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Enrichment of saccharides at the air—water interface: a
quantitative comparison of sea surface microlayer and foam
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Environmental context.

Saccharides contribute substantially to dissolved organic carbon in the ocean and are enriched at the
ocean surface. In this study, we demonstrate that saccharides are more enriched in persistent whitecap foam compared to the sea
surface. The maturation of bubbles at the air—water interface is thus expected to enhance the enrichment of organic matter at the
ocean surface and ultimately in the sea spray aerosol that forms when bubbles burst at the ocean surface.
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ABSTRACT

Rationale. Organic matter accumulates at the ocean surface. Herein, we provide the first
quantitative assessment of the enrichment of dissolved saccharides in persistent whitecap foam
and compare this enrichment to the sea surface microlayer (SSML) during a 9 day mesocosm
experiment involving a phytoplankton bloom generated in a Marine Aerosol Reference Tank
(MART). Methodology. Free monosaccharides were quantified directly, total saccharides were
determined following mild acid hydrolysis and the oligo/polysaccharide component was deter-
mined as the difference between total and free monosaccharides. Results. Total saccharides
contributed a significant fraction of dissolved organic carbon (DOC), accounting for 13% of DOC
in seawater, 27% in SSML and 31% in foam. Median enrichment factors (EFs), calculated as the
ratio of the concentrations of saccharides relative to sodium in SSML or foam to that of seawater,
ranged from 1.7 to 6.4 in SSML and 2.1-12.1 in foam. Based on median EFs, xylitol, mannitol,
glucose, galactose, mannose, xylose, fucose, rhamnose and ribose were more enriched in foam
than SSML. Discussion. The greatest EFs for saccharides coincided with high chlorophyll levels,
indicating increasing ocean surface enrichment of saccharides during phytoplankton blooms.
Higher enrichments of organic matter in sea foam over the SSML indicate that surface active
organic compounds become increasingly enriched on persistent bubble film surfaces. These
findings help to explain how marine organic matter becomes highly enriched in sea spray aerosol
that is generated by bursting bubbles at the ocean surface.

Keywords:
sea surface microlayer, sugar alcohols, ultrafiltration, whitecap foam.
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Introduction

Seawater, in addition to salt, contains complex matrix organic compounds, with saccha-
rides (carbohydrates), proteins and lipids being the predominant compound classes
(Larsson et al. 1974; Henrichs and Williams 1985; Garabetian et al. 1993; Aluwihare
et al. 1997). Saccharides, in particular, are present in a variety of chemical forms,
including sugar alcohols (e.g. arabitol, mannitol), free monosaccharides (e.g. glucose,
galactose), oligo/polysaccharides (e.g. glucan, transparent exopolysaccharides or TEP)
and saccharides complexed with other molecules such as lipids and protein (e.g. lipopo-
lysaccharides, glycoproteins) (Borch and Kirchman 1997; Verdugo et al. 2004; van
Pinxteren et al. 2012). These saccharides serve as substrates for energy storage and the
formation of structural materials (e.g. cell walls) of marine micro-organisms (Haug and
Myklestad 1976; Dean Pakulski and Benner 1992; Hung et al. 2001; Verdugo et al. 2004).
They have been estimated to contribute up to 40% of dissolved organic carbon (DOC) in
the ocean with levels dependent on biological activity (Dean Pakulski and Benner 1992;


https://www.publish.csiro.au/
https://www.publish.csiro.au/
https://doi.org/10.1071/EN22094
www.publish.csiro.au/en
www.publish.csiro.au/en
https://orcid.org/0000-0003-0078-141X
mailto:betsy-stone@uiowa.edu
https://doi.org/10.1071/EN22094
https://creativecommons.org/licenses/by-nc-nd/4.0/

