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ABSTRACT

Inland waters can be significant sources of carbon

dioxide (CO2), methane (CH4) and nitrous oxide

(N2O) to the atmosphere. However, considerable

uncertainty remains in regional and global esti-

mates of greenhouse gas (GHG) emissions from

freshwater ecosystems, particularly streams. Con-

trols on GHG production in streams, such as water

chemistry and sediment characteristics, are also

poorly understood. The main objective of this study

was to quantify spatial and temporal variability in

GHG concentrations in 20 streams across a land-

scape with considerable variation in land use and

land cover in New England, USA. Stream water

was consistently supersaturated in CO2, CH4, and

N2O, suggesting that these small streams are sour-

ces of GHGs to the atmosphere in this landscape.

Results show that concentrations of dissolved CO2,

CH4 and N2O differed in their spatial and temporal

patterns and in their relationship to stream chem-

istry. Both bivariate and multivariate analyses re-

vealed a unique combination of predictor variables

for each gas, suggesting variation in the landscape

attributes and in-stream processes that control GHG

concentrations. Although hydrologic conditions did

not explain variation among sites, temporal pat-

terns in GHG concentrations align with seasonal

phenologies in flow and temperature. We devel-

oped a conceptual model based on these data that

describes the spatial variability in GHG production

from streams and that can elucidate the dominant

controls on each gas. Developing an understanding

of the factors controlling GHG dynamics in streams

can help assess and predict how fluvial ecosystems

will respond to changes in climate and land use and

can be used to incorporate emissions from streams

into regional and global GHG emission inventories.
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HIGHLIGHTS

� Stream CO2, CH4 and N2O concentrations differ

in their spatial and temporal patterns.

� N2O concentrations are influenced by water

chemistry and land use.

� Hyporheic conditions are particularly important

in controlling CH4 concentrations.

INTRODUCTION

Freshwater ecosystems can be important sources of

greenhouse gases (GHGs) to the atmosphere due to

their ability to actively process and transform ter-

restrial inputs of organic matter and other solutes

(Cole and others 2007; Battin and others 2009).

Although the terrestrial landscape is generally

considered a carbon (C) sink, with recent estimates

suggesting a net uptake of 3.6 Pg C per year

(Keenan and Williams 2018), streams and rivers

may provide sufficient emissions of GHGs to offset

the terrestrial C sink. Streams are frequently

supersaturated not only in carbon dioxide (CO2),

but also in methane (CH4) (Bastviken and others

2011; Stanley and others 2016) and nitrous oxide

(N2O) (Wilcock and Sorrell 2008; Baulch and oth-

ers 2011; Beaulieu and others 2011; Schade and

others 2016; Audet and others 2017).

Although streams are sources of all three green-

house gases, recent flux estimates are largely fo-

cused only on the outgassing of CO2. One of the

first estimates of outgassing of C from fluvial

ecosystems by Cole and others (2007) was an

admittedly conservative 0.8 Pg C per year. Over the

following decade, this estimate was revised upward

to 1.8 Pg C per year (Raymond and others 2013)

and then again to 3.9 Pg C per year (Drake and

others 2018). Estimates of the total surface area of

rivers and streams globally were also recently in-

creased (Allen and Pavelsky 2018). Collectively,

these new estimates highlight the importance of

incorporating fluxes of GHGs from fluvial ecosys-

tems in global carbon budgets. Although the mag-

nitude of CH4 and N2O emissions is generally lower

than that of CO2, these gases are more effective at

trapping heat (Myhre and others 2013) and thus

aggregating GHG emissions from streams is critical

to understanding the contribution of streams and

rivers to atmospheric fluxes of GHGs.

To improve estimates of GHG emissions from

fluvial ecosystems, it is important to develop a

cohesive understanding of the multiple factors

driving gas production and consumption. Distin-

guishing controls on GHGs is complex given the

interactive nature of C and N cycling and the large

number of biotic and abiotic factors that influence

GHG concentrations. Broadly, CO2 concentrations

are controlled by the tradeoff between respiration

and primary production, and the factors that fuel

these processes (for example, oxygen (O2) and or-

ganic C availability) (Cole and others 2007). Me-

thane concentrations are strongly controlled by

organic matter availability and redox conditions

(Stanley and others 2016), and N2O concentrations

are tightly linked to the factors that influence N

cycling processes [for example, O2, nitrate (NO3
-)

availability] (Burgin and Hamilton 2007; Quick and

others 2019). Various studies have investigated

controls on GHGs in fluvial ecosystems but results

to date are varied and often contradictory. For

example, many studies have observed the expected

relationship between NO3
- and N2O concentra-

tions that have been invoked as evidence for both

nitrification and denitrification controlling N2O

production (Harrison and Matson 2003; Baulch

and others 2011; Beaulieu and others 2011; Schade

and others 2016; Turner and others 2016; Audet

and others 2017). In contrast, controls on CH4

dynamics are more uncertain. In temperate forest

streams organic C availability drives overall gas flux

(that is all three gases), but concentrations of NO3
-

regulate the magnitude of N2O and CH4 produc-

tion, with higher NO3
- concentrations resulting in

lower fluxes of CH4 (Schade and others 2016).

However, no effect of NO3
- on concentrations and

fluxes of CH4 was found in predominantly agri-

cultural streams with relatively high NO3
- con-

centrations (Crawford and Stanley 2016). This

suggests that drivers and inhibitors of CH4 pro-

duction may not be universal across systems,

underscoring the need to untangle the complicated

relationships between C and N cycling processes

and GHG dynamics (Stanley and others 2016).

