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ABSTRACT

Inland waters can be significant sources of carbon
dioxide (CO,), methane (CH4) and nitrous oxide
(N,O) to the atmosphere. However, considerable
uncertainty remains in regional and global esti-
mates of greenhouse gas (GHG) emissions from
freshwater ecosystems, particularly streams. Con-
trols on GHG production in streams, such as water
chemistry and sediment characteristics, are also
poorly understood. The main objective of this study
was to quantify spatial and temporal variability in
GHG concentrations in 20 streams across a land-
scape with considerable variation in land use and
land cover in New England, USA. Stream water
was consistently supersaturated in CO,, CH4, and
N,O, suggesting that these small streams are sour-
ces of GHGs to the atmosphere in this landscape.
Results show that concentrations of dissolved CO,,
CH,4 and N, O differed in their spatial and temporal
patterns and in their relationship to stream chem-
istry. Both bivariate and multivariate analyses re-
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vealed a unique combination of predictor variables
for each gas, suggesting variation in the landscape
attributes and in-stream processes that control GHG
concentrations. Although hydrologic conditions did
not explain variation among sites, temporal pat-
terns in GHG concentrations align with seasonal
phenologies in flow and temperature. We devel-
oped a conceptual model based on these data that
describes the spatial variability in GHG production
from streams and that can elucidate the dominant
controls on each gas. Developing an understanding
of the factors controlling GHG dynamics in streams
can help assess and predict how fluvial ecosystems
will respond to changes in climate and land use and
can be used to incorporate emissions from streams
into regional and global GHG emission inventories.

Key words: Carbon dioxide; Nitrous oxide; Me-
thane; Streams; Greenhouse gas; Sediment.
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HIGHLIGHTS

e Stream CO,, CH, and N,O concentrations differ
in their spatial and temporal patterns.

e N,O concentrations are influenced by water
chemistry and land use.

e Hyporheic conditions are particularly important
in controlling CH, concentrations.

INTRODUCTION

Freshwater ecosystems can be important sources of
greenhouse gases (GHGs) to the atmosphere due to
their ability to actively process and transform ter-
restrial inputs of organic matter and other solutes
(Cole and others 2007; Battin and others 2009).
Although the terrestrial landscape is generally
considered a carbon (C) sink, with recent estimates
suggesting a net uptake of 3.6 Pg C per year
(Keenan and Williams 2018), streams and rivers
may provide sufficient emissions of GHGs to offset
the terrestrial C sink. Streams are frequently
supersaturated not only in carbon dioxide (CO,),
but also in methane (CH,) (Bastviken and others
2011; Stanley and others 2016) and nitrous oxide
(N,0) (Wilcock and Sorrell 2008; Baulch and oth-
ers 2011; Beaulieu and others 2011; Schade and
others 2016; Audet and others 2017).

Although streams are sources of all three green-
house gases, recent flux estimates are largely fo-
cused only on the outgassing of CO,. One of the
first estimates of outgassing of C from fluvial
ecosystems by Cole and others (2007) was an
admittedly conservative 0.8 Pg C per year. Over the
following decade, this estimate was revised upward
to 1.8 Pg C per year (Raymond and others 2013)
and then again to 3.9 Pg C per year (Drake and
others 2018). Estimates of the total surface area of
rivers and streams globally were also recently in-
creased (Allen and Pavelsky 2018). Collectively,
these new estimates highlight the importance of
incorporating fluxes of GHGs from fluvial ecosys-
tems in global carbon budgets. Although the mag-
nitude of CH, and N,O emissions is generally lower
than that of CO,, these gases are more effective at
trapping heat (Myhre and others 2013) and thus
aggregating GHG emissions from streams is critical
to understanding the contribution of streams and
rivers to atmospheric fluxes of GHGs.

To improve estimates of GHG emissions from
fluvial ecosystems, it is important to develop a
cohesive understanding of the multiple factors
driving gas production and consumption. Distin-

guishing controls on GHGs is complex given the
interactive nature of C and N cycling and the large
number of biotic and abiotic factors that influence
GHG concentrations. Broadly, CO, concentrations
are controlled by the tradeoff between respiration
and primary production, and the factors that fuel
these processes (for example, oxygen (O,) and or-
ganic C availability) (Cole and others 2007). Me-
thane concentrations are strongly controlled by
organic matter availability and redox conditions
(Stanley and others 2016), and N,O concentrations
are tightly linked to the factors that influence N
cycling processes [for example, O,, nitrate (NO3™)
availability] (Burgin and Hamilton 2007; Quick and
others 2019). Various studies have investigated
controls on GHGs in fluvial ecosystems but results
to date are varied and often contradictory. For
example, many studies have observed the expected
relationship between NO;~ and N,O concentra-
tions that have been invoked as evidence for both
nitrification and denitrification controlling N,O
production (Harrison and Matson 2003; Baulch
and others 2011; Beaulieu and others 2011; Schade
and others 2016; Turner and others 2016; Audet
and others 2017). In contrast, controls on CHy
dynamics are more uncertain. In temperate forest
streams organic C availability drives overall gas flux
(that is all three gases), but concentrations of NO5; ™~
regulate the magnitude of N,O and CH, produc-
tion, with higher NO5;™~ concentrations resulting in
lower fluxes of CH; (Schade and others 2016).
However, no effect of NO3;~ on concentrations and
fluxes of CH, was found in predominantly agri-
cultural streams with relatively high NOs;~ con-
centrations (Crawford and Stanley 2016). This
suggests that drivers and inhibitors of CH4 pro-
duction may not be universal across systems,
underscoring the need to untangle the complicated
relationships between C and N cycling processes
and GHG dynamics (Stanley and others 2016).

