bak+1

≥ ca2k
)
a2k+1 ≲ n−1 +

∑
k≥0

E[Bp
ak+1

]

a2pk
a2k+1

≲ n−1 +
∑
k≥0

(2k/n)p

(4k/n)p
4k+1

n
≲ n−1 +

∑
k≥0

22k−pk

n
≲ n−1.

Proposition F.3. Under the same assumptions than Proposition F.2, it holds that

E∥T Pn→ν
ε − T P→ν

ε ∥2∞ ≲ ε−1n−1. (67)

Proof. Let Z = Var∞(ψ̃n− ψ̃0). Let once again ak = 2k/
√
n for k ≥ 1, with a0 = 0. Fix some

p > 2, with q = p
p−1

. For a > 0, let Da = supVar∞(ψ−ψ̃0)≤a2

∣∣∣∫ (Φε(ψ)− Φε(ψ̃0)) d(P − Pn)
∣∣∣.

By Hölder inequality and Markov inequality, we obtain,

E
∫

(Φε(ψ̃n)− Φε(ψ̃0)) d(P − Pn)

≤
∑
k≥0

E

[
1{Z ∈ [a2k, a

2
k+1]} sup

Var∞(ψ−ψ̃0)≤a2k+1

∫
(Φε(ψ)− Φε(ψ̃0)) d(P − Pn)

]

≤ E[Da1 ] +
∑
k≥1

(
P(Z ≥ a2k)

)1/q E [Dp
ak+1

]1/p
≲ n−1 +

∑
k≥0

(
E[Z]
a2k

)1/q
2k

n
≲
∑
k≥0

2k(1−2/q)

n
≲ n−1,

where we use Proposition F.2, Lemma F.1 and Lemma H.3 at the last line. Equation (59)
then gives the conclusion.

G A lower bound for the performance of the 1NN

estimator

In this section, we prove Proposition 4.2. We let P be the Lebesgue measure on Ω = [0, 1]d,
and let y0 = (0, 1/2, . . . , 1/2) and y1 = (1, 1/2, . . . , 1/2). We denote by Pn an empirical
measure consisting of i.i.d. samples from P . As in Appendix F, we work in a general setting of
a generic discrete target measure ν, which may either be fixed or may be a random measure
independent of Pn. We let ν =

∑
j=0,1 νjδyj for ν0, ν1 ≥

1
4
; this latter condition will hold with

overwhelming probability if ν is an empirical measure Qn corresponding to n i.i.d. samples
from Q = 1

2
δy0 +

1
2
δy1 . Following [MBNWW21], we define the one-nearest neighbor estimator

T̂1NN in this general context by

T̂1NN(x) =
n∑
i=1

∑
j=0,1

1Vi(x)(nπ̂(Xi, yj)) ,
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where π̂ is the empirical optimal coupling between Pn and ν.
We first examine the structure of the Brenier map T0 = ∇φ0. The considerations in

Section 2.1.1 imply that

T0(x) =

{
y0 ⟨e1, x⟩ ≤ ν0

y1 ⟨e1, x⟩ > ν0 ,

where e1 is the first elementary basis vector. The potential φ0 is not differentiable on the
separating hyperplane ⟨e1, x⟩ = ν0, which has measure 0 under P , but we may arbitrarily
assign points on this hyperplane to y0.

Similar arguments imply that the empirical transport plan π̂ between Pn and ν has the
following property: there exists a (random) threshold τ ∈ (0, 1) such that

π̂(x, y0) =

{
1 ⟨e1, x⟩ < τ

0 ⟨e1, x⟩ > τ .

The set ⟨e1, x⟩ = τ may not have measure 0 under Pn, and π̂(x, y0) may take values strictly
between 0 and 1 on this set.

The following lemma shows that τ is close to ν0 with high probability.

Lemma G.1. For any t ≥ 0,

P {τ ≥ ν0 + t} ≤ e−2nt2 .

Proof. If τ ≥ ν0 + t, this implies that Pn({x : ⟨e1, x⟩ < ν0 + t}) ≤ ν0. On the other hand,
nPn({x : ⟨e1, x⟩ < ν0 + t} is a Bin(n, ν0 + t) random variable. The result then follows from
Hoeffding’s inequality [BLM13, Theorem 2.8].