The objective of our study was to identify drivers

of spatial and temporal variability in dissolved

greenhouse gas concentrations in small temperate

streams that drain watersheds in New Hampshire

and Maine. Twenty study streams were selected

across a land-use gradient to provide a range of

water chemistry, and environmental and physical

conditions. Developing an improved understanding

of greenhouse gas dynamics in fluvial ecosystems

will allow us to better incorporate streams and

rivers into global emissions inventories and into

biogeochemical models of GHG production and

emission.
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METHODS

Study Area

The twenty streams chosen for study came from a

database of streams within the Great Bay water-

shed, in southeastern New Hampshire and south-

western Maine, USA, compiled by the Water

Quality Analysis Lab (WQAL) of the University of

New Hampshire (UNH) (Figure 1). Using previ-

ously collected water quality data, we selected low-

order streams (mean watershed area = 2.82 km2)

along a gradient of NO3 concentrations. The twenty

study streams encompass a wide range of land use

and land cover, allowing us to test controls on the

spatial and temporal heterogeneity of GHGs. Our

study includes sites dominated by forest (up to 99%

cover), wetlands (up to 34% cover), agriculture (up

to 51% cover), or urban development (up to 54%

cover) resulting in a range of concentrations of

dissolved inorganic nitrogen (0.04–1.37 mg N L-1

as NO3
-; 10.9–286 lg L-1 as NH4

+, Table 1).

Water Chemistry and Dissolved Gas
Collection

We collected surface water samples monthly at

each stream for one year. Samples were collected

from the thalweg of each stream during daylight

hours. Water chemistry samples were collected in

acid-washed syringes and field filtered through pre-

combusted glass fiber filters (0.7 lm; Whatman GF/

F) into 60-mL acid-washed HDPE bottles and am-

ber vials and stored in a cooler with ice until being

returned to the laboratory that same day. Samples

were then frozen or refrigerated for subsequent

analysis. Dissolved gas samples were collected in

triplicate at each stream using acid-washed 60-mL

polypropylene syringes fitted with two-way stop-

cocks. Syringes were filled to 30 mL with stream

water, cleared of air bubbles, and emptied and re-

filled to 30 mL underwater (again clearing air

bubbles). Syringes were kept on ice and returned to

the WQAL within eight hours of collection. Hand-

held measurements of dissolved oxygen (DO, per-

cent saturation and concentration in mg L-1),

specific conductance (lS cm-1), pH, and water

temperature (�C) were recorded at the time of

collection using a YSI multiparameter probe (YSI

ProDSS, Yellow Spring, OH).

Water Chemistry Analysis

We analyzed each sample for concentrations of

NO3
-, ammonium (NH4

+), total dissolved nitrogen

(TDN), dissolved organic carbon (DOC), soluble

reactive phosphorus (SRP), dissolved organic mat-

ter (DOM) optical properties, and major cations

(magnesium (Mg2+), calcium (Ca2+), potassium

Figure 1. Map of Study Streams and USGS Gages Located in Southeastern New Hampshire and Southern Maine.
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(K+), and sodium (Na+) and anions [chloride (Cl-),

sulfate (SO4
2-), and acetate (CH3COO-)]. Samples

were analyzed for TDN and DOC using high-tem-

perature catalytic oxidation (Shimadzu TOC-L with

a TNM-1 nitrogen analyzer), for NO3
- and major

anions and cations using ion chromatography with

suppressed conductivity detection (Anions/Cations

Dionex ICS-1000), for NH4
+ using automated col-

orimetry (Unity Scientific SmartChem 200 discrete

analyzer), and for SRP using automated colorime-

try (Seal Analytical AQ2 discrete analyzer). Dis-

solved organic nitrogen (DON) concentrations

were determined from the difference of TDN and

dissolved inorganic nitrogen concentrations

(DIN = NO3
- + NH4

+). UV absorbance was mea-

sured using HPLC with a photo-diode array detec-

tor (Shimadzu SPD-20A) that scanned from 200 to

700 nm in 1-nm intervals. The absorbance at

wavelength of 254 nm was used to determine

specific ultra-violet absorbance (SUVA, L mg-C-

1 m-1) following established methods (Weishaar

and others 2003). Humification index (HIX) was

determined as the ratio between the area under the

435–480 nm emission spectra peak and the sum of

the peak areas between 330–345 and 435–490 nm

(Ohno 2002). Fluorescence index (FI) was deter-

mined as the ratio of 470–520 nm fluorescence

intensities at an excitation of 370 nm and used to

identify sources (allochthonous vs. autochthonous)

of DOM (McKnight and others 2001). Log trans-

formed absorption spectra in the ranges of 275–295

and 350–400 nm were fit nonlinearly to an expo-

nential function to determine spectral slope (S)

(Helms and others 2008). Slope ratio (SR) was cal-

culated as the ratio of slopes for the 275–295 and

350–400 nm ranges. Slope ratio provides insights

into molecular weight and aromaticity of DOM

(Helms and others 2008). Analyses were conducted

at the WQAL at UNH.

Table 1. Stream and Watershed Characteristics Across the 20 Study Sites Over Time.

Mean Minimum Maximum

NO3
- (mg N L-1) 0.51 0.04 1.37

DOC (mg C L-1) 6.68 1.68 16.30

TDN (mg N L-1) 0.79 0.08 1.97

NH4
+ (lg N L-1) 44 11 286

DON (mg N L-1) 0.24 0.00 0.51

Cl- (mg Cl L-1) 91.41 3.36 224.3

SO4
2- (mg S L-1) 2.71 0.66 4.42

Acetate (mg L-1) 0.12 0.07 0.18

PO4
3- (lg P L-1) 15 4 125

Na+ (mg Na L-1) 55.07 2.12 146.3

K+ (mg K L-1) 2.81 0.17 8.85

Mg2+ (mg Mg L-1) 4.13 0.026 8.02

Ca2+ (mg Ca L-1) 18.65 1.39 45.40

pH 6.7 4.9 7.4

Specific conductance (ls cm-1) 395.7 19.2 930.8

Dissolved O2 (% saturation) 85.0 65.0 96.6

Temperature (�C) 8.89 7.36 10.33

SUVA 4.00 3.29 4.72

FI 1.36 1.27 1.49

HIX 0.90 0.76 0.96

Slope ratio 0.86 0.77 1.16

% developed 21% 0% 54%

% agriculture 12% 0% 51%

% forest 54% 31% 99%

% wetland 7% 0% 34%

% impervious 17% 1% 33%

Depth to refusal (cm) 11.0 0.0 38.0

Sediment %C 1.0% 0.2% 5.6%

Sediment %N 0.1% 0.0% 0.3%

Sediment C:N 18.3 2.1 38.8

Each metric was first averaged across site.

A. M. Herreid and others



Dissolved Gas Analysis

Within 8 h of sample collection, 30 mL of helium

was introduced to each sample. Syringes were then

shaken for 5 min to equilibrate gases between the

water and headspace (Mulholland and others

2004). The 30-mL equilibrated head space of each

syringe was then injected into 20-mL evacuated,

airtight vials. Gas samples were analyzed for con-

centrations of CO2, CH4, and N2O using a Shi-

madzu GC-2014 gas chromatograph. A thermal

conductivity detector (TCD) was used to detect

CO2, a flame ionization detector (FID) to detect

CH4, and an electron capture detector (ECD) to

detect N2O. Standards of CO2 (1.8% error), CH4

(1.7% error), and N2O (2.2% error) are analyzed at

the beginning of each run and after every 12

samples. Headspace gas concentrations (in ppmv)

were converted to the concentration of dissolved

gas in the initial water sample (in lM) accounting

for the Bunsen solubility coefficients of each gas

(Mulholland and others 2004) using temperature

and atmospheric pressure of the head space equi-

libration.

Percentage saturation of each gas sample was

calculated as:

%sat ¼ Concobs

Conceq
� 100 ð1Þ

where Concobs is measured concentration of dis-

solved gas in the stream and Conceq is the expected

concentration of each gas if the stream water was in

equilibrium with the atmosphere (Audet and oth-

ers 2017). Equilibrium concentrations were calcu-

lated using stream temperature and atmospheric

pressure at the time of sample collection and

Bunsen solubility coefficients of each gas. If atmo-

spheric pressure was not recorded at the time of

sampling, we used data from one site (WHB01)

with continuous atmospheric pressure readings at

5-minute intervals and corrected by elevation for

each site.

Porewater Samples

At a subset of sites (n = 9) we collected sediment

porewater and gas samples using a porewater

extracting device. Although we attempted pore-

water collection at all sites, many have cobble or

gravel streambeds with little to no sediment,

making porewater collection impossible. The

porewater sampler is made of 3.175 mm o.d.

stainless steel tubing with fine holes at the sam-

pling end that allows porewater to enter the sam-

pler (Noyce and others 2014). The top of the

sampler is fitted with a two-way stopcock. The

sampling end of the device was inserted into the

sediment to the point of refusal (and at multiple

depths in sites with deep sediments), and porewa-

ter samples were extracted using a syringe. Pore-

water samples were collected by attaching an acid-

washed 60-mL syringe to the two-way stopcock

and pulling the syringe plunger to extract the

sample. Samples were analyzed for the same ana-

lytes as the surface water and dissolved gas sam-

ples.

Sediment Analyses

Channel and sediment attributes were character-

ized once during the duration of the study at the

main sampling location, and at an additional cross-

section 5–10 m upstream from the main location.

Estimates of the depth of fine sediments overlying

the coarse layer were made by measuring depth to

refusal (Lisle and Hilton 1992). Five measurements

were taken at each cross section. Sediment samples

were collected at the primary sampling location

and at a location � 20 m upstream. Sediment

samples were dried at 60�C for several days. Dried

samples were sieved (1 mm) to remove larger rocks

and pebbles. Remaining sediment was finely

ground using a mortar and pestle in preparation for

elemental analysis. Samples were run for weight

percent carbon and nitrogen using a PerkinElmer

2400 Series II CHNS/O analyzer. C/N ratios were

determined using the mass of each element.

Hydrology

Recognizing the importance of hydrological con-

trols on stream GHG concentrations (Dinsmore and

others 2013b; Stanley and others 2016), we ob-

tained daily discharge data from United States

Geological Survey (USGS) gages in our study area

(Table S1) as we were unable to measure discharge

at all of our sites every month. We used data from

the eight gages located in the Piscataqua River ba-

sin given their proximity to our sampling locations

(Figure 1). Discharge data from each of our sam-

pling dates were converted to runoff (mm day-1)

and averaged across the eight stations to create a

hydrologic index for each sampling month.

Statistical Analyses

Data that exhibited high levels of skewness, kur-

tosis, and failed the Shapiro–Wilk tests for

assumptions of normality were normalized using

logarithmic or square root transformations. We ran

Mantel tests for each gas to assess possible spatial

Controls on Stream GHG Concentrations



autocorrelation. To compare the relative magni-

tude of spatial and temporal variability for each gas,

we calculated variance in GHG concentrations for

each site and each sampling month and performed

one-way analyses of variance between spatial and

temporal variation. We assessed bivariate relation-

ships between dissolved gas concentrations and

metrics of stream chemistry using linear regression

analysis with each sampling month at each stream

treated as a separate data point. We used partial

least squares (PLS) analysis to identify multivariate

relationships between gas concentrations and pre-

dictor variables, given the ability for PLS to account

for multicollinearity among predictor variables

(Carrascal and others 2009). PLS provides variable

importance on projection (VIP) scores that repre-

sent each variable’s influence on the model. A VIP

score threshold of 0.8 is generally recommended to

identify those variables that exert strong influence

on the model, with larger VIP scores having a

greater influence on the model (Carrascal and

others 2009). PLS models were created for CO2,

CH4, and N2O with all metrics of stream chemistry

and land-use entered into the model (see Table 1).

The top five predictor variables, as ranked by VIP

score, were then used in linear mixed-effect models

(LMMs) to assess how well these most influential

variables predict gas concentrations when consid-

ered together while also accounting for repeated

measures and heterogeneity among sites. A com-

mon concern with datasets like ours is the issue of

lack of independence between samples that were

collected from the same stream over time. Mixed-

effect modeling is one approach that allows us to

account for the hierarchical nature of the dataset

and is increasingly being used to describe datasets

with high spatial and temporal variability (Romić

and others 2020; Santos and others 2019). Re-

sponse variables CO2, CH4, and N2O were analyzed

separately as a function of the top five predictor

variables for each respective gas as fixed effects,

with site as a random effect. Linear mixed-effects

models were created using the package lme4 in R

(Bates and others 2015). Stepwise multiple

regression was used to determine which of the top

predictive factors, delineated through PLS VIP

scores, significantly influenced measured gas con-

centrations. Variables from each model were ex-

cluded in a stepwise backward direction when the

AIC values of the alternative models were lower.