The objective of our study was to identify drivers
of spatial and temporal variability in dissolved
greenhouse gas concentrations in small temperate
streams that drain watersheds in New Hampshire
and Maine. Twenty study streams were selected
across a land-use gradient to provide a range of
water chemistry, and environmental and physical
conditions. Developing an improved understanding
of greenhouse gas dynamics in fluvial ecosystems
will allow us to better incorporate streams and
rivers into global emissions inventories and into
biogeochemical models of GHG production and
emission.
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METHODS
Study Area

The twenty streams chosen for study came from a
database of streams within the Great Bay water-
shed, in southeastern New Hampshire and south-
western Maine, USA, compiled by the Water
Quality Analysis Lab (WQAL) of the University of
New Hampshire (UNH) (Figure 1). Using previ-
ously collected water quality data, we selected low-
order streams (mean watershed area = 2.82 km?)
along a gradient of NO; concentrations. The twenty
study streams encompass a wide range of land use
and land cover, allowing us to test controls on the
spatial and temporal heterogeneity of GHGs. Our
study includes sites dominated by forest (up to 99%
cover), wetlands (up to 34% cover), agriculture (up
to 51% cover), or urban development (up to 54%
cover) resulting in a range of concentrations of
dissolved inorganic nitrogen (0.04-1.37 mg N L™
as NOs ; 10.9-286 pg L 'as NH,", Table 1).

Water Chemistry and Dissolved Gas
Collection

We collected surface water samples monthly at
each stream for one year. Samples were collected
from the thalweg of each stream during daylight
hours. Water chemistry samples were collected in

acid-washed syringes and field filtered through pre-
combusted glass fiber filters (0.7 pum; Whatman GF/
F) into 60-mL acid-washed HDPE bottles and am-
ber vials and stored in a cooler with ice until being
returned to the laboratory that same day. Samples
were then frozen or refrigerated for subsequent
analysis. Dissolved gas samples were collected in
triplicate at each stream using acid-washed 60-mL
polypropylene syringes fitted with two-way stop-
cocks. Syringes were filled to 30 mL with stream
water, cleared of air bubbles, and emptied and re-
filled to 30 mL underwater (again clearing air
bubbles). Syringes were kept on ice and returned to
the WQAL within eight hours of collection. Hand-
held measurements of dissolved oxygen (DO, per-
cent saturation and concentration in mg L™'),
specific conductance (uS cm™'), pH, and water
temperature (°C) were recorded at the time of
collection using a YSI multiparameter probe (YSI
ProDSS, Yellow Spring, OH).

Water Chemistry Analysis

We analyzed each sample for concentrations of
NOs~, ammonium (NH,"), total dissolved nitrogen
(TDN), dissolved organic carbon (DOC), soluble
reactive phosphorus (SRP), dissolved organic mat-
ter (DOM) optical properties, and major cations
(magnesium (Mg?*), calcium (Ca®*), potassium
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Figure 1. Map of Study Streams and USGS Gages Located in Southeastern New Hampshire and Southern Maine.
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Table 1. Stream and Watershed Characteristics Across the 20 Study Sites Over Time.

Mean Minimum Maximum

NO5;~ (mg N L7 0.51 0.04 1.37
DOC (mg C L™} 6.68 1.68 16.30
TDN (mg N L) 0.79 0.08 1.97
NH,* (ug NL™Y) 44 11 286
DON (mg N L) 0.24 0.00 0.51
Cl” (mg ClL™) 91.41 3.36 224.3
SO4*” (mg S L™ 2.71 0.66 4.42
Acetate (mg L™1) 0.12 0.07 0.18
PO,>” (ngPL7Y 15 4 125
Na* (mg Na L™") 55.07 2.12 146.3
K* (mg K L™Y) 2.81 0.17 8.85
Mg?* (mg Mg L™1) 4.13 0.026 8.02
Ca®* (mg Ca L™ 18.65 1.39 45.40
pH 6.7 4.9 7.4
Specific conductance (us cm™!) 395.7 19.2 930.8
Dissolved O, (% saturation) 85.0 65.0 96.6
Temperature (°C) 8.89 7.36 10.33
SUVA 4.00 3.29 4.72
FI 1.36 1.27 1.49
HIX 0.90 0.76 0.96
Slope ratio 0.86 0.77 1.16
% developed 21% 0% 54%
% agriculture 12% 0% 51%
% forest 54% 31% 99%
% wetland 7% 0% 34%
% impervious 17% 1% 33%
Depth to refusal (cm) 11.0 0.0 38.0
Sediment %C 1.0% 0.2% 5.6%
Sediment %N 0.1% 0.0% 0.3%
Sediment C:N 18.3 2.1 38.8

Each metric was first averaged across site.

(K*), and sodium (Na*) and anions [chloride (Cl17),
sulfate (§0,°7), and acetate (CH;COO™)]. Samples
were analyzed for TDN and DOC using high-tem-
perature catalytic oxidation (Shimadzu TOC-L with
a TNM-1 nitrogen analyzer), for NO3~ and major
anions and cations using ion chromatography with
suppressed conductivity detection (Anions/Cations
Dionex ICS-1000), for NH,* using automated col-
orimetry (Unity Scientific SmartChem 200 discrete
analyzer), and for SRP using automated colorime-
try (Seal Analytical AQ2 discrete analyzer). Dis-
solved organic nitrogen (DON) concentrations
were determined from the difference of TDN and
dissolved inorganic nitrogen concentrations
(DIN = NO5;~ + NH,"). UV absorbance was mea-
sured using HPLC with a photo-diode array detec-
tor (Shimadzu SPD-20A) that scanned from 200 to
700 nm in l-nm intervals. The absorbance at
wavelength of 254 nm was used to determine
specific ultra-violet absorbance (SUVA, L mg-C~

"m™") following established methods (Weishaar

and others 2003). Humification index (HIX) was
determined as the ratio between the area under the
435-480 nm emission spectra peak and the sum of
the peak areas between 330-345 and 435-490 nm
(Ohno 2002). Fluorescence index (FI) was deter-
mined as the ratio of 470-520 nm fluorescence
intensities at an excitation of 370 nm and used to
identify sources (allochthonous vs. autochthonous)
of DOM (McKnight and others 2001). Log trans-
formed absorption spectra in the ranges of 275-295
and 350-400 nm were fit nonlinearly to an expo-
nential function to determine spectral slope (S)
(Helms and others 2008). Slope ratio (Sg) was cal-
culated as the ratio of slopes for the 275-295 and
350-400 nm ranges. Slope ratio provides insights
into molecular weight and aromaticity of DOM
(Helms and others 2008). Analyses were conducted
at the WQAL at UNH.
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Dissolved Gas Analysis

Within 8 h of sample collection, 30 mL of helium
was introduced to each sample. Syringes were then
shaken for 5 min to equilibrate gases between the
water and headspace (Mulholland and others
2004). The 30-mL equilibrated head space of each
syringe was then injected into 20-mL evacuated,
airtight vials. Gas samples were analyzed for con-
centrations of CO,, CH,; and N,O using a Shi-
madzu GC-2014 gas chromatograph. A thermal
conductivity detector (TCD) was used to detect
CO,, a flame ionization detector (FID) to detect
CH4, and an electron capture detector (ECD) to
detect N,O. Standards of CO, (1.8% error), CHy
(1.7% error), and N,O (2.2% error) are analyzed at
the beginning of each run and after every 12
samples. Headspace gas concentrations (in ppmv)
were converted to the concentration of dissolved
gas in the initial water sample (in pM) accounting
for the Bunsen solubility coefficients of each gas
(Mulholland and others 2004) using temperature
and atmospheric pressure of the head space equi-
libration.

Percentage saturation of each gas sample was
calculated as:

Concypg
— %

Yosat = 100 (1)

NCeq
where Conc,,s is measured concentration of dis-
solved gas in the stream and Conc. is the expected
concentration of each gas if the stream water was in
equilibrium with the atmosphere (Audet and oth-
ers 2017). Equilibrium concentrations were calcu-
lated using stream temperature and atmospheric
pressure at the time of sample collection and
Bunsen solubility coefficients of each gas. If atmo-
spheric pressure was not recorded at the time of
sampling, we used data from one site (WHBO1)
with continuous atmospheric pressure readings at
5-minute intervals and corrected by elevation for
each site.

Porewater Samples

At a subset of sites (n = 9) we collected sediment
porewater and gas samples using a porewater
extracting device. Although we attempted pore-
water collection at all sites, many have cobble or
gravel streambeds with little to no sediment,
making porewater collection impossible. The
porewater sampler is made of 3.175 mm o.d.
stainless steel tubing with fine holes at the sam-
pling end that allows porewater to enter the sam-
pler (Noyce and others 2014). The top of the

sampler is fitted with a two-way stopcock. The
sampling end of the device was inserted into the
sediment to the point of refusal (and at multiple
depths in sites with deep sediments), and porewa-
ter samples were extracted using a syringe. Pore-
water samples were collected by attaching an acid-
washed 60-mL syringe to the two-way stopcock
and pulling the syringe plunger to extract the
sample. Samples were analyzed for the same ana-
lytes as the surface water and dissolved gas sam-
ples.

Sediment Analyses

Channel and sediment attributes were character-
ized once during the duration of the study at the
main sampling location, and at an additional cross-
section 5-10 m upstream from the main location.
Estimates of the depth of fine sediments overlying
the coarse layer were made by measuring depth to
refusal (Lisle and Hilton 1992). Five measurements
were taken at each cross section. Sediment samples
were collected at the primary sampling location
and at a location ~ 20 m upstream. Sediment
samples were dried at 60°C for several days. Dried
samples were sieved (1 mm) to remove larger rocks
and pebbles. Remaining sediment was finely
ground using a mortar and pestle in preparation for
elemental analysis. Samples were run for weight
percent carbon and nitrogen using a PerkinElmer
2400 Series II CHNS/O analyzer. C/N ratios were
determined using the mass of each element.

Hydrology

Recognizing the importance of hydrological con-
trols on stream GHG concentrations (Dinsmore and
others 2013b; Stanley and others 2016), we ob-
tained daily discharge data from United States
Geological Survey (USGS) gages in our study area
(Table S1) as we were unable to measure discharge
at all of our sites every month. We used data from
the eight gages located in the Piscataqua River ba-
sin given their proximity to our sampling locations
(Figure 1). Discharge data from each of our sam-
pling dates were converted to runoff (mm day ')
and averaged across the eight stations to create a
hydrologic index for each sampling month.

Statistical Analyses

Data that exhibited high levels of skewness, kur-
tosis, and failed the Shapiro-Wilk tests for
assumptions of normality were normalized using
logarithmic or square root transformations. We ran
Mantel tests for each gas to assess possible spatial
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autocorrelation. To compare the relative magni-
tude of spatial and temporal variability for each gas,
we calculated variance in GHG concentrations for
each site and each sampling month and performed
one-way analyses of variance between spatial and
temporal variation. We assessed bivariate relation-
ships between dissolved gas concentrations and
metrics of stream chemistry using linear regression
analysis with each sampling month at each stream
treated as a separate data point. We used partial
least squares (PLS) analysis to identify multivariate
relationships between gas concentrations and pre-
dictor variables, given the ability for PLS to account
for multicollinearity among predictor variables
(Carrascal and others 2009). PLS provides variable
importance on projection (VIP) scores that repre-
sent each variable’s influence on the model. A VIP
score threshold of 0.8 is generally recommended to
identify those variables that exert strong influence
on the model, with larger VIP scores having a
greater influence on the model (Carrascal and
others 2009). PLS models were created for CO,,
CH,4, and N,O with all metrics of stream chemistry
and land-use entered into the model (see Table 1).
The top five predictor variables, as ranked by VIP
score, were then used in linear mixed-effect models
(LMMs) to assess how well these most influential
variables predict gas concentrations when consid-
ered together while also accounting for repeated
measures and heterogeneity among sites. A com-
mon concern with datasets like ours is the issue of
lack of independence between samples that were
collected from the same stream over time. Mixed-
effect modeling is one approach that allows us to
account for the hierarchical nature of the dataset
and is increasingly being used to describe datasets
with high spatial and temporal variability (Romic
and others 2020; Santos and others 2019). Re-
sponse variables CO,, CH,4, and N,O were analyzed
separately as a function of the top five predictor
variables for each respective gas as fixed effects,
with site as a random effect. Linear mixed-effects
models were created using the package lme4 in R
(Bates and others 2015). Stepwise multiple
regression was used to determine which of the top
predictive factors, delineated through PLS VIP
scores, significantly influenced measured gas con-
centrations. Variables from each model were ex-
cluded in a stepwise backward direction when the
AIC values of the alternative models were lower.
We used the MuMIn package (Barton 2019) to
determine the amount of variance (R*) explained
by fixed effects alone (marginal, R%) and together
with the random effect (conditional, R?) (Naka-
gawa and Schielzeth 2013). The level of signifi-

cance for all analyses was 0.05. All statistical
analyses were performed using the R software
version 3.5.3 (R Development Core Team 2019).