Let us writeH for the halfspace {x : ⟨e1, x⟩ ≤ ν0}, and Ĥ for the halfspace {x : ⟨e1, x⟩ ≤ τ}.
Let x be any point in Ω such that x ∈ H. We are interested in the event that there exists an
element Xi ∈ {X1, . . . , Xn} such that a) x ∈ Vi and b) Xi ∈ Ĥc. Call this event E(x). On
this event, T̂1NN(x) = y1 and T0(x) = y0, so ∥T̂1NN(x)− T0(x)∥2 = 1.

We therefore obtain

E∥T̂1NN − T0∥2L2(P ) = E
∫

∥T̂1NN(x)− T0(x)∥2 dP (x)

≥ E
∫
H

∥T̂1NN(x)− T0(x)∥21{E(x)} dP (x)

≳ E
∫
H

1{E(x)} dP (x)

=

∫
H

P {E(x)} dP (x) ,

where the final equality follows from the Fubini–Tonelli theorem.
We now lower bound the probability of E(x). Let us write At for the event that τ < ν0+ t,

for t > 0 to be specified, and write Ht for the halfspace {x : ⟨e1, x⟩ ≤ ν0 + t}. Given any
x ∈ H, write ∆ = d(x,Hc

t ), and let B be a ball of radius 2∆ around x, intersected with Ω.
Denote by F(x) the event that there are no samples in V = B ∩Ht but there is at least

one point in B ∩Hc
t . Then F(x) ∩ At ⊆ E(x), since on F(x) the nearest neighbor to x must

be a sample in Hc
t , and on At we have Hc

t ⊆ Ĥc.
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Lemma G.2.

P {F(x) ∩ At} ≥ (1− vol(V ))n − (1− vol(B))n − e−2nt2 .

Proof. We first compute P {F(x)}. The probability that there are no samples in V is
(1− vol(V ))n, and this event may be written as the disjoint union of F(x) and the event that
all of B is empty. The latter event has probability (1 − vol(B))n. Therefore

(1− vol(V ))n = P {F(x)}+ (1− vol(B))n .

Since P {Ac
t} ≤ e−2nt2 , the claim follows.

We need the following lemma.

Lemma G.3. Assume that ∆ > 0 and that d(x, ∂Ω) ≥ 2∆. There exist positive constants
cd,0 < 1 and cd,1 such that

vol(V ) ≤ cd,0 vol(B) (68)

and
vol(B) ≥ cd,1∆

d (69)

Proof. This is immediate from a scaling argument: since d(x, ∂Ω) ≥ 2∆, the set B is a
Euclidean ball of radius 2∆, and the set V is a Euclidean ball of radius 2∆ minus a spherical
dome cut off by a hyperplane at distance ∆ from the center. When ∆ = 1, it is clear that
the claimed inequalities hold, and the general case is obtained by dilation.

We assume in what follows that d(x, ∂Ω) ≥ 2∆. The inequalities (1 + x)n ≥ 1 + nx and
ex ≤ 1 + x+ x2, valid for all x ∈ [−1, 0] and n ≥ 1, imply that for any δ > 0 there exists a
constant cd,δ > 0 such that if ∆ ≤ cd,δn

−1/d, then we will have

(1− vol(V ))n ≥ 1− ncd,0 vol(B) (70)

(1− vol(B))n ≤ e−n vol(B) ≤ 1− (1− δ)n vol(B) (71)

Choosing δ sufficiently small, we obtain the existence of a small cd,3 > 0 such that if
∆ ≤ cd,3n

−1/d, then
(1− vol(V ))n − (1− vol(B))n ≥ Cdn∆

d .

Define ∆n = cd,4n
−1/d. Putting it all together, consider the set

S = {x ∈ H ∩ Ω : ∆n/2 ≤ d(x,Hc
t ) ≤ ∆n, d(x, ∂Ω) ≥ 2∆n} .

The above considerations imply that P {E(x)} ≥ Cdn(∆n/2)
d − e−2nt2 ≥ C ′

d − e−2nt2 for all
x ∈ S. Choosing t to be a sufficiently large constant multiple of n−1/2, we obtain∫

H

P {E(x)} dP (x) ≥
∫
S

P {E(x)} dP (x) ≳d vol(S) .

Since t ≍ n−1/2, we will have that t≪ ∆n for n sufficiently large (as d ≥ 3). Therefore, for n
large enough, the set S contains the set

S ′ = {x ∈ Ω : ν0−∆n+t ≤ ⟨e1, x⟩ ≤ ν0−∆n/2+t, 2∆n ≤ ⟨ej, x⟩ ≤ 1−2∆n ∀j = 2, . . . , d} .

Since vol(S ′) ≳d ∆n ≳ n−1/d, the claim follows.
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H Auxiliary lemmas

Lemma H.1 (Young’s inequality). Let Q0, Q1 be probability measures with Q1 ≪ Q0 and let
f be a function. Then, for θ > 0,∫

f( dQ0 − dQ1) ≤
θVarQ0(f)

2
+
χ2(Q1∥Q0)

2θ
. (72)

Proof. Recall Young’s inequality: for a, b ∈ R, ab ≤ a2

2
+ b2

2
. As the left-hand side is

invariant by translation, we may assume without loss of generality that
∫
f dQ0 = 0, so that

VarQ0(f) =
∫
f 2 dQ0. We write

∫
f( dQ0 − dQ1) =

∫
(
√
θf)

(
1− dQ1

dQ0

)
√
θ

dQ0 ≤
θ

2

∫
f 2 dQ0 +

1

2θ

∫ (
1− dQ1

dQ0

)2

dQ0

=
θVarQ0(f)

2
+
χ2(Q1∥Q0)

2θ
.

Lemma H.2 (Expectation of empirical χ2-divergence). Let Q =
∑J

j=1 qjδyj be a discrete
measure supported on J atoms, and let Qn denote its empirical measure, consisting of n
i.i.d. samples. Then,

E[χ2(Qn∥Q)] =
J − 1

n
. (73)

Proof. We can write Qn =
∑J

j=1 q̂jδyj , where q̂j is a binomial random variable with parameters
n and qj. We obtain

χ2(Qn∥Q) =
J∑
j=1

(q̂j − qj)
2

qj
.

Taking expectations, our bound reads

E[χ2(Qn∥Q)] =
J∑
j=1

Var(q̂j)

qj
=

J∑
j=1

qj(1− qj)

nqj
=
J − 1

n
.

Lemma H.3 (Control of suprema of empirical processes). Let X1, . . . , Xn be an i.i.d. sample
from some probability measure P on Rd, with Pn the associated empirical measure. Consider
F a class of functions Rd → R with ∥f∥∞ ≤ A for all f ∈ F . For u > 0, let N(u) be the
u-covering numbers of F , that is the minimal number of balls of radius u for the ∥ · ∥∞-metric
required to cover F . Then,

E
[
sup
f∈F

∣∣∣∣∫ f d(Pn − P )

∣∣∣∣] ≤ C0√
n

∫ C1A

0

√
log 2N(u) du =:

I√
n

(74)
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for two positive absolute constants C0 and C1. Furthermore, for all t > 0,

P
(
sup
f∈F

∣∣∣∣∫ f d(Pn − P )

∣∣∣∣ > t

)
≤ exp

(
− C2

√
nt

I + A log n

)
, (75)

for some positive absolute constant C2. Eventually, for all p ≥ 2,

E
[
sup
f∈F

∣∣∣∣∫ f d(Pn − P )

∣∣∣∣p]1/p ≤ Cp
I + A√

n
. (76)

Proof. See [VW96, Theorem 2.14.2 and Theorem 2.14.5].
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[GPC18] Aude Genevay, Gabriel Peyré, and Marco Cuturi. Learning generative
models with Sinkhorn divergences. In International Conference on Artificial
Intelligence and Statistics, pages 1608–1617. PMLR, 2018.

[GS22] Promit Ghosal and Bodhisattva Sen. Multivariate ranks and quantiles
using optimal transport: consistency, rates and nonparametric testing. Ann.
Statist., 50(2):1012–1037, 2022.

[GSLNW22] Alberto Gonzalez-Sanz, Jean-Michel Loubes, and Jonathan Niles-Weed. Weak
limits of entropy regularized optimal transport; potentials, plans and diver-
gences. arXiv preprint arXiv:2207.07427, 2022.

[GX21] Florian Gunsilius and Yuliang Xu. Matching for causal effects via multi-
marginal optimal transport. arXiv preprint arXiv:2112.04398, 2021.

[HR21] Jan-Christian Hütter and Philippe Rigollet. Minimax estimation of smooth
optimal transport maps. The Annals of Statistics, 49(2):1166–1194, 2021.

[HSM22] Shayan Hundrieser, Thomas Staudt, and Axel Munk. Empirical optimal
transport between different measures adapts to lower complexity. arXiv
preprint arXiv:2202.10434, 2022.

[Kan42] L. Kantorovitch. On the translocation of masses. C. R. (Doklady) Acad. Sci.
URSS (N.S.), 37:199–201, 1942.
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