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Abstract— In this paper, a data-driven neural hybrid system
modeling framework via the Maximum Entropy partitioning
approach is proposed for complex dynamical system modeling
such as human motion dynamics. The sampled data collected
from the system is partitioned into segmented data sets using
the Maximum Entropy approach, and the mode transition
logic is then defined. Then, as the local dynamical description
for their corresponding partitions, a collection of small-scale
neural networks is trained. Following a neural hybrid system
model of the system, a set-valued reachability analysis with
low computation cost is provided based on interval analysis
and a split and combined process to demonstrate the benefits
of our approach in computationally expensive tasks. Finally, a
numerical examples of the limit cycle and a human behavior
modeling example are provided to demonstrate the effectiveness
and efficiency of the developed methods.

I. INTRODUCTION

Neural networks are widely used in modeling for their
effectiveness without relying on the explicit mathematical
model or prior knowledge of the system in a variety of
research activities, e.g., modeling nonlinear dynamical sys-
tems in the description of Ordinary Differential Equations
(ODEs) [1], modeling thermal conductivity of water-based
nanofluid containing magnetic copper nanoparticles in [2],
studying the neural network models for groundwater-level
forecasting in coastal aquifers in [3], etc. However, due to
the high complexity of large-scale neural network models,
some computationally expensive tasks such as reachability
analysis, and safety verification are challenging to perform
on neural-network-based models. Therefore, computationally
efficient modeling methods are in critical need for neural
network-based models.

Since often viewed as black boxes, in most cases of data-
driven modeling, a neural network model, especially a Deep
Neural Network (DNN) model, may represent significant
computation challenges in the training and verification due
to their complex structures. When it comes to safety-critical
applications, the time consumption for verification of the
neural network model will be unacceptable. The verification
tools presented in [4], [5], [6] and [7] provide powerful
solutions to verify the neural network model, yet the com-
putational bottleneck still exists considering the complex
structure of the model. The recently proposed Pathways
Language Model (PaLM) [8] developed from the Mixture
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of Experts Model (MoE) [9] shines a new light on DNN
modeling by reducing the computational complexity through
multiple small-size neural networks which are activated
by a sparse gating system. Compared with DNN models
for complex applications such as graphics and language,
modeling the dynamic system with multiple Shallow Neural
Networks (SNNs) to approximate the local information of
the system makes the model more competitive (e.g., reducing
computational complexity) to train and verify.

Inspired by the results in [10], a complex dynamical
system can be modeled by a hybrid system with a finite
number of partitions plus transition logic among them. If
several small-scale dynamic learning processes in terms of
optimizations can be performed concurrently, the computa-
tional complexity of modeling the dynamical systems will
be significantly decreased. In the case of neural network
modeling, this will result in distributed training of neural
networks. In the framework of hybrid system modeling, the
neural network will be trained based on samples selected
by state space partitions. In this paper, we apply the data-
driven Maximum Entropy (ME) partitioning approach [11]
in bisecting the partitions that subsequently define the mode
transition logic. After that, we train a neural network to
approximate the dynamics in each partition. As a result,
the computational complexity in both training and post-
training verification processes will be reduced and due to
parallel training and much less computational complexity for
each step, the scalability thus can be further increased. In
summary, the main contributions of this paper include:

• A novel data-driven Maximum Entropy partitioning
method is proposed to characterize the dynamics into
different modes, i.e, to bisect the state space into
multiple partitions, simplify the model, and maintain the
training accuracy. This aims to advance state-of-the-art
of dynamical system modeling techniques with a focus
on improving the model scalability.

• The novel neural hybrid system modeling method will
be verified by analysis of set-valued reachability with
the help of our proposed Split and Combine process,
which provides a practical solution for the reachable
set computation of distributed neural network models.

The paper is organized as follows: Preliminaries are given
in Section II. The main result, a data-driven neural hybrid
system modeling framework, is given in Section III. In Sec-
tion IV, the analysis of set-valued reachability is provided for
the cases of neural hybrid system modeling in a simple limit
cycle and LASA data sets, which illustrate the effectiveness



of our method. Conclusions are given in Section V.

