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Abstract

Learning representations for individual instances when
only bag-level labels are available is a fundamental
challenge in multiple instance learning (MIL). Recent
works have shown promising results using contrastive self-
supervised learning (CSSL), which learns to push apart
representations corresponding to two different randomly-
selected instances. Unfortunately, in real-world applica-
tions such as medical image classification, there is often
class imbalance, so randomly-selected instances mostly be-
long to the same majority class, which precludes CSSL from
learning inter-class differences. To address this issue, we
propose a novel framework, Iterative Self-paced Supervised
Contrastive Learning for MIL Representations (ItS2CLR),
which improves the learned representation by exploiting
instance-level pseudo labels derived from the bag-level la-
bels. The framework employs a novel self-paced sampling
strategy to ensure the accuracy of pseudo labels. We evalu-
ate ItS2CLR on three medical datasets, showing that it im-
proves the quality of instance-level pseudo labels and repre-
sentations, and outperforms existing MIL methods in terms
of both bag and instance level accuracy. 1

1. Introduction

The goal of multiple instance learning (MIL) is to per-
form classification on data that is arranged in bags of in-
stances. Each instance is either positive or negative, but
these instance-level labels are not available during training;
only bag-level labels are available. A bag is labeled as pos-
itive if any of the instances in it are positive, and negative
otherwise. An important application of MIL is cancer diag-
nosis from histopathology slides. Each slide is divided into

*Equal Contribution
†Joint Last Author
1Code is available at https://github.com/Kangningthu/

ItS2CLR

hundreds or thousands of tiles but typically only slide-level
labels are available [6, 9, 17, 35, 39, 53].

Histopathology slides are typically very large, in the or-
der of gigapixels (the resolution of a typical slide can be
as high as 105 × 105), so end-to-end training of deep neu-
ral networks is typically infeasible due to memory limi-
tations of GPU hardware. Consequently, state-of-the-art
approaches [6, 35, 39, 44, 53] utilize a two-stage learning
pipeline: (1) a feature-extraction stage where each instance
is mapped to a representation which summarizes its content,
and (2) an aggregation stage where the representations ex-
tracted from all instances in a bag are combined to produce
a bag-level prediction (Figure 1). Notably, our results indi-
cate that even in the rare settings where end-to-end training
is possible, this pipeline still tends to be superior (see Sec-
tion 4.3).

In this work, we focus on a fundamental challenge in
MIL: how to train the feature extractor. Currently, there are
three main strategies to perform feature-extraction, which
have significant shortcomings. (1) Pretraining on a large
natural image dataset such as ImageNet [39,44] is problem-
atic for medical applications because features learned from
natural images may generalize poorly to other domains [38].
(2) Supervised training using bag-level labels as instance-
level labels is effective if positive bags contain mostly posi-
tive instances [11,34,50], but in many medical datasets this
is not the case [5,35]. (3) Contrastive self-supervised learn-
ing (CSSL) outperforms prior methods [14,35], but is not as
effective in settings with heavy class imbalance, which are
of crucial importance in medicine. CSSL operates by push-
ing apart the representations of different randomly selected
instances. When positive bags contain mostly negative in-
stances, CSSL training ends up pushing apart negative in-
stances from each other, which precludes it from learning
features that distinguish positive samples from the negative
ones (Figure 2). We discuss this finding in Section 2.

Our goal is to address the shortcomings of current
feature-extraction methods. We build upon several key in-
sights. First, it is possible to extract instance-level pseudo
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Figure 1. Left: (a) Commonly used deep MIL models first pretrain a feature extractor and then train an aggregator that maps the represen-
tations to a bag-level prediction. (b) Our proposed framework, ItS2CLR, uses instance-level pseudo labels obtained from the aggregator to
finetune the feature extractor. ItS2CLR updates the features iteratively based on the pseudo label of a subset of instances selected according
to a self-paced learning (SPL) strategy. Right: The dashed line is the instance-level AUC of the MIL model trained on instance feature
extracted by the CSSL pretrained feature extractor. On a benchmark dataset (Camelyon16 [5]), the iterative finetuning process gradually
improves the instance-level AUC during training, which results in more accurate pseudo labels. Both the iterative updates and SPL are
important to achieve this.

labels from trained MIL models, which are more accurate
than assigning the bag-level labels to all instances within
a positive bag. Second, we can use the pseudo labels to
finetune the feature extractor, improving the instance-level
representations. Third, these improved representations re-
sult in improved bag-level classification and more accu-
rate instance-level pseudo labels. These observations are
utilized in our proposed framework, Iterative Self-Paced
Supervised Contrastive Learning for MIL Representation
(ItS2CLR), as illustrated in Figure 1. After initializing the
features with CSSL, we iteratively improve them via su-
pervised contrastive learning [32] using pseudo labels in-
ferred by the aggregator. This feature refinement utilizes
pseudo labels sampled according to a novel self-paced strat-
egy, which ensures that they are sufficiently accurate (see
Section 3.2). In summary, our contributions are the follow-
ing:

1. We propose ItS2CLR – a novel MIL framework where
instance features are iteratively improved using pseudo
labels extracted from the MIL aggregator. The frame-
work combines supervised contrastive learning with a
self-paced sampling scheme to ensure that pseudo labels
are accurate.

2. We demonstrate that the proposed approach outperforms
existing MIL methods in terms of bag- and instance-level
accuracy on three real-world medical datasets relevant
to cancer diagnosis: two histopathology datasets and a
breast ultrasound dataset. It also outperforms alternative
finetuning methods, such as instance-level cross-entropy

minimization and end-to-end training.

3. In a series of controlled experiments, we show that
ItS2CLR is effective when applied to different feature-
extraction architectures and when combined with differ-
ent aggregators.

2. CSSL May Not Learn Discriminative Rep-
resentations In MIL

Recent MIL approaches use contrastive self-supervised
learning (CSSL) to train the feature extractor [18, 35, 43].
In this section, we show that CSSL (e.g. SimCLR [10],
MoCo [27]) has a crucial limitation in realistic MIL set-
tings, which precludes it from learning discriminative fea-
tures. CSSL aims to learn a representation space where
samples from the same class are close to each other, and
samples from different classes are far from each other, with-
out access to class labels. This is achieved by minimizing
the InfoNCE loss [40].

LCSSL = E
x,xaug

{xdiff
i

}n
i=1

[
− log

sim(x, xaug)

sim(x, xaug) +
∑n
i=1 sim(x, xdiffi )

]
.

(1)
The similarity score sim (·, ·) : Rm × Rm → R is de-
fined as sim (x, x′) = exp (fψ(x) · fψ(x′)/τ) for any
x, x′ ∈ Rm, where fψ = ψ ◦ f , in which f : Rm → Rd is
the feature extractor mapping the input data to a representa-
tion, ψ : Rd → Rd′ is a projection head with a feed-forward
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Figure 2. Top: In contrastive self-supervised learning (CSSL), the representation of an instance x is pulled closer to its random augmen-
tation xaug and pushed away from the representations of other randomly selected instances {xdiff

i }ni=1. In many MIL datasets relevant to
medical diagnosis, most instances are negative, so CSSL mostly pushes apart representations of negative instances (right). Bottom: Our
proposed framework ItS2CLR applies the supervised contrastive learning approach described in Section 3.1. Instance-level pseudo labels
are used to build a set of positive pairs Sx and a set of negative pairs Dx corresponding to x. The representation of an instance x is pulled
closer to those in Sx and pushed away from those in Dx. The set of pseudo-labels is built iteratively following the self-paced sampling
strategy in Section 3.2.

network and ℓ2 normalization, and τ is a temperature hyper-
parameter. The expectation is taken over samples x ∈ Rm
drawn uniformly from the training set. Minimizing the loss
brings the representation of an instance x closer to the rep-
resentation of its random augmentation, xaug, and pushes
the representation of x away from the representations of n
other examples {xdiffi }ni=1 in the training set.

