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Topological insulators are a class of electronic materials exhibiting robust edge states immune to perturbations and
disorder. This concept has been successfully adapted in photonics, where topologically nontrivial waveguides and topo-
logical lasers were developed. However, the exploration of topological properties in a given photonic system is limited to
a fabricated sample, without the flexibility to reconfigure the structure iz situ. Here, we demonstrate an all-optical reali-
zation of the orbital Su-Schrieffer—Heeger model in a microcavity exciton-polariton system, whereby a cavity photon
is hybridized with an exciton in a GaAs quantum well. We induce a zigzag potential for exciton polaritons all-optically
by shaping the nonresonant laser excitation, and measure directly the eigenspectrum and topological edge states of a
polariton lattice in a nonlinear regime of bosonic condensation. Furthermore, taking advantage of the tunability of the
optically induced lattice, we modify the intersite tunneling to realize a topological phase transition to a trivial state. Our
results open the way to study topological phase transitions on-demand in fully reconfigurable hybrid photonic systems
that do not require sophisticated sample engineering. © 2021 Optical Society of America under the terms of the OSA Open

Access Publishing Agreement

https://doi.org/10.1364/OPTICA.426996

1. INTRODUCTION

Microcavity exciton polaritons (polaritons therein), hybrid quasi-
particles resulting from strong coupling of excitons and photons
in a semiconductor microcavity [1—4], have emerged as a perfect
platform for numerous applications in nonlinear and topological
photonics [5—12]. These interacting bosons combine a very low
effective mass inherited from cavity photons with repulsive inter-
actions inherited from excitons, allowing for bosonic condensation
atelevated temperatures.

Taking advantage of the photonic part of a polariton, one can
modify the planar microcavity by various fabrication techniques
and realize polariton trapping potentials, as well as a lattice of cou-
pled traps [10,13-15]. Additionally, the TE-TM polarized modes
splitting in a planar cavity results in an effective spin—orbit interac-
tion for polaritons enabling realizations of topological and flatband
systems [10,14,16,17]. Nevertheless, this technological approach
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has a major practical drawback, as once the sample is made, there
is little or no room for modification of its properties. This limits
the applications of polariton-based photonic topological devices,
where active control is highly desirable [18-21].

One of the possible ways to achieve active control is to use
surface acoustic waves, which simultaneously affect the cavity
and exciton energies [22,23]. Alternatively, only the excitonic
component of the polariton can be used for engineering the trap-
ping potential. Under nonresonant optical excitation above the
semiconductor material bandgap, the pumping laser creates a high-
energy excitonic reservoir [24], which acts as a non-Hermitian
potential that replenishes and repels polaritons due to exciton-
polariton interactions [13,25-27]. The excitonic potential can
therefore be shaped by a spatially structured laser excitation.

In this work, we employ a spatially structured laser beam,
imaged via a microscope objective onto a planar microcavity


https://orcid.org/0000-0002-2207-118X
https://orcid.org/0000-0003-0523-6533
https://orcid.org/0000-0002-5014-9466
mailto:maciej.pieczarka@pwr.edu.pl
mailto:elena.ostrovskaya@anu.edu.au
https://doi.org/10.1364/OA_License_v1#VOR-OA
https://doi.org/10.1364/OA_License_v1#VOR-OA
https://doi.org/10.1364/OPTICA.426996
https://crossmark.crossref.org/dialog/?doi=10.1364/OPTICA.426996&amp;domain=pdf&amp;date_stamp=2021-08-11

Research Article

(@) () w>u

w=0
dp /"~ L

FoNoNe .
SISN®) wp
/', l/

DMD

Laser beam

.
,
,
’

! (d)

Objective
tp <ty

Microcavity sample

Fig. 1.