www.publish.csiro.au/en

Environmental Chemistry

Skoog and Benner 1997; Biersmith and Benner 1998;
Engbrodt and Kattner 2005). During a phytoplankton
bloom, the molecular composition of saccharides is altered
by phytoplankton and bacteria (Ittekkot 1982). Glucose and
fructose are the monomers of major energy-related polysac-
charides in phytoplankton (e.g. glucan, fructan) and are
released in large quantities following the peak of the bloom
due to phytoplankton lysis and can also be released under
stressed conditions such as low nutrients, elevated tempera-
ture and high light exposure (Mopper et al. 1980; Ittekkot
1982; Compiano et al. 1993; Thornton 2014). Galactose,
mannose, xylose, fucose, rhamnose and arabinose comprise
less labile, structurally related polysaccharides that are
released by bacterial breakdown of phytoplankton cellular
materials. Meanwhile, fucose, arabinose and rhamnose-
containing polysaccharides are synthesised by stressed phyto-
plankton under nutrient deficiency, and elevated levels of
these carbohydrate monomers are observed during phyto-
plankton bloom decay (Ittekkot 1982; Ittekkot et al. 1982;
Compiano et al. 1993). In addition, polysaccharides contain-
ing rhamnose and arabinose are associated with bacterial
secretions and are elevated in areas of the ocean with rela-
tively high bacterial activity (Liebezeit et al. 1980; Ittekkot
1982; Miihlenbruch et al. 2018; Hasenecz et al. 2020). Hence,
the changes in the concentrations and molecular distributions
of saccharides can provide insights to biochemical processes
controlling DOC in the ocean (Ittekkot 1982).

Breaking waves entrain air in sub-surface seawater.
As tiny bubbles rise to the ocean surface, they scavenge
surface-active materials in marine DOC (e.g. lipopolysac-
charides), leading to their accumulation at the ocean surface
(Mopper et al. 1995; Zhou et al. 1998; Cunliffe et al. 2013;
Burrows et al. 2014). In general, bubbles that reach the
surface may either burst instantly (<1s) or persist for an
extended period of time (10-100s), producing a persistent
layer of whitecap foam (Callaghan et al. 2012; Modini et al.
2013). Elevated levels of either DOC or surface active mate-
rial in seawater increases bubble lifetime, leading to more
persistent bubbles (Callaghan et al. 2013; Modini et al
2013; Collins et al. 2014). As bubbles age, bubble films
decrease in thickness (1 um-100nm) as less surface-active
materials drain to the base of the bubble creating a highly
organic-enriched bubble film (Modini et al. 2013; Burrows
et al. 2014). Surface active materials reside at the interior
and exterior surfaces of the bubble film and become
enriched (Burrows et al. 2014). The drainage creates a
thin (20-400 pm), chemically distinct film at the ocean
surface referred to as the sea surface microlayer (SSML)
(Cunliffe et al. 2013; Burrows et al. 2014). Bubble films
have been predicted to exhibit higher enrichment than the
SSML because of their larger surface area to volume ratio
and this drainage process (Burrows et al. 2014).

The extent of the accumulation of material at the ocean
surface is often quantitatively evaluated by enrichment
factors (EFs). An EF for species x (saccharides) relative to

sodium (Na*) in phase i (either SSML or foam) over sea-
water can be calculated by Eqn 1.

[x];/[Na'];

EE () =
o [xJseawater / [N& Jseawater

)