A key assumption in CSSL is that x belongs to a dif-
ferent class than most of the randomly-sampled examples
xdiff1 , . . . , xdiffn . This usually holds in standard classification
datasets with many classes such as ImageNet [19], but not in
MIL tasks relevant to medical diagnosis, where a majority
of instances are negative (e.g. 95% in Camelyon16). Hence,
most terms in the sum

∑n
i=1 exp

(
fψ(x) · fψ(xdiffi )/τ

)
in

the loss in Equation 1 correspond to pairs of examples
(x, xdiffi ) both belonging to the negative class. Therefore,
minimizing the loss mostly pushes apart the representations
of negative instances, as illustrated in the top panel of Fig-
ure 2. This is an example of class collision [2,13], a general
problem in CSSL, which has been shown to impair perfor-
mance on downstream tasks [3, 56].

Class collision makes CSSL learn representations that
are not discriminative between classes. In order to study
this phenomenon, we report the average inter-class dis-
tances and intra-class deviations for representations learned
by CSSL on Camelyon16 in Table 1. The inter-class dis-
tance reflects how far the instance representations from dif-
ferent classes are apart; the intra-class distance reflects the

variation of instance representations within each class. As
predicted, the intra-class deviation corresponding to the rep-
resentations of negative instances learned by CSSL is large.
Representations learned by ItS2CLR have larger inter-class
distance (more separated classes) and smaller intra-class
deviation (less variance among instances belonging to the
same class) than those learned by CSSL. This suggests that
the features learned by ItS2CLR are more discriminative,
which is confirmed by the results in Section 4.

Note that using bag-level labels does not solve the prob-
lem of class collision. When x is negative, even if we se-
lect {xdiffi }ni=1 from the positive bags in equation 1, most
of the selected instances will still be negative. Overcom-
ing the class-collision problem requires explicitly detecting
positive instances. This motivates our proposed framework,
described in the following section.

3. MIL via Iterative Self-paced Supervised
Contrastive learning

Iterative Self-paced Supervised Contrastive Learning
for MIL Representations (ItS2CLR) addresses the limi-
tation of contrastive self-supervised learning (CSSL) de-
scribed in Section 2. ItS2CLR relies on latent variables indi-
cating whether each instance is positive or negative, which
we call instance-level pseudo labels. To estimate pseudo
labels, we use instance-level probabilities obtained from
the MIL aggregator (specifically the aggregator from DS-
MIL [35] but our framework is compatible with any aggre-



Table 1. Quantitative analysis of instance-level features learned from Camelyon16 [5]. The inter-class distance is the ℓ2-distance between
the representation mean of the positive instances and that of negative instances. The intra-class deviation is the square root of the spectral
norm of the covariance matrix of features corresponding to each class. The spectral norm is the largest eigenvalue of the covariance matrix
and is therefore equal to the variance in the direction of the greatest variance. Due to class collision among negative instances in CSSL (see
Section 2), the intra-class deviation of the corresponding features is very large. In contrast, the features learned by the proposed framework
ItS2CLR has smaller intra-class deviation among both negative and positive instances, and a larger inter-class distance.

Training set Test set

Inter-class distance
Intra-class deviation

Inter-class distance
Intra-class deviation

pos neg pos neg
CSSL (SimCLR) 1.835 1.299 1.453 2.109 1.416 1.484
ItS2CLR (proposed) 2.376 1.176 0.805 2.432 1.215 0.847

gator that generates instance-level probabilities, such as the
ones described in Appendix C). The pseudo labels are ob-
tained by binarizing the probabilities according to a thresh-
old η ∈ (0, 1), which is a hyperparameter.

ItS2CLR uses the pseudo labels to finetune the feature
extractor (initialized using CSSL). In the spirit of iterative
self-training techniques [36, 49, 57], we alternate between
refining the feature extractor, re-computing the pseudo la-
bels, and training the aggregator, as described in Algo-
rithm 1. A key challenge is that the pseudo labels are not
completely accurate, especially at the beginning of the train-
ing process. To address the impact of incorrect pseudo la-
bels, we apply a contrastive loss to finetune the feature ex-
tractor (see Section 3.1), where the contrastive pairs are se-
lected according to a novel self-paced learning scheme (see
Section 3.2). The right panel of Figure 1 shows that our ap-
proach iteratively improves the pseudo labels on the Came-
lyon16 dataset [5]. This finetuning only requires a modest
increment in computational time (see Section 4.5).

3.1. Supervised contrastive learning with pseudo
labels

To address the class collision problem described in Sec-
tion 2, we leverage supervised contrastive learning [21, 32,
41] combined with the pseudo labels estimated by the ag-
gregator. The goal is to learn discriminative representations
by pulling together the representations corresponding to in-
stances in the same class, and pushing apart those belong
to instances of different classes. For each anchor instance
x selected for contrastive learning, we collect a set Sx be-
lieved to have the same label as x, and a set Dx believed to
have a different label to x. These sets are depicted in the
bottom panel of Figure 2. The supervised contrastive loss
corresponding to x is defined as:

Lsup (x) =
1

|Sx|
∑
xs∈Sx

− log
sim (x, xs)∑

xs∈Sx
sim (x, xs) +

∑
xd∈Dx

sim (x, xd)
.

(2)
In Section 3.2, we explain how to select x, Sx and Dx to

ensure that the selected samples have high-quality pseudo

labels.
A tempting alternative to supervised constrastive learn-

ing is to train the feature extractor on pseudo labels using
standard cross-entropy loss. However, in Section 4.3 we
show that this leads to substantially worse performance in
the downstream MIL classification task due to memoriza-
tion of incorrect pseudo labels.

Algorithm 1 Iterative Self-Paced Supervised Contrastive
Learning (It2SCLR)
Require: Feature extractor f , projection head ψ;
Require: MIL aggregator gϕ, where ϕ is an instance classifier;
Require: Bags {Xb}Bb=1, bag-level labels {Yb}Bb=1;

1: f (0) ← fSSL # Initialize f with SSL-pretrained weights
2: for t = 0 to T do
3: # Extract instance representation
4: hbk ← f (t)(xbk), ∀x

b
k ∈ Xb, ∀b

5: # Group instance embedding into bags
6: Hb ← {hbk}

Kb
k=1, ∀b

7: # Train the MIL aggregator
8: g

(t)
ϕ ← Train with {Hb}Bb=1 and {Yb}Bb=1

9: AUC(t)
val ← bag-level AUC on the validation set

10: # If the bag prediction improves on the validation set

11: if AUC(t)
val ≥ maxt′≤t

{
AUC(t′)

val

}
then

12: # Update instance pseudo labels
13: ŷbk ← 1{ϕ(t)(hb

k
)>η}, ∀x

b
k ∈ Xb, ∀b

14: end if
15: # Optimize feature extractor via Eq.(2)
16: f

(t+1)
ψ ← argminfψLsup(f

(t)
ψ )

17: end for

3.2. Sampling via self-paced learning

A key challenge in It2SCLR is to improve the accu-
racy of instance-level pseudo labels without ground-truth
labels. This is achieved by finetuning the feature extrac-
tor on a carefully-selected subset of instances. We select
the anchor instance x and the corresponding sets Sx and
Dx (defined in Section 3.1 and Figure 2) building upon two
key insights: (1) The negative bags only contain negative
instances. (2) The probabilities used to build the pseudo
labels are indicative of their quality; instances with higher



predicted probabilities usually have more accurate pseudo
labels [36, 37, 60].

Let X−
neg denote all instances within the negative bags.

By definition of MIL, we can safely assume that all in-
stances in X−

neg are negative. In contrast, positive bags con-
tain both positive and negative instances. Let X+

pos and X−
pos

denote the sets of instances in positive bags with positive
and negative pseudo labels respectively. During an ini-
tial warm-up lasting Twarm-up epochs, we sample anchor in-
stances x only from X−

neg to ensure that they are indeed all
negative. For each such instance, Sx is built by sampling
instances from X−

neg, and Dx is built by sampling from X+
pos.

After the warm-up phase, we start sampling anchor in-
stances from X+

pos and X−
pos. To ensure that these instances

have accurate pseudo labels, we only consider the top-r%
instances with the highest confidence in each of these sets
(i.e. the highest probabilities in X+

pos and lowest probabili-
ties in X−

pos), which we call X+
pos(r) and X−

pos(r) respectively,
as illustrated by Appendix Figure 5. The ratio of positive-
to-negative anchors is a fixed hyperparameter p+. For each
anchor x, the same-label set Sx is sampled from X+

pos(r) if
x is positive and from X−

neg ∪ X−
pos(r) if x is negative. The

different-label set Dx is sampled from X−
neg ∪ X−

pos(r) if x is
positive, and from X+

pos(r) if x is negative.
To exploit the improvement of the instance representa-

tions during training, we gradually increase r to include
more instances from positive bags, which can be interpreted
as a self-paced easy-to-hard learning scheme [30, 33, 59].
Let t and T denote the current epoch, and the total number
of epochs respectively. For Twarmup < t ≤ T . we set:

r := r0 + αr (t− Twarm-up) , (3)

where αr = (rT − r0)/(T − Twarm-up), r0 and rT are hy-
perparameters. Details on tuning these hyperparameters are
provided in Appendix A.3. As demonstrated in the right
panel of Figure 1 (see also Appendix B.1), this scheme in-
deed results in an improvement of the pseudo labels (and
hence of the underlying representations).

4. Experiments
We evaluate ItS2CLR on three MIL datasets described

in Section 4.1. In Section 4.2 we show that ItS2CLR con-
sistently outperforms approaches that use CSSL feature-
extraction by a substantial margin on all three datasets for
different choices of aggregators. In Section 4.3 we show
that ItS2CLR outperforms alternative finetuning approaches
based on cross-entropy loss minimization and end-to-end
training across a wide range of settings where the preva-
lence of positive instances and bag size vary. In Section 4.4,
we show that ItS2CLR is able to improve features obtained
from a variety of pretraining schemes and network architec-
tures.

4.1. Datasets

We evaluate the proposed framework on three cancer di-
agnosis tasks. When training our models, we select the
model with the highest bag-level performance on the vali-
dation set and report the performance on a held-out test set.
More information about the datasets, experimental setup,
and implementation is provided in Appendix A.

Camelyon16 [5] is a popular benchmark for MIL [35,
44, 53] where the goal is to detect breast-cancer metasta-
sis in lymph node sections. It consists of 400 whole-slide
histopathology images. Each whole slide image (WSI) cor-
responds to a bag with a binary label indicating the pres-
ence of cancer. Each WSI is divided into an average of 625
tiles at 5x magnification, which correspond to individual in-
stances. The dataset also contains pixel-wise annotations
indicating the presence of cancer, which can be used to de-
rive ground-truth instance-level labels.

TCGA-LUAD is a dataset from The Cancer Genome
Atlas (TCGA) [1], a landmark cancer genomics program,
where the associated task is to detect genetic mutations in
cancer cells. We build models to detect four mutations -
EGFR, KRAS, STK11, and TP53, which are important to
determine treatment options for LUAD [16, 23]. The data
contains 800 labeled tumorous frozen WSIs from lung ade-
nocarcinoma (LUAD). Each WSI is divided into an average
of 633 tiles at 10x magnification corresponding to unlabeled
instances.

The Breast Ultrasound Dataset contains 28,914 B-
mode breast ultrasound exams [45]. The associated task is
to detect breast cancer. Each exam contains between 4-70
images (18.8 images per exam on average) corresponding
to individual instances, but only a bag-level label indicating
the presence of cancer is available per exam. Additionally,
a subset of images is annotated, which makes it possible
to also evaluate instance-level performance. This dataset is
imbalanced at the bag level: only 5,593 of 28,914 exams
contain cancer.

4.2. Comparison with contrastive self-supervised
learning

In this section, we compare the performance of ItS2CLR
to a baseline that performs feature-extraction via the CSSL
method SimCLR [10]. This approach has achieved state-
of-the-art performance on multiple WSI datasets [35]. To
ensure a fair comparison, we initialize the feature extrac-
tor in ItS2CLR also using SimCLR. Table 2 shows that
ItS2CLR clearly outperforms the SimCLR baseline on all
three datasets. The performance improvement is particu-
larly significant in Camelyon16 where it achieves a bag-
level AUC of 0.943, outperforming the baseline by an ab-
solute margin of 8.87%. ItS2CLR also outperforms an im-
proved baseline reported by Li et al. [35] with an AUC of
0.917, which uses higher resolution tiles than in our experi-



Table 2. Bag-level AUC of ItS2CLR and a two-stage baseline using a SimCLR feature extractor and a MIL aggregator. ItS2CLR outper-
forms the baseline on all three datasets.

AUC (×10−2)
Camelyon16 Breast Ultrasound

TCGA-LUAD mutation
EGFR KRAS STK11 TP53

SimCLR + Aggregator 85.38 80.79 67.51 68.79 70.40 62.15
ItS2CLR 94.25 93.93 72.30 71.06 75.08 65.61

Table 3. Bag-level AUC on Camelyon16 for ItS2CLR and different baselines for five aggregators. We retrain each aggregator 5 times to
report the mean and standard deviation (reported as a subscript). All feature extractors are initialized using SimCLR. Ground-truth and
cross-entropy (CE) finetuning use ground-truth instance-level labels and pseudo labels to optimize the feature extractor respectively. We
also include versions of ItS2CLR without iterative updates (w/o iter.), self-paced learning (w/o SPL) and both (w/o both), and a version of
CE finetuning without iterative updates (w/o iter). See Appendix A.5 for a detailed description of the ablated models.

AUC (×10−2) SimCLR
(CSSL)

Ground-truth
finetuning*

CE finetuning ItS2CLR
w/o iter. iter. w/o both w/o iter. w/o SPL Full

Max pooling 86.691.09 98.250.01 85.480.24 88.050.77 85.380.31 91.960.31 90.850.76 94.690.07
Top-k pooling [46] 85.391.20 98.390.05 85.960.45 87.260.42 85.460.21 91.730.42 91.690.28 95.070.09
Attention-MIL [29] 79.493.20 99.060.02 88.500.54 90.460.64 85.210.74 93.130.22 86.203.25 94.450.05
DS-MIL [35] 85.381.32 98.650.08 87.010.82 90.380.67 85.080.38 91.690.54 88.290.99 94.250.07
Transformer [9] 87.250.59 98.850.25 89.020.54 92.131.07 87.130.71 93.520.49 92.120.68 95.740.27

ments (both 20x and 5x, as opposed to only 5x).
To perform a more exhaustive comparison of the fea-

tures learned by SimCLR and ItS2CLR, we compare them
in combination with several different popular MIL aggre-
gators.2: max pooling, top-k pooling [46], attention-MIL
pooling [29], DS-MIL pooling [35], and transformer [9]
(see Appendix C for a detailed description). Table 3 shows
that the ItS2CLR features outperform the SimCLR features
by a large margin for all aggregators, and are substantially
more stable (the standard deviation of the AUC over multi-
ple trials is lower).