We used the MuMIn package (Barton 2019) to

determine the amount of variance (R2) explained

by fixed effects alone (marginal, Rm
2 ) and together

with the random effect (conditional, Rc
2) (Naka-

gawa and Schielzeth 2013). The level of signifi-

cance for all analyses was 0.05. All statistical

analyses were performed using the R software

version 3.5.3 (R Development Core Team 2019).

RESULTS

Water Chemistry and Dissolved Gases

The twenty study streams were variable in water

chemistry and other watershed characteristics (Ta-

ble 1). Streams ranged from nutrient-poor

(0.04 mg NO3-N L-1) to relatively enriched

(1.37 mg NO3-N L-1) and spanned a range of car-

bon availability (DOC 1.68–16.30 mg C L-1; mean

6.7 mg C L-1, Table 1). Optical properties of DOM,

which provide insights into the composition of or-

ganic matter, generally showed a small range of

variability across study streams (for example, FI

range = 1.27–1.49; mean 1.36, Table 1). Sediment

characteristics (depth of fine sediments and C and

N content) were variable across study sites. Average

depth to refusal was shallow, 11.0 cm (range = 0–

38 cm) and average sediment C/N ratio was 18.3

(range = 2.1–38.8, Table 1).

Spatial variability was significantly greater than

temporal variability for N2O (p < 0.001), CH4

(p < 0.001), and CO2 (p < 0.001). Concentrations

of dissolved gases were highly variable across our

20 sites. Dissolved CH4 concentrations ranged from

0.01 to 13.5 lM (mean = 0.63 lM) across sites

over the 12 sampling months, with dissolved N2O

concentrations ranging from 6.1 to 880 nM

(mean = 55 nM), and dissolved CO2 concentra-

tions ranging from 41 to 651 lM (mean = 170 lM,

Table 2). All streams were consistently supersatu-

rated in all three gases (Table 2; Figure 2).

Carbon dioxide, N2O, and CH4 concentrations

differed in their average temporal patterns and

magnitude of variability (Figures 2, 3). Mean N2O

concentrations across sites peaked in January, fol-

lowed by two spikes in late spring and fall consis-

tent with periods of elevated NO3
- concentrations

(Figure 3a). Methane concentrations on average

decreased in early spring and increased throughout

late spring and summer as temperatures increased

and flows generally decreased (Figure 3b, d).

Average concentrations of CO2 showed large peaks

in January and during the summer (Figure 3c).

Drivers of Greenhouse Gas
Concentrations

Results from the Mantel tests were insignificant for

all three gases, suggesting that there was no rela-

tionship between geographic distance and gas

A. M. Herreid and others



concentrations (N2O p = 0.91; CH4 p = 0.47; CO2

p = 0.28). Simple linear regression analyses re-

vealed significant relationships between both N2O

and CO2 concentrations and individual solutes, but

we found no significant bivariate relationships be-

tween any predictor variables and CH4 concentra-

tions. Across sites and time, DO and CO2

concentrations showed a significant, negative

relationship (r2 = 0.69, p < 0.0001). Although

saturation of DO and CO2 varied spatially and

temporally, DO was generally undersaturated,

while CO2 was supersaturated (Figure 4). Dissolved

N2O was positively related to concentrations of

NO3
- (r2 = 0.34, p < 0.0001, Figure 5) and

potassium (K+) (r2 = 0.33, p < 0.0001, Figure 6).

The partial least squares analysis for CO2 identi-

fied 12 predictor variables with VIP scores of at least

0.8, with the top five being DO (% saturation),

DOC and PO4
3- concentrations, and percent wet-

land and forest (Table 3). The N2O PLS model re-

sulted in 13 predictor variables above the 0.8

threshold. The top five were percent agriculture,

NO3
- and K+ concentrations, temperature, and

percent forest (Table 3). Partial least squares anal-

ysis for CH4 identified 14 predictor variables with

the top five being percent agriculture, percent

developed, NH4
+ concentration, specific conduc-

tance, and percent forest (Table 3). For all linear

mixed-effects models, site was an important factor

when considering the influence of the fixed effects,

as shown by the increase in the amount of varia-

tion explained (Rc
2) when including site as a ran-

dom effect (Table 4). The results of the LMM for

CO2 indicate that four predictors (DO, DOC, PO4
3-,

and % Forest), in combination with site as a ran-

dom effect, explain 77% of the variance. Carbon

dioxide concentrations were positively related to

DOC and negatively associated with DO%, % for-

est, and PO4
3- concentrations (Table 4). Model

results for N2O identified that NO3
-, K+, tempera-

ture, and percent agriculture account for 88% of

the variability in N2O concentrations. Beta values

indicate a positive influence of NO3
- and K+ con-

centrations and % agriculture, while temperature

shows a negative relationship with N2O concen-

trations (Table 4). Land use, % agriculture and %

forest, and specific conductance accounted for 77%

of the variance in CH4 concentrations when site

was included as a random effect. Both % agricul-

ture and % forest were negatively related to CH4

concentrations while specific conductance showed

a slight positive relationship (Table 4).

Sediment Porewater

Across sites, CO2 concentrations were consistently

higher in the sediments (mean = 772 lM, range =

Table 2. Mean Dissolved Greenhouse Gas Concentrations and Percent Saturation (sat%) for Each Site.

Site N2O (nM) N2O sat (%) CH4 (lM) CH4 sat (%) CO2 (lM) CO2 sat (%)

BDC 399.6 (211.4) 2926 (1347) 0.26 (0.13) 7882 (5147) 223 (88) 1087 (322)

BNR 34.4 (6.7) 264 (83) 0.06 (0.04) 1555 (1100) 51 (5) 266 (83)

BRB 28.4 (13.4) 200 (77) 1.20 (0.87) 36,716 (27842) 348 (77) 1880 (746)

CSB02 144.8 (56.8) 1117 (587) 0.37 (0.25) 10,977 (9573) 295 (80) 1548 (755)

DCF03 16.0 (5.7) 114 (21) 0.22 (0.10) 7121 (4489) 81 (21) 433 (187)

FSB 26.6 (11.1) 195 (54) 0.16 (0.07) 4667 (2642) 104 (27) 555 (240)

GRBK 25.5 (12.0) 192 (69) 0.84 (0.56) 25,394 (17903) 210 (69) 1174 (492)

HVH 18.9 (3.8) 149 (52) 2.12 (3.87) 80,571 (162681) 191 (90) 1179 (970)

JMY 31.5 (6.7) 250 (73) 0.84 (0.57) 27,446 (22135) 243 (74) 1374 (731)

MLB01 38.7 (8.8) 305 (68) 2.40 (0.91) 68,816 (27418) 173 (33) 910 (313)

PB02.7 21.7 (6.3) 185 (58) 0.77 (0.26) 24,071 (11708) 116 (22) 659 (265)

PIK 28.6 (6.3) 218 (67) 1.63 (0.67) 46,129 (15261) 104 (19) 547 (145)

PKB 37.3 (24.1) 269 (202) 0.19 (0.09) 5932 (4187) 150 (44) 809 (403)

PST 46.0 (14.0) 344 (68) 0.67 (0.30) 19,319 (8919) 176 (51) 900 (223)

RMB04 20.1 (13.0) 146 (47) 0.28 (0.10) 8458 (3148) 102 (39) 563 (220)

SBM0.2 15.1 (7.2) 108 (29) 0.06 (0.05) 1611 (1543) 231 (196) 1382 (1408)

TPB 16.7 (7.3) 121 (33) 0.42 (0.22) 12,906 (8741) 95 (75) 493 (305)

TWB 93.4 (35.2) 765 (421) 0.24 (0.12) 7176 (4093) 159 (37) 875 (390)

WEB 18.5 (3.6) 151 (61) 0.81 (0.28) 24,070 (9554) 225 (62) 1270 (628)

WHB01 41.2 (17.1) 298 (97) 0.15 (0.10) 4781 (4256) 122 (109) 665 (684)

Mean 55.1 416% 0.68 21,280% 170 928%

Standard deviations in parentheses.

Controls on Stream GHG Concentrations



69–3498 lM) than the surface water (mean =

133 lM, range = 41–310 lM), while N2O con-

centrations were on average higher in the surface

water (mean = 40 nM, range = 10–170 nM) than

the sediments (mean = 30 nM, range = 10–

210 nM). Methane concentrations were variable

by site, with some having higher concentrations in

the surface water (mean = 0.65 lM, range = 0.01–

2.27 lM) and others having higher concentrations

in the sediment porewater (mean = 32.07 lM,

range = 0.01–325.03 lM).

Figure 2. Boxplot panels representing percent saturation for N2O (A), CH4 (B), and CO2 (C) across 12 months at 20 sites.

Sites are ordered by increasing percent anthropogenic impact, defined as the sum of all anthropogenic land-cover types (%

Agriculture, % Developed, % Impervious). Percent land cover shown to illustrate variation and range in land cover across

sites. Note that the y-axis of each panel is presented in log scale.
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Surface water to porewater ratios for each gas

allow us to compare the relative magnitude of dif-

ferences in gas concentrations between the sedi-

ments and surface water. Ratios greater than one

indicate higher concentrations in the surface water

relative to the sediments, and those less than one

indicate higher concentrations in the sediments.

The mean ratio for CO2 was 0.34 ± 0.29, 4.0 ± 5.3

for N2O, and 4.7 ± 9.1 for CH4 (Figure 7). Across

sites, porewater CH4 concentrations were positively

correlated to the ratio of NH4/NO3 (Figure 8). A

depth profile created for one site (PIK) shows a

decline in N2O, NO3
-, and SO4

2- with depth and a

concomitant increase in CH4 and NH4
+ (Figure 9).

DISCUSSION

Streams as Sources of GHGs

Each measured greenhouse gas exhibited unique

spatial and temporal patterns, providing strong

evidence that evasion losses are not the dominant

driver of variability in dissolved gas concentrations.

In assessing the relative magnitude of spatial and

temporal variability in dissolved GHG concentra-

tions, we found that all three gases showed signif-

icantly higher spatial than temporal variation.

Although runoff did not appear as a strong pre-

dictor in our modeling approach, our temporal

patterns suggest a close relationship between flow

and GHG concentrations in this region, as shown

by the association between high flows and low

concentrations. Results confirm that streams are

sources of greenhouse gases to the atmosphere, as

Figure 3. Mean N2O (A), CH4 (B), and CO2 (C) concentrations across 20 sites over time. Panel (D) represents mean

stream temperature (red) across sites over time and mean runoff from USGS gages in our study area (see Figure 1). The

shaded ribbons represent standard error. On (B), the dashed blue line shows the seasonal pattern including the site HVH.

See Figure S1 for temporal patterns for individual sites.
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they are consistently supersaturated relative to

atmospheric concentrations. Like previous studies

(for example, Smith and others 2017), we found

that no single, measured predictor variable was

sufficient to explain variation in the concentrations

of all three greenhouse gases. Although our results

corroborate previous findings that N2O production

and concentrations correlate with NO3
- concen-

trations (Baulch and others 2011; Beaulieu and

others 2011), other factors (temperature, % agri-

culture, K+ concentrations) provide additional

explanatory power in characterizing temporal and

spatial variability in N2O concentrations. The re-

sults presented here support the growing body of

literature suggesting that CH4 concentrations are

extremely variable in space and time and are highly

dependent on local controls (Stanley and others

2016; Crawford and others 2017). The particularly

strong vertical gradient we observed in CH4 con-

Figure 4. Relationship between dissolved CO2 and O2. Excess CO2 or O2 was calculated as the difference between

measured concentrations and equilibrium concentrations expected if the stream water was in equilibrium with the

atmosphere (that is, 100% saturation). The dashed 1:1 line represents the expected relationship between O2 and CO2

under the assumption that aerobic metabolism accounts for most of the measured CO2 concentrations. The black line

represents the linear regression between O2 and CO2 across sites and time (r2 = 0.69, p < 0.0001).

Figure 5. Linear regression between N2O and NO3
-

concentrations across sites (r2 = 0.33, p < 0.0001).

Note that the y-axis is presented on a log scale and the

x-axis is presented on a square root scale.

Figure 6. Linear regression between N2O and K+

concentrations across sites (r2 = 0.34, p < 0.0001).

Note that the y-axis is presented on a log scale and the

x-axis is presented on a square root scale.
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centrations with depth in the stream sediments

suggests that hyporheic conditions may be espe-

cially important in controlling CH4 dynamics in

stream water.

Our measured gas concentrations are comparable

to previously reported values across ecosystems.

Mean dissolved CO2 concentrations (170 lM) and

consistent supersaturation in our study streams

(mean 928%) are similar to studies from the mid-

western USA (Crawford and Stanley 2016), and

higher than those reported for interior Alaska

(Crawford and others 2013). Nitrous oxide con-

centrations in our study, which averaged 55 nM

(416% saturation), were similar to those reported

for streams draining agricultural landscapes in the

midwestern USA (Beaulieu and others 2008) and

slightly lower than for sites in an agricultural

catchment in Sweden (Audet and others 2017).

Although previous studies have shown that heavily

impacted systems can be considerable sources of

N2O (Beaulieu and others 2008; Wilcock and Sor-

rell 2008; Baulch and others 2011; Audet and

others 2017), our data provide evidence that even

streams draining temperate and forested catch-

ments with modest levels of agriculture (averaging

12% among our study watersheds) and relatively

low concentrations of DIN (mean NO3
- = 0.51 mg

N L-1) can produce considerable amounts of dis-

solved N2O (Figure 2). Mean CH4 concentrations in

our 20 streams (0.68 lM) fall within the reported

range of global CH4 concentrations, though slightly

less than the average (1.35 lM) (Stanley and oth-

Table 3. Variable Importance on Projection (VIP)
Scores (‡ 0.8) of Predictor Variables for Carbon
Dioxide (CO2), Nitrous Oxide (N2O), and Methane
(CH4) via Partial Least Squares (PLS) Analysis.

Predictor N2O CH4 CO2

DO (%) – 1.01 2.90a

DOC (mg C L-1) – 0.87 1.49a

% Forest 1.37a 1.33a 1.05a

PO4
3- (lg P L-1) 1.17 0.90 1.04a

% wetland – – 1.04a

pH 1.04 0.93 1.02

NH4
+ (lg N L-1) 0.89 1.49a 1.01

FI – – 1.01

K+ (mg K L-1) 1.64a 1.17 0.91

DON (mg N L-1) – – 0.86

SO4
2- (mg S L-1) 1.19 1.07 0.85

HIX – – 0.83

DTR – – –

% agriculture 1.94a 1.90a –

Slope ratio – 0.89 –

C:N 0.85 – –

N 0.86 – –

Runoff (mm day-1) – – –

Temperature (C) 1.36a 0.87 –

NO3
- (mg N L-1) 1.73a 0.90 –

% Developed 0.93 1.76a –

Specific conductance 0.84 1.48a –

SUVA – – –

C – – –

aBold-face denote top five VIP scores for each model (see Table 4).
Dashes represent VIP scores < 0.8 for a given predictor variable. Higher VIP
scores represent a greater influence on the model. Table is organized by CO2 VIP
scores.

Table 4. Results from Linear Mixed-Effects Models (LMMs) with Fixed Effects and the Random Effect of
Site (not shown) for Dissolved Gas Concentrations.

Response Fixed effects b R2

Rm
2 Rc

2

N2O (nM) % agriculture 1.45 0.56 0.88

NO3
- (mg N L-1) 0.27

K+ (mg K L-1) 0.05

Temperature (�C) - 0.05

CH4 (lM) % agriculture - 2.03 0.33 0.77

Specific conductance (lS cm-1) 0.01

% forest - 1.34

CO2 (lM) DO (%) - 0.01 0.51 0.77

DOC (mg C L-1) 0.07

% forest - 0.31

PO4
3- (lg P L-1) - 0.05

The fixed effects included in each initial model were selected based on the five highest variable importance on projection (VIP) scores as identified through partial least squares
(see Table 3). Fixed effects that did not significantly improve the model were dropped through stepwise backward deletion based on AIC resulting in the final fixed effects
displayed here. b values provide a measure of how strongly, and in which direction, each predictor influences the model. Marginal coefficient of determination (Rm

2) shows
variation explained by fixed effects alone, while the conditional coefficient of determination (Rc

2) accounts for variation explained by both fixed and random effects.
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ers 2016). Our streams were supersaturated with

CH4 throughout the year (mean supersatura-

tion = 21,280%), consistent with growing evi-

dence that fluvial ecosystems are generally

supersaturated and thus sources of CH4 to the

atmosphere (Stanley and others 2016).

Temporal Variability in Stream GHG
Concentrations

The temporal variability in concentrations of CO2,

N2O, and CH4 provides insight into potential con-

trolling mechanisms across these temperate

watersheds. For all three gases, we observed low

concentrations in April which we attribute to high

flow conditions that either limit the accumulation

of dissolved gases or result in outgassing of previ-

ously accumulated gases (Dinsmore and others

2013b). Lower concentrations of CO2 in April may

also be due to increased primary productivity rel-

ative to respiration given that the only occurrences

of supersaturation of DO are in the spring (Fig-

ure 4). Winter and summer peaks in dissolved CO2

occurred during periods of lower flow with maxi-

mum concentrations in August when stream tem-

peratures were the highest. These winter and

summer peaks are concomitant with periods of

high N2O and CH4, respectively. Higher N2O con-

centrations in winter suggests that this may be a

period of increased nitrification, when oxygen le-

vels were near saturation and NH4
+ concentrations

(mean > 70 lg N L-1) were at their peak. In

contrast, spikes of N2O in the summer and fall

cooccur with pulses of NO3
- and occur at times of

lower O2 saturation, which suggests denitrification

as the dominant pathway for production of N2O at

these times. Temporal patterns in N2O concentra-

tions with other metrics of stream chemistry indi-

Figure 7. Ratio of surface water to porewater concentrations for each gas (nsites = 9, for CO2 and CH4 nsamples = 25, for

N2O nsamples = 23). Values above one indicate gas concentrations are higher in the surface water relative to the porewater

and values below one indicate higher concentrations in the sediment porewater.

Figure 8. Linear regression between porewater CH4

concentrations and porewater NH4/NO3 ratios

(r2 = 0.59, p < 0.001; nsites = 9). Lower ratios indicate a

more oxidized environment (more NO3
-), whereas

higher ratios indicate an environment more reduced

(more NH4
+).
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cate that there may be a seasonal switch in the

primary N-cycling processes that drive concentra-

tions of N2O. Variable temporal patterns in N2O

production across sites (Beaulieu and others 2008,

2009; Baulch and others 2011; Audet and others

2017; Borges and others 2018) suggest that drivers

and pathways of N2O production may differ across

systems, further complicating management strate-

gies that aim to remove excess N from aquatic

ecosystems while avoiding gaseous loss as N2O

(Davis and others 2019).

Methane concentrations were lower during the

high flows associated with snow melt (March,

April), and higher during low flow periods (sum-

mer months), suggesting that CH4 dynamics may

be inversely related to discharge (Stanley and

others 2016). In summer months, the combination

of low flow, high temperatures and low oxygen

availability, along with the depletion of more

favorable electron acceptors (NO3
- and sulfate;

SO4
2-) provides conditions suitable for methano-

genesis. In August for example, one site (HVH) had

particularly high CH4 concentrations associated

with low DO concentrations (43%), likely due to a

near-stagnant pool caused by the buildup of debris

upstream of our sampling location. Including this

site nearly doubles mean CH4 concentrations for

August. Although some previous studies have ob-

served peak CH4 concentrations in summer and

lower concentrations in winter (Dinsmore and

others 2013a; Borges and others 2018), others have

observed no clear seasonal pattern (Dawson and

others 2004). The lack of a consistent seasonal

pattern across temperate streams suggests that no

single factor, such as discharge, temperature or

oxygen availability, is consistently related to CH4

concentrations (Stanley and others 2016).

Drivers of Stream GHG Concentrations

Both the bivariate and multivariate analyses indi-

cated a unique set of predictor variables for each

gas. The strong negative relationship between DO

and CO2, identified through bivariate analysis, is

indicative of the tradeoff between respiration and

primary production, which may be happening

in situ or in the surrounding riparian soils (Fig-

ure 4; Borges and others 2015; Hotchkiss and oth-

ers 2015). The 1:1 line (with a slope of - 1) shown

in Figure 4 represents the expected relationship

between O2 and CO2 if we assume that aerobic

metabolism is accounting for most of the measured

stream water CO2 concentrations. Similar to results

reported by Crawford and others (2014), our data

generally fall to the right of this 1:1 line, indicating

that there are additional sources of CO2 beyond

aerobic respiration. This shift indicates the impor-

tance of external CO2 sources (for example,

groundwater) in our study streams. However, it is

Figure 9. Depth profile of sediment porewater solute (A) and dissolved gas (B) concentrations at one site (PIK). Samples

at depth 0 cm represent surface water samples. Greater depths represent sediment depth at which samples were extracted.
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important to note that forms of anaerobic respira-

tion, such as denitrification or methanogenesis,

also contribute to additional production of CO2,

suggesting that respiratory quotients may vary

(Crawford and others 2014).

The positive relationship between N2O and NO3
-

is consistent with many previous studies (for

example, Harrison and Matson 2003; Baulch and

others 2011; Audet and others 2017), supporting

the importance of denitrification as a source of

N2O. Although a positive relationship between

NO3
- and N2O concentrations is generally attrib-

uted to denitrification, it could be interpreted as the

accumulation of the products of nitrification

(Peterson and others 2001). Thus, future work

should investigate the proportion of N2O concen-

trations coming from denitrification versus nitrifi-

cation since management strategies to avoid

gaseous loss of N2O will likely differ depending on

the source pathway (Wymore and others 2019).

The unexpected positive relationship between K+

and N2O concentrations has, to our knowledge, not

been observed in other studies. Although we can-

not dismiss the possibility that this correlation is a

byproduct of other in-stream processes, collinearity

with NO3
- concentrations (Figure S2), or changing

environmental conditions that could influence the

concentration of K+ (for example, pH levels, cation

exchange), there are lines of evidence suggesting

that K+ may play an active role in enhancing N2O

production. Potassium was shown to be an effective

catalyst in the reduction of NO to N2O and has been

found to increase N reductase enzyme activity in

plants; the same family of enzymes involved in

catalyzing the sequential steps of denitrification

(Khanna-Chopra and others 1980; Kapteijn and

others 1984; Vı́llora and others 2003). Given that

our data do not allow us to untangle the mecha-

nism by which K+ is influencing N2O concentra-

tions, the relationship between K+ and N2O should

be interpreted with caution, and we hope future

work will provide insight into interactions between

K+ concentrations and N cycling processes.

In contrast to our analyses for CO2 and N2O, the

variability in CH4 concentrations across sites was

unexplained by any single predictor variable. Al-

though others have found a positive relationship

between concentrations of DOC and CH4, suggest-

ing that C availability drives CH4 production

(Crawford and others 2016; Schade and others

2016), our data show no clear influence of DOC on

CH4 dynamics. We also expected elevated NO3
-

concentrations to inhibit CH4 production, due to

either thermodynamic favorability or toxicity of

denitrification byproducts (Bodelier and Steen-

bergh 2014), but no distinct relationship was ob-

served between NO3
- and CH4. Given the

contrasting results among various studies, further

research is needed to understand the relationship

between CH4 production and NO3
- concentrations

(Crawford and Stanley 2016; Schade and others

2016) as well as to derive predictors of spatial and

temporal variability in CH4 concentrations in

streams.

Our multivariate approach using LMM allows us

to explore relationships between water chemistry

and land use (fixed effects) and gas concentrations,

while also accounting for differences among sites

(random effect). For all three gases, including site

as a random effect improves the variance explained

by the LMMs by 26–44% (Table 4). The increase in

explained variation for each model, resulting from

the inclusion of site as a random effect, indicates

that variability in unmeasured site-level charac-

teristics plays an important role in gas responses, a

point underscored by the fact that we observed

significantly greater spatial variability compared

with temporal variability. Characteristics influenc-

ing evasion rates, solubility (for example, temper-

ature, conductivity), and connectivity to the

surrounding landscape are possible factors influ-

encing site-level variability.