REsuLTS
Water Chemistry and Dissolved Gases

The twenty study streams were variable in water
chemistry and other watershed characteristics (Ta-
ble 1). Streams ranged from nutrient-poor
(0.04 mg NO5-NL™') to relatively enriched
(1.37 mg NO5-N L™') and spanned a range of car-
bon availability (DOC 1.68-16.30 mg C L™'; mean
6.7 mg C L™', Table 1). Optical properties of DOM,
which provide insights into the composition of or-
ganic matter, generally showed a small range of
variability across study streams (for example, FI
range = 1.27-1.49; mean 1.36, Table 1). Sediment
characteristics (depth of fine sediments and C and
N content) were variable across study sites. Average
depth to refusal was shallow, 11.0 cm (range = 0—
38 cm) and average sediment C/N ratio was 18.3
(range = 2.1-38.8, Table 1).

Spatial variability was significantly greater than
temporal variability for N,O (p < 0.001), CH4
(»p < 0.001), and CO, (p < 0.001). Concentrations
of dissolved gases were highly variable across our
20 sites. Dissolved CH,4 concentrations ranged from
0.01 to 13.5 uM (mean = 0.63 pM) across sites
over the 12 sampling months, with dissolved N,O
concentrations ranging from 6.1 to 880 nM
(mean = 55 nM), and dissolved CO, concentra-
tions ranging from 41 to 651 uM (mean = 170 uM,
Table 2). All streams were consistently supersatu-
rated in all three gases (Table 2; Figure 2).

Carbon dioxide, N,O, and CH, concentrations
differed in their average temporal patterns and
magnitude of variability (Figures 2, 3). Mean N,O
concentrations across sites peaked in January, fol-
lowed by two spikes in late spring and fall consis-
tent with periods of elevated NO5;™~ concentrations
(Figure 3a). Methane concentrations on average
decreased in early spring and increased throughout
late spring and summer as temperatures increased
and flows generally decreased (Figure 3b, d).
Average concentrations of CO, showed large peaks
in January and during the summer (Figure 3c).

Drivers of Greenhouse Gas
Concentrations

Results from the Mantel tests were insignificant for
all three gases, suggesting that there was no rela-
tionship between geographic distance and gas
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Table 2. Mean Dissolved Greenhouse Gas Concentrations and Percent Saturation (sat%) for Each Site.
Site N,O (nM) N,O sat (%) CH, (1M) CH, sat (%) CO, (uM) CO, sat (%)
BDC 399.6 (211.4) 2926 (1347) 0.26 ( 7882 (5147) 223 (88) 1087 (322)
BNR 34.4 (6.7) 264 (83) 0.06 ( 1555 (1100) 51 (5) 266 (83)
BRB 28.4 (13.4) 200 (77) 1.20 ( 36,716 (27842) 348 (77) 1880 (746)
CSB02 144.8 (56.8) 1117 (587) 0.37 ( 10,977 (9573) 295 (80) 1548 (755)
DCF03 16.0 (5.7) 114 (21) 0.22 ( 7121 (4489) 81 (21) 433 (187)
FSB 26.6 (11.1) 195 (54) 0.16 ( 4667 (2642) 104 (27) 555 (240)
GRBK 25.5 (12.0) 192 (69) 0.84 ( 25,394 (17903) 210 (69) 1174 (492)
HVH 18.9 (3.8) 149 (52) 2.12 ( 80,571 (162681) 191 (90) 1179 (970)
IMY 31.5 (6.7) 250 (73) 0.84 ( 27,446 (22135) 243 (74) 1374 (731)
MLBO1 38.7 (8.8) 305 (68) 2.40 ( 68,816 (27418) 173 (33) 910 (313)
PB02.7 21.7 (6.3) 185 (58) 0.77 ( 24,071 (11708) 116 (22) 659 (265)
PIK 28.6 (6.3) 218 (67) 1.63 ( 46,129 (15261) 104 (19) 547 (145)
PKB 37.3 (24.1) 269 (202) 0.19 ( 5932 (4187) 150 (44) 809 (403)
PST 46.0 (14.0) 344 (68) 0.67 ( 19,319 (8919) 176 (51) 900 (223)
RMBO04 20.1 (13.0) 146 (47) 0.28 ( 8458 (3148) 102 (39) 563 (220)
SBMO.2 15.1 (7.2) 108 (29) 0.06 ( 1611 (1543) 231 (196) 1382 (1408)
TPB 16.7 (7.3) 121 (33) 0.42 ( 12,906 (8741) 95 (75) 493 (305)
TWB 93.4 (35.2) 765 (421) 0.24 ( 7176 (4093) 159 (37) 875 (390)
WEB 18.5 (3.6) 151 (61) 0.81 ( 24,070 (9554) 225 (62) 1270 (628)
WHBO1 41.2 (17.1) 298 (97) 0.15 ( 4781 (4256) 122 (109) 665 (684)
Mean 55.1 416% 0.68 21,280% 170 928%

Standard deviations in parentheses.

concentrations (N,O p = 0.91; CH4 p = 0.47; CO,
p = 0.28). Simple linear regression analyses re-
vealed significant relationships between both N,O
and CO, concentrations and individual solutes, but
we found no significant bivariate relationships be-
tween any predictor variables and CH,4 concentra-
tions. Across sites and time, DO and CO,
concentrations showed a significant, negative
relationship (% = 0.69, p < 0.0001). Although
saturation of DO and CO, varied spatially and
temporally, DO was generally undersaturated,
while CO, was supersaturated (Figure 4). Dissolved
N,O was positively related to concentrations of
NOs~ (' =0.34, p < 0.0001, Figure 5) and
potassium (K*) (r* = 0.33, p < 0.0001, Figure 6).

The partial least squares analysis for CO, identi-
fied 12 predictor variables with VIP scores of at least
0.8, with the top five being DO (% saturation),
DOC and PO,’~ concentrations, and percent wet-
land and forest (Table 3). The N,O PLS model re-
sulted in 13 predictor variables above the 0.8
threshold. The top five were percent agriculture,
NO;~ and K" concentrations, temperature, and
percent forest (Table 3). Partial least squares anal-
ysis for CH, identified 14 predictor variables with
the top five being percent agriculture, percent
developed, NH," concentration, specific conduc-
tance, and percent forest (Table 3). For all linear

mixed-effects models, site was an important factor
when considering the influence of the fixed effects,
as shown by the increase in the amount of varia-
tion explained (R?) when including site as a ran-
dom effect (Table 4). The results of the LMM for
CO, indicate that four predictors (DO, DOC, PO,’~,
and % Forest), in combination with site as a ran-
dom effect, explain 77% of the variance. Carbon
dioxide concentrations were positively related to
DOC and negatively associated with DO%, % for-
est, and PO,’>~ concentrations (Table 4). Model
results for N,O identified that NO;~, K*, tempera-
ture, and percent agriculture account for 88% of
the variability in N,O concentrations. Beta values
indicate a positive influence of NO;~ and K* con-
centrations and % agriculture, while temperature
shows a negative relationship with N,O concen-
trations (Table 4). Land use, % agriculture and %
forest, and specific conductance accounted for 77%
of the variance in CH, concentrations when site
was included as a random effect. Both % agricul-
ture and % forest were negatively related to CHy4
concentrations while specific conductance showed
a slight positive relationship (Table 4).

Sediment Porewater

Across sites, CO, concentrations were consistently
higher in the sediments (mean = 772 uM, range =
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Figure 2. Boxplot panels representing percent saturation for N,O (A), CH4 (B), and CO, (C) across 12 months at 20 sites.
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69-3498 uM) than the surface water (mean =
133 uM, range = 41-310 pM), while N,O con-
centrations were on average higher in the surface
water (mean = 40 nM, range = 10-170 nM) than
the sediments (mean = 30 nM, range = 10-
210 nM). Methane concentrations were variable

by site, with some having higher concentrations in
the surface water (mean = 0.65 pM, range = 0.01-
2.27 pM) and others having higher concentrations
in the sediment porewater (mean = 32.07 uM,
range = 0.01-325.03 puM).
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Figure 3. Mean N,O (A), CH, (B), and CO, (C) concentrations across 20 sites over time. Panel (D) represents mean
stream temperature (red) across sites over time and mean runoff from USGS gages in our study area (see Figure 1). The
shaded ribbons represent standard error. On (B), the dashed blue line shows the seasonal pattern including the site HVH.

See Figure S1 for temporal patterns for individual sites.

Surface water to porewater ratios for each gas
allow us to compare the relative magnitude of dif-
ferences in gas concentrations between the sedi-
ments and surface water. Ratios greater than one
indicate higher concentrations in the surface water
relative to the sediments, and those less than one
indicate higher concentrations in the sediments.
The mean ratio for CO5 was 0.34 £ 0.29, 4.0 &+ 5.3
for N,O, and 4.7 £+ 9.1 for CH, (Figure 7). Across
sites, porewater CH,4 concentrations were positively
correlated to the ratio of NH4/NO5 (Figure 8). A
depth profile created for one site (PIK) shows a
decline in N>O, NO5~, and SO,*~ with depth and a
concomitant increase in CH, and NH," (Figure 9).

DiscussioN
Streams as Sources of GHGs

Each measured greenhouse gas exhibited unique
spatial and temporal patterns, providing strong
evidence that evasion losses are not the dominant
driver of variability in dissolved gas concentrations.
In assessing the relative magnitude of spatial and
temporal variability in dissolved GHG concentra-
tions, we found that all three gases showed signif-
icantly higher spatial than temporal variation.
Although runoff did not appear as a strong pre-
dictor in our modeling approach, our temporal
patterns suggest a close relationship between flow
and GHG concentrations in this region, as shown
by the association between high flows and low
concentrations. Results confirm that streams are
sources of greenhouse gases to the atmosphere, as
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Figure 4. Relationship between dissolved CO, and O,. Excess CO, or O, was calculated as the difference between
measured concentrations and equilibrium concentrations expected if the stream water was in equilibrium with the
atmosphere (that is, 100% saturation). The dashed 1:1 line represents the expected relationship between O, and CO,
under the assumption that aerobic metabolism accounts for most of the measured CO, concentrations. The black line

represents the linear regression between O, and CO, across sites and time (% = 0.69, p < 0.0001).
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Figure 5. Linear regression between N,O and NO;™
concentrations across sites (r2 =0.33, p < 0.0001).
Note that the y-axis is presented on a log scale and the
x-axis is presented on a square root scale.

they are consistently supersaturated relative to
atmospheric concentrations. Like previous studies
(for example, Smith and others 2017), we found
that no single, measured predictor variable was
sufficient to explain variation in the concentrations
of all three greenhouse gases. Although our results
corroborate previous findings that N,O production
and concentrations correlate with NO3~ concen-
trations (Baulch and others 2011; Beaulieu and

1000+
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N
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Figure 6. Linear regression between N,O and K*
concentrations across sites (2 = 0.34, p < 0.0001).
Note that the y-axis is presented on a log scale and the
x-axis is presented on a square root scale.

others 2011), other factors (temperature, % agri-
culture, K* concentrations) provide additional
explanatory power in characterizing temporal and
spatial variability in N,O concentrations. The re-
sults presented here support the growing body of
literature suggesting that CH, concentrations are
extremely variable in space and time and are highly
dependent on local controls (Stanley and others
2016; Crawford and others 2017). The particularly
strong vertical gradient we observed in CH, con-
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Table 3. Variable Importance on Projection (VIP)
Scores (= 0.8) of Predictor Variables for Carbon
Dioxide (CO,), Nitrous Oxide (N,0), and Methane
(CHy) via Partial Least Squares (PLS) Analysis.

