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Abstract. Halocarbons contained in equipment such as air conditioners, fire extinguishers, and foams continue to
be emitted after production has ceased. These “banks” within equipment and applications are thus potential
sources of future emissions, and must be carefully accounted for in order to differentiate nascent and potentially
illegal production from legal banked emissions. Here, we build on a probabilistic Bayesian model, previously
developed to quantify chlorofluorocarbon (CFC-11, CFC-12, and CFC-113) banks and their emissions. We ex-
tend this model to a suite of banked chemicals regulated under the Montreal Protocol (hydrochlorofluorocarbon,
HCFC-22, HCFC-141b, and HCFC-142b, halon 1211 and halon 1301, and CFC-114 and CFC-115) along with
CFC-11, CFC-12, and CFC-113 in order to quantify a fuller range of ozone-depleting substance (ODS) banks by
chemical and equipment type. We show that if atmospheric lifetime and prior assumptions are accurate, banks are
most likely larger than previous international assessments suggest, and that total production has probably been
higher than reported. We identify that banks of greatest climate-relevance, as determined by global warming
potential weighting, are largely concentrated in CFC-11 foams and CFC-12 and HCFC-22 non-hermetic refrig-
eration. Halons, CFC-11, and CFC-12 banks dominate the banks weighted by ozone depletion potential (ODP).
Thus, we identify and quantify the uncertainties in substantial banks whose future emissions will contribute to
future global warming and delay ozone-hole recovery if left unrecovered.

1     Introduction

The Montreal Protocol regulates the production of ozone-
depleting substances (ODS), and its implementation has
avoided a world with catastrophic stratospheric ozone deple-
tion (Newman et al., 2009). Globally, there has been a near-
cessation of chlorofluorocarbon (CFC) and halon production
since 2010, and global production of the replacement hy-

drochlorofluorocarbons (HCFCs) is scheduled to be phased
out by 2030. Despite production phase-out, these chemicals
persist in old equipment produced prior to phase-out, such as
refrigeration, air conditioners, foams, and fire extinguishers.
These reservoirs of materials (termed “banks”) continue to be
sources of emissions (e.g., Carpenter et al., 2018). Previously
published estimates of bank sizes and bank emissions vary
widely due to different estimation techniques that incorpo-
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rate incomplete or imprecise information (Kuijpers and Ver-
donik, 2009; Montzka et al., 2003). This uncertainty obscures
the ongoing attribution of emissions and undermines inter-
national efforts to evaluate global compliance with the Mon-
treal Protocol. In earlier work, Lickley et al. (2020, 2021) de-
veloped a Bayesian probabilistic banks model for CFCs that
incorporates the widest range of constraints to date (Lickley
et al., 2020, 2021). Here, we extend this model to the suite of
major chemicals regulated by the Montreal Protocol that are
subject to banking.

Previously published assessments typically rely on one of
three modeling approaches to estimate bank sizes and then
estimate emissions associated with these banks. In the “top-
down” approach (e.g., Montzka et al., 2003), banks are es-
timated as the cumulative difference between reported pro-
duction and observationally derived emissions. However, by
taking the cumulative sum of a small difference between two
large values, small biases in emissions or reported produc-
tion estimates can propagate into large biases in bank esti-
mates (Velders and Daniel, 2014). Some type of bias is thus
expected since total production has very likely been greater
than reported production due to both the under-reporting of
production (e.g., Gamlen et al., 1986; Montzka et al., 2018)
and the exclusion of point-of-production losses in reported
production values. Further estimates of emissions rely on ob-
served concentrations along with global lifetime estimates,
which have large uncertainties associated with them (Ko et
al., 2013).

The second approach relies on a “bottom-up” accounting
method (Ashford et al., 2004; Campbell et al., 2005) where
the inventory of sales by equipment type are carefully tallied
along with estimated release rates by application use. The
bottom-up approach also relies on sales data from surveys of
various equipment types and products as well as estimates of
their respective leakage rates (Campbell et al., 2005). These
are all subject to uncertainties, which contribute to uncertain-
ties in bottom-up bank estimates as well. A  limitation of the
bottom-up accounting method is that observed atmospheric
concentrations are used only as a qualitative check and are
not explicitly accounted for in the analysis. Another impor-
tant limitation is that data used in this method are unobserved
and rather rely on estimated processes along with reported
data, such as production or sales of equipment. Thus any
bias in reporting could propagate into large biases in bank
estimates.