Our results from LMM suggest that the amount

of DOC available for respiration influences stream

CO2 concentrations. The negative relationship with

DO% shown in both bivariate and multivariate

analyses, along with the positive influence of DOC,

suggests that CO2 dynamics are driven by meta-

bolism and terrestrial organic carbon (Table 4;

Figure 4) (Cole and others 2007; Borges and others

2015). Our optical DOM data provide evidence of a

link between the surrounding terrestrial landscape

and stream CO2 dynamics. Values of FI ranging

from 1.2 to 1.5 indicate allochthonous terrestrially

sourced DOM, and values between 1.7 and 2.0

indicate autochthonous DOM (McKnight and oth-

ers 2001). Our small range of FI values falls within

the range of allochthonous sources, underscoring a

strong landscape influence on CO2 dynamics, a

finding confirmed through our identification of the

importance of external inputs to streams in this

region (Figure 4).

Geomorphological characteristics are thought to

be important drivers of methanogenesis (Stanley

and others 2016); however, we found no rela-

tionship between sediment characteristics and

surface water CH4 concentrations. The only vari-

ables that significantly influenced the LMM for CH4

were % agriculture (-), % forest (-), and specific

conductance (+) (Table 4). Streams draining agri-
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cultural landscapes are often associated with ele-

vated concentrations of N and other nutrients

(Rabalais 2002). Thus, the negative relationship

between % agriculture and CH4 may be due to the

presence of excess nutrients that can inhibit pro-

duction of CH4 (Aronson and Helliker 2010). The

negative relationship with % forest, in combination

with the positive relationship with specific con-

ductance, suggests that as watersheds become more

developed, higher amounts of CH4 can be expected.

Other studies have shown that the degree of

catchment disturbance (for example, agriculture,

urbanization) can be related to the supply of fine

sediment due to mechanisms such as soil erosion

(Naden and others 2016) and that sediment depo-

sition is a major control of CH4 production in small

streams (Bodmer and others 2020). Similarly, our

porewater results highlight the importance of sed-

iment depth in controlling stream CH4 concentra-

tions at sites with greater sediment deposition.

Porewater as an Indicator of CH4

Production

Sediment porewater data provide evidence that

variability in stream sediments may play an

important role in controlling CH4 production. Our

range of surface water to porewater ratios for CH4

shows that while some sites have higher concen-

trations in the surface water, many have consid-

erably higher CH4 concentrations in the deeper

sediments (Figure 7). To explore this potential

relationship, we developed a depth profile from

one of our study sites that shows the influence of

redox conditions similar to what we expected to see

in the surface water (Figure 9). Moving from the

surface water (depth = 0 cm) to the deeper sedi-

ments, concentrations of NH4
+ and CH4 increase. In

contrast, the depth profile also shows a decline in

concentrations of NO3
-, N2O, and SO4

2- (Fig-

ure 9). The concurrent depletion of NO3
- and N2O

suggests that denitrification becomes limited by

NO3
- availability. Although our sampling tech-

nique did not allow for measurements of oxygen at

depth, increases in NH4
+ with concurrent declines

in NO3
- can serve as an indicator of the extent of

reducing conditions. This increase in NH4
+ also

suggests that nitrification, another possible source

of N2O, is decreasing with depth. In addition to the

porewater depth profile (which could only be ex-

plored at one site), CH4 concentrations were also

predicted by porewater NH4/NO3 ratios (r2 = 0.59,

p < 0.001), with increased CH4 concentrations at

higher ratios. The depletion of oxygen and other

more thermodynamically favorable terminal elec-

tron acceptors (NO3
- and SO4

2-) with depth ap-

pears to create conditions suitable for

methanogenesis. We recognize that surface water

concentrations may not always reflect the pore-

water immediately below the point of sampling.

Thus, instances of a surface water to porewater

ratios greater than one may indicate delivery of

CH4 from an upstream source, such as a wetland or

an upstream hyporheic flow path. Nonetheless, we

observed that porewater CH4 concentrations are

often much higher than the surface water sug-

gesting that porewater is an important source of

CH4 to the overlying water.

Results from our porewater analysis suggest

spatial segregation of biogeochemical processes (for

example, denitrification and methanogenesis) due

to differences in solute, energy, and oxygen avail-

ability between the surface water and varying hy-

porheic depths (Crawford and Stanley 2016). This

could explain why relatively high CH4 concentra-

tions and fluxes are observed in streams even when

inhibitory conditions exist in the surface water (for

example, high NO3
- concentrations), especially

considering that there is often high deposition of

fine sediments in streams situated within impacted

landscapes (Naden and others 2016). These pore-

water results could also explain the lack of ex-

pected predictive relationships with between CH4

and other surface water measurements.

Greenhouse Gas Production in Stream
Environments

We propose a conceptual framework for small

streams (Figure 10) in which N2O production is

largely occurring in the surficial sediments, CH4

production is happening in deep sediments, and

CO2 concentrations are largely due to external

sources influenced by the surrounding landscape.

Our study identifies the surficial sediments as par-

ticularly important to N2O production, given the

relationship of N2O to metrics of water chemistry

(NO3
-, K+), corroborating previous work high-

lighting the importance of benthic-hyporheic N2O

production in small streams (Marzadri and others

2017). In the deeper sediments, CH4 production

becomes more important. The porewater depth

profile in combination with the relationship be-

tween porewater CH4 and NH4/NO3 ratios confirms

that a more reduced environment and depletion of

more favorable electron acceptors in the deeper

sediments creates hot spots of CH4 generation.

These tight thermodynamic controls observed in

the porewater suggest that CH4 production domi-

nates as we move deeper into the hyporheic zone,
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which releases CH4 to the surface where it can be

transported downstream. Contrasting these benthic

controls, our results suggest that CO2 concentra-

tions are largely linked to the surrounding terres-

trial landscape and external inputs. Optical DOM

data suggest an allochthonous source of DOC,

underscoring the role of the surrounding landscape

in fueling CO2 dynamics, as has been suggested in

the previous studies (Hotchkiss and others 2015;

Campeau and others 2019; Rocher-Ros and others

2019). Future work on stream GHG dynamics can

expand this framework to help to disentangle what

proportion of measured concentrations result from

in-stream processing and external inputs and

transport.
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