Predictor N,O CH,4 CO,
DO (%) - 1.01 2.90°
DOC (mg C L™ - 0.87 1.49%
% Forest 1.37% 1.33? 1.05%
PO~ (ugP L") 1.17 0.90 1.04°
% wetland - - 1.04%
pH 1.04 0.93 1.02
NH,* (ug NL™Y) 0.89 1.49° 1.01
FI - - 1.01
K" (mg K L™ 1.64° 1.17 0.91
DON (mg N L™ - - 0.86
SO,*” (mg SL™Y 1.19 1.07 0.85
HIX - - 0.83
DTR - - -

% agriculture 1.94° 1.90% -
Slope ratio - 0.89 -
C:N 0.85 - -

N 0.86 - -
Runoff (mm day™!) - - -
Temperature (C) 1.36° 0.87 -
NO;~ (mg NL™1) 1.73° 0.90 -

% Developed 0.93 1.76° -
Specific conductance 0.84 1.487 -
SUVA - - -

C — — —

“Bold-face denote top five VIP scores for each model (see Table 4).

Dashes represent VIP scores < 0.8 for a given predictor variable. Higher VIP
scores represent a greater influence on the model. Table is organized by CO, VIP
scores.

centrations with depth in the stream sediments
suggests that hyporheic conditions may be espe-
cially important in controlling CH,; dynamics in
stream water.

Our measured gas concentrations are comparable
to previously reported values across ecosystems.
Mean dissolved CO, concentrations (170 uM) and
consistent supersaturation in our study streams
(mean 928%) are similar to studies from the mid-
western USA (Crawford and Stanley 2016), and
higher than those reported for interior Alaska
(Crawford and others 2013). Nitrous oxide con-
centrations in our study, which averaged 55 nM
(416% saturation), were similar to those reported
for streams draining agricultural landscapes in the
midwestern USA (Beaulieu and others 2008) and
slightly lower than for sites in an agricultural
catchment in Sweden (Audet and others 2017).
Although previous studies have shown that heavily
impacted systems can be considerable sources of
N,O (Beaulieu and others 2008; Wilcock and Sor-
rell 2008; Baulch and others 2011; Audet and
others 2017), our data provide evidence that even
streams draining temperate and forested catch-
ments with modest levels of agriculture (averaging
12% among our study watersheds) and relatively
low concentrations of DIN (mean NO3;~ = 0.51 mg
N L™') can produce considerable amounts of dis-
solved N,O (Figure 2). Mean CH,4 concentrations in
our 20 streams (0.68 pM) fall within the reported
range of global CH, concentrations, though slightly
less than the average (1.35 uM) (Stanley and oth-

Table 4. Results from Linear Mixed-Effects Models (LMMs) with Fixed Effects and the Random Effect of

Site (not shown) for Dissolved Gas Concentrations.

Response Fixed effects p R?
R2, R?
N,O (nM) % agriculture 1.45 0.56 0.88
NO;~ (mg NL™) 0.27
K" (mg K L) 0.05
Temperature (°C) — 0.05
CH4 (LM) % agriculture —2.03 0.33 0.77
Specific conductance (uS cm™') 0.01
% forest — 134
CO5 (LM) DO (%) —0.01 0.51 0.77
DOC (mg C L) 0.07
% forest — 031
PO, (ngPL7Y —0.05

The fixed effects included in each initial model were selected based on the five highest variable importance on projection (VIP) scores as identified through partial least squares
(see Table 3). Fixed effects that did not significantly improve the model were dropped through stepwise backward deletion based on AIC resulting in the final fixed effects
displayed here. B values provide a measure of how strongly, and in which direction, each predictor influences the model. Marginal coefficient of determination (R,’) shows
variation explained by fixed effects alone, while the conditional coefficient of determination (R7?) accounts for variation explained by both fixed and random effects.
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Figure 8. Linear regression between porewater CH,
concentrations and porewater NH,/NO;  ratios
(r2 = 0.59, p < 0.001; ng.es = 9). Lower ratios indicate a
more oxidized environment (more NOs™), whereas
higher ratios indicate an environment more reduced
(more NH,").

ers 2016). Our streams were supersaturated with
CH; throughout the year (mean supersatura-
tion = 21,280%), consistent with growing evi-
dence that fluvial ecosystems are generally
supersaturated and thus sources of CH, to the
atmosphere (Stanley and others 2016).

Temporal Variability in Stream GHG
Concentrations

The temporal variability in concentrations of CO,,
N,O, and CH,4 provides insight into potential con-
trolling mechanisms across these temperate
watersheds. For all three gases, we observed low
concentrations in April which we attribute to high
flow conditions that either limit the accumulation
of dissolved gases or result in outgassing of previ-
ously accumulated gases (Dinsmore and others
2013b). Lower concentrations of CO, in April may
also be due to increased primary productivity rel-
ative to respiration given that the only occurrences
of supersaturation of DO are in the spring (Fig-
ure 4). Winter and summer peaks in dissolved CO,
occurred during periods of lower flow with maxi-
mum concentrations in August when stream tem-
peratures were the highest. These winter and
summer peaks are concomitant with periods of
high N,O and CH,, respectively. Higher N,O con-
centrations in winter suggests that this may be a
period of increased nitrification, when oxygen le-
vels were near saturation and NH,* concentrations
(mean > 70 ug N L™') were at their peak. In
contrast, spikes of N,O in the summer and fall
cooccur with pulses of NO3;™~ and occur at times of
lower O, saturation, which suggests denitrification
as the dominant pathway for production of N,O at
these times. Temporal patterns in N,O concentra-
tions with other metrics of stream chemistry indi-
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Figure 9. Depth profile of sediment porewater solute (A) and dissolved gas (B) concentrations at one site (PIK). Samples
at depth 0 cm represent surface water samples. Greater depths represent sediment depth at which samples were extracted.

cate that there may be a seasonal switch in the
primary N-cycling processes that drive concentra-
tions of N,O. Variable temporal patterns in N,O
production across sites (Beaulieu and others 2008,
2009; Baulch and others 2011; Audet and others
2017; Borges and others 2018) suggest that drivers
and pathways of N,O production may differ across
systems, further complicating management strate-
gies that aim to remove excess N from aquatic
ecosystems while avoiding gaseous loss as N,O
(Davis and others 2019).