We also evaluate instance-level accuracy, which can be
used to interpret the bag-level prediction (for instance, by
revealing tumor locations). In Table 4, we report the
instance-level AUC, F1 score, and Dice score of both
ItS2CLR and the SimCLR-based baseline on Camelyon16.
ItS2CLR again exhibits stronger performance. Figure 3
shows an example of instance-level predictions in the form
of a tumor localization map.

4.3. Comparison with alternative approaches

In Tables 3, 4 and 5, we compare ItS2CLR with the ap-
proaches described below. Table 6 reports additional com-
parisons at different witness rates (the fraction of positive
instances in positive bags), created synthetically by modi-
fying the ratio between negative and positive instances in
Camelyon16.

2To be clear, the ItS2CLR features are learned using the DS-MIL ag-
gregator, as described in Section 3, and then frozen before combining them
with the different aggregators.

Finetuning with ground-truth instance labels pro-
vides an upper bound on the performance that can be
achieved through feature improvement. ItS2CLR does not
reach this gold standard, but substantially closes the gap.

Cross-entropy finetuning with pseudo labels, which
we refer to as CE finetuning, consistently underperforms
ItS2CLR when combined with different aggregators, except
at high witness rates. We conjecture that this is due to the
sensitivity of the cross-entropy loss to incorrect pseudo la-
bels. We experiment with two settings: CE finetuning with-
out and with iterative updating. In CE finetuning without
iterative updating, we use the same initial pseudo labels
and pretrained representations as our ItS2CLR framework.
Concretely, we label all the instances in negative bags as
negative, and the instances in positive bags using the in-
stance prediction obtained from the initially trained MIL
aggregator. When finetuning the feature extractor, pseudo
labels are kept fixed. In CE finetuning with iterative updat-
ing, the pseudo labels are updated every few epochs.

Ablated versions of ItS2CLR where we do not apply
iterative updates of the pseudo labels (w/o iter.), or our
self-paced learning scheme (w/o SPL) or both (w/o both)
achieve substantially worse performance than the full ap-
proach. This indicates that both of these ingredients are
critical in learning discriminative features.

End-to-end training is often computationally infeasible
in medical applications. We compare ItS2CLR to end-to-
end models on a downsampled version of Camelyon16 (see
Appendix A.4) and on the breast ultrasound dataset. For a
fair comparison, all end-to-end models use the same CSSL-



Table 4. Comparison of instance-level performance between the models in Table 3. All models use the DS-MIL aggregator. ItS2CLR
achieves the best localization performance. Dice score is computed from a post-processed probability estimate described in Appendix B.2,
which also includes further details and results for other aggregators.

(×10−2) SimCLR Ground-truth
finetuning

CE finetuning ItS2CLR
(CSSL) w/o iter. iter. w/o both w/o iter. w/o SPL Full

AUC 94.01 97.94 95.69 96.06 95.13 95.90 96.12 96.72
F1-score 84.49 88.01 86.94 86.93 86.74 87.45 87.95 87.47
AUPRC 86.57 86.13 89.26 89.39 88.30 89.51 90.00 91.12
Dice (*) 31.79 62.17 49.11 49.41 43.74 51.70 53.03 57.86
IoU 39.53 50.24 44.98 44.88 41.37 44.56 45.41 48.27

SimCLR + DS-MIL ItS2CLR

Dice 0.713

Instance ground truth

Dice 0.905

Figure 3. Tumor localization in a histopathology slide from the Camelyon16 test set. Instance-level predictions are generated by the
instance-level classifier of the DS-MIL aggregator based on different instance representations. Yellow indicates higher probability of being
cancerous. Transparent tiles are with probabilities less than 0.2. Appendix B.4 shows additional examples.

pretrained weights and aggregator as used in ItS2CLR. Ta-
ble 5 shows that ItS2CLR achieves better instance- and
bag-level performance than end-to-end training. In Ap-
pendix B.3 we show that end-to-end models suffer from
overfitting.

4.4. Improving different pretrained representations

In this section, we show that ItS2CLR is capable of
improving representations learned by different pretrain-
ing methods: supervised training on ImageNet and two
non-contrastive SSL methods, BYOL [25] and DINO [8].
DINO is by default based on the ViT-S/16 architecture [20],
whereas the other methods are based on ResNet-18.

Table 7a shows the result of initializing ItS2CLR with
pretrained weights obtained from these different models
(as well as from SimCLR). The non-contrastive SSL meth-
ods fail to learn better representations than SimCLR. Non-
contrastive SSL methods do not use the negative samples,
Wang et al. [48] report that this can make the represen-
tations under-clustering and result in different object cat-
egories overlapping in the representation space. The sig-
nificant improvement of ItS2CLR on top of different pre-
training methods demonstrates that the proposed framework
is more effective in learning discriminative representations

than altering SSL pretraining methods.
As shown in Table 7b, different initializations achieve

varying degrees of pseudo label accuracy, but ItS2CLR im-
proves the performance of all of them. This further demon-
strates the robustness of the proposed framework.

4.5. Computational complexity

ItS2CLR only requires a small increment in computa-
tional time, with respect to existing approaches. For Came-
lyon16, it takes 600 epochs (approximately 90 hours) to
train SimCLR. It only takes 50 extra epochs (approximately
10 hours) to finetune with ItS2CLR, which is only 1/10 of
the pretraining time. Updating the pseudo labels is also effi-
cient: it only takes around 10 minutes to update the instance
features and training the MIL aggregator. These updates oc-
cur every 5 epochs. More training details are provided in
Appendix A.2.

5. Related work
Self-supervised learning Contrastive learning methods

have become popular in unsupervised representation learn-
ing, achieving state-of-the-art self-supervised learning per-
formance for natural images [7, 8, 10, 25, 27, 51]. These
methods have also shown promising results in medical



Table 5. Comparison to models trained end-to-end, initialized with the same pretrained weights as ItS2CLR, and use the same aggregator.
ItS2CLR achieves better instance- and bag-level performance.

Camelyon16 (downsampled synthetic) Breast Ultrasound

Bag AUC Instance
AUC

Instance
F-score Bag AUC Bag

AUPRC
Instance

AUC
Instance
AUPRC

End-to-end 66.71 78.32 55.71 91.26 58.73 82.11 31.31
ItS2CLR 88.65 95.58 87.01 93.93 70.30 88.63 43.71

Table 6. Bag-level AUC on Camelyon16 across different witness
rates (WR): the fraction of positive instances in positive bags. All
methods use DS-MIL aggregator for a fair comparison. When the
WR is low, ItS2CLR outperforms CE finetuning by a large margin.
As the WR increases, CE finetuning becomes more effective.

Down.
Instances

WR
(%)

SimCLR
(CSSL)

CE finetuning
iterative ItS2CLR Finetuning w.

instance GT

5% Neg. 71.2 94.52 98.55 97.58 99.11
10% Neg. 45.0 93.70 97.88 96.15 99.18
40% Neg. 23.5 90.38 93.32 95.40 97.68
Original 10.9 85.38 90.38 94.25 98.65
50% Pos. 5.8 82.47 86.96 88.52 91.81
33% Pos. 4.1 78.21 80.56 86.02 88.01

Table 7. The effects of finetuning from different initial weights
on Camelyon16. (a) The bag-level prediction performance on test
set; (b) the evaluation on instance-level prediction in training set.

Bag-level
test AUC

ImageNet BYOL SimCLR DINO
(ViT)

Pretrained 0.712 0.704 0.854 0.857
ItS2CLR 0.791 0.764 0.943 0.936

(a)

Training ins.
pred

ImageNet BYOL SimCLR DINO (ViT)
AUC F-score AUC F-score AUC F-score AUC F-score

Initial 0.772 0.314 0.729 0.225 0.934 0.746 0.906 0.716
Finetuned 0.835 0.598 0.804 0.288 0.973 0.783 0.972 0.806

(b)

imaging [4, 14, 31, 35, 58]. Recently, Li et al. [35] ap-
plied SimCLR [10] to extract instance-level features for
WSI MIL tasks and achieved state-of-the-art performance.
However, Arora et al. [2] point out the potential issue of
class collision in contrastive learning, i.e. that some neg-
ative pairs may actually have the same class. Prior works
on alleviating class collision problem include reweighting
the negative and positive terms with class ratio [13], pulling
closer additional similar pairs [21], and avoiding pushing
apart negatives that are inferred to belong to the same class
based on a similarity metric [56]. In contrast, we propose
a framework that leverages information from the bag-level
labels to iteratively resolve the class collision problem.

Multiple instance learning A major part of MIL works
focuses on improving the MIL aggregator. Traditionally,
non-learnable pooling operators such as mean-pooling and

max-pooling were commonly used in MIL [22, 42]. More
recent methods parameterize the aggregator using neural
networks that employ attention mechanisms [9, 29, 35, 44].
This research direction is complementary to our proposed
approach, which focuses on obtaining better instance rep-
resentations, and can be combined with different types of
aggregators (see Section 4.2).

Self-paced Learning The core idea of self-paced learn-
ing is the “easy-to-hard” training scheme, which has been
used in semi-supervised learning [52], learning with noisy
label, unsupervised clustering [26], domain adaptation [12,
24, 54, 55]. In this work, we apply self-paced learning to
instance representation learning in MIL tasks.

6. Conclusion

In this work, we investigate how to improve feature ex-
traction in multiple-instance learning models. We identify
a limitation of contrastive self-supervised learning: class
collision hinders it from learning discriminative features in
class-imbalanced MIL problems. To address this, we pro-
pose a novel framework that iteratively refines the features
with pseudo labels estimated by the aggregator. Our method
outperforms the existing state-of-the-art MIL methods on
three medical datasets, and can be combined with different
aggregators and pretrained feature extractors.

The proposed method does not outperform a cross-
entropy-based baseline at very high witness rates, suggest-
ing that it is mostly suitable for low witness rates sce-
narios (however, it is worth noting that this is the regime
more commonly encountered in medical applications such
as cancer diagnosis). In addition, there is a performance
gap between our method and finetuning using instance-level
ground truth, suggesting further room for improvement.

Acknowledgments The authors gratefully acknowledge
NSF grants OAC-2103936 (K.L.), DMS-2009752 (C.F.G.,
S.L.), NRT-HDR-1922658 (K.L., S.L., Y.S., W.Z.), the
NYU Langone Health Predictive Analytics Unit (N.R.,
W.Z.), the Alzheimer’s Association grant AARG-NTF-
21-848627 (S.L.), the NIH grant P41EB017183, and
the Gordon and Betty Moore Foundation (9683) (K.G.,
Y.S.).



References
[1] The cancer genome atlas program. https://www.

cancer.gov/tcga, 2019. 5
[2] Sanjeev Arora, Hrishikesh Khandeparkar, Mikhail Khodak,

Orestis Plevrakis, and Nikunj Saunshi. A theoretical analysis
of contrastive unsupervised representation learning. arXiv
preprint arXiv:1902.09229, 2019. 3, 8

[3] Jordan T Ash, Surbhi Goel, Akshay Krishnamurthy, and
Dipendra Misra. Investigating the role of negatives
in contrastive representation learning. arXiv preprint
arXiv:2106.09943, 2021. 3

[4] Shekoofeh Azizi, Basil Mustafa, Fiona Ryan, Zachary
Beaver, Jan Freyberg, Jonathan Deaton, Aaron Loh, Alan
Karthikesalingam, Simon Kornblith, Ting Chen, et al. Big
self-supervised models advance medical image classifica-
tion. In Proceedings of the IEEE/CVF Conference on Com-
puter Vision and Pattern Recognition, 2021. 8

[5] Babak Ehteshami Bejnordi, Mitko Veta, Paul Johannes
Van Diest, Bram Van Ginneken, Nico Karssemeijer, Geert
Litjens, Jeroen AWM Van Der Laak, Meyke Hermsen,
Quirine F Manson, Maschenka Balkenhol, et al. Diagnos-
tic assessment of deep learning algorithms for detection of
lymph node metastases in women with breast cancer. Jama,
318(22):2199–2210, 2017. 1, 2, 4, 5

[6] Gabriele Campanella, Matthew G Hanna, Luke Geneslaw,
Allen Miraflor, Vitor Werneck Krauss Silva, Klaus J Busam,
Edi Brogi, Victor E Reuter, David S Klimstra, and Thomas J
Fuchs. Clinical-grade computational pathology using weakly
supervised deep learning on whole slide images. Nature
medicine, 25(8):1301–1309, 2019. 1

[7] Mathilde Caron, Ishan Misra, Julien Mairal, Priya Goyal, Pi-
otr Bojanowski, and Armand Joulin. Unsupervised learning
of visual features by contrasting cluster assignments. arXiv
preprint arXiv:2006.09882, 2020. 7

[8] Mathilde Caron, Hugo Touvron, Ishan Misra, Hervé Jégou,
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Appendix for “Multiple Instance Learning via Iterative Self-Paced Supervised
Contrastive Learning”

The appendix is organized as follows:

• In Appendix A, we include additional descriptions of the datasets (Appendix A.1), implementation details (Appendix A.2)
and instructions on how to transform the Camelyon16 dataset for the additional experiments (Appendix A.4). In Ap-
pendix A.3, we describe the hyperparameter selection process and report results from an ablation study on the Camelyon16
dataset to evaluate the sensitivity of our approach to the choice of hyperparameters. In Appendix A.5, we provide a detailed
description of the ablated versions of ItS2CLR and CE finetuning from Section 4.3.

• In Appendix B, we include additional results. In Appendix B.1, we report pseudo label accuracy measured by additional
metrics between ItS2CLR and the ablated versions. In Appendix B.2, we show additional results for instance-level per-
formance. In Appendix B.3, we report additional comparisons with end-to-end methods. In Appendix B.4, we provide
additional examples of tumor localization maps.

• In Appendix C, we provide the formulation and implementation details for the different MIL aggregators used in our study.

A. Experiments
A.1. Dataset

Camelyon16 Camelyon16 is a public dataset for detection of metastasis in breast cancer. This dataset consists of 271
training and 129 test whole slide images (WSI). All the images (including both training and test) are divided into 0.25 million
patches at 5× magnification. On average, each slide contains approximately 625 patches 5× magnification respectively. Each
WSI is paired with pixel-level annotations indicating the position of tumors (if any are present). We ignore the pixel-level
annotations during training and consider only slide-level labels (i.e. the slide is considered positive if it contains any annotated
tumor regions). As a result, positive bags contain patches with tumors and patches with healthy tissue. Negative bags contain
only patches with healthy tissue. The ratio between positive and negative patches in this dataset is highly imbalanced. Only
a small fraction of patches in the positive slides contain tumors (less than 10%).

TCGA-LUAD TCGA for Lung Adenocarcinoma (LUAD) is a subset of TCGA (The Cancer Genome Atlas), a landmark
cancer genomics program. It consists of 800 tumorous frozen whole-slide histopathology images and the corresponding
genetic mutation status. Each WSI is paired with a single binary label indicating whether each gene is mutated or wild type.
In this experiment, we build MIL models to detect four mutations - EGFR, KRAS, STK11, and TP53, which are sensitizing
mutations that can impact treatment options in LUAD [16, 23]. We split the data set randomly into training, validation and
test sets so that each patient will appear in only one of the subsets. After splitting the data, 477 images are in the training set,
96 images are in the validation set, and 227 images are in the test set.

Breast Ultrasound dataset The Breast Ultrasound Dataset includes 28,914 ultrasound exams [45]. An exam is labeled as
cancer-positive if there is a pathology-confirmed malignant finding associated with this exam. In this dataset, 5,593 exams
are cancer-positive. On average, each exam contains approximately 18 images. Patients in the dataset were randomly divided
into a training set (60%), a validation set (10%), and test set (30%). Each patient was included in only one of the three sets.
We show 5 example breast ultrasound images in Figure 4.

A.2. Implementation Details

All experiments were conducted on NVIDIA RTX8000 GPUs and NVIDIA V100 GPUs. For all models, we perform
model selection during training based on bag-level AUC evaluated on the validation set.

Camelyon16 We follow the same preprocessing and pretraining steps as [35]. To preprocess the slides, we cropped the
slides into tiles at 5x magnification, filtered out tiles that do not contain enough tissues (average saturation < 30), and resized
the images to a resolution of 224 × 224 pixels. Resizing was performed using the Pillow package [15] with default settings
(nearest neighbor sampling).

We pretrain the feature extractor, ResNet18 [28], with SimCLR [10] for a maximum of 600 epochs, at which we notice that
the training loss converges. Each patch is represented by a 512-dimensional vector. To evaluate the learned representation



Figure 4. Example breast ultrasound images. The first two images contain a benign lesion. The second and third contain a malignant
lesion. In all ultrasound images, the center object of the circular shape corresponds to the lesion of interest. The images are from different
exams.

on the down-stream task, we train a MIL aggregator based on instances representations and evaluate the bag-level prediction
every few epochs. We observe that the bag-level AUC on the downstream task in the validation set does not improve when
pretraining for a longer period. We set the batch size to 512 and temperature to 0.5. We use SGD with the learning rate of
0.03, weight decay of 0.0001, and cosine annealing scheduler.

During finetuning the feature extractor with Its2CLR, we finetune the feature extractor for a maximum of 50 epochs. We
choose the model that achieves the highest bag-level AUC on the downstream task in the validation set. The batch size is set
to 512, and the learning rate is set to 10−2. At the feature extractor training stage, we apply random data augmentation to
each instance, including:

• random (p = 0.8) color jittering: brightness, contrast, and saturation factors are uniformly sampled from [0.2, 1.8], hue
factor is uniformly sampled from [−0.2, 0.2].,

• random grayscale (p = 0.2),

• random Gaussian blur with a kernel size of 0.06 times the size of an image,

• random horizontal/vertical flipping with 0.5 probability.

When training the DS-MIL aggregator, we follow the settings in [35]. We use the Adam optimizer during training. Since
each bag may contain a different number of instances, we follow [35] and set the batch size to just one bag. We train each
model for a maximum of 350 epochs. We use an initial learning rate of 2 × 10−4, and use the StepLR scheduler to reduce
the learning rate by 0.5 every 75 epochs. Details on the hyperparameters used for training the aggregator are in Appendix C.

TCGA-LUAD To preprocess the slides, we cropped them into tiles at 10x magnification, filtered out the background tiles
that do not contain enough tissues (when the average saturation is less than 30), and resized the images into the resolution of
224 × 224 pixels. Resizing was performed using the Pillow package [15] with nearest neighbor sampling. These tiles were
color-normalized with the Vahadane method [47].

To train the feature extractor, we perform the same process as for Camelyon16.
We also use DS-MIL [35] as the aggregator. When training the aggregator, we resample the ratio of positive and negative

bags to keep the class ratio balanced. We train the aggregator for a maximum of 100 epochs using the Adam optimizer with
the learning rate set to 2× 10−4 and divide the learning rate by 2 every 50 epochs.

Breast Ultrasound We follow the same preprocessing steps as [45]. All images were resized to 224 × 224 pixels using
bilinear interpolation. We used ResNet18 [28] as the feature extractor and pretrained it using SimCLR [10] for 100 epochs,
at which we notice that the training loss converges. We adopt the same pretraining and model selection approach as for
Camelyon16. We used the Instance Attention-MIL as an aggregator [29]. Given a bag of images x1, ..., xk and a feature
extractor f , the aggregator first computes instance-level predictions ŷi for each image xi. It then calculates an attention score
αi ∈ [0, 1] for each image xi using its feature vectors f(xi). Lastly, the bag-level prediction is computed as the average
instance prediction weighted by the attention score ŷ =

∑k
i αiŷi. To optimize the aggregator, we trained it using Adam with

a learning rate set to 10−3 for a maximum of 350 epochs. The model is selected according to the best bag-level AUC on the
validation set.
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Figure 5. Illustration of our partitioning of the instances from positive bags in Section 3.2 based on the predicted probability of the instance
classifier in ItS2CLR. Top: X+

pos and X−
pos are partitioned according to the thresholding parameter η. Bottom: The distribution of instance

scores for instances with negative pseudo labels (left) and negative pseudo labels (right). A threshold r is symmetrically applied on both
distributions so that the top r% instances with the lowest and highest scores are treated as confidently negative or positive, respectively.
We use X−

pos(r) and X+
pos(r) to denote the set of instances that are deemed truly negative and positive respectively. During training, as the

accuracy of the pseudo labels improves, we can increase r to incorporate more samples in these sets.

A.3. Hyperparameters for Training the Feature Extractor in ItS2CLR

Hyperparameter tuning The hyperparameters of the proposed method include: the learning rate lr ∈ [1×10−5, 1×10−3],
the initial threshold used for binarization of the prediction to produce pseudo labels η ∈ [0.1, 0.9], the proportion of sampled
positive anchors p+ ∈ [0.05, 0.5], the initial value r0 ∈ [0.01, 0.7] and the terminal value rT ∈ [0.2, 0.8] of the percentage
of selected instances r in the self-paced sampling scheme. For Camelyon16, we obtain the highest bag-level validation AUC
using the following hyperparameters: η = 0.3, p+ = 0.2, r0 = 0.2 and rT = 0.8. We use the feature extractor trained under
these settings in Tables 2, 3 and 4. The complete list of hyperparameters in our experiments is reported in Table 8.

Table 8. ItS2CLR hyperparameters used in our experiments.

Camelyon16 Breast TCGA-LUAD mutation
Ultrasound EGFR KRAS STK11 TP53

η 0.3 0.3 0.3 0.5 0.3 0.5
r0 0.2 0.2 0.2 0.2 0.2 0.2
rT 0.8 0.8 0.8 0.8 0.8 0.8
p+ 0.2 0.2 0.5 0.2 0.2 0.2

Sensitivity analysis We conduct a sensitivity analysis for each hyperparameter on Camelyon 16, and observe a robust
performance over a range of hyperparameter values.
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Figure 6. Sensitivity analysis for the threshold η and the ratio of positive pseudo labels used as anchor images p+ on the Camelyon16
dataset.
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Figure 7. Sensitivity analysis for the hyperparameters r0 and rT of the proposed self-paced learning scheme on Camelyon16.

• Threshold η: The choice of η influences the instance-level pseudo labels. As shown in Figure 5, the outputs of the instance-
level classifier are mostly close to 0 or 1, so the pseudo labels do not dramatically vary for a wide range of η. We analyze
the importance of η. The left panel of Figure 6 shows that ItS2CLR is quite robust to the value of η, except for extreme
values. If η is too small (e.g. 0.1), it can introduce a significant number of false positives. If η is too large (e.g. 0.8), it
can mistakenly exclude some useful positive samples, causing a drop in the performance. In the main paper, since negative
instances are more prevalent than positive instances, a threshold of 0.3 (less than 0.5) can increase the recall for the positive
instances.

• Sampling ratio of anchor instance over pseudo labels: We use p+ to denote the percentage of positive anchor instances
sampled during the contrastive learning stage. The right panel of Figure 6 shows that it is desirable to choose a relatively
small p+. Since there are far fewer positive instances than negative instance, keeping the ratio of positive anchors low can
avoid repetitively sampling from a limited number of positive instances. Also, since the instance pseudo labels X−

neg must
be correct by the definition of negative bags, the negative instance pseudo labels are more accurate than the positive ones.

• The initial rate r0 and final rate rT for the self-paced sampling scheduler: Figure 7 shows that ItS2CLR is also generally
robust to the values of r0 and rT . However, an extremely large initial rate r0 (high confidence in the pseudo labels) may
introduce more samples with incorrect labels during training and hurt the performance. Conversely, extremely small rT
(low confidence in the pseudo labels) may hinder the model from using more data, also hurting performance.

• Sampling during warm-up: During the warmup phase, we sample anchor instances from X−
neg. An alternative choice can be

sampling the anchor instance from X+
pos and the corresponding set Dx from X−

neg. However, our experiments show that the
resulting bag-level AUC drops to 90.91 under this setting, which is significantly lower than 94.25 by the proposed method.
This comparison demonstrates the importance of using clean negative instances as anchor images during warmup.



A.4. Experiments on Synthetic Versions of Camelyon16

Simulation of witness rates (WR)
Since the ground truth instance-level labels are available for Camelyon16, we can conduct controlled experiments on

synthetic versions of the dataset. We manipulate the prevalence of positive instances in the bag (the witness rate) and study
its impact on the performance of the proposed approach and the baselines, as reported in Section 2. To increase the witness
rate, we randomly drop the negative instances at a fixed ratio in each bag; to reduce the witness rate, we randomly drop the
positive instances at a fixed ratio in each bag. The percentage of retained instances and the resulting witness rates are reported
in Table 6.

Downsampled version of Camelyon16 for end-to-end training
In order to enable end-to-end training, we downsample each bag in Camelyon16 to around 500 instances so that it fits in

the memory of a GPU. To achieve this, we divide large bags which have more than 500 instances into smaller bags.
For negative bags, we randomly partition the instances within the original bag into same-sized sub-bags with around 500

instances.
For positive bags, we randomly partition the positive instances within the original bag into the desired number of sub-

bags. We adjust the number of sub-bags so that it cannot be less than the number of positive instances. We then combine the
positive instances and the negative instances to form sub-bags. This ensures that the bag-level label is correct and the witness
rate for each positive sub-bag remains similar to the original bag.

A.5. Description of the ablation study

Details for CE finetuning with/without iterative updating

• CE without iterative updating: we use the same initial pseudo labels and pretrained representations as our ItS2CLR frame-
work. Concretely, we label all the instances in negative bags as negative. We label the instances in positive bags using the
instance prediction obtained from the aggregator. When finetuning the aggregator, the pseudo labels are kept fixed.

• CE + iterative updating: based on CE with iterative updating, the pseudo labels are updated every few epochs, which is in
turn used to guide the finetuning of the feature extractors.

Details for ItS2CLR with/without SPL

• ItS2CLR without iterative updating: we keep everything the same as the full Its2CLR procedure (including the SPL strat-
egy), but we do not apply steps 7, 8 and 9 in Algorithm 1. As a result, the pseudo labels are fixed to the initial set of pseudo
labels.

• ItS2CLR without SPL: we keep everything the same as the full Its2CLR procedure (including iterative updating), but modify
step 10 in Algorithm 1. We do not utilize the pseudo label to train the model in a self-paced learning way as in Section 3.2.
We utilize all the pseudo-labeled data from the beginning of the finetuning.

B. Additional Results
B.1. Learning Curves

F1-Score plot corresponding to Figure 1: In Figure 8, we show the max F1 score curve corresponding to the right side of
Figure 1. This plot confirms the importance of self-paced learning and iterative updating in ItS2CLR.

Instance-level AUC during training comparison with cross-entropy finetuning: Figure 9 compares ItS2CLR with an al-
ternative approach that finetunes the feature extractor using cross-entropy (CE) loss on the Camelyon16 dataset. Without
iterative updating, CE finetuning rapidly overfits to the incorrect labels. Iterative updating prevents this to some extent but
does not match the performance of ItS2CLR, which produces increasingly accurate pseudo labels as the iterations proceed.

B.2. Instance-level Evaluation

In order to evaluate instance-level performance, we report values of classification metrics including AUC, F1-score,
AUPRC and Dice score for localization.

The Dice score is defined as follows:

Dice =
2
∑
i yipi∑

i yi +
∑
i pi

, (4)
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Figure 8. Comparison of max F1 score on instance pseudo labels. ItS2CLR updates the features iteratively based on a subset of the pseudo
labels that are selected according to the self-paced learning (SPL) strategy. On Camelyon16, this gradually improves the accuracy of the
pseudo labels in terms of instance-level max F1 score. Both the iterative updates and SPL are important to achieve this.
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Figure 9. Comparison of instance-level AUC during training between ItS2CLR and an alternative approach that finetunes the feature
extractor using cross-entropy (CE) loss on the Camelyon16 dataset. Iterative updating improves performance for CE finetuning, but
ItS2CLR produces more accurate pseudo labels.

where yi and pi are the ground truth and predicted probability for the ith sample. The predicted probability is computed from
the output of the MIL model si via linear scaling:

pi = σ (asi + b) , (5)

where a ∈ [−5, 5] and b ∈ [0.1, 10] are chosen to maximize the Dice score on the validation set.
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Figure 10. The precision and recall of pseudo labels from the selected instances during fine-tuning. The proposed ItS2CLR approach
achieves high precision in generating pseudo labels from selected instances during fine-tuning through self-paced sampling. Since instance-
level AUC improves during training (as shown in Fig 1), gradually including more instance candidates leads to higher recall while main-
taining significant precision.

Table 9. Comparison of instance-level performance for the models in Table 3, using a max pooling aggregator.

(×10−2) SimCLR Ground-truth
finetuning

CE finetuning ItS2CLR
(CSSL) w/o iter. iter. w/o both w/o iter. w/o SPL Full

AUC 91.53 97.58 93.17 94.48 92.69 94.55 94.43 96.25
F1-score 78.45 88.24 85.26 85.83 86.77 86.05 87.52 86.75
AUPRC 79.94 85.50 85.79 86.73 85.50 84.54 86.80 89.99
Dice 31.21 63.01 43.90 44.76 46.57 55.30 52.55 57.82

Table 10. Comparison of instance-level performance for the models in Table 3, using a linear classifier trained on the frozen features
produced by each model. In addition, we produce bag-level predictions using the maximum output of the linear classifier for each bag.

(×10−2) SimCLR Ground-truth
finetuning

CE finetuning ItS2CLR
Instance-level (CSSL) w/o iter. iter. w/o both w/o iter. w/o SPL Full

AUC 96.13 97.56 96.94 96.88 96.64 97.25 96.92 97.27
F1-score 85.29 87.69 87.34 86.94 86.00 87.07 87.6 87.92
AUPRC 82.65 85.94 79.96 78.02 78.17 84.56 77.90 82.09
Dice 49.56 61.39 55.40 54.66 51.85 54.87 55.11 60.13

Bag-level (max-pooling)

AUC 86.25 97.37 87.53 90.54 89.97 93.09 92.81 97.47

Max pooling aggregator: In Table 4, we show that our model achieves better weakly supervised localization performance
compared to other methods when DS-MIL is used as the aggregator. In Table 9, we show that the same conclusion holds for
an aggregator based on max-pooling.

Linear evaluation: In Table 10, we report results obtained by training a logistic regression model using the features
obtained from the same approaches in Table 4, following a standard linear evaluation pipeline in representation learning [10].
ItS2CLR again achieves the best instance-level performance. We also produce bag-level predictions using the maximum
output of the linear classifier for each bag, which again showcases that better instance-level performance results in superior
bag-level classification.
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Figure 11. Comparison between end-to-end training and two-stage training on the downsampled version of the Camelyon16 dataset. End-
to-end models overfit rapidly. Note that the unit of the training iterations here is 1k.

Table 11. Results on the downsampled version of the Camelyon16 dataset.

End-to-end
(scratch)

End-to-end
(SimCLR)

SimCLR +
DS-MIL ItS2CLR

Bag AUC 64.52 66.71 80.96 88.65
Instance AUC 78.32 81.29 93.94 95.58

Instance F-score 51.02 55.71 85.93 87.01

Table 12. Results on the Breast Ultrasound dataset.

SimCLR + Aggregator End-to-end MIL ItS2CLR

Bag AUC 80.79 91.26 93.93
Bag AUPRC 34.63 58.73 70.30
Instance AUC 62.83 82.11 88.63
Instance AUPRC 10.58 31.31 43.71

B.3. Comparison with End-to-end Training

In this section, we provide additional results to complement Table 5, where ItS2CLR is compared to end-to-end models.
The end-to-end training is conducted with the same aggregators for each dataset as described in Section 4 and Appendix A.2.

Camelyon16 Figure 11 shows that an end-to-end model trained on the downsampled version of Camelyon16 described in
Section A.4 rapidly overfits when trained from scratch and from SimCLR-pretrained weights. The two-stage model, on the
other hand, is less prone to overfitting. Table 11 shows that the two-stage learning pipeline outperforms end-to-end training,
and is in turn outperformed by ItS2CLR.

Breast Ultrasound dataset Table 12 shows that end-to-end training outperforms the SimCLR+Aggregator baseline for
the breast-ultrasound dataset, but is outperformed by ItS2CLR.

B.4. Tumor Localization Maps

Figure 12 provides additional tumor localization maps.
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Figure 12. Additional tumor localization maps for histopathology slides from the Camelyon16 test set. Instance-level predictions are
generated by the instance-level classifier of the DS-MIL trained on extracted instance-level features.

C. MIL Aggregators
C.1. Formulation of MIL Aggregators

In this section, we describe the different MIL aggregators benchmarked in Section 4.2 and Table 3.



Let B denote a collection of sets of feature vectors in Rd. The bags of extracted features in the dataset are denoted by
{Hb}Bb=1 ⊂ B. An aggregator is defined as a function g : B → [0, 1] mapping bags of extracted features to a score in [0, 1].

There exist two main approaches in MIL:

1. The instance-level approach: using a logistic classifier on each instance, then aggregating instance predictions over a
bag (e.g. max-pooling, top k-pooling).

2. The embedding-level approach: aggregating the instance embeddings, then obtaining a bag-level prediction via a bag-
level classifier (e.g. attention-based aggregator, Transformer).

We denote the embeddings of the instances within a bag by H = {hk}Kk=1, where K is the number of instances.
Max-pooling obtains bag-level predictions by taking the maximum of the instance-level predictions produced by a logistic

instance classifier ϕ, that is

gϕ(H) = max
k=1,··· ,K

{ϕ(hk)} . (6)

Top-k pooling [46] produces bag-level prediction using the mean of the top-M ranked instance-level predictions produced
by a logistic instance classifier ϕ, where M is a hyperparameter.

Let topM (ϕ,H) denote the indices of the elements in H for which ϕ produces the highest M scores,

gϕ(H) =
1

M

∑
k∈topM(ϕ,H)

ϕ(hk). (7)

Attention-based MIL [29] aggregates instance embeddings using a sum weighted by attention weights. Then the bag-
level estimation is computed from the aggregated embeddings by a logistic bag-level classifier φ:

gφ(H) = φ

(
K∑
k=1

akhk

)
, (8)

where ak is the attention weight on instance k:

ak =
exp

(
wT tanh(V hTk )

)∑K
j=1 exp

(
wT tanh(V hTj )

) , (9)

where w ∈ Rl×1 and V ∈ Rl×d are learnable parameters and l is the dimension of the hidden layer.
DS-MIL combines instance-level and embedding-level aggregation, we refer to DS-MIL [35] for more details on this

approach.
Transformer [9] proposed an aggregation that uses an L-layer Transformer to process the set of instance features H . The

initial set H(0) is set equal to H . Then it goes through the Transformer as follows:

H ′(l) = MSA
(
H(l−1)

)
+H(l−1))

H(l) = MLP
(
H ′(l−1)

)
+H ′(l−1)

(10)

for l = 1, · · · , L, where MSA is multiple-head self-attention, MLP is a multi-layer perceptron network. Then the processed
vectors H(l) are fed to Attention-based MIL [29] to obtain the bag-level predictions

gφ(H
l) = φ

(
K∑
k=1

akh
l
k

)
. (11)

Here ak is the attention weight on instance k:

ak =
exp

(
wT tanh(V (hlk)

T )
)∑K

j=1 exp
(
wT tanh(V (hlj)

T )
) , (12)

where w ∈ Rp×1 and V ∈ Rp×d are learnable parameters and p is the dimension of the hidden layer.



C.2. Implementation Details

Top-k pooling We select the ratio in Top-k pooling from the set {0.1%, 1%, 3%, 10%, 20%}.
DS-MIL The weight between the two cross-entropy loss functions in DS-MIL is selected from the interval [0.1, 5] based

on the best validation performance.
Attention-based MIL. The hidden dimension of the attention module to compute the attention weights is set equal to the

dimension of the input feature vector (512).
Transformer. We add light-weighted two-layer Transformer blocks to process instance features. We did not observe

improvement in performance with additional blocks.
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