The third approach, and the one used in more recent ozone
assessments such as the World Meteorological Organization
(WMO, 2011, 2018, 2014), uses a hybrid approach to calcu-
late banks. Bottom-up banks estimated for 2008 are used as
a starting point for the calculations. These banks are taken
from Campbell et al. (2005) and represent interpolated val-
ues from the 2002 and 2015 estimates. The banks are then
brought forward to the present time by adding the cumulate
reported production and subtracting the cumulative obser-
vationally derived emission from 2008 through the present.

Atmos. Chem. Phys., 22, 11125–11136, 2022

This approach is consistent with 2008 bottom-up bank es-
timates by design, however, as time between 2008 and the
present has grown, the cumulative errors associated with the
top-down approach become larger.

The modeling approach applied in the present study relies
on Bayesian inference of banks (Lickley et al., 2020, 2021)
where banks are estimated using an approach called Bayesian
Parameter Estimation (BPE). In this approach, a simulation
model of the bottom-up method is developed, where prior
distributions of input parameters are constructed from pre-
viously published values, accounting for large uncertainties
in production and bank release rates. The simulation model
simultaneously models banks, emissions, and atmospheric
concentrations. Parameters in the simulation model are then
conditioned (or updated) on observed concentrations by ap-
plying Bayes’ rule. The final result is a posterior distribution
of banks by chemical and equipment type, along with an up-
dated estimate of production and release rates for each equip-
ment type. This approach incorporates data and assumptions
from both the bottom-up and top-down approaches, provid-
ing a simulation model consistent with the bottom-up ac-
counting method while also being consistent with observed
concentrations within their uncertainties.

The remainder of the paper includes the following: Sect. 2
presents the Bayesian modeling approach along with data
used in the analysis. Section 3 provides a summary of the
results of our analysis for each of the chemicals considered
here. Finally, Sect. 4 provides a discussion of our primary
findings and limitations of the analysis.

2     Methods

The Bayesian modeling approach from Lickley et al. (2020,
2021) draws on a Bayesian analysis approach called
Bayesian melding, designed by Poole and Raftery (2000),
that allows us to apply inference to a deterministic simulation
model. We employ a version of this method that we hence-
forth refer to as the Bayesian Parameter Estimation (BPE),
which allows for input parameter uncertainty (Hong et al.,
2005; Bates et al., 2003). The model flow is implemented as
follows: first we develop a deterministic simulation model,
representing the “bottom-up” accounting method that simul-
taneously simulates banks, emissions, and mole fractions
for each chemical and equipment type. In this analysis, the
chemicals considered include CFC-11, CFC-12, CFC-113,
CFC-114, CFC-115, HCFC-22, HCFC-141b, HCFC-142b,
halon 1201, and halon 1311. Prior distributions for each of
the input parameters are based on previously published esti-
mates. We then specify the likelihood function as a function
of the difference between observed and simulated mole frac-
tions. Finally, we estimate posterior distributions of both the
input and output parameters by implementing Bayes’ Rule
using a sampling procedure. Each of the steps of the BPE are
described in more detail below.
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2.1     Simulation model

The simulation model, comprised of Eqs. (1)–(5), simultane-
ously models banks, emissions, and mole fractions for each
chemical by equipment type for all years with available data
up until 2019. Starting dates differ by chemical, see “Details
on Simulation Model” in the Supplement tables. The simula-
tion model is specified as follows:
Bj ; t C 1  D  

 
1      RFj ; t Bj ; t  C (1      DEj ; t ) Pj ; t ; (1)

where Bj ; t , is banks and Pj ; t  is production of equipment
category j  in year t . The fraction of the released bank is re-
flected by RFj ; t  and DEj ; t reflects the fraction of production
that is directly emitted in equipment category j  in year t .
These same parameters are used to simulate emissions, E j ; t  V

E j ; t C 1  D  RFj ; t  Bj ; t  C DEj ; t  Pj ; t : (2)

Total banks, BTotal; t , and total emissions, ETotal; t , are then
estimated as the sum across all N equipment categories:

BTotal; t D  
X

j D 1 B j ; t ;                                                               (3)

ETotal; t D         j D 1 Ej ; t :                                                               (4)

For chemicals where feedstock usage is reported, an addi-
tional term in Eq. (4) is included that accounts for feedstock
emissions. Emissions, along with an assumed atmospheric
lifetime, t , taken as the Ko et al. (2013) multimodel time-
varying mean, are then used to simulate atmospheric mole
fractions, MFt :

MFt C1 D  exp
 
1

MFt C A ETo t a l ; t ; (5)

where A  is a constant that converts units of emissions by
mass to units of mole fractions, and also takes into account a
fixed factor of 1.07 taken from Daniel et al. (2007) that
accounts for the discrepancy between surface mole fraction
concentrations and the global mean value.

2.2     Prior distributions

The input parameters in the simulation model described
above require initial values to be assigned, along with
their probability distributions. These prior distributions (“pri-
ors”) are developed to estimate mole fractions, emissions,
and banks for CFC-11, CFC-12, CFC-113, CFC-114, CFC-
115, HCFC-22, HCFC-141b, HCFC-142b, halon 1201, and
halon 1311. Categories of bank equipment are defined by
the categorization provided by the Alternative Fluorocarbons
Environmental Acceptability Study (AFEAS 2001) which
varies by compound (shown in Table 1). For halons, there
is a single category of bank (fire extinguishing agent).

The A F E A S  data report global annual production up to
2001, categorized by equipment type, which is generally
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grouped as short, medium and long banks. We use A F E A S
data and categorization to develop our production priors and
adopt the WMO (2003) correction where A F E A S  production
values are used up until 1989 and then scaled to match the
United Nations Environmental Programme’s (UNEP) global
production values for all years following 1989. After A F E A S
data ends, we assume that the relative production in each cat-
egory remains constant for all years following 2001. Uncer-
tainty in production priors is assumed to follow a multivariate
log-normal distribution, where temporal correlation in pro-
duction reporting bias is estimated in the BPE. Priors differ
by chemical and are developed to be wide enough for atmo-
spheric mole fraction priors to contain observations. See the
Supplement for details on production priors for each chemi-
cal.

The emissions function by bank equipment type can be
characterized by the fraction of production that is directly
emitted during the year of production (DE) and the fraction
of the bank that is emitted in each subsequent year. Prior es-
timates for the emissions function come from previously re-
ported data and differ by chemical and equipment type (see
the Supplement). Broadly speaking, it has been estimated
that chemicals contained in short banks are fully emitted
within the first 2 years after production, medium banks lose
about 10 %–20 % of their material each year, and long banks
can lose as little as 2 % of their material each year (Ashford et
al., 2004). We use previously published estimates to develop
emissions function priors specific to each chemical and bank
type along with wide uncertainties, as specified in the Sup-
plement.

Amounts of halocarbons used for feedstock production are
available annually (UNEP/TEAP, 2021). A  prior mean leak-
age rate of 2 % was assumed during production, which re-
flects an approximate average of values across different fa-
cilities (MCTOC, 2019).

2.3     Likelihood function

For each chemical, the likelihood function is a multivariate
normal likelihood function of the difference between mod-
eled and observed mole fractions:
P  (Dt 1; : : :Dt M j) D  

(2)
M p

jSj
exp  

2
1T  S  1 1  ; (6)

where Dt 1; : : :Dt M is yearly globally averaged observed
mole fractions for all years where observations are available
and  represents that vector of input and output parameters
from the simulation model. The 1  denotes an M 1 vec-tor
of the difference between yearly observed and modeled mole
fractions and is assumed to have a mean zero, and co-
variance function S. Therefore, S  represents the sum of un-
certainties between observed and modeled mole fractions.
While there are published estimates of uncertainties in ob-
served mole fractions, we do not know the uncertainties in
modeled mole fractions. We therefore estimate S  separately
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Table 1. Application type of halocarbon banks by chemical.

Chemical

CFC-11

CFC-12

CFC-113

CFC-114

CFC-115

HCFC-22

HCFC-141b

HCFC-142b

Halon-1211

Halon-1301

Short bank

Aerosols
Open-cell foam

Aerosols
Open-cell foam

Solvents

Propellant

Open-cell foam

Open-cell foam

Medium bank

Non-hermetic refrigeration

Non-hermetic refrigeration

Non-hermetic refrigeration

Non-hermetic refrigeration

Non-hermetic refrigeration

Fire extinguishing agent

Fire extinguishing agent

Long bank

Closed-cell foam

Refrigeration

Heat pump

Heat pump

Air conditioning

Foam

Foam

Foam

for each chemical, as is done in Lickley et al. (2020). The
off-diagonals in the covariance function incorporate a corre-
lation term, S, which accounts for our assumption that there is
high autocorrelation in the bias between modeled and ob-
served mole fractions. Correlation terms for each chemical
are reported in the Supplement along with prior estimates of
the uncertainty parameters used for diagonal elements in S.
Each column and row in S  is therefore populated as

Si ; j  D  i j  
ji  j j ;

where i and j  represent the sum of the uncertainties in
observed and modeled mole fractions at time i and j ,  respec-

tively, and are inferred in the BPE, whereas S  is prescribed.
Observations come from the A dvanced Global Atmo-

spheric Gas Experiment (AGAGE; https://agage.mit.edu, last
access: 29 March 2022) data set (Prinn et al., 2000, 2018),
with the exception of CFC-11 and CFC-12 which, follow-
ing Lickley et al. (2021), come from the AGAGE and the
National Oceanographic and Atmospheric Administration’s
(NOAA) merged data sets (Engel et al., 2019). Data are ag-
gregated into annual global mean mole fractions. The time
frame of availability of observations differs by chemical (see
the Supplement).

2.4     Posterior distributions

Following Bayes’ Rule, we specify our posterior distribution
as

P  ( j Dt 1; : : :; Dt N ) D  
P  () P

D
D

; :
; : : :Dt N j)

; (7)

where P  () represents the joint prior distribution of the input
and output parameters described in the simulation model in
Sect. 2.1.
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The analytical form of the posterior distribution is in-
tractable. Thus, we estimate the posterior distribution using
a sampling procedure (the sampling importance resampling
(SIR) method) to estimate the marginal posterior distribu-
tions (Hong et al., 2005; Bates et al., 2003; Rubin, 1988).
To implement S IR  we draw 1 000 000 samples from the pri-
ors, run the simulation model, and then resample from the
priors 100 000 times using an importance ratio, which is pro-
portional to the likelihood function. These sample sizes were
chosen such that multiple iterations of the model produce
consistent results.

3     Results

Figure 1 shows observed globally averaged mole fractions
compared to the BPE of mole fractions for each chemical.
Figure 2 shows BPE and observationally derived emissions,
assuming the SPARC multimodel time-varying mean life-
time for each species. Posterior estimates agree well with
observations for the majority of time periods and chemicals.
Note, however, that BPEs from Lickley et al. (2021) match
observed and observationally derived estimates more closely
for CFC-11 than they do in the present analysis. We attribute
this difference in consistency to atmospheric lifetimes being
assumed in the present analysis, while they were inferred
in Lickley et al. (2021), who found inferred lifetimes to be
somewhat shorter than the SPARC multimodel mean values.
Shorter lifetimes would allow modeled mole fractions to de-
cline more quickly following 1990, matching observations
better. A  notable discrepancy occurs for CFC-115, where
modeled mole fractions are increasing throughout the en-
tire simulation period, whereas observed mole fractions from
2000 onwards are relatively constant. This discrepancy could

https://doi.org/10.5194/acp-22-11125-2022
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be explained by the large uncertainties in atmospheric life-
times of CFC-115 (Vollmer et al., 2018), if atmospheric life-
times are in fact substantially shorter than the SPARC multi-
model mean.

Figure 3 provides a comparison of BPE bank estimates
alongside previously published bank estimates. The BPE
bank estimates are generally higher than other published val-
ues. This can be explained by production uncertainties that
are accounted for in the present analysis. Our analysis sug-
gests that production has most likely been underreported for
nearly all chemicals. Table 2 provides a summary of our es-
timated bias in cumulative reported production throughout
the simulation period for each chemical type. With the ex-
ception of CFC-113 and CFC-115, we find our inferred cu-
mulative production to be significantly higher than reported
production (at the 1-sigma level), with our median estimate
suggesting that production was as little as 9 % higher than re-
ported for CFC-12 and as high as 50 % higher than reported
for halon 1211. Note, however, that high uncertainties in life-
times for halon 1211 exist (Ko et al., 2013) and could explain
part of this discrepancy. We would expect any consistent bias
in reported production to be a bias low, since consistent un-
dercounting of production is more plausible than overcount-
ing production. The exception for this would be the base year,
which reduction targets are made with reference to. In this
instance, we would expect overreporting for this year to be
more likely. Another possible explanation for the discrep-
ancy in production estimates is that total reported chemical
production under UNEP does not account for leakage during
chemical manufacturing, but rather only leakage that occurs
during the application of the chemical. To our knowledge,
this potential leakage during chemical manufacturing has not
been well-documented or previously quantified.

Figure 4 shows the breakdown of emissions by equipment
type over time. For CFCs, emissions from short banks tend to
peak around 1990, as spray applications were banned earlier
than other applications, after which emissions from medium
and long banks become more dominant emission sources.
This is to be expected as the phase-out of production after
1990 would lead to more C F C  emissions from existing banks
rather than new, short-lived equipment. For HCFC-22, most
of the emission throughout the entire time period is from
medium banks, which is largely non-hermetic refrigeration.
Long banks (i.e., foams) dominate emissions for HCFC-141b
and for HCFC-142b, where both foams and non-hermetic re-
frigeration are prominent emission sources throughout the
simulation period. Estimated feedstock emissions averaged
over 2010–2019 are shown in Table 3. The HCFC-22 is the
largest source of feedstock emissions by mass, but CFC-
113 feedstock emissions are estimated to be larger when
weighted by global warming potential (GWP100) and ODP.

Figure 5 shows the relative quantity of banked materials
by chemical type. Banks are weighted by mass (Fig. 5a), by
GWP100 (Fig. 5b), and ODP (Fig. 5c). Our best estimate is
that the sum of the HCFCs currently comprise about 77 % of
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banks by mass. However, in terms of climate impacts, CFC-
11, CFC-12, and HCFC-22 are the largest banked materials
weighted by GWP100, accounting for 36 %, 14 %, and 36 %
of current banks, respectively. When banks are weighted by
ODP, CFC-11 and CFC-12 represent 46 % and halons also
represent 46 % of current banked chemicals.

Figure 6 shows the composition of banks by chemical
type. This, together with Fig. 5, provides insight into the
most prominent banked sources of halocarbons with regards
to GWP100 and ODP. In terms of GWP100, CFC-11 banks
largely reside in foams, whereas CFC-12 and HCFC-22 are
largely in non-hermetic refrigeration. The latter may be more
readily recoverable. In terms of ODP, CFC-11 foams and
CFC-12 non-hermetic refrigeration remain important, along
with halons which are all contained in fire extinguishers, a
recoverable reservoir.

4     Discussion and conclusions

This analysis suggests that if lifetime assumptions are cor-
rect, published bank estimates using either the top-down or
bottom-up approaches were likely underestimating bank
sizes for all banked chemicals due to underreporting of pro-
duction (see Table 2). The Bayesian approach used in this
analysis does not assume that production is known precisely,
but rather jointly infers production along with the other pa-
rameters in the simulation model, providing probabilistic es-
timates of historical production values. Previously published
bank estimates (Ashford et al., 2004; Kuijpers and Verdonik,
2009; Montzka et al., 2003) do not infer production, but
rather assume that it is known, or consider different scenar-
ios. We argue that production assumptions have been biased
low due to underreporting of total production and potentially
unaccounted for leakage during chemical manufacturing, and
thus have led to published bank estimates that were also bi-
ased low.

Discrepancies between observed mole fractions and BPE-
derived mole fractions are notable for the suite of chemi-
cals considered here. While the majority fall within the 90 %
confidence interval throughout most of the time periods, the
trends in concentrations between observations and inferred
mole fractions do not always agree. This discrepancy could
be related to our partitioning of production type following
2003 (i.e., after A F E A S  data end). Another important limi-
tation in this analysis is in the treatment of atmospheric life-
times, which could also explain some of these discrepancies.
The present analysis assumes that atmospheric lifetimes are
known and equal to the SPARC report’s multimodel time-
varying mean lifetimes (Ko et al., 2013). However, previous
work has indicated potential biases in SPARC lifetimes, for
example for CFCs (Lickley et al., 2021). The potential bias in
atmospheric lifetimes would result in biased bank estimates
in the present paper and requires further analysis.

Atmos. Chem. Phys., 22, 11125–11136, 2022
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Figure 1. Modeled mole fractions versus observed mole fractions. Red lines indicate the posterior median mole fraction estimate from the
Bayesian parameter estimation (BPE), with shaded regions indicating the 90 % confidence interval. Blue lines indicate globally averaged
observed mole fractions.

Figure 2. Modeled emissions versus observationally derived emissions. Red lines indicate the posterior median emissions estimate from the
Bayesian parameter estimation (BPE), with shaded regions indicating the 90 % confidence interval. Blue lines indicate observationally
derived emissions assuming the SPARC multimodel time-varying mean lifetimes.
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Figure 3. Magnitudes of bank estimates. The red lines indicate the median posterior estimate of banks from the Bayesian analysis, with
shading indicating the 90 % confidence interval. Previously published bank estimates are provided for comparison from the 2009 TEAP
report (Kuijpers and Verdonik, 2009), WMO (2007), WMO (2018) and Lickley et al. (2020) along with the hybrid approach updated to
current estimated starting values.

Table 2. Estimated bias in cumulative reported production. Values indicate the percent difference between inferred cumulative production
from the onset of production to 2019 relative to reported production, for all uses except feedstock production. Positive values indicate the
percent by which inferred production is higher than reported.

Chemical name

Median percentage
inferred bias (16th,
84th percentile)

Median absolute
inferred bias (16th,
84th percentile) [Gg]

Chemical name

Median percentage
inferred bias (16th,
84th percentile)

Median absolute
inferred bias (16th,
84th percentile) [Gg]

CFC-11

12 %
(9 %, 13 %)

1146
(900, 1291)

HCFC-22

10 %
(6 %, 13 %)

1249
(828, 1712)

CFC-12

9 %
(7 %, 11 %)

1208
(976, 1439)

HCFC-141b

12 %
(6 %, 19 %)

315
(153, 511)

CFC-113

 1 %
( 3 %, 0 %)

 37
( 76,  3)

HCFC-142b

22 %
(17 %, 28 %)

220
(166, 281)

CFC-114

11 %
(9 %, 13 %)

58
(46, 70)

Halon 1211

50 %
(41 %, 59 %)

137
(114, 164)

CFC-115

 1 %
( 2 %, 5 %)

 2
( 4, 11)

Halon 1301

24 %
(18 %, 32 %)

36
(26, 49)

This modeling approach makes no assumptions about end-
of-life (EOL) emissions. Certain bank estimates assume that
applications are dismantled at the end of their lifetime, which
would contribute to both decreased banks and increased
emissions at fixed years after production (e.g., UNEP/TEAP,

https://doi.org/10.5194/acp-22-11125-2022

2019). We do not make this assumption as we believe it
would be more realistic for dismantling of equipment to oc-
cur over a range of years after production, which would ef-
fectively be captured by our bank release fraction estimate.
We do however test the sensitivity of our bank estimate to

Atmos. Chem. Phys., 22, 11125–11136, 2022
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Figure 4. Emissions by source – Estimates of emissions by various equipment types, summarized in Table 1, are shown here along with
estimated emissions from feedstock usage. Lines indicate the median estimate, with the shaded region indicating the 90 % confidence interval.
Halons are not included in this figure as 100 % of halon emissions come from the same application and are thus identical to Fig. 2 halon
totals.

Table 3. Estimated feedstock emissions averaged from 2010–2019 from the Bayesian analysis. Emissions are weighted by mass, global
warming potential (GWP100) relative to CO2 over a 100-year time horizon for a CO2 concentration of 391 ppm, and by ozone depletion
potential (ODP) relative to CFC-11 (WMO, 2018).

Feedstock emissions

By mass
By GWP100
By ODP

CFC-113

3.4 Gg yr 1

20 838 Gg yr 1

2.8 Gg yr 1

HCFC-22

9.3 Gg yr 1

16 591 Gg yr 1

0.3 Gg yr 1

HCFC-142b

2.1 Gg yr 1

4302 Gg yr 1

0.1 Gg yr 1

EOL emissions occurring in a single year after production.
This we term the EOL scenario and test the sensitivity of
banks for CFC-11, CFC-12, and HCFC-22, the three largest
banks by global warming potential. The modeling approach
is described in the Supplement and results are shown in
Fig. SM1 therein. Perhaps unexpectedly, posterior bank es-
timates of CFC-11 are  25 % higher in 2020 in the EOL
scenario relative to the scenario described in the main text.
However, banks in the EOL scenario are decreasing faster
than those described in the main text. The larger bank size
is due to posterior bank release fractions being  2 % for the
EOL scenario relative to 3 % for the scenario described in the
main text. The faster depletion of the banks in 2020 can be
explained by the addition of the EOL decommissioning pa-
rameter. These larger bank estimates reflect the consistency
of the Bayesian modeling approach where all parameters are
jointly inferred. Including an additional process in the model
requires that multiple parameters be updated to be consistent
with observations. For CFC-12, the EOL scenario produces
significantly smaller banks from about 1990 onwards. How-
ever, the emissions profile has an artificial dip in emissions

Atmos. Chem. Phys., 22, 11125–11136, 2022

relative to observationally derived emissions, suggesting that
a set year for decommissioning is not a realistic modeling
assumption. For HCFC-22, banks are not substantially dif-
ferent between the two scenarios.

There are important discrepancies between CFC-113 feed-
stock emissions inferred here and those estimated in the pre-
vious analysis (Lickley et al., 2020). In Lickley et al. (2020),
feedstock emissions were assumed to be the difference be-
tween observationally derived emissions and inferred bank
emissions. In the present analysis, priors of feedstock pro-
duction and leakage rates are developed and feedstock emis-
sions are then inferred. In the present analysis, observation-
ally derived CFC-113 emissions are higher than total BPE-
inferred emissions at the 1-sigma level from 2010 onwards.
This suggests that either observationally derived emissions
are too high, or our BPEs are too low. In Lickley et al. (2021),
we find that atmospheric lifetimes of CFC-113 are most
likely lower than the SPARC multimodel time-varying mean
used in the present analysis. This would imply that the ob-
servationally derived emissions shown in Fig. 2 are biased
low, suggesting an even larger discrepancy between BPE-

https://doi.org/10.5194/acp-22-11125-2022
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Figure 5. Total banks by mass, global warming potential (GWP100; WMO, 2018), and ozone depleting potential (ODP; WMO, 2018). Bank
estimates reported in the above figures are the median estimates from the Bayesian analysis.

Figure 6. Bank size by equipment type. Bank estimates reported in the above figures are the median estimates from the Bayesian analysis. In the
above legends, “cc” refers to closed-cell foams, “non-h ref.” refers to non-hermetic refrigeration, “ref.” refers to refrigeration, and “A/C” refers
to air conditioning.

inferred total emissions and observationally derived emis-
sions. Therefore, it seems plausible that the discrepancy is
due to prior feedstock emissions estimates being biased low
due to larger leakage, or CFC-113 is being produced for a
use that is not allowed under the Montreal Protocol.

Finally, some important details about production and de-
struction were not fully accounted for in this analysis. For
one, feedstock priors were only included for CFC-113,

https://doi.org/10.5194/acp-22-11125-2022

HCFC-22, and HCFC-142b, which could be limiting our as-
sessment of the sources of emissions for other chemicals.
However, published feedstock values for other chemicals
are not available and leakage rates in feedstock applications
may be uncertain. In addition, we do not account for non-
dispersive production in our analysis, namely the production
of chemicals as by-products. It is possible, for example, that
some of the discrepancies in CFC-115 emissions could be ex-
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plained by non-dispersive emissions as identified by Vollmer
et al. (2018). Moreover, we do not consider EOL destruction
of equipment as there are no published records, to our knowl-
edge, of these processes. Finally, we were not able to account
for a more detailed breakdown in production by equipment
type than what has been published by AFEAS,  which dis-
cretizes production into, at most, four categories of equip-
ment, and does not provide data beyond 2003. Without pub-
licly available details of these processes, modeling of banks
and emissions will continue to be limited.

C ode and data availability. AGAGE data are available at https:
//agage.mit.edu/data/agage-data (last access: 29 March 2022;
Prinn et al., 2000, 2018). A F E A S data are available at https:
//agage.mit.edu/data/afeas-data (last access: 10 March 2022,
AFEAS,  2001). Prior distributions and likelihood function as-
sumptions are all documented in the Supplement. All  code
and data are available via GitHub (https://github.com/meglickley/
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