An EF greater than one indicates enrichment of species
x relative to sodium in phase i, while an EF less than one
indicates depletion. Prior studies have demonstrated enrich-
ment of DOC, organic and inorganic species in the SSML
(Compiano et al. 1993; Gao et al. 2012; van Pinxteren et al.
2012). In particular, DOC in the SSML has been reported to
be enriched 0.8-1.6 times than in seawater (Garcia-Flor
et al. 2005; Wurl and Holmes 2008). Furthermore, enrich-
ment of total saccharides has been observed in the SSML
with EFs ranging from 0.7 to 12.1 across field and labora-
tory studies, indicating a selective enrichment of saccharides
over bulk DOC (Compiano et al. 1993; Gao et al. 2012; van
Pinxteren et al. 2012; Jayarathne et al. 2016). It has been
proposed that water soluble saccharides may chemically
adsorb to organic surfactants that have more affinity
towards bubble films and be co-transported to the ocean
surface (Burrows et al. 2016; Schill et al. 2018; Vazquez de
Vasquez et al. 2022). Such an association may be even
stronger with oligo/polysaccharides due to the presence of
multiple binding sites (-OH) able to interact with anionic
head groups (-COOH) of the surfactant molecules facilitated
by multivalent cations (e.g. Mg®*, Ca®*) (Kundu et al
2008; Li and McClements 2014; Vazquez de Vasquez et al.
2022). Furthermore, phenolic (Ar-OH), aromatic and other
hydroxy (R-OH) functional groups within extracellular
polymeric substances (EPS) that are produced by marine
micro-organisms can self-assemble by chelation with multi-
valent cations (Xu et al. 2016). These macromolecules form
TEP or larger DOC colloids and selectively transfer to the
ocean surface via scavenging on rising bubbles and/or by
positive buoyancy (Garabetian et al. 1993; Dai et al. 1998;
Verdugo et al. 2004). Similarly, aggregation of colloidal dis-
solved organic matter via multivalent metal ions may provide
a conduit from the dissolved to particulate carbon pool, and
eventually form marine snow that sinks in the ocean and
removes DOC from seawater (Verdugo et al. 2004).
Enrichments of saccharides have not been quantitatively
evaluated for persistent bubble films. Meanwhile, it has
been suggested that extremely high organic enrichment
(10%-10% in sea spray aerosol (SSA) may result from
organic matter being selectively enriched on bubble film
surfaces prior to bursting (Russell et al. 2010; Burrows
et al. 2014). Collins et al. (2014) demonstrated a preferen-
tial enrichment of organic matter in SSA in the presence of
foam compared to free bubble bursting at the ocean surface.
Furthermore, fine SSA (with particle diameters <2.5um)
has been demonstrated to be more enriched in saccharides
than coarse SSA (with particle diameters 2.5-10 um), which
is proposed to result from fine SSA generation by the
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bursting of bubble films, called film drops, that have the
greatest carbohydrate enrichment (Jayarathne et al. 2016).
Such size-dependent saccharide enrichment in SSA has been
demonstrated by several complementary techniques in
numerous studies (Russell et al. 2010; Quinn et al. 2014;
Jayarathne et al. 2016; Aller et al. 2017; Rastelli et al.
2017). Furthermore, it was reported that dissolved and
particulate saccharides selectively transfer to fine and coarse
SSA particles, respectively, which was proposed to result
from the inclusion of particulate organic carbon comprised
of cell wall materials into coarse particles (Jayarathne et al.
2016). On a molecular level, surface activity, chelation of
divalent cations and the seawater matrix have been demon-
strated to impact saccharide enrichment (Hasenecz et al.
2019). In addition, phytoplankton blooms and the enzymatic
activity of heterotrophic bacteria are associated with the
largest saccharide enrichments in SSA (Hasenecz et al
2020). As the air-water interface is involved in SSA produc-
tion, it is essential to understand its chemical composition in
order to predict the chemical composition of SSA and its
potential to influence atmospheric processes and the climate.
The central objective of this study is the quantitative
assessment of saccharide enrichment in SSML and sea foam
over a full phytoplankton bloom cycle. A Marine Aerosol
Reference Tank (MART) was used for foam production pro-
viding an accurate mimic for wave breaking, air entrainment
and bubble generation that occurs in the marine environment
(Stokes et al. 2013). This study provides insight to the enrich-
ment of saccharides in sea foam compared to SSML that is
relevant to the formation of SSA at the air-water interface.

Experimental

Sample collