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Abstract—Hybrid and resonant switched capacitor converters
show promise in a number of power management applications,
but are subject to a range of challenges in control and implemen-
tation. In particular, hybrid topologies use a network of switched
flying capacitors to reduce voltage stress on switching devices
and energy storage requirements of inductor(s). However the
increased order of system dynamics can lead to problems with
voltage balance and regulation of the unique flying capacitor
voltage states, leading to higher voltage stress and other unde-
sirable effects. This work presents a simple yet comprehensive
state-space analysis of hybrid topologies which can be used to
predict and control system dynamics including voltage imbalance
phenomena. The model affords new perspectives on modern-
control metrics through a condition-number-based treatment,
providing relative quantification of observability and controllabil-
ity. Expanded opportunities such as a state observer and discrete
time eigenvalues which govern natural balance are presented.
The model is exemplified and validated using flying-capacitor
multilevel converter (FCML) hardware prototypes.!

Index Terms—hybrid switched-capacitor, capacitor voltage
balance, flying capacitor multilevel converter, DC-DC converter.

I. INTRODUCTION

OWER management and delivery is an increasing bottle-
neck in a variety of applications spanning performance
and mobile computing, renewable energy, electrified trans-
portation, low-power embedded systems, and many others
[3]. In pursuit of high efficiency, small volume, and flexible
regulation, hybrid switched-capacitor (SC) converters have
emerged as promising candidates for such applications [4]-
[8]. By incorporating capacitors and inductors as energy
storage elements, hybrid converters combine advantages of
both magnetic-based and pure SC topologies: the inductor(s)
achieve soft charging of flying capacitors and enable efficient
regulation characteristics [9]-[12]; the capacitors boost aver-
age energy density of passive components thus reducing the
overall physical volume [13]-[15].
While many hybrid SC converter topologies are explored
in the literature [6]-[8], [16]-[24], they can generally be
segmented into base classes spanning series-parallel, Dickson,
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(a) resonant mode

(b) inductive mode

Fig. 1. The general schematic of an IN-cell FCML converter; 4—cell FCML
converter timing diagrams under (a) resonant and (b) inductive modes.

ladder, Fibonacci, and flying capacitor multilevel (FCML)
[14], the latter illustrated for a 4-cell (N = 4) converter in Fig.
1. The direct-conversion architectures have a defining charac-
teristic that an inductor is connected between a switching node
and the output terminal [11] and can be operated in resonant
or pulse-width modulated (inductive) modes [12].

Compared to a conventional buck converter with a 2"-
order LC filter, hybrid converters can have much higher
order dynamics due to the additional independent energy
storage of flying capacitors. This results in a practical chal-
lenge of maintaining flying capacitor voltages at a desired
or nominal ’balanced’ level [24]-[28]. Many topologies can
achieve natural balance, leveraging intrinsic passive feedback
to drive flying capacitor voltages to their balanced values
[24]-[30]. However, its strength and effectiveness depends on
circuit parameters, converter operating conditions, and non-
idealities [29]-[32]. In the presence of external disturbances,
flying capacitor voltages may drift away from nominal values,
resulting in imbalance, causing increased ripple and switch
voltage stress [33]. Therefore, it is important to understand
flying capacitor voltage dynamics and identify scenarios where
natural balance is weak or even fails.

In scenarios where transient response is important or natural
balance is too weak, active control is often required to regulate
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flying capacitor voltages. Current-mode control achieves bal-
ance by aligning the inductor valley or peak current [34], [35],
with its variations further improving stability and transient
response [36]-[39]. However, high-bandwidth current sensing
is often difficult or impractical. Voltage-mode algorithms,
which don’t require current sensing, have also been explored.
These include time-domain feedback based on switching node
sampling [40], phase-shift or linear compensation control
[41]-[43], nonlinear control methods based on ripple-injection
hysteretic controllers [19], [44], threshold-based voltage-mode
controllers [6], [45], and sensorless methods [46].

This paper extends previous work in [1], [2], generaliz-
ing the state-space (SS) model for hybrid SC converters.
Compared to [1], [2] which primarily treated operation at
resonant or nominal conversion ratio levels, here we expand to
better capture dynamics in pulse-width modulated (inductive)
operation. The state-space model is modified to capture the
admixture of dynamics when a converter is duty cycled
between adjacent levels. This allows a broader perspective on
the modern control metrics of observability and controlability
by using the linear algebraic concept of ’condition number’
to provide a relative quantification of these metrics across
conversion ratios. We also refine and generalize the passive
feedback model in [2] to illustrate the relationship between
controllability and natural balance.

While the model can be applied to other topologies, here we
provide examples based on flying capacitor multilevel (FCML)
converters, which have more complex balancing dynamics than
other topologies. Various aspects of the analysis are verified
in FCML hardare prototypes. A state observer for FCML
flying capacitor voltages is presented which achieves similar
resolution but over 2x faster settling than the example in [1].
Measurement results are compared to model predictions to
illustrate the limitations of natural balance.

II. DISCRETE-TIME STATE SPACE MODEL

In this section, a discrete-time state space model is devel-
oped to analyze direct-conversion hybrid SC converters and
explore fundamental principles that govern flying capacitor
voltage dynamics. As illustrated in Fig. 2, the general form of
a step-down, direct-conversion hybrid SC converter comprises
a switched-capacitor stage, where semiconductor switches are
used to reconfigure a network of flying capacitors, and a single
inductor, which connects the SC stage to the output terminal.
This architecture can be intuitively treated as two subsystems:
the SC stage and the output filter stage. The switching node
voltage, V., is modeled as the output signal of SC stage and
the input signal of output filter stage; the charge transferred
through the inductor, ¢, is modeled as the output signal of
output filter stage and the input signal of SC stage.

A. Flying Capacitor Multilevel Converters

The general schematic of a FCML converter, shown in
Fig. 1, will be used as an example to derive and apply
the model. FCML converters comprise N commutation cells,
each of which includes two complementary switches. While
many naming systems exist in the literature, an [N-cell FCML
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Fig. 2. A direct hybrid SC converter treated as two subsystems.

converter is equivalent to an (IN+1)-level converter, and has
N-1 flying capacitors between adjacent cells. In each phase,
the states of switching cells configure flying capacitors to be
charged, discharged, or remain idle, leading to one of the
N+1 possible voltage levels at the switching node: n/N x V,,
(n = 0,1,2,--- ,N). The switching node voltage, V,, is
averaged by the output filter to give output voltage V.

A common way to operate FCML converters is phase-
shifted pulse width modulation (PSPWM) [25], [47], where all
cells share the same duty cycle, D, butcell j (j =1,2,--- |, N)
is phase shifted by (j -1)/N x360°. The output voltage is given
by the product of the duty cycle and the input voltage, DV,.
While the duty cycle may be any value between O and 1, it
can be normalized to the following form:

D=7 M
where the denominator equals the number of cells, N; the
numerator obtained from this normalization is denoted as m.
If m is not an integer, V, alternates between two neighboring
voltage levels, resembling a square wave; this scenario is
hereby called inductive-mode operation. In the special cases
where m is an integer, V, remains at one voltage level
through the whole period, leading to sinusoidal characteristics
of the inductor current; this scenario is hereby referred to as
resonant-mode operation [12]. The two operating modes are
illustrated in Fig. 1 using a 4-cell example.

However, the above operation puts specific requirements on
flying capacitors: for capacitor C; (¢ = 1,2,---,N-1), its
‘average’ voltage should be i/N X Vj,, here defined as the
balanced voltage. The term ‘average’ may have more than one
possible interpretation, but for the switches to have minimum
voltage stress, it should be the algebraic average of the initial
and final voltage during a switching phase that the capacitor
is either being charged or discharged. If flying capacitors
become imbalanced, ripple quantities and switch voltage stress
will increase, degrading efficiency and reliability [29]-[32].

B. Switched-Capacitor Stage State-Space Model

In the SC stage, flying capacitor voltages (and their config-
uration in a given state) determine the switching node voltage
V., however these voltages are influenced by charge transfer
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due to current flow in the inductor. Derivation of the state-
space (SS) model involves defining and quantifying these
relationships in matrix form. Past work provides examples for
constructing the state equation for in resonant mode at nominal
conversion ratios: a 5-cell converter at D = 2/5 in [1] and a 4-
cell converter at D = 2/4 in [2]. However, here we generalize
the model to consider non-integer fraction duty cycles across
the full range of resonant and inductive modes of operation.

The following assumptions are made for the derivation of
discrete-time (DT) SS model of the FCML converter:

1) The circuit is linear in each phase.

2) Capacitor voltages (and inductor current) are continuous
i.e., the final condition in a given phase is the same as
the initial condition of the next phase.

3) For simplicity, here we assume all flying capacitors have
the same capacitance C'y.>

In nominal resonant-mode operation, there are N distinct
phases and each flying capacitor is charged and discharged
once in a switching period. In the more generic inductive-
mode case, the FCML converter may multiplex between two
neighbouring nominal conversion ratio levels [25], thus the
converter has 2NV distinct switching phases (j =1...2N) in
each converter period [2], [10]. To treat the general inductive
mode operation where V,, is duty cycled between levels, we
decompose m from (1) as,

2

M = Mpom + Mfrac,

where, My, < m is an integer corresponding to nearest
nominal conversion ratio level and 0 < myfre. < 1
corresponds to the extra fractional contribution to the
duty-cycle. For example, if m = 1.3, then myom,m = 1 and
Myprqe = 0.3. The converter operates in the Mmyom /N and
(Myom +1)/N mode for (1 —m,qc) and my,q. fractions of
a single switching period respectively. Further discussion and
and example of this concept are provided in Appendix A.

1) State Equation Model: To generalize the state-space
model for inductive-mode duty cycles given (2), we modify the
matrix construction in [1] to consider (up to) 2N charge quan-
tities in a given converter period k. Similar to [1], each charge
quantity ¢; (k) represents the integral of inductor current across
the j** switching phase.®> For the i'" capacitor Cj, its initial
voltage in period k is defined as Vi;(k); its final value, or
initial value in period k+1, is Vi (k+1) = Vei(k)+q(k)/Cy
where ¢(k) is total charge flow in the capacitor in period k.
With these definitions, the initial value of final flying capacitor
voltages in period k£ 4 1 can be packed in matrix form:

2Note that while is not always practical or achievable to have the same C' I
for all capacitors (due to voltage derating and other factors), this and other
non-idealities can be captured in the SS model (see [1] and [48]); we do not
include them here to minimize complexity of notation.

3For now, exact details of the inductor current waveform (and its integral,
q;) are not needed; however we will return to treat g; in the discussion of
passive feedback and natural balance.

VCl(k + 1) VCl(k)
VCN_l(k + 1) VCN_l(k')

. a1 (k)
+ (?f)BconMcon ’ (3)

q2n (k)

where,
_ @ =mprac)IN  ONxN

Mcon N ONXN mfracIN ’ (4)

In (4), Iy is the N'" order identity matrix; B,y and
M .o are respectively termed the state connection matrix and
fractional duty cycle matrix. Matrix By, is used to define
which capacitors are connected (and the polarity of charge
flow) in each switching phase j for converter period k. Matrix
M., formalizes (2), and splits charge flow based on the
fractional duty cycle. Thus (3) represents the state equation
for the switched capacitor stage, which can be more compactly
and formally expressed as:

Vol(k+1)= A-Ve(k) + B - q(k), )

where A = In_7 is the identity matrix. However, different
from the pure resonant treatment in [1] and [2], the expanded
formulation B = (1/Cy)BconMecon captures the impact of
charge flow vector g(k) on flying capacitor voltages for each
of the up to 2N switching states for non-integer fractional
duty cycles. An example for the construction of B based on
Be.on and My, for an inductive-mode 4—cell converter
with D = 1.3/4 is provided in Appendix B for reference.

2) Output Equation Model: Tllustrated in Fig. (2) it is also
important to characterize the switching node V,, which is here
treated as the output of the SC stage. Based on Kirchhoff’s
voltage law (KVL), V, is calculated by linear combinations
of flying capacitor voltages and input voltage V;,,. However,
charge flow through the flying capacitor network is also
considered as this impacts capacitor voltages in converter
period k. This is formulated as the SC-stage output equation:

Vao(k)=C - Ve(k) + D - q(k) + Wi-Vin.  (6)

Due to symmetry with (3), it can be shown that C' =
—Bin, where C' is here termed the output connection matrix,
following similar terminology in [10], [48]. A further modifi-
cation from [1], [2] is that here we solve for the final value
of switching node voltages V (k) rather than initial voltages.
Even though V, (k) may be treated as sampled at any point
during the phase, this leads to a simpler construction of D and
does not otherwise change the analysis or conclusions. Vector
W captures which of the switching phases j € (1...2N)
input voltage V;,, is needed to determine V,. More details
on the output equation and matrix construction are shown in
Appendix B; for the convenience of the interested reader, the
MATLAB function to generate the required matrices for the
SS model of a generic m/N FCML converter is also provided.
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III. OBSERVABILITY AND CONTROLLABILITY OF
FLYING CAPACITOR VOLTAGES

Here we explore the key modern control metrics of ob-
servability and controllability. As defined here, observability
describes whether the switching node voltage V, contains
enough information to uniquely determine (or estimate) flying
capacitor voltages. Controllability describes whether charge
transferred through the inductor can arbitrarily adjust flying
capacitor voltages. The state space model of the SC stage is
reproduced below from (5) and (6) for convenience:

Ve(k+1) = A-Ve(k)+ B - q(k),
Va(k) = C - Ve(k) + D - q(k) + Wi-Vip.

A. The Criteria

Following modern control conventions [49], the observabil-
ity matrix for the SC stage can be constructed as:

o=[c ca ca¥2". (7
Noting that A is the identity matrix, it can be simplified to
o-[c c .. c, (8)

showing that O is the vertical expansion of C. Since C' has
more rows than columns, this expansion does not affect the
rank. The observability criteria for the SC stage is rank(C)
equal to the number of flying capacitors, or

rank(C) = N — 1. )
Similarly, the controllability matrix is expressed as:

C=[B AB AN’B], (10)

where, since A is the identity matrix, it reduces to

c=[B B --- B]. (11)

This expansion does not affect the rank either, as B has more
columns than rows. The controllability criteria is given by
rank(B) is equal to the number of flying capacitors, or,

rank(B) = N — 1. (12)

Here we note that B and C' must have the same rank. This
is because they have a scaled transpose relationship, i.e. B =
—(1/Cy) - CT - Mo Essentially, in inductive-mode cases
M on is a full rank diagonal matrix. In resonant-mode cases,
Mtrqc = 0. The construction in (3) can still be used but due to
the reduced order of B, the model becomes equivalent to the
construction in [1]. In either case, it is true that rank(B) =
rank(C'). Thus is can be summarized that the SC stage is
observable and controllable if and only if C (or B) has rank
equal to the number (N — 1) of flying capacitors.
Simplifying this determination, matrix C' can be conve-
niently obtained without using KVL by noting the following
patterns for the j'* row and i'" column element, c;;:

—1 capacitor C; is charged in phase j,

cji=1< 0 capacitor C; is idling in phase j, (13)

1 capacitor C; is discharged in phase j.

This allows writing the connection matrix directly from the
equivalent circuits of a hybrid SC converter. Observability and
controllability of its SC stage can then be determined.
Specifically for an N-cell FCML converter with D = m/N,
Appendix C proves that the SC stage is observable and
controllable except the case where m and N are integers
whose greatest common factor is larger than one (i.e., m and
N are not coprime). While this is a relatively simple proof,
it aligns with previous literature on natural balance in FCML
converters [29]-[32] and is summarized in Table 1.

TABLE I
CONTROLLABILITY AND OBSERVABILITY OF THE SC STAGE FOR AN
N-CELL FCML CONVERTER WITH D = m/N.

resonant mode (integer m) inductive mode

. . -int
m, N coprime | not coprime (non-integer m)
observable v X
controllable v X

B. Relative Controllability based on Condition Number

While useful in principle, the binary nature (true or false)
of the controllability metric does not offer much insight into
the degree of controllability of a converter. Specifically, while
operating in an inductive mode which is in the neighborhood
of an uncontrollable conversion ratio level, intuitively we
should expect the converter to be difficult to control. This
raises the need for an analog or quantitative measure of
controllability. For a general switching mode converter, [50]
suggests an interesting sensitivity function-based approach to
analyze open-loop converters near uncontrollable scenarios.
However, as of now, it has been shown for certain case-by-case
transient responses.

Here we provide a more quantifiable measure based on a
robust and well-established concept developed for numerical
computation used in linear algebra known as the condition
number [49], [51], [52]. Condition number, x(c), gives a
numerical measure of how full-rank is a matrix, o, such that,

1< k(a) = 779 < oo, (14)

mwn

In (14), 0in and 0,4, are the minimum and maximum
singular values of a obtained from its Singular Value De-
composition (SVD) [51], [52]. The closer k() is to unity,
the more well-conditioned or full-rank is c.

To provide an intuitive understanding of x(c), we use it
in the example of solving a linear equation of two variables.
Suppose we wish to solve the equation,

ax — [0411 0412} |:«'E1:| _ |:b1:| .
Qo1 Q22| (T2 by
Consider two different scenarios:

. au:aggzl,au:agl:0andb1:1,b2:2.
Then we get, 21 = 1, 22 = 2 and k() = 1.

e For a1 = 1,12 = 0.99, a7 = 1.01, and ago = 1 with
bl = 1, bg = 2, we get, v1 = —9.8 x 103, To = 9.9 x 103
and k() =4 x 10%.
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Fig. 3. Condition number of the controllability matrix C versus duty cycle
for FCML converters with PSPWM (lower is more controllable).

The above cases show how relative solution magnitudes
diverge and the sensitivity to slight parameter differences (or
systematic errors) grow with increasing condition number. So,
even though both versions of o are full-rank, the appropriate
value of x starts to become unbounded with a k(a) much
greater than unity. Thus increasing magnitude of () indi-
cates how unsolvable the system is. As k() — oo, the system
is unsolvable since a is no longer full-rank.

This concept can be applied to hybrid SC converters to
quantify the relative difficulty of achieving flying capacitor
balance, especially in regimes near known uncontrollable
conversion ratio levels. For example, Fig. 3 plots the condition
number of the controllability matrix x(C) for FCML converter
examples with N = 2. 3,4, 5,6 across different duty cycles.*
Duty cycles where x(C) is closer to unity (lower magnitude)
are correspondingly 'more controllable’ (easier to balance).
However, where «(C) starts becoming unbounded, we can con-
clude the converter is becoming increasingly uncontrollable.

As seen in Fig. 3, x(C) starts to becomes unbounded near
duty-cycles where m and N are not co-prime. For example, for
N =4 (5-level) and N = 6 (7-level) converters, the condition
number becomes unbounded at duty cycles of D = 2/4
and D = 2/6,3/6, and 4/6 respectively. More importantly,
%(C) helps to quantify which converters and ranges of duty-
cycles are fundamentally difficult to control. For example,
an interesting observation seen in Fig. 3 is that higher order
(increasing V) FCML converters have generally higher values
of k(C). This aligns with intuition: as the number of flying
capacitors increases, it is more difficult to achieve balance.
Such can be compared to the N = 2 (3-level) case which has
k(C) =1 for all D, i.e. the 3-level converter has the highest
degree of controllability as it has only a single flying capacitor.

An important point to note is that at the extreme duty cycles
of D=0 and D = 1, k(C) is, in fact, unbounded. This is
because at these extreme duty cycles, flying capacitors are

“#Specific details of computing #(C) are not provided here as this is based
on a well-known mathematical framework [49]; however an interested reader
can replicate Fig. 3 using the svd command in MATLAB for relevant B matrix
and computing x(C) using (14).

100

2 at D=0.5)
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Augmented condition number, x*(C)
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Fig. 4. Augmented condition number of the controllabilty matrix C versus
duty cycle for FCML converters with PSPWM (lower is more controllable).

not connected to the switching node and can’t be controlled.
However, in the neighborhood of D =0 and D = 1, x(C) is still
finite. The reason behind this is that the controllability matrices
approach null matrices at D — 0 and D — 1. Hence, both the
maximum singular value (0,,4,) and minimum singular value
(0min) are very small but their ratio, i.e., k(C) is still finite.
This indicates the limitation of condition number near these
extreme duty cycles and does not correlate with closed-loop
performance and practical data.

To circumvent this, we use another metric whose construc-
tion is similar to the condition number but conveys better
controllabilty information across the full duty cycle range. We
term this the augmented condition number:’

~(C).

Omin

KH(C) = (15)
The intuition behind defining this is as follows. Fundamentally
a matrix would become ill-conditioned once its o,,;, starts
to diminish or 1/0,,;, tends to be unbounded. Hence, the
product of x(C) and 1/0,,;, at non-extreme duty cycles would
be similar to just x(C) while the extreme cases would be
represented by the 1/0,,;, term. Fig. 4 (a) shows the plot
of k*(C) with the same conditions as Fig. 3, where the curves
become unbounded near all the duty-cycle ranges where the
practical data show the converter to be uncontrollable. The
correlation of this metric with closed-loop performance will
become more clear in Section IV.

Another point to clarify is that augmented condition number
k*(C) is only a proxy for the degree of controllability, i.e.
it describes the relative control effort needed in an ideal
state-feedback control system. However, the actual closed
loop system performance will depend also on the nature and
dynamics of the associated controller. For example, it is known
in the literature that even- and odd-level FCML converters

SNote from (3) that C is scaled by 1/Cf in (11); thus (15) is more
appropriately expressed as £*(C) = £(C)/(0min - Cy); we drop the Cy
scaling in (11) to have a simpler expression and because the augmented
condition number is only appropriate when used as a relative metric, i.e.
the normalized perspective in Fig. 4.
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have different natural balance performance — even-level (odd-
N) converters being better in terms of settling time, rejection
of disturbances, etc [2], [31]. This results from the unique
dynamics of the closed-loop passive feedback established in
natural balance scenarios and can not be inferred directly from
k*(C). This concept is explored in Section IV.

Expanding on the concept, a key contribution of [2] was that
for FCML converters with uncontrollable (or unobservable)
duty cycles, it is possible to modify the switching sequence in
order to make the SC network controllable (and observable).
The concept, called modified PSPWM adds switching states
between the traditional PSPWM phases, in order to gain
unique access to otherwise hidden or uncontrollable flying
capacitor voltages. Effectively this makes the controllability
matrix C become full rank where it otherwise would not.

An example of the modified PSPWM sequence for an
N = 4—cell converter at D = 2/4 is provided in [2] and is not
further replicated here. However, to illustrate the augmented
condition number concept applied to this case, we plot x*(C)
for PSPWM and modified PSPWM in Fig. 5. Here it is seen
that in the proximity of D = 2/4 the x*(C) for modified
PSPWM is bounded, indicating C is well conditioned and
aligning with the better controllability of the modified PSPWM
sequence. This is also later verified in experimental work.

100 ‘ ‘

= PSPWM
A modified PSPWM

Augmented condition number, £*(C)

1 . . . . . . . . .
0 01 02 03 04 05 06 07 08 09 1

Duty cycle (D)

Fig. 5. Condition number of the controllability matrix for 4-cell FCML
converters with PSPWM and modified PSPWM.

C. Relative Observability using Condition Number

Similar to the previous discussion, while observability is a
useful concept, it does not provide intuition on the practical
implementation of a state estimator. Specifically, as in [1] and
[10], state observers are envisioned to use sampled (measured)
values of switching node V, to estimate (observe) actual
flying capacitor voltages V;. Here we apply straightforward
considerations associated with any practical instrumentation
scheme to highlight challenges in state estimation in the
proximity of unobservable conversion ratios.

1) Estimation Algorithms: We first note the general state
estimation concepts developed in past work. A key insight
from [1] is that we desire to estimate the (algebraic) average
V¢ of flying capacitor voltages, i.e. the average of initial
and final values of V. The algebraic average of the output
equation (6) is

Ve=C -Vc+ WiV, (16)

where dependency on charge vector g disappears, greatly
simplifying the estimation process. When the SC stage is
observable, matrix C' is full-rank and flying capacitor voltages
can be solved:

Ve=Cl(Vy—WiVy,), (17)

where C' is the pseudoinverse of C, since it is not a square
matrix and simple inverse cannot be applied. In addition, an
alternative estimation algorithm can be formulated:

\%4 -1 —
Eﬂﬂc Wil -V,

showing that V;,, can be estimated as well, because the system
has enough information to do so. Here simple inverse can be
used, as the coefficient matrix is square.

However, while (17), (18) imply straightforward (single
cycle) estimation using a matrix (pseudo)inverse, the com-
putational cost of matrix inversion is high. Thus, iterative
algorithms have been proposed in [1] and [10]. For example,
during phase j of period k, the switching node voltage can be
expressed as a linear combination of flying capacitor voltages
and the input voltage:

(18)

N—-1
Vai(k) =bVin + Y aiVeilk), (19)
i=1
where a; (1 = 1,2,--- , N-1), b are coefficients determined by

switch states. If capacitor C; is being charged or discharged
(a; # 0), its new estimation can be solved:

N—-1
_ 1 _
Ci,est = —Vajy —0Vin — AnV Cn,est ’
Veren(k) = = (Vs (k) — bV; Vemes(k)), (20)
g n#i

where Vo est(k) is the estimate of any flying capacitor
voltage(s) needed to determine V¢ cs: (k) in period k. Thus,
an iterative algorithm uses a priori knowledge of the output
connection matrix C' to estimate flying capacitor voltages
sequentially as new information is gained from samples of
the switching node V,. For multilevel (inverter) examples,
a more extensive algorithm is presented in [10]. Compared
to the single-ratio (DC-DC) algorithm in [1], (20) can be
appreciated as a more direct (single-cycle) estimator which
can in principle converge in a single cycle as it doesn’t
require knowledge of previous cycle estimated values.

2) Practical Limitations and Quantification Relevant to
State Observers: In order to estimate flying capacitor voltages,
switching node V', must be measured, i.e. sampled, instru-
mented and processed by analog (and/or) digital circuitry. Such
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circuitry will have instrumentation limitations due to settling
time and memory effects [2], [10], [28].

A realistic way to incorporate first-order non-idealities is to
include a representative time-constant (7,5 ) of the instrumen-
tation circuit to account for finite settling time (relative to the
converter switching frequency f,, or phase duration) and/or
memory affects, assuming a sample and hold (S&H) structure
is used for successive V, node sampling.

In the following analysis we assume an instrumentation
scheme with settling time quantified by 7,,. Hence, under
inductive-mode operation, when the converter is operating at
the (Mmpom + 1)/N level, the acquired sample is,

Vas,j(K) = WiracVa,; (K),
where, V. s ; (k) denotes the sample acquired in the j"* phase,
Va,; (k) is the actual voltage of the V, node during that phase,

7< Mfrac >
wf'r‘ac:]-_e N fowTsn ,

2n

(22)

quantify the settling dynamics of the current sample. We recall
that m f,.q. is extra fractional contribution to the duty cycle of
the inductive mode FCML converter. Similarly, during a phase
corresponding to the My, /N level, settling dynamics follow:

(1- mfmc)>

Wnom =1 - e< NswTon @3)

Here we may realize that (22) and (23) simply scale output
equation (6) with the appropriate (first-order) settling behavior.
Hence, very similar to the construction of the state equation
(5), the output equation for the samples may written as,

VX,S(k) = Wsp - Vw(k)a (24)
where, the weighting matrix, Wy, is given by,
wnomIN ONX N
Wsh = . 25
h ONX N wfracIN ( )

Hence, the sampled output equation will be of the form,

Vis(k) = Cq - Ve(k) + D, - q(k) + WisVip,  (26)
where, from (6) and (24) we get,

Cs=Wsn-C 27)

Dy =Wy, -D (28)

Wis =Wy, - W3 (29)

As previously discussed, in resonant-mode cases the con-
verter is not observable if m and N are not co-prime. Also,
similar to the controllability example, at extreme duty cycles
D =0 and D =1, the system is unobservable as there is no
information of flying capacitor voltages. However, in the prox-
imity of these duty cycles, finite settling time also limits the
practicality of a state estimator. Therefore, for inductive-mode
cases, the augmented condition number £*(O) = &(O)/omin
provides a simple and directly calculated metric to show the
range of duty-cycles for which instrumentation challenges
make it difficult to estimate the flying capacitor voltages.

100 &

0)

1. Theory

~ T, =10f
sh s|4
1/T_ = 50f_|/
sh s,

Augmented condition number, *(

0O 01 02 03 04 05 06 07 08 09 1
(a) Duty cycle (D)

(b)  Practical | mm observable mm unobservable

Fig. 6. Comparison of (a) Theoretically calculated augmented condition
number and (b) Practical observability data from a 4 — cell FCML converter.

Fig. 6 shows an example of x*((O) versus duty-cycle
for a 4—cell FCML converter for different 75, to compare
the effects of instrumentation non-idealities. We observe for
smaller 7., the range of duty-cycles with high-values of
k*(0O) is narrower. This is because, with small values of 75y,
the samples settle faster; i.e. in proximity of D = 0.5 in
Fig. 6, there is a short time interval to acquire information
from the adjacent observable conversion ratio level. Faster
settling (smaller 75,) provides more information from this
level, improving estimation of flying capacitor voltages. While
the trend also matches with practical data reported in [2],
[10], [28], the augmented condition number also quantifies
the difficulty in estimating flying capacitor voltages near the
extreme duty-cycle scenarios of D =0 and D = 1.

IV. CONTROLLABILITY AND NATURAL BALANCE

As described in the introduction, natural balance is a well-
known phenomenon where passive feedback alone can drive
flying capacitors towards balance [26], [27]. However, natural
balance does not work at some duty cycles even if the
powertrain is ideal [28], [30], and interestingly, these duty
cycles match the uncontrollable scenarios identified in the
previous section, implying a fundamental relationship between
natural balance and controllability of the SC stage.

To understand the link between these concepts, the follow-
ing analysis develops the closed-loop passive-feedback model
for direct-conversion hybrid SC converters of the general form
in Fig. 2. With the two subsystems, the SC stage and the output
filter stage both modeled in state space, the complete model
can be obtained by combining them. As shown in Fig. 7, with
the two subsystems combined, their input and output signals
become internal signals; the complete model only interfaces
with external excitation, which is V;,, and I,,;.
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A. Output Filter State-Space Model

For the output filter stage, the inductor current and output
voltage are affected by the switching node voltage; they also
determine the charge transferred through the inductor. To
quantify this relationship, the equivalent circuit of a direct-
conversion hybrid SC converter in a given switching phase j
is constructed in Fig. 8. As in [11], the SC stage is represented
by its per-phase Thevenin equivalent capacitance, C ;. All
series resistance, including switch and inductor resistance, is
lumped into R. The differential equation model follows as:

Iy T 0
dt L L L L.j
Vot Ly |,
dt Cout VOUtJ Cout out
aVvy ; 1
: — 0 0 Vs
dt qu,j 7 0
which can be compactly denoted as:
dz.:
% = My zj+ Ma - Ly (30)
Solving (30) yields:
t
z;(t) = M9 25(to) + / M3 T My dr - Iow, (1)
to
or simply denoted as:
Zj(t) = Uj(t) . Zj(t()) + ‘/J(t) . Iout7 (32)

where z;(t) is the time-domain inductor current, output volt-
age, and switching node voltage based on their initial values
zj(to) at time to in phase j. Thus Uj is the state transition
matrix of the output filter stage; the expression in (32) can be
used to determine the values Iy, ; and V,,; ; across switching
phase j. It is important to note that if C,, ; is different in certain
phases, matrices U; and Vj also need to be recalculated.
The state transition model can be used to compute the state
variables of the output filter stage as they progress in a given
converter phase k. This is done by iterating the state transition
for each converter phase j, using the final values as the initial

Closed-loop passive feedback model

SC stage
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Fig. 7. Passive feedback model for a general hybrid SC converter.

Vx J L Vout, J

COLll f ]Dlll

—
I
Fig. 8. Equivalent circuit of a direct hybrid SC converter in each phase [11].

R
NV

L.
l

values for the next cycle. Ultimately, this results in the state
equation for the output filter stage:

where & = [I1,0, Vout,0]” includes initial values of inductor
current and output voltage in a given converter phase k. This is
the state equation of the output filter stage, because it describes
how the input signal, V,, affects the state variable, x.

The output signal, charge transferred through the inductor,
is equal to the charge lost on C,, in each switching phase. By
tracking the voltage transition on V, in state 7,

qj(k) = Ce(Vaj — Vi j—1).

Following an iterative state transition process, similar to (33),
the output equation for the filter stage can be constructed as:

gk)=R-z(k)+ 8- Vy(k)+ Wsl,y. (34)

This is the output equation of the output filter stage, because
it describes how the state variable, x, determines the output
signal of the system, q. A detailed example of computing
matrices P, Q, R, S, W5, and W3 for a 4-cell FCML
converter can be found in [48]; these matrices and are not
further developed here for the sake of brevity.

B. The Complete Closed-Loop Passive-Feedback Model

The complete passive-feedback model can be obtained by
combining the state space models for the SC stage and output
filter stage. As shown in Fig. 7, when the two subsystems
are seen as an entity, their input and output signals become
internal signals and are not externally visible; the only external
(exogenous) signals are input voltage V;,, and output current
I,yt. Solving the two subsystems, (5), (6), (33), (34), gives:

(Vo (k+1)
| z(k+1)

[ A+BTSC BTR Ve (k)

~ |QC +QDTSC P +QDTR| | (k)

N [ BTSW, BTW; Vi 35)
QW1+ QDTSW; W2+ QDTWs| |lou|’

where T = (I — SD)™!; I is the identity matrix.
Thus, the closed-loop passive feedback model can be simply

expressed as
a(k+1)=Aqg -zqk)+ E-e, 36)

where zo; = [Vio, 1,0, Vout,0]? stands for the discrete-time
state variables of both subsystems: the initial values in a given
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converter period k of flying capacitor voltages, the inductor
current, and output voltage; A is the state matrix of the
closed loop passive feedback system; e represents the external
excitation via input voltage or output current and E is its
coefficient matrix. Equation (36) describes the behavior of
the whole converter: the dynamics are determined by its own
characteristics (circuit parameters and phase duration) and
external excitation (input voltage and load current).

C. Natural Balance Analysis

For a linear circuit, the time-domain response, y, can be
decomposed as the sum of the zero-state response, y.s, and
the zero-input response, ¥,;:

Y =Yes + Yzi- 37

The zero-state response is excited merely by active sources;
the zero-input response is excited merely by initial condition
of the energy-storage components. In open-loop operation, a
naturally balanced hybrid SC converter should arrive at the
balanced state regardless of the initial condition. Alternatively
speaking, it should satisfy:

1. The steady state of zero-state response is balanced.

2. The steady state of zero-input response is zero.

Either of the two statements alone is a necessary condition
for natural balance. The following analysis will focus on the
second statement as it leads to a more intuitive explanation.
Since the zero-input response is investigated, active sources,
e, in the complete model, (36), can be set to zero, leading to
the reduced model:

wzz(k + 1) = Acl * wzi(k)7 (38)

where x; is the zero-input portion of state variables. Its must
decay to zero in steady state for natural balance to hold:

lim x.;(k) = 0. (39)

k—o0

In discrete-time state space, this is equivalent to the condition

that all eigenvalues of A are within the unit circle.
However, when the SC stage is not controllable (C' is not

full-rank), there is always an eigenvalue on the unit circle. To

prove it, matrix (A. — I) is decomposed as below:

BTSC BTR
QC + QDTSC P+QDTR—J
[B o TS

{o J[Q+QDTS

or abbreviated as

Aa—1-|

TR C 0
P+QDTR-I||0 I|’

Agy—I=B-T.C'. (40)

Due to the property of matrix multiplication, the rank of the

product matrix is no greater than any of its factor matrices:
rank(Aq — I) < rank(C’). (41)

When C' is not full-rank, neither is C’, therefore, according
to (41), matrix A.; — I is not full-rank, indicating:

[Act — I| =0, (42)

meaning an eigenvalue of A.; is one, which is on the unit
circle. In this case, steady state of the zero-input response is
finite but non-zero, thus natural balance fails. To summarize,
the SC stage being controllable is a necessary condition for
natural balance.

This conclusion can be intuitively understood by
recognizing the relationship between the two subsystems in
Fig. 2. The harmonic feedback of the inductor, described
in [30], can be regarded as an intrinsic control effort of
the output filter stage on the SC stage. However, for this
mechanism to take effect, the SC stage has to be controllable;
otherwise natural balance cannot function. The above
analysis is similar to the recent work [50] on determining
the indeterminacy of general switched-mode power converters.

1) Natural Balance Scenarios: Closed-Loop Eigenvalues:
An additional use of the closed loop model in (36) is to
explore the ’strength’ of natural balance given realistic con-
verter scenarios. For example, the balancing speed is indicated
by location of A.; eigenvalues, which depends on converter
parameters (resistance, inductance, capacitance, switching fre-
quency, etc.). It is slower when the dominant eigenvalue (the
one with largest amplitude) is closer to the unit circle.

Intuitively this is because the discrete-time eigenvalues
govern asymptotic stability (settling to the balanced level)
of flying capacitor voltages. With eigenvalue magnitudes less
than unity, after each switching period, any residual imbalance
will decrease in magnitude, asymptotically converging to zero.
Thus, with lower eigenvalue magnitude(s), imbalance decays
faster and natural balance is ’stronger” With an eigenvalue on
the unit circle, the system is marginally stable: the steady state
is finite but non-zero — any initial imbalance in the system
never decays. As natural balance relies on passive feedback,
eigenvalue magnitudes can never be greater than unity, but
this does not ensure immunity to disturbances: duty cycle
mismatch [30], finite bypass capacitance [31], etc.
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Fig. 9. Discrete-time eigenvalue trajectories and time-domain response from
closed loop passive feedback model for a 4-cell (5-level) FCML converter.
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Fig. 9 shows an example trajectory for closed loop eigenval-
ues when sweeping resistance (ESR) and switching frequency
for a 4-cell (5-level) FCML converter with D = 1/4. In
Fig. 9(a), resistance is scaled such that quality factor @) of
the equivalent circuit ranges from 0.1 to 10 with switch-
ing frequency fs, of the FCML converter held such that
fsw/fo = 10 where fy is the effective resonant frequency
of the equivalent circuit(s). In Fig. 9(b) fs,, is scaled between
5% to 35 x fop, while holding () = 1. The markers indicate
where @ = 1 and f,/fo = 10; showing that for both higher
@ and higher f,,, eigenvalues move towards the unit circle,
corresponding to slower natural balance dynamics relative to
the converter switching period.

This is further explored in Fig. 9(c) which provides a time-
domain perspective on balance dynamics for Q = 1 and
fsw/fo = 10. Here, an initial (unbalanced) voltage is given
to Vo1 such that AVezy = 200mV, which is allowed to decay
via natural balance. This scenario requires ~280 full switching
periods of the 4-cell FCML converter to reach 5% of steady
state. Thus even with low @, the amplitude of the dominant
eigenvalue is still close to 1 (>0.98 in this example), indicating
that natural balance is a ‘weak’ process and is generally slow.
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Fig. 10. Trajectory of dominant discrete-time eigenvalues at the nominal 1/N
conversion ratio level for N = 2...7 FCML converters.

Expanding on this perspective, Fig. 10 shows the dominant
eigenvalues for FCML converters at the nominal D = 1/N
conversion ratio level for N = 2...7.° Interestingly, for Q > 1,
the dominant eigenvalues for even-N follow an identical tra-
jectory and lie on the real axis. The dominant eigenvalues for
odd-N are complex conjugate pairs, but are always lower in
magnitude than the next adjacent even-N FCML converter. The
lower magnitude eigenvalues for odd-N (even-level) FCML
converters indicates faster settling or ’stronger’ natural balance
than for even-N (odd-level), aligning with previous literature
on natural balance [2], [31], [47], which shows even-level
converters to have better balance characteristics.

Fig. 11 shows a more comprehensive and design-focused
perspective on the relative settling time of natural balancing
versus duty cycle [2], [53]. The settling time of each of
the N = 2...6 FCML converters is estimated based on the

SNote that Fig. 10 shows only dominant eigenvalues and in fact, the exam-
ples for N = 4 and above each have additional (non-dominant) eigenvalues
(one per each flying capacitor). Similar to Fig. 9, in each case, eigenvalues
move towards the unit circuit for higher Q and switching frequency, although
non-dominant eigenvalues have less impact on natural balance ‘strength.’
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Fig. 11. Relative settling time of natural balanced FCML converters with
Q=1 and fsw/fo = 10. Stars indicate nominal 1/N conversion ratio.

dominant eigenvalue magnitude with Q = 1 and fs/fo = 10
and is normalized to the N = 2 (3-level) converter with
D = 50%. The star annotation indicates the nominal 1/N
(resonant or nominal) conversion ratio level.

Several important observations can be made from Fig. 11.
First, the differences in settling time for odd- vs even-N
converters are more apparent: at the nominal 1/N ratios, the
relative settling times match those provided in [2]. Note that
while even-N converters have the same dominant eigenvalues
for Q > 1, higher-N converters are slower at the same nor-
malized frequency (fsw/ fo) because they have more switching
phases and therefore a longer switching period. Thus N =4 and
N = 6 have respectively ~ 2x and ~ 3x longer settling than
for N = 2. Odd-N converters have shorter settling time than
adjacent even-N but this increases faster vs N: higher-level
odd-N converters have both a longer normalized switching
period and eigenvalues moving closer to the unit circle.

The second important observation is a qualitative compar-
ison of Fig. 11 to Fig. 4. It is seen that the general trend
of settling time based on passive feedback (natural balance)
aligns with predictions of the augmented condition number,
k*(C). Specifically, the closed-loop eigenvalues of the passive
feedback model predict the same extrema at non-coprime
conversion ratio levels as well as near the D = 0 and D = 1
levels. The model also confirms the trend of generally ‘weaker’
controllability as the number of levels increases.

However, while Fig. 11 and Fig. 4 match qualitatively, there
are noticeable differences. Specifically, x*(C) does not predict
the observed differences in even- vs odd-N settling time or
closed-loop eigenvalue position. Importantly, this is because
k*(C) only provides information on the SC-stage and has no
knowledge of the controller or its associated dynamics. With
natural balance, the output filter stage has particular dynamics
that interact with the SC stage forming unique closed loop
properties. An example of these dynamics is the ‘harmonic
feedback’ concept, described in [30] which can lead to peri-
odic asymmetries in even- vs odd-level converters and can not
be captured in x*(C) alone. Also, slight modifications, (i.e.
different Q or fs/fo) will move the closed loop eigenvalues,
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Spec Value
Vi, 24V
Cpy 3.3 uF*
L 1 uH
Cou| 9.9 pF*
C, 13.2uF*
f 250kHz

FETs EPC GaN

*derated @ nom. voltage

Fig. 12. Annotated photo of the 4-cell FCML converter PCB.

changing the shape of the curves in Fig. 11, even if their
overall trends are the same.

Finally, for an active controller, the closed loop dynamics
may be entirely different than with natural balance, but
such controller will still have difficulty near the extreme
duty cycles predicted in Fig. 4. Thus the benefit of the
k*(C) metric is that it is very easy to calculate based on the
output connection matrix and provides insight into potential
control challenges, as well as ways to alleviate these through
techniques like modified PSPWM [2].

2) Hardware Verification of Natural Balance Model: A
hardware prototype was used to verify both natural balance
dynamics and controllability concepts. The 4-cell FCML con-
verter and component details are shown in Fig. 12. The proto-
type uses modest C'f;y, ~ 3.3 uF' and runs at fg,, ~ 250 kH z.
In steady state, the flying capacitor voltages are measured
at 0.4 < D < 0.6, where imbalance is most severe under
conventional PSPWM.

The imbalance quantities, AV;, which represent the differ-
ence between the measured values to the balanced values, as
well as the output voltage are plotted in Fig. 13. The results
show that modified PSPWM significantly reduces imbalance
quantities (strengthens natural balance) in the vicinity of
uncontrollable duty cycles.

The results in Fig. 13 can be compared to the augmented
condition number x*(C) for the same converter in Fig. 5.
While natural balance cannot be achieved at D = 0.5, it
is also poor in the vicinity of this uncontrollable conversion
ratio. However, the use of modified PSPWM is able to correct
for the uncontrollable switching network by adding states
in the switching sequence. This improves controllability and
allows natural balance to succeed in the previously unbalanced
regions. However, as discussed in [2] modified PSPWM can
increase conduction loss because the added switching states
have more flying capacitors in the conduction path. This is
more of an impact at heavy load, where conduction loss
dominates. Nevertheless, modified PSPWM allows natural bal-
ance and affords opportunities for active balance compensation
schemes at otherwise uncontrollable duty cycles.

V. FLYING CAPACITOR VOLTAGE ESTIMATOR

An additional point of verification to the model in Section
III is the development of a hardware platform for the flying ca-
pacitor voltage state estimation. Here we present an improved
(faster settling) estimator leveraging the platform developed
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Fig. 13. Measured flying capacitor voltages with PSPWM and mod. PSPWM.
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Fig. 14. Itertive estimation algorithm for 5-cell FCML at D = 1.5/5.

in [1]. Specifically, as previously discussed, iterative state
estimators are more practical in hardware implementation due
to the high cost of matrix inversion. The proposed estimator
uses the algorithm shown in (20), applied to a 5-cell (6-level)
FCML hardware prototype.

Exploring a slightly different estimation algorithm than in
[1], Fig. 14 shows one of multiple possible iterative sequences
to estimate flying capacitor voltages for a 5-cell FCML
converter at D = 1.5/5. Note from Fig. 3 that this lies
between two nominal conversion ratio levels, notably D = 1/5
and D = 2/5. This requires a 2N = 10 switching state
sequence, but also the possibility of two estimates of each
flying capacitor voltage and the input voltage each converter
period. Multiple estimates result in a slightly ’better condi-
tioned’ observability matrix and the benefits of this are seen
in experimental results.

The flying capacitor voltage estimator was designed and
evaluated on a 5-cell FCML converter. The top-level block
diagram is shown in Fig. 15. The switching node voltage,
V;, is divided down and processed by the pre-amplifier. The
sample clock triggers the analog to digital converter (ADC)
to take a measurement of V,, which is then transferred to
a field programmable gate array (FPGA) device through a
serial peripheral interface (SPI). Based on the measurement
of V, and the current switch states, the FPGA -calculates
the estimated flying capacitor voltages and store them in the
random access memory (RAM). Finally, the results are moved
to MATLAB by an universal asynchronous receiver-transmitter
(UART) to be visualized.

The hardware platform itself is shown in Fig. 16. The 5-
cell converter is designed for input voltage V;, = 36V, and
operates at fg,, = 250k H z. Instrumentation for the V, node
includes a 70 MHz GBW instrumentation amplifier and 12-bit,
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Fig. 15. Block diagram of the flying capacitor voltage estimator.
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Fig. 16. Photo of 5-cell FCML estimation platform.

5 Msps ADC. Otherwise the converter specifications are fairly
modest as this platform was designed primarily to explore state
estimation at different conversion ratios.

The estimator was explored with different conversion ratios,
specifically the D = 1/5 case explored in [1] and the
D = 1.5/5 case outlined in Fig. 14. Transient behavior of the
estimator was examined by operating the converter in balanced
steady state. The estimator is activated with initial estimations
set to zero. The output result of the estimator is recorded over
time with results plotted in Matlab.

Fig. 17 shows estimator transient response for D = 1/5
using the algorithm in (20), which is slightly improved com-
pared to [1] as it can achieve (unfiltered) estimates in a single
converter switching period. While the unfiltered estimates can
be gained quickly, they are subject to noise. To reduce noise a
simple (running average) infinite-impulse response (IIR) filter
was used in the FPGA; the filter is a simple (equal-weight)
average of the running estimate and new estimate; many other
digital filter schemes could be used in practice so this is mainly
to illustrate the use of a basic filter. An important note is that
here, the filtered estimates settle to within 5% of steady state
within 5 converter periods, compared to 9 periods to settle in
[1], illustrating the advantage of a slightly modified iterative
estimation algorithm.

Fig. 18 shows estimator transient response for D = 1.5/5
using the algorithm in Fig. 14. Here, because the 2-level
switching sequence permits multiple samples of each esti-
mated quantity per converter period, the transient response
is faster than the D = 1/5 case in Fig. 17. Specifically,

the benefit comes from the fact that multiple samples per
period improve the convergence speed of the IIR filter. In the
D = 1.5/5 case, the IIR-filtered estimates settle to within
1% of steady state in under 3 converter periods. Again, this
relates to the observability condition number x(O); i.e. the
D = 1.5/5 observability matrix is better conditioned than
pure nominal ratios as there is more information in the 2-level
multiplexed FCML operation.

Another characterization of the estimator is to quantify
total noise in estimated capacitor voltages. To do this, a
total number of 3000 consecutive estimations were collected
for each flying capacitor in steady state operation. They are
compared against accurately measured DC voltages using a
digital multimeter. The estimation error is normalized to the
DC flying capacitor voltage and a histogram is shown in
Fig. 19. The maximum steady state estimation error does not
exceed 0.25% for all flying capacitors, proving accuracy of
the estimation algorithm.
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Fig. 17. Estimator transient response from zero initial conditions for D =
1/5=0.2.
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VI. CONCLUSION

This work developed a comprehensive state-space model
that can be used to explore the complex and high-order dynam-
ics associated with the switched-capacitor networks in a vari-
ety of hybrid and resonant switched capacitor (SC) converters.
The state space model was exemplified through application
to flying-capacitor multilevel (FCML) DC-DC converters to
expand on the basic concepts of flying capacitor observability
and controllability. The concept of condition number was used
to quantify relative observability and controllability, providing
several new perspectives on flying capacitor state regulation
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and estimation. A closed-loop passive feedback model was
developed and used to illustrate the relationship between con-
trollability and natural balance. Two hardware prototypes were
used: a first to explore natural balance in the context of the
condition number treatment; a second to explore opportunities
for state estimation of flying capacitor voltages. Overall this
works hopes to add to the body of knowledge in control and
modelling of hybrid SC converters such that faster and more
reliable regulation schemes can be developed in the future.

APPENDIX A
PROOF FOR RELATIVE DURATION OF OPERATION IN THE
TWO RESONANT MODES

Under the inductive mode of operation, we denote the
fraction of time for which the converter operates in the
Muom+1/IN mode during a switching period, 1/ fs., be D frqc.
Hence, it operates in the myom/N mode for (1 — Dyyac)
fraction of 1/ fs,,. If we look at the operation for 1/N fraction
of the total switching period, the same timing split exists
between the two resonant modes of operation.

Referring to Fig. 1(a), we observe that, the on-time of each
switch is the sum of Mmyom+1 and Mmye,, segments of the
converter operating in the my,opm+1/N and My, /N modes
respectively. Therefore, the converter duty cycle is given by,

D= E o mnoerlDfrac + /’nnorn(1 - Dfrac)
N N '

(43)

We recall that My, om4+1 = Mpom+1 and using (2), we simplify
(43), to get,

Dfrac = Mfrac- (44)
This shows that the converter operates in the My, 00, /N and
Mpom+1/N resonant modes for (1 — Mmyrqe) and Mypge
duration of the total switching period to accomplish the desired
inductive mode operation.

APPENDIX B
DT SS CONSTRUCTION EXAMPLE FOR INDUCTIVE MODE
OPERATION

Here we show the construction of DT SS equations for an
example D = 1.3/4 FCML converter. Referring to (3) and
4), we get,

0.714

1 1
— B
Cf) con |:04><4

0
B= (Cf )BconMcon = ( 4><4:| P

0.314
where,

1
Bcon=|0 -1 1 0 0 -1 0
0 0 -1 1 1 0 -1

T

_ Bcon,l

- ?
Bcon,2

O = O

where, Beon,1 and Bgon2 are the individual 3 x 4 state
connection matrices of the 1/4 and 2/4 resonant modes
respectively. Hence, the input matrix for this example is,
1
B= (C—f) [O.?Bcoml 0.3Bcon,2} .
For brevity, we state without proving that the above example
may be extended for the general case to obtain,

1

) [(1 - mfrac)Bcon,nom mfrachon,noerl] .
(45)

As mentioned in Section II-B2, the output connection matrix

is C = —BZ:m, hence for this example we get,
1 0 0]
-1 1 0
0o -1 1
_ 0 0 -1 _ _BZ:Jn 1
0 1 0
-1 0 1
|0 -1 0 |

The D matrix in (6) has the following construction. This
matrix captures the phase by phase charge accumulation in
the flying capacitors as well their connections. For easier
explanation, we show the construction of the D = 1.3/4
example but the same can be applied for any D = m/N
case. The row corresponding to the first phase (operating in
2/4 resonant mode) is formed by

T
Dsy 11T0000—0.3000
| =)0 0000 0O 000
P
Dis 1l 1o o oo 03 00 0

Therefore, we are multiplying the row of C corresponding to
the first phase with a matrix of similar form as B except
that the column for the first phase all other columns are
null because charges from the future phases are yet to flow.
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function [A,B,C,D,W1,m_frac] =
% N+1 level FCML
% m/N duty cycle
% All flying capacitances are identical to Cfly

FCML_SS(N,m,CFly)

% Evaluation of A
A = eye(N-1);
%%%

% Evaluation of B
m_nom = floor(m);
m_nomP1 = ceil(m);
m_frac = m - m_nom;

base_seq_nom = zeros(1,N);
base_seq_nomPl = zeros(1,N);

if(m_nom>0 && m_nom~=N)

base_seq_nom(1,1) = -1;
base_seq_nom(1,m_nom+l) = 1;
end

if(m_nomP1<N)
base_seq_nomP1(1,1) = -1;
base_seq_nomP1(1,m_nomP1+1) = 1;

end
for i=1:N-1
Bcon_nom(i,:) = circshift(base_seq_nom,i-1);
Bcon_nomP1(i,:) = circshift(base_seq_nomP1,i-1);
end
Bcon = [Bcon_nom Bcon_nomP1];
Mcon = [(1-m_frac).*eye(N) zeros(N,N);zeros(N,N) m_frac.*eye(N)];

B_norm = Bcon*Mcon;
B = B_norm./Cfly;
%2%%

% Evaluation of C
C = -Bcon';
%%%

% Evaluation of D
D_temp = zeros(N-1,2*N);
for i=1:2*N
if(mod(i,2)==1)
duty_indx = m_frac;
indx = N+((i+1)/2);
else
duty_indx = 1-m_frac;
indx = (i/2);
end

D_temp(:,indx) = duty_indx.*Bcon(:,indx);
D(indx,:) = -Bcon(:,indx)'*D_temp;
nd
= D./Cfly;
%%

RO

S

% Evaluation of W1
W1_nom = ones(N,1);
W1_nomPl = ones(N,1);

if (m_nom == 0)

W1_nom = zeros(N,1);
else
W1_nom(m_nom:N-1,1) = zeros(N-m_nom,1);
end
if (m_nomPl == @)
W1_nomPl = zeros(N,1);
else
W1_nomP1(m_nomP1:N-1,1) = zeros(N-m_nomP1,1);
end

W1 = [W1_nom;W1l_nomP1];
%2%%

end

Fig. 20. MATLAB function to generate DT SS matrices for generic m/N FCML converter.

Continuing the construction, the row for the second phase
(operating in 1/4 resonant mode) is given by,

T

Dn 17" [-o0.
=(=) |0 0
0 0

7 3

0.
0

0 0 O 0 0 0
: c 0 0 0 0 0 0
Dis ! 000 03 000
We can keep repeating this for every phase to obtain for the
final phase (operating in 1/4 resonant mode),

1

(D o,

Dys|=(=)[0 0 -1]B.
Finally for the current example the matrix W3 in (6) is

given by,
Wi=[0 001100 1.

For the reference of the reader, the MATLAB function gen-
erating the above matrices for generic m/N FCML converter
is shown in Fig. 20.

APPENDIX C
PROOF FOR CONDITION OF CONTROLLABILITY AND
OBSERVABILITY OF A FCML CONVERTER

As described in Section III-A, the rank B will be unaffected

' by the diagonal matrix M,,,, and depend only on B, . Since,

the matrices from (5) and (6) are related as C = —B”T . Thus

controllability and observability matrices for are also related as
O = —C". Therefore the proof for condition for observability

i.e., C is full-rank, will also hold for controllability.

In the resonant mode (m is an integer), C' always has more
rows than columns, thus its rank is determined by the number
of linearly dependent column vectors. The first column, Cl1,
has the form,

Cua=[1 0 -1 0 ..]", (46)

where there are (m — 1) zeros in the middle and (N — m —
1) zeros in the end. The p* column is obtained by circular
shifting C,1 by (p — 1) steps.
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If there exist an non-zero row vector y = [y YN-1],
such that,
N-1
> 4p+Cup =0, (47)
p=1
then, C is not full-rank and vice-versa.
Solving (47) gives,
0 p=morp=N—m,
T = (43)

Yp+N-m)%n Otherwise,

where the symbol % represents the modulo operation.
When m and N are not co-prime, they have a greatest
common divider, g(> 1). Using (48), we get,

Y1 = Yg+1 = -+ = VYN—g+1,
Yg—1 = V29—-1 = --- =VYN-1,
Vg ="Y2g =+ =7TN—g =0, (49)
which leads to,
Ci1=Cyg4+1) = ... = Cy(N—g+1),
Cig—1) = Cx2g-1) = - .- = Ci(n-1)- (50)

This means that there are (¢ — 1) linear dependency among
the column vectors, leading to the conclusion for m and N

not co-prime scenario that,
rank(C) = N — g. (51)

For the m and N coprime case, we substitute g = 1 in (49)
to get,

YM=7=...=9N-1=0, (52)
indicating,

rank(C) = N — 1, (53)

i.e., C is full-rank.

In the inductive mode, we get,
BT
rank(C') = rank { oo } (54)
~Peon,nom+1

Following a similar derivation method as the resonant mode,
it is straightforward to show that C' is always full-rank in
inductive mode.
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