II. PRELIMINARIES

In this paper, we aim to model a complex dynamical
system in the general form of

x(k + 1) = f(x(k), u(k)) (1)

where f is an nonlinear function which assumed to precisely
describe the system dynamics while the state x ∈ Rd and
system input u ∈ Rn for any time step k = 0, 1, . . . .
Specifically, in neural network modeling, f is approximated
by one neural network in the form of

x(k + 1) = Φ(x(k), u(k)), (2)

where Φ is the trained neural network aiming to approximate
f based on given samples. However, one general neural
network will lead to a complex model, which results in a
computational burden in training and verification. Instead
of modeling the dynamics for state space Rd, we prefer to
model the dynamics in a localized state space where for all
the samples of the dynamics x ∈ X ⊂ Rd.

In order to break down a large approximation work into
several smaller tasks, localized state space can be split up
into subspaces known as partitions, defined as follows.

Definition 1: Localized state space X can be divided to
a collection of N subspaces, which satisfies X ⊆

⋃N
i=1 Pi

and Pi

⋂
Pj = ∅, ∀i ̸= j, in which the collection of sets

P = {P1, . . . ,PN}, is called partitions.
Remark 1: By classifying the system dynamics into dif-

ferent modes based on partitions, the neural network will be
able to approximate the local dynamics. The obtaining of
partitions should be a data-driven process when there is no
prior knowledge of dynamical systems. Partitions are useful
when we classify the system dynamics from samples, and
they pave the way for parallel training of neural networks in
approximating the dynamics. Specifically, neural networks
can approximate the dynamics from the samples within their
corresponding partitions.

A. Maximum Entropy Partitioning

The Maximum Entropy (ME) partitioning proposed in [11]
is able to divide the localized state space X into different
partitions based on the variation of the Shannon Entropy.
With ME partitioning, information-rich regions are allocated
more partitions and hence a more precise set of partitions
will be obtained while the regions with sparse information
are allocated fewer partitions.

The Shannon Entropy of a system with k partitions is

H(k) = −
k∑

i=1

pi log2 pi, (3)

where pi denotes the probability of occurrence of the par-
tition Pi. It should be noted that H(1) = 0 for p1 =
1. Accordingly, given the sufficient sample data set, the
probability of one partition Pi, pi is defined by

pi =
Ni

N
,

where N denotes the number of all samples while Ni denotes
the number of samples belonging to Pi.

The variation of Shannon Entropy h(k), k ≥ 2 after we
obtain k partitions can be denoted by

h(k) = H(k)−H(k − 1), ∀k = 2, . . . . (4)

We stop dividing the partitions when the variation between
two partitions becomes less than a threshold, ϵ ≤ h(k), in
order to obtain suitable partitions for the dynamical systems
[12].

B. Neural Hybrid System

A neural hybrid system model consists of variable com-
ponents describing both dynamics and the switching logic.
Given localized state space X and the set of partitions
P = {P1, . . . ,PN}, we define the neural hybrid system with
N partitions as follows.

Definition 2: A neural hybrid system is a collection of sets
H = ⟨P ,Φ, δ⟩ that includes partition set P , mode dynamics
description set Φ, and the mode transition δ.

For a neural hybrid system, it approximates f in localized
state space X with multiple neural networks in the form of

x(k + 1) = Φδ(x(k))(x(k), u(k)), (5)

by defining the index set I ≜ {1, 2, . . . , N} where N is
the number of subsystems and δ : X → I is a function of
state x denoting the switching signal which will activate the
neural network approximation Φi ∈ Φ ≜ {Φ1,Φ2, . . . ,ΦN}.
The switching function δ maps x(k) to its corresponding
subsystem in the form of

δ(x(k)) = i ⇐⇒ x(k) ∈ Pi.

Remark 2: Compared with neural network model (2) with
one single neural network, the dynamics of a neural hybrid
system (5) utilizes multiple neural networks for modeling.
It should be noted that the set of partitions plays an im-
portant role in this process, namely, the switching logic is
subsequently defined once the set of partitions is obtained.

In this work, we consider feedforward neural networks
in the form of Φ : Rn0 → RnL defined by the following
recursive equations in the form of{

η(ℓ) = ϕℓ(Wℓη(ℓ−1) + bℓ), ℓ = 1, . . . , L

η(L) = Φ(η(0))
(6)

where η(ℓ) denotes the output of the ℓ-th layer of the neural
network, and in particular η(0) ∈ Rn0 is the input to the
neural network and η(L) ∈ RnL is the output produced by
the neural network, respectively. Wℓ ∈ Rnℓ×nℓ−1 and bℓ ∈
Rnℓ are weight matrices and bias vectors for the ℓ-th layer.
ϕℓ = [ψℓ, . . . , ψℓ] is the concatenation of activation functions
of the ℓ-th layer in which ψℓ : R → R is the activation
function.

In addition, the training performance of the neural network
can be measured from the statistical point of view, i.e., Mean
Square Error (MSE). Given a training set W consists of q



input-output samples {xi, ti}, the MSE performance of Φ
can be measured by

MSE(Φ,W) =
1

q

q∑
i=1

√
(Φ(xi)− ti)2. (7)

ME partitioning provides automated data that yields var-
ious partitions, this can be further enhanced to improve the
model’s scalability. The neural hybrid model will perform
better in terms of scalability than the conventional model
because several smaller-sized neural networks may be trained
and tested in parallel, which saves computational resources.
The data-driven modeling problem with the neural hybrid
system is summarized below:

Problem 1: Given samples, the localized state space X ,
how does one extract the neural hybrid system model H =
⟨P ,Φ, δ⟩, including the following sub-problems:

1) How does one determine the partitions that character-
ized the system dynamics into different modes through
a data-driven ME partitioning process?

2) How does one approximate the dynamics within Pi

with neural networks Φi, i ∈ I and finally construct
the neural hybrid system model?

The rest of the paper will be focusing on solving Problem
1 in detail.

III. NEURAL HYBRID SYSTEM MODELING VIA ME
PARTITIONING APPROACH

The proposed modeling method aims to characterize the
dynamics based on the variation of Shannon Entropy. Specif-
ically, we aim to obtain the partitions of the localized state
space from ME partitioning.

First, we define the training set segmented by the partitions
as follows.

Definition 3: Given a training set Ŵ = {X,T} in which
X ∈ R(d+n)×q, T ∈ Rd×q are the input, output matrices for
q samples, and pre-specified partitions P̃ = {P1, . . . ,PM},
a collection of M segmented input-output data pair set W
can be defined as

W = {W(1),W(2), . . . ,W(M)}, (8)

where any input-output pair {xi, ti} ∈ W(j) satisfies

xi ∈ Pj , ∀{xi, ti} ∈ W(j). (9)
Remark 3: It is noted that the pre-specified partitions P̃ =

{P̃1, . . . , P̃M} such as the initial lattices of localized state
space X are not the partitions in P = {P1, . . . ,PN} in
a neural hybrid system model. There is a Merging process
developed to generate an optimized partition P out of P̃ in
the modeling framework, and normally N ≪M .

A. Bisecting via ME Partitioning

Maximum Entropy (ME) partitioning will divide the local-
ized state space X into multiple partitions while subsequently
segmenting the training set. In this paper, a partition is
considered in the form of interval denoted by P = [x, x] ⊂
X , in which x =

[
x1 . . . xd

]⊤
, x =

[
x1 . . . xd

]⊤
.

Specifically, we define the maximum length of P as

Dj,max ≜ ∥x− x∥∞ ,

in which j = argmaxi |xi − xi| , ∀i = 1, 2, . . . , d. The
maximum length for P is denoted by Dj,max which means
the maximum length is at jth dimension.

The bisection method in [13] divides one partition into
two at jth dimension, i.e., P(i) → {P(i,1),P(i,2)} where

x
(i,1)
j = x

(i)
j +

1

2
Dj,max,

x
(i,1)
j = x

(i)
j ,

x
(i,2)
j = x

(i)
j − 1

2
Dj,max,

x
(i,2)
j = x

(i)
j ,

in which x(i,1)j denotes the lower bound of P(i,1) at jth di-
mension, etc. The bisection process only bisects the interval
in one dimension and results in two interval sets, i.e.,{

x
(i,1)
k = x

(i,2)
k = x

(i)
k

x
(i,1)
k = x

(i,2)
k = x

(i)
k

, ∀k ̸= j, k = 1, . . . , d.

After P(i) → {P(i,1),P(i,2)}, the corresponding training
set W(i) → {W(i,1),W(i,2)}, thus the Shannon Entropy
from (3) will change. Let Ni =

∣∣W(i)
∣∣ denotes the number

of samples in P(i), when bisecting P(i) → {P(i,1),P(i,2)}
the variation of Shannon Entropy can be written in

hi =
Ni,1 log2

Ni,1

Ni,1+Ni,2
+Ni,2 log2

Ni,2

Ni,1+Ni,2

Ni
(10)

which suggests hi ≥ 0, i.e., the Shannon Entropy will
increase when we bisect any elements from P .

One partition will stop being bisected if the variation of
the Shannon Entropy hi ≤ ϵ. When ∀Pi ∈ P , hi ≤ ϵ,
the data-driven partitioning process will stop and lead to M
partitions in P̃ obtained.

Remark 4: Given the partitioning process only bisects one
partition in one step, the variation of Shannon Entropy will
therefore apply to the whole partitioning process, specifically,
the variation after one bisecting process can be written in
(10). Besides, a small value of threshold ϵ leads to a large
size of partitions which results in increased neural network
training while a large value of ϵ leads to a small size of
partitions which may provide inadequate for the system
dynamics.

B. Merging and Training Neural Hybrid Systems

Entropy-based partitioning can be further optimized from
the perspective of subsystems training after getting M par-
titions based on ME partitioning.

By setting a fix configuration of each individual neural
network, i.e., layers, neurons from each layers and their
activation function are the same, we can train a set of neural
network approximations Φ = {Φ1,Φ2, . . . ,ΦM} under the
set of segmented data W = {W(1),W(2), . . . ,W(M)} with

minWi,bi ∥Φi(Xi)− Ti∥ (11)



in which Wi, bi are the weight matrices and the bias vectors
for ith subsystem, Xi are input data matrix and Ti is output
data matrix from input-output pair W(i), respectively.

The above training process will result in M neural net-
works trained as dynamical descriptions for M lattices, how-
ever, a large number of subsystems will result in a complex
model which is not expected. We apply the Merging tech-
nique, which aims to simplify the model from the training
point of view while maintaining accuracy in approximating
the samples.

Considering two segmented training set W(i), W(j), i ̸= j
for ith and jth partitions, a given neural network configura-
tion, we train Φ with

minWi,j ,bi,j ∥Φi,j(Xi,j)− Ti,j∥ , (12)

in which Wi,j , bi,j are the weight matrix and bias vector of
Φi,j , Xi,j , Ti,j are the combined input matrix and target
output matrix in the form of Xi,j =

[
Xi, Xj

]
, Ti,j =[

Ti, Tj
]
.

Considering a training tolerance γ, if

γ ≥MSE(Φi,j ,W(i,j)) (13)

holds, then the two partitions will be considered to have a
similar training performance under the given neural network
configuration, and hence their corresponding partitions Pi

and Pj will be merged. The process of merging different
partitions based on training sets is called Merging. After
Merging, the set of partitions will be the set of partitions of
our neural hybrid system model. Due to redundant partitions
being merged, the complexity of our model will be reduced.

We merge the redundant partitions that have similar train-
ing performance under the same neural network configura-
tion and obtain P that subsequently define switching logic δ
for the neural hybrid automaton system after Merging, i.e.,
the switching of subsystems Pi → Pj can be abstracted
if there exist system state x(k) ∈ Pi and successive state
x(k + 1) ∈ Pj .

Neural hybrid system modeling with ME partitioning and
Merging can be summarized as follows.

• As the only coefficient in the process of ME partition-
ing, the threshold ϵ provides the least variation condition
of the Shannon Entropy to characterize the samples of
the dynamics, which means this data-driven process can
be easily tuned.

• The redundant partitions will be merged based on
the training performance of a given neural network
configuration, which will reduce the model complexity
while maintaining the accuracy in approximating the
dynamics.

After data-driven ME partitioning and dynamics learning
with Merging, we will be able to obtain the explicit H =
⟨P ,Φ, δ⟩ for complex dynamics.

IV. APPLICATION TO COMPLEX DYNAMICAL SYSTEMS
MODELING AND VERIFICATION

We apply the neural hybrid system modeling framework in
modeling the simple limit cycle and Human Cyber-Physical

System (HCPS), in which a single hidden layer neural
network known as ELM [14] will be served as the dynamical
description for the neural hybrid system model. We will show
the advantage of our proposed modeling method by verifying
our neural hybrid system model and the conventional neural
network model through analysis of set-valued reachability.