Vol. 8, No. 8 / August 2021 / Optica 1085

(c) =200F

E (ueV)
o
T

y F )
2000 7
0 2 3 4 5 6

X

Eigenvalue
e F
w=1 ( ) 200
02G02GI0R0
< 1 23 45686
% 0 N D —
w L
O®©®®O oo |
N | 1 1
0 1 2 3 4 5 6
Eigenvalue

Realization of an orbital SSH Hamiltonian with a nonresonant optical excitation. (a) Simplified scheme of the experimental setup for creating

exciton polaritons in an optically induced trapping potential. Inset presents the spatial distribution of the laser pump reflected from the sample. Dark areas
correspond to polariton traps with the trap diameter D,,,, 7 5.9 um, arranged in a zigzag chain. White scale bar corresponds to 10 pm. (b), (d) Sketch
of the orbital SSH model for (b) topologically trivial and (d) nontrivial cases, realized with the trapped p-modes of different orientations A, D. (c),
(e) Eigenenergies of a tight-binding Hamiltonian model corresponding to the NV =6 chain in (b), (d). Edge states within the gap are indicated with an

arrow in (¢). Inset shows the probability density distribution of the edge state.

sample with embedded GaAs quantum wells (QWs) [see Fig. 1(a)].
Spatial structuring is achieved by selectively reflecting the laser
beam from a programmed digital micromirror device (DMD)
(see Methods, Section 2.A, for details). The spatial distribution
of the pump effectively creates a chain of coupled circular traps in
zigzag geometry, first proposed for realization of low-dimensional
topological systems in plasmonics and nanophotonics [28-33].
Exciton polaritons trapped in this optically induced chain realize
the orbital version of the Su-Schrieffer—Heeger (SSH) model,
previously demonstrated in etched samples with coupled micropil-
lars [14,15,34]. We note that an all-optical linear SSH chain [35],
with alternating separation between the lattice sites, was recently
created in the configuration of ballistically expanding condensates
from tightly focused excitation spots [17,36]. However, the band
structure analysis is very challenging in this configuration due
to complexity of the data, where the condensate is expanding in
all directions, preventing observation of topologically nontrivial
edge modes. We address these challenges by optically trapping
[25,37,38] the polaritons that naturally separate the condensate
from the reservoir. This is enabled by the efficient energy relaxation
in our samples [38], where the condensate forms in the lowest-
energy states of the trap instead of ballistically expanding. We
demonstrate the topological phase transition using a zigzag chain
of optically trapped polariton condensates, as described below.

The SSH chain [39] is the simplest realization of a topological
insulator in one dimension. Here, we focus on the SSH model
realized with the p-modes of each circular trap, coupled as shown
in Figs. 1(b) and 1(d). In contrast to linear chains with alternating
distances between the lattice sites [35,40,41], the orthogonality
of the p-modes makes the SSH model valid for d4 =dp =4,
where d4 and dp are the lattice constants in the antidiagonal (A)
and diagonal (D) directions [15]. This is because the tunneling
amplitudes in these two directions, 4 and #p, are different due to
the collinear or orthogonal alignment of the p-modes with the axis

linking the consecutive traps. As a result, two configurations exist
in finite length chains with an even number of lattice sites, with
the staggering order being trivial #zp > #4 for diagonal, pp, and
nontrivial #p < z4 for antidiagonal, p 4, mode orientations. The
two different configurations (phases) are presented in Figs. 1(b)
and 1(d). They are characterized by the phase winding numbers
W =0 for trivial and W =1 for topological phase (see Methods,
Section 2.B). The eigenenergies of a tight binding Hamiltonian
model, Eq. (1) for finite sized chains investigated in this work, are
presented in Figs. 1(c) and 1(e). The normal phase in Fig. 1(c) is
characterized by a spectrum with a trivial bandgap. The topologi-
cally nontrivial phase, presented in Fig. 1(e), differs from Fig. 1(c),
as two eigenvalues close to zero energy emerge in the bandgap.
The corresponding eigenstates are strongly localized at the edges
of the chain [see inset in Fig. 1(e)] and are an indicator of a topo-
logical phase. In short chains, the spectra are discrete, and the edge
states can have energies slightly different from zero, depending
on the ratio of the tunneling amplitudes z5/z,4. Nevertheless, the
topological properties of the system are maintained.

2. METHODS
A. Sample and Experiment

The sample used in the experiment is a high-quality GaAs-based
microcavity with a long cavity photon lifetime exceeding 100 ps
[42,43]. The cavity of length 31 /2 is enclosed between distributed
Bragg reflectors with 32 (top) and 40 (bottom) Aly ;Gag gAs/AlAs
layer pairs. The active region is made of 12 GaAs/AlAs QWs of
7 nm nominal thickness positioned in three groups at the max-
ima of the confined photon field. The measured Rabi splitting
is about A2 =15.94+ 0.1 meV. The experiments are done at
slightly varying positions on the sample that correspond to the
same photon—exciton detuning A = —0.43 meV. All results are
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obtained with a microcavity kept in a continuous-flow helium
cryostat, ensuring a sample temperature of 7 -8 K.

The nonresonant optical excitation was provided by a
continuous-wave (CW) Ti:sapphire laser (M Squared SolsTiS),
tuned to the cavity reflectivity minimum above the QW bandgap.
The Gaussian laser beam was transformed and focused to a top-hat
distribution by a shaping lens (Eksma Optics GTH-5-250-4) and
imaged onto the DMD. The shape of the lattice potential was
encoded on the DMD. which reflected the laser selectively, and
then imaged onto the sample via a set of lenses and a microscope
objective (numerical aperture NA =0.5) [26] [see Fig. 1(a)].
Photoluminescence from the sample was collected with the same
objective in reflection geometry and imaged with a set of confocal
lenses onto the slit of the spectrometer (Princeton Instruments
IsoPlane 320), equipped with a 2D sensitive CCD (Andor iXon
Ultra 888). The linewidth spectral resolution limit of the setup
was measured to be about 60 peV. The imaging lens in front of
the spectrometer was mounted on a motorized stage, enabling the
spectral tomography of the emission. The tomography was done
by collecting a set of spectral images, scanning the full real-space
emission by moving the image with respect to the entrance slit. The
step of the tomographical scan results in resolution in the vertical
direction of the images of about Ay ~0.25 pm, whereas the
resolution in the horizontal axis is set by the camera pixel size, and it
yields Ax ~ 0.35 pm.

The current experimental configuration is limited by the total
output power of the pumping laser. Generation of SSH chains
that are longer than those presented here is possible with higher
pumping power to maintain the same peak intensity on the sample.

B. Theory
The SSH model is described by a tight-binding Hamiltonian:

Hgsry = Z (tDﬁj&; + tadl A+ h.c.) , (1)

where 2; and 2, are the annihilation operators in the 7th unit cell of

alattice. The eigenfunctions of the Hamiltonian Hgpare given by
(e #® 1), with £ being the wave vector. The winding number
W is defined by

1 A (k)
= dk& a7
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corresponding to the Zak phase Z =WV, which is a 1D lattice
equivalent of the geometric Berry phase. In an ideal SSH model,
W =1 for tp <ty and W =0 for tp > t4. In our system, the
lattice is perturbed by a potential gradient and disorder. To include
these effects, we consider a Hamiltonian given by

=+ Y (Vi +2idla) . 0)

The potential energy is given by V; = v; + vy (7 — N/2), where v,
is a constant, v; is a random value representing disorder in the sys-
tem, and 2V is the number of unit cells in the lattice. For our simu-
lations vy = 0.2/ V, v; is randomly distributed within the interval
[£0.05], and energies are expressed in the unit of max(z4, #p).
Within the mean-field approximation, exciton polaritons
in optically induced potentials can be described by a driven-
dissipative equation for the polariton wavefunction, ¥ (x, y, #):
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where A =(1—14Ap), Ao is a phenomenological parameter
describing the energy relaxation [44], and m is the effective mass
of the polaritons. The net gain P(x, y) = Py(x, y) — v is given
by the difference between the pump strength (gain) Py (x, y) and
the loss y (linewidth). The parameter @ = (o — i) represents
the polariton—polariton interaction oz and nonlinear decay «;.
V(x, y) accounts for a real part of the potential (SSH lattice)
induced by the repulsive interactions of the polaritons with an opti-
cally injected excitonic reservoir, as well as for the energy gradient
in the cavity. For numerical simulations, we consider oz = ¢ and
a transformation ¥ — ¥/,/ax to obtain an equation describ-
ing the exciton polaritons: 7hdy/dt=[—(Ah*)/(2m)V?* +
iP(x, )+ Vix,y)+1— 19)|¥21¢. The assumption on oy
is for convenience, as the particular choice of this value determines
the overall losses, which result in a lower amplitude of the calcu-
lated field. Hence, the change of or; does not affect the qualitative
result of the simulation at a given pump strength . The loss and
effective mass parameters are obtained from the experimental data
in [42,43]. Considering the long lifetime of exciton polaritons
in our GaAs-based sample, we use a linewidth y = 5.5 peV cor-
responding to a lifetime of 120 ps. We take 72 =7.6 x 107> m,,
where m, is the mass of an electron. Other parameters were
chosen as Ay =0.05 meV and max(P) = 10.5 ueV, to fit the
phenomenology of the present experiment.

3. RESULTS

We investigate the optically induced SSH chain at pump powers
slightly above and well above the exciton-polariton condensation
threshold [see Figs. 2(a) and 2(b)]. The narrowing of the linewidth
of the exciton-polariton emission above the condensation thresh-
old allows us to resolve the ground and excited bands with the
corresponding bandgaps [Fig. 2(c)]. The low-energy s-band is
highly populated due to efficient energy relaxation of polaritons
towards the ground state [45]. This is in contrast to the obser-
vation in [35], where the condensate is formed in higher bands.
We also observe nonzero occupation of excited states forming a
higher-energy band [Figs. 2(c) and 2(d)].

The corresponding position-resolved spectrum at pumping
power Py~ 24.3 mW is presented in Fig. 3(a). The intense sig-
nal from the s-band at low energies is clearly separated from the
p-band by a bandgap. It indicates that the created potential con-
fines the excited states and realizes the physics discussed in Fig. 1.
More importantly, the p-band is split into two sub-bands [as seen
also in momentum space, Fig. 2(d)] corresponding to the bonding
(in-phase) and anti-bonding (out-of-phase) coupling between the
lattice sites (in analogy to electron orbitals in molecules). Despite
the small value of the energy gap between the two p-bands, it is
larger than the linewidths, allowing us to directly identify the local-
ized states at the edges of the SSH chain. The energies of these states
lie inside the p-band gap, as indicated by the arrows in Fig. 3. The
spectral cross sections in the bulk (i.e., the middle) and at the edge
of the chain are presented in Figs. 2(c) and 2(d), where the shaded
areas present the result of fitting the spectrum with Lorentzian
lines. Existence of the in-gap edge modes confirmed by these mea-
surements is a signature of a topological phase of the SSH lattice
[14,15,34,46]. We note that the occupation of all bands is not spa-
tially homogeneous, as the sample is characterized with an intrinsic
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Fig. 2. Power-dependent measurements in momentum space for the
N = 6 chain. (a) Power-dependent intensity extracted from momentum
space at # =0 for the s-band and at # =1 /d for p-bands. (b) Single-
particle polariton dispersion measured below the condensation threshold
at Py~ 6.0 mW, where the optically induced potential is negligible.
(c) Polariton dispersion slightly above the condensation threshold
Py~ 15.3 mW;s-band and p-bands are indicated. The bandgap between
the s- and p-bands is clearly visible. (d) Polariton dispersion above the
condensation threshold Py &~ 28 mW. Arrows indicate the condensate at
the s -band and the two upper p-band modes. The upper part of the image
with the weak p-band signal is enhanced for clarity. A bandgap between
p-bands is well resolved.

linear energy gradient due to the spatially varying thickness of the
cavity, oriented antidiagonally with respect to the x axis in the pre-
sented data. This effect is captured in our simulations of the full

1.6000 1.6000
(a) [ (b) %5
1.5998 15998 |-
s r S
L 15096 |- L 15996 . . co— -
>
8 ooa | 8 L —T— ..
@ 1.5994 & 1.5994 [
< c
w r w
1.5992 1.5992 - I
1.5990 1.5090 | | |
- -20 10 0 10 20
() (d)
1200 1200
S 1000 S 1000
g S 800
£ 800 §
2 600 [ > 600
[} (%]
& 400 |- & 400
€ €
200 |- — 200
obw v v b vy | 0
15992 15994  1.5996 15992 15994 15996 15998

Energy (eV)
Fig. 3.

Energy (eV)

open-dissipative mean-field model [see Methods, Section 2.B,
Eq. (4)], with the results presented in Fig. 3(b), showing an excel-
lent agreement with the experimental observations. We emphasize
that the simulations are based on experimentally determined
parameters of the sample. The energy gradient does not change
the topology of the system, as the polariton states at the individual
lattice sites are hybridized, which is reflected in the opening of the
bandgap of the p-modes. Moreover, the effect of the potential gra-
dient is more pronounced for the s-band than for the p-bands, as
seen in Figs. 3(a) and 3(b). This is because the s -states are confined
more tightly than p-states in a single trap, and thus the tunneling
between the sites is much weaker for s -states. As a result, they do
not hybridize in this zigzag configuration, and each lattice site is
characterized by a slightly different energy. On the other hand,
p-states at each lattice site lie at higher energies and have a larger
spatial extent, resulting in enhanced coupling between these states.
The effect of band formation only at higher order states has been
observed previously in microfabricated structures [47,48]. This is
why we focus on the p-band, which is hybridized and shows a well-
resolved topologically nontrivial bandgap [Fig. 3(c)], ensuring the
realization of the orbital SSH model.

The spatial distribution of the exciton-polariton density in the
chain is obtained by real-space spectral tomography, which enables
selective real-space imaging of the polariton emission intensity ata
given energy (see Methods). The experimental results are presented
in Figs. 3(e), 3(g), and 3(i) together with the results of numerical
modeling of Eq. (4) in Figs. 3(f), 3(h), and 3(j). The lower p-band
shows a characteristic spatial distribution of a bonding state, where
the p-modes from neighboring traps overlap [Figs. 3(i) and 3(j)].
The upper p-band shows an antibonding character with pro-
nounced density dips between the traps, indicative of the nodes in
the probability density distribution [Figs. 3(e) and 3(f)]. Finally,
the edge states are composed of an antidiagonal p-mode configu-
ration forming the topologically nontrivial realization of the SSH

model [Figs. 3(g) and 3(h)].
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Position-resolved spectrum and density distribution of exciton polaritons in the SSH chain. (a) Experimentally measured spectrum along the

chain with N = 6 sites, integrated over the orthogonal (y) direction. (b) Corresponding spectrum obtained by numerical simulations of the mean-field
open-dissipative model, Eq. (4) in Methods. Dashed horizontal lines indicate the p-bands and the bandgap. The p- and 4-band signals are enhanced 5 %, as
indicated in the figures. (c), (d) Experimental spectrum measured at a position (c) within the chain, and (d) at the edge of the chain [positions are indicated
by vertical dotted lines in (a)]. Shaded areas represent the result of fitting with Lorentzian lines. p-band and d-band peaks are in semitransparent blue, and
the edge mode peak is colored in semitransparent red. (e)—(i) Experimental images of the exciton-polariton emission corresponding to spatial density distri-
butions taken at the energies of the (e) upper p-band, (g) edge states (middle of the bandgap), and (i) lower p-band. (f)—(j) Density distributions obtained

by numerical simulations of the model Eq. (4) corresponding to (e)—(i). The scale bar corresponds to 10 tm, and the direction of the energy gradient in the

sample is indicated with an arrow.
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Fig. 4. Topological edge states in different lattice realizations. (a),
(c) Experimental spatial density distributions of the edge state for a
(a) chain of N =6 sites with a different orientation compared to the
chain in Fig. 3 and (c) chain of N = 5 sites. (b), (d) Results of numerical
simulations of the model Eq. (4) corresponding to the cases in (a) and
(c). The scale bar corresponds to 10 pm, and the direction of the energy
gradientis indicated with an arrow.

To test the robustness of the topologically protected edge states,
we imprinted different chains at different positions on the sample
with similar detunings. The edge state for the NV = 6 chain, similar
to that in Fig. 3, but with a different orientation with respect to the
energy gradient, is presented in Fig. 4(a) with the corresponding
numerical simulation shown in Fig. 4(b). For this orientation,
the diagonal p-mode configuration is the topologically nontrivial
one. Similar to the NV = 6 case, the orbital SSH model with an odd
number of sites supports two edge states; however, each edge state
comes from a different p-mode configuration [14,15,34]. This is
clearly seen in our experimental data for a chain with V=5 sites,
presented in Fig. 4(c), in agreement with simulations in Fig. 4(d).
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These results demonstrate the insensitivity of the all-optical reali-
zation of the orbital SSH model to the orientation of the energy
gradientand local disorder of the sample.

To demonstrate an optically driven topological phase transi-
tion in our system, we modified the topology of the V=6 chain
by changing the ratio between the tunneling amplitudes from
ta/tp > 1tots/tp < linthe N = 6 chain. The coupling between
the nearest-neighbor sites depends on the potential barrier height
as well as on the distance between the traps [49]. Therefore, we
increase the coupling #4 or #p by reducing the trap separations
in A or D directions, while keeping all other parameters con-
stant. Importantly, this changes the topology in the s-band as
well. Staggering of the couplings in the chain improves coupling
between s -states, and one observes a smaller influence of the energy
gradient and hybridization in this band.

In this way, we modified the SSH Hamiltonian for p 4 con-
figuration. Figures 5(a) and 5(b) present the intensity distribution
of the laser excitation reflected from the sample for the chains of
modified dimerizations. The chain maintaining the topological
phase is presented in Fig. 5(a), and the chain in the trivial phase is
shown in Fig. 5(b). In both cases, the lattice constant in one of the
directions was reduced by 20% compared to the case presented in
Fig. 3. The measured real-space spectra for these geometries are
shown in Figs. 5(c) and 5(d). One observes an increase in the topo-
logical and trivial bandgaps between the p-bands in comparison to
the unmodified chain: A E o, = 174 = 10 ueV for dp/d4=0.8
and AEy;,, =218 =8 eV for dp/d4=1.25 in comparison to
AEpo =151 £ 9 peV for dp/d4 = 1.0, in Fig. 3(a). The larger
values for the modified chains are a direct manifestation of the
control over the tunneling amplitudes, as the bandgap in the SSH
model is proportional to |tp — z4] (full set of values is presented
in Supplement 1). The geometrical modification leading to the
change of tunneling amplitudes influences the s-band as well,
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Measurement of the topological phase transition in SSH chains. (a), (b) Spatial distributions of the excitation intensity reflected from the sample

for the modified chains in the (a) topological and (b) trivial phases. The scale bar corresponds to 10 um. (c), (d) Experimental spectra corresponding to the
cases presented in (a), (b). (¢), (f) Numerically computed spectra corresponding to the experimental measurements in (c), (d). The p- and 4-band signals are
multiplied, as indicated in (c)—(f). (g) Intensity of the exciton-polariton edge state at the right end of the modified chains as a function of 4 /d 4. Inset shows
the intensity distributions measured in the middle of the p-band gap. (h) Winding number W calculated from the tight-binding Hamiltonian, including
the energy gradient and disorder [see Methods, Egs. (1)—(3)], as a function of 4 /p. The trivial phase is colored in blue, and the topological phase is colored
inred in (g), (h). Dashed line in (h) corresponds to the winding number calculated in the case without the potential gradient.
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which is now clearly split, and the signatures of edge modes are
visible in Fig. 5(c). The asymmetry of the p-band gap values is
caused by the energy gradient, which influences the sensitivity of
t4 and #p to the trap separation parameter. Additional input to the
tunneling amplitudes comes from the intrinsic TE-TM splitting
and weak birefringence of the sample [21,50].

The cavity gradient influences mostly the occupation of the
topological edge states in the measured spectrum in Fig. 5(c), with
one of the edge states dominating the spectrum. On the other
hand, the spectrum in Fig. 5(d) shows no signatures of the edge
states, as expected for a topological phase transition to a trivial
configuration with W = 0.

The flexibility of our all-optical potential allows us to tune the
lattice geometry parameters continuously. Thus, we performed a
series of measurements to pinpoint the topological phase transition
in the chain. Direct measurement of the winding number W is
challenging in our experimental configuration [51]. Instead, we
measure the intensity distribution at the mid-gap and observe
the appearance of edge states as a signature of the topological
phase [see Fig. 5(g)]. The transition to a trivial state occurs around
dp/ds~0.9 — 0.95, where we observe an abrupt change in the
intensity at the edge of the chain [there is a clear asymmetry in the
edge modes’ occupations for all realizations; see inset in Fig. 5(g)].
We reproduce this observation by calculating the winding number
in the tight-binding Hamiltonian, including the potential gradient
and random disorder, Egs. (1) and (3). The disorder, inevitably
present in experiments, softens the transition threshold. On the
other hand, the energy gradient moves the phase transition away
from the point z4/tp =1 [Fig. 5(h)], as observed in the experi-
ment. We highlight that the all-optical generation of the lattice
could also enable exploration of the intentionally designed disorder
and higher winding numbers in staggered zigzag chains [52].

4. CONCLUSION

To summarize, we have demonstrated an all-optically driven topo-
logical phase transition in a fully reconfigurable optically induced
orbital SSH lattice created in an open-dissipative exciton-polariton
system. The transition is controlled by fine-tuning the strength
of tunneling between the lattice sites. We emphasize that imple-
menting this kind of control would typically require fabrication of
many different samples with different implementations of lattice
geometries. Moreover, we have demonstrated the robust topologi-
cally protected edge states in a regime where exciton polaritons are
condensed and nonlinear (density-dependent) effects could begin
to play arole [53,54].

Our realization of the topologically protected edge states
depends on the Q-factor of the sample, as the bandgaps are
much smaller than those obtained in microfabricated samples
[14,15,34,51]. Hence, improved polariton linewidths (lifetimes)
[42] are essential to reliably resolve the band structure. Possible
ways to improve the measured linewidth-to-bandgap ratio is to
use a more photonic detuning (smaller linewidth) or decrease the
overlap with the reservoir, by tuning the trap size while maintain-
ing clear energy separation between trapped modes, essentially
engineering the gain/loss balance of the system.

We note that the demonstrated method of achieving a topologi-
cal phase transition in the all-optical realization of a SSH model
cannot be straightforwardly extended to other topological phases,
e.g., in two dimensions. While generation of 2D lattices by inco-
herent optical excitation is possible, adding additional resonant
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control beams allowing for the creation of effective magnetic fields
for polaritons would also be essential. Nevertheless, combined
with the experimental control of the gain and loss (linewidth) of
the trapped polariton condensates [20], our system represents
an attractive, flexible platform for further studies of topological
effects in a nonlinear and non-Hermitian hybrid photonic system.
For example, the nonlinear interactions of polaritons have been
predicted to induce topological Chern insulator type states, either
in part, by emulating a magnetic field that can be supplemented by
spin—orbit coupling [55,56], or fully, by also emulating spin—orbit
coupling [5,57]. Nonlinearity also has implications for the propa-
gation of polaritons in topological modes, where they form solitons
[53,58-60] and are predicted to exhibit bistability [61]. While the
advantage of topological modes is their isolation (in both energy,
where they exist in a bandgap, and space, where they are well
localized), this can also be a limitation if one wants to deliberately
couple them to other modes in the system. Again, nonlinearity
offers a possible solution, where the transfer of signals between
localized topological states via polariton edge modes has been
predicted by making use of polariton parametric scattering [62].

The combination of topological and non-Hermitian features
of polaritons sets the foundation for realization of topological
polariton lasers [34,63,64]. It could also enable the observation
of non-reciprocal behavior and topological non-Hermitian skin
effects [65], where all states of a lattice become localized at one
edge. The ability to control the topological properties of polaritons
with an external optical field suggests that one could engineer
different effective lattices for different polariton spin components.
This could be done by patterning also the polarization of the exter-
nal driving field, which is predicted to allow a polariton valley Hall
effect [66]. Further, the ability to change the incident optical field,
as we have done in this work, is promising for the possible dynamic
coupling of edge states [67] if it can be arranged on a faster time
scale. Finally, the flexibility of the polariton system could allow
realization of novel topological effects in hybrid systems, where
the unique features of polaritons are combined with intrinsically
magnetic materials [68].
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