Methane concentrations were lower during the
high flows associated with snow melt (March,
April), and higher during low flow periods (sum-
mer months), suggesting that CH, dynamics may
be inversely related to discharge (Stanley and
others 2016). In summer months, the combination
of low flow, high temperatures and low oxygen
availability, along with the depletion of more
favorable electron acceptors (NOs~ and sulfate;
S0,°7) provides conditions suitable for methano-
genesis. In August for example, one site (HVH) had
particularly high CH, concentrations associated
with low DO concentrations (43 %), likely due to a
near-stagnant pool caused by the buildup of debris
upstream of our sampling location. Including this
site nearly doubles mean CH,; concentrations for
August. Although some previous studies have ob-
served peak CH, concentrations in summer and

lower concentrations in winter (Dinsmore and
others 2013a; Borges and others 2018), others have
observed no clear seasonal pattern (Dawson and
others 2004). The lack of a consistent seasonal
pattern across temperate streams suggests that no
single factor, such as discharge, temperature or
oxygen availability, is consistently related to CH4
concentrations (Stanley and others 2016).

Drivers of Stream GHG Concentrations

Both the bivariate and multivariate analyses indi-
cated a unique set of predictor variables for each
gas. The strong negative relationship between DO
and CO,, identified through bivariate analysis, is
indicative of the tradeoff between respiration and
primary production, which may be happening
in situ or in the surrounding riparian soils (Fig-
ure 4; Borges and others 2015; Hotchkiss and oth-
ers 2015). The 1:1 line (with a slope of — 1) shown
in Figure 4 represents the expected relationship
between O, and CO, if we assume that aerobic
metabolism is accounting for most of the measured
stream water CO, concentrations. Similar to results
reported by Crawford and others (2014), our data
generally fall to the right of this 1:1 line, indicating
that there are additional sources of CO, beyond
aerobic respiration. This shift indicates the impor-
tance of external CO, sources (for example,
groundwater) in our study streams. However, it is
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important to note that forms of anaerobic respira-
tion, such as denitrification or methanogenesis,
also contribute to additional production of CO,,
suggesting that respiratory quotients may vary
(Crawford and others 2014).

The positive relationship between N,O and NO; ™
is consistent with many previous studies (for
example, Harrison and Matson 2003; Baulch and
others 2011; Audet and others 2017), supporting
the importance of denitrification as a source of
N,O. Although a positive relationship between
NO;~ and N,O concentrations is generally attrib-
uted to denitrification, it could be interpreted as the
accumulation of the products of nitrification
(Peterson and others 2001). Thus, future work
should investigate the proportion of N,O concen-
trations coming from denitrification versus nitrifi-
cation since management strategies to avoid
gaseous loss of N,O will likely differ depending on
the source pathway (Wymore and others 2019).

The unexpected positive relationship between K*
and N,O concentrations has, to our knowledge, not
been observed in other studies. Although we can-
not dismiss the possibility that this correlation is a
byproduct of other in-stream processes, collinearity
with NO5;~ concentrations (Figure S2), or changing
environmental conditions that could influence the
concentration of K* (for example, pH levels, cation
exchange), there are lines of evidence suggesting
that K" may play an active role in enhancing N,O
production. Potassium was shown to be an effective
catalyst in the reduction of NO to N,O and has been
found to increase N reductase enzyme activity in
plants; the same family of enzymes involved in
catalyzing the sequential steps of denitrification
(Khanna-Chopra and others 1980; Kapteijn and
others 1984; Villora and others 2003). Given that
our data do not allow us to untangle the mecha-
nism by which K" is influencing N,O concentra-
tions, the relationship between K™ and N,O should
be interpreted with caution, and we hope future
work will provide insight into interactions between
K* concentrations and N cycling processes.

In contrast to our analyses for CO, and N,O, the
variability in CH, concentrations across sites was
unexplained by any single predictor variable. Al-
though others have found a positive relationship
between concentrations of DOC and CH,, suggest-
ing that C availability drives CH, production
(Crawford and others 2016; Schade and others
2016), our data show no clear influence of DOC on
CH,4 dynamics. We also expected elevated NO;~
concentrations to inhibit CH, production, due to
either thermodynamic favorability or toxicity of
denitrification byproducts (Bodelier and Steen-

bergh 2014), but no distinct relationship was ob-
served between NO;~ and CH, Given the
contrasting results among various studies, further
research is needed to understand the relationship
between CH, production and NO3~ concentrations
(Crawford and Stanley 2016; Schade and others
2016) as well as to derive predictors of spatial and
temporal variability in CH4; concentrations in
streams.

Our multivariate approach using LMM allows us
to explore relationships between water chemistry
and land use (fixed effects) and gas concentrations,
while also accounting for differences among sites
(random effect). For all three gases, including site
as a random effect improves the variance explained
by the LMMs by 26-44% (Table 4). The increase in
explained variation for each model, resulting from
the inclusion of site as a random effect, indicates
that variability in unmeasured site-level charac-
teristics plays an important role in gas responses, a
point underscored by the fact that we observed
significantly greater spatial variability compared
with temporal variability. Characteristics influenc-
ing evasion rates, solubility (for example, temper-
ature, conductivity), and connectivity to the
surrounding landscape are possible factors influ-
encing site-level variability.

Our results from LMM suggest that the amount
of DOC available for respiration influences stream
CO, concentrations. The negative relationship with
DO% shown in both bivariate and multivariate
analyses, along with the positive influence of DOC,
suggests that CO, dynamics are driven by meta-
bolism and terrestrial organic carbon (Table 4;
Figure 4) (Cole and others 2007; Borges and others
2015). Our optical DOM data provide evidence of a
link between the surrounding terrestrial landscape
and stream CO, dynamics. Values of FI ranging
from 1.2 to 1.5 indicate allochthonous terrestrially
sourced DOM, and values between 1.7 and 2.0
indicate autochthonous DOM (McKnight and oth-
ers 2001). Our small range of FI values falls within
the range of allochthonous sources, underscoring a
strong landscape influence on CO, dynamics, a
finding confirmed through our identification of the
importance of external inputs to streams in this
region (Figure 4).

Geomorphological characteristics are thought to
be important drivers of methanogenesis (Stanley
and others 2016); however, we found no rela-
tionship between sediment characteristics and
surface water CH, concentrations. The only vari-
ables that significantly influenced the LMM for CH,
were % agriculture (—), % forest (—), and specific
conductance (+) (Table 4). Streams draining agri-
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cultural landscapes are often associated with ele-
vated concentrations of N and other nutrients
(Rabalais 2002). Thus, the negative relationship
between % agriculture and CH4 may be due to the
presence of excess nutrients that can inhibit pro-
duction of CH; (Aronson and Helliker 2010). The
negative relationship with % forest, in combination
with the positive relationship with specific con-
ductance, suggests that as watersheds become more
developed, higher amounts of CH, can be expected.
Other studies have shown that the degree of
catchment disturbance (for example, agriculture,
urbanization) can be related to the supply of fine
sediment due to mechanisms such as soil erosion
(Naden and others 2016) and that sediment depo-
sition is a major control of CH4 production in small
streams (Bodmer and others 2020). Similarly, our
porewater results highlight the importance of sed-
iment depth in controlling stream CH, concentra-
tions at sites with greater sediment deposition.

Porewater as an Indicator of CH,
Production

Sediment porewater data provide evidence that
variability in stream sediments may play an
important role in controlling CH4 production. Our
range of surface water to porewater ratios for CHy
shows that while some sites have higher concen-
trations in the surface water, many have consid-
erably higher CH,; concentrations in the deeper
sediments (Figure 7). To explore this potential
relationship, we developed a depth profile from
one of our study sites that shows the influence of
redox conditions similar to what we expected to see
in the surface water (Figure 9). Moving from the
surface water (depth = 0 cm) to the deeper sedi-
ments, concentrations of NH,* and CH, increase. In
contrast, the depth profile also shows a decline in
concentrations of NOs;~, N>O, and SO,>~ (Fig-
ure 9). The concurrent depletion of NO3~ and N,O
suggests that denitrification becomes limited by
NO;~ availability. Although our sampling tech-
nique did not allow for measurements of oxygen at
depth, increases in NH," with concurrent declines
in NO5;~ can serve as an indicator of the extent of
reducing conditions. This increase in NH," also
suggests that nitrification, another possible source
of N,O, is decreasing with depth. In addition to the
porewater depth profile (which could only be ex-
plored at one site), CH, concentrations were also
predicted by porewater NH,/NOs ratios (> = 0.59,
p < 0.001), with increased CH4 concentrations at
higher ratios. The depletion of oxygen and other
more thermodynamically favorable terminal elec-

tron acceptors (NOs;~ and SO,*”) with depth ap-
pears to create conditions suitable for
methanogenesis. We recognize that surface water
concentrations may not always reflect the pore-
water immediately below the point of sampling.
Thus, instances of a surface water to porewater
ratios greater than one may indicate delivery of
CH,4 from an upstream source, such as a wetland or
an upstream hyporheic flow path. Nonetheless, we
observed that porewater CH, concentrations are
often much higher than the surface water sug-
gesting that porewater is an important source of
CH,4 to the overlying water.

Results from our porewater analysis suggest
spatial segregation of biogeochemical processes (for
example, denitrification and methanogenesis) due
to differences in solute, energy, and oxygen avail-
ability between the surface water and varying hy-
porheic depths (Crawford and Stanley 2016). This
could explain why relatively high CH4 concentra-
tions and fluxes are observed in streams even when
inhibitory conditions exist in the surface water (for
example, high NOs;~ concentrations), especially
considering that there is often high deposition of
fine sediments in streams situated within impacted
landscapes (Naden and others 2016). These pore-
water results could also explain the lack of ex-
pected predictive relationships with between CHy
and other surface water measurements.

Greenhouse Gas Production in Stream
Environments

We propose a conceptual framework for small
streams (Figure 10) in which N,O production is
largely occurring in the surficial sediments, CH4
production is happening in deep sediments, and
CO, concentrations are largely due to external
sources influenced by the surrounding landscape.
Our study identifies the surficial sediments as par-
ticularly important to N,O production, given the
relationship of N,O to metrics of water chemistry
(NO5s~, K%), corroborating previous work high-
lighting the importance of benthic-hyporheic N,O
production in small streams (Marzadri and others
2017). In the deeper sediments, CH, production
becomes more important. The porewater depth
profile in combination with the relationship be-
tween porewater CH4 and NH,4/NO; ratios confirms
that a more reduced environment and depletion of
more favorable electron acceptors in the deeper
sediments creates hot spots of CH, generation.
These tight thermodynamic controls observed in
the porewater suggest that CH4 production domi-
nates as we move deeper into the hyporheic zone,
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Figure 10. Conceptual framework for greenhouse gas dynamics in small streams. White dashed arrows indicate
autochthonous production of CH4 and N,O. The black circular arrow represents in-stream processing of DOC and dissolved
nutrients. CO, concentrations are largely influenced by external inputs, whereas N,O production dominates in the
surficial sediments, and CH, production becomes more important in deeper sediments. Created with BioRender.com.

which releases CH, to the surface where it can be
transported downstream. Contrasting these benthic
controls, our results suggest that CO, concentra-
tions are largely linked to the surrounding terres-
trial landscape and external inputs. Optical DOM
data suggest an allochthonous source of DOC,
underscoring the role of the surrounding landscape
in fueling CO, dynamics, as has been suggested in
the previous studies (Hotchkiss and others 2015;
Campeau and others 2019; Rocher-Ros and others
2019). Future work on stream GHG dynamics can
expand this framework to help to disentangle what
proportion of measured concentrations result from
in-stream processing and external inputs and
transport.
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