A. Set-Valued Reachability Analysis

Analysis of set-valued reachability for a neural network
model can be referred to as safety verification in [15].
However, the computation of reachable sets usually repre-
sents high computational complexity due to the large size
of the single neural network model. In this paper, we will
demonstrate the advantages of our proposed method through
the analysis of set-valued reachability. The reachable set of
neural networks (6) is given as follows.

Definition 4: Given neural network (6) with a bounded
input set X(k) at kth time step, the following set

X(k+1) ≜ {x(k + 1) | x(k + 1) = Φ(x(k)), ∀x(k) ∈ X(k)}
(14)

is called the reachable set of neural network (6) at k + 1th
time step.

In the case of neural hybrid system modeling, X(k) may
intersect multiple elements from P , which means there will
be a split computation of reachable set for each intersection.
This process is called Split and is defined as follows.

Definition 5: For a reachable set X(k) of H intersects with
l elements of P , given a subspace Vi,k from X(k) in which
Vi,k : Vi,k = (X(k) ∩ Pi); ∪ Vi,k = X(k), ∀i = 1, . . . , N ,
the process of splitting analysis of the output space Vi,k+1

is given by

Vi,k+1 ≜ {ηi,k+1 | ηi,k+1 = Φm(ηi,k), ηi,k ∈ Vi,k} (15)

where the process of obtaining Vi,k+1, ∀i = 1, 2, . . . , N is
called Split.

After Split, the Combine process is needed to obtain a
complete reachable set for the next step.

Definition 6: For Vi,k+1, i = 1, . . . , l the output reach-
able set X(k+1) for a neural hybrid system model H at time
step k + 1 is given by

X(k+1) ≜
l⋃

i=1

Vi,k (16)

by which the Combine derives the reachable set at k + 1th
time instance.

With the Split and Combine defined above, the reachable
set of H can be parallel analyzed at time instance k if X(k)

intersects with multiple elements from P .
Remark 5: According to [6], [15], [16], the computational

cost for the set-valued analysis of the neural network is
mainly affected by the scale of the neural network model,
e.g., the layers and neurons of the neural network model. In
our case, due to parallel training of shallow neural networks,
the neural hybrid system model may have less computational
cost compared with traditional methods.



B. Simple Limit Cycle

A numerical example of a limit cycle system borrowed
from [17] is used to validate our approach. The mathematical
model is in the form of

r(k + 1) = (1 + τ)r(k)− τr3(k) + τu(k)

θ(k + 1) = θ(k) + τω (17)
u(k) = µ+ δζ(k)

where ω = 2π/3 and τ = 0.1 are the angular velocity and
time step width, respectively. The uniform random number
ζ(k) ∼ U(−1, 1). Namely, the external input u(k) ∼ U(µ−
δ, µ+ δ) (µ = 0.2 and δ = 1.5) in which U denotes uniform
distribution.

We obtain the samples by giving the mathematical model
(17) random initial condition when r(0) ∈ [−4, 4], θ(0) ∈
[−π, π]. The data obtained is represented by a right-angle
coordinate system, namely, x = [x1, x2]

⊤. Then, we bisect
the state space with data-driven ME partitioning where the
threshold ϵ × |W | = 40, the partitions and the trajectories
are shown in Fig. 1 (a).

After we obtain the partitions, we merge the redundant
partitions of the neural hybrid system model with a tolerance
δ = 3×10−5, and a fixed ELM structure with 40 neurons and
ReLU as the activation function. The merged set of partitions
is shown in Fig. 1 (b).

(a) Samples and ME Partitioning.
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(b) Merging Redundant Partitions.

Fig. 1. (a) Trajectories of the limit cycle with random initial condition
r(0) ∈ [−4, 4], θ(0) ∈ [−π, π] each of which contains 150 samples
and the input u ∼ U(−1.3, 1.7) while we bisect the input space into
56 partitions using ME partitioning. (b) Redundant lattices are merged into
three partitions, namely blue (4 redundant partitions are merged), green (7
redundant partitions are merged), and red partitions (21 redundant partitions
are merged), there are 27 elements in the set of partitions in total.

As observed in Fig. 1, the merging process has signif-
icantly reduced the number of partitions, i.e., from 56 to
27 partitions, as a result, the neural hybrid system model
will be simplified. Neural network model Φ̂ with 200 hidden
neurons with similar MSE is trained as well for comparison
study. The time consumption for neural networks training and
analysis of set-valued reachability and the MSE performance
are given in Tab. I. It can be observed that neural hybrid
system model H is with a significant time reduction in the
analysis of set-valued reachability while having a similar
output set estimation Fig. 2, which indicates our modeling
framework is computationally efficient while sacrificing little
in accuracy.

TABLE I
MSE AND TIME CONSUMING OF H AND ELM MODEL

Method MSE Training Set-valued Reachability
ELM 0.01669 4.614492 s 6.13474× 104 s
H 0.06913 0.242433 s 521.8130 s

-1 0 1 2

x
1

-1

0

1

2

x
2

Fig. 2. Output reachable set of single ELM model (purple) and the neural
hybrid system model (blue) given initial condition x1 ∈ [1.8, 2.0], x2 ∈
[1.8, 2.0] for 200 times steps, they have a similar reachable set estimation
while the time consuming for H is significantly less.

TABLE II
MSE AND TIME CONSUMING OF H AND ELM MODEL (SPOON)

Method MSE Training Set-valued Reachability
ELM 1.8556× 10−4 0.352899 s 8.4465× 104 s
H 5.7373× 10−4 0.005796 s 69.9705 s

TABLE III
MSE AND TIME CONSUMING OF H AND ELM MODEL (P SHAPE)

Method MSE Training Set-valued Reachability
ELM 2.4879× 10−4 0.042067 s 4.53482× 104 s
H 4.5054× 10−4 0.004505 s 242.8855 s

We use parallel-trained ELMs as the descriptions for the
local partitions of the system, hence the time of training H is
the longest time from the training of a set of neural networks.

C. Human Cyber-Physical Systems

Learning-based methods have been promoted as an effec-
tive way to model motions [18], [19]. Consider a Human
Cyber-Physical system (HCPS) borrowed from the LASA
data set [20] which contains 20 handwriting motion demon-
strations of human users. We model the Spoon and P shape
with our proposed neural hybrid system models with 20
neurons each subsystem. Fig. 3 (a), (b) are the partitions
obtained from the data-driven ME partitioning when ϵ |N | =
40, while Fig. 3 (c), (d) are the merging partitions, while
there are 9 partitions in (c), and 58 partitions for (d).

In summary, this HCPS modeling demonstrates that the
proposed neural hybrid system models can capture behaviors
of complex dynamical systems with high modeling accuracy
but significantly lower computational complexities in training
and verification, which are traditionally considered to be
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(a) Samples and Partitions (Spoon
Shape).
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(b) Samples and Partitions (P
Shape).
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(c) Merging Redundant Partitions
(Spoon Shape).
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(d) Merging Redundant Partitions (P
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Fig. 3. There are 50 partitions from (a) while 94 partitions from (b). From
(a) to (c), there is one merged partition (red) in (c). In (d), there are three
merged partitions where green (15 redundant partitions are merged), red
(17 redundant partitions are merged), and blue (5 redundant partitions are
merged), there are 27 elements in the set of partitions in total.

(a) Spoon Shape Modeling. (b) P Shape Modeling.

Fig. 4. Output reachable set of single ELM model with 200 neurons (blue)
and the hybrid system model with 20 neurons each subsystem (red) for 850
steps by given initial conditions wherein (a) x1 ∈ [−47.02,−47], x2 ∈
[0, 0.2] and in (b) x1 ∈ [−18.02,−18], x2 ∈ [−18.02,−18].

computationally expensive tasks for neural network models.

V. CONCLUSION

In this paper, a neural hybrid system modeling with ME
partitioning is developed to model the dynamical system.
First, sampled data is generated by the dynamical system
given random initial conditions. Then, the state space is
bisecting into multiple partitions based on the variation
of the Shannon Entropy. Neural networks are trained as
the dynamical description for their corresponding partitions.
The set-valued reachability is analyzed by the reachable set
computation with Split and Combine processes. Modeling a
numerical example of the limit cycle and the application to
human handwriting modeling with our proposed modeling
method are presented to illustrate the effectiveness. Com-
pared with modeling with one single neural network, the
computational cost can be significantly reduced for compu-

tationally expensive tasks such as neural network training
and reachable set computation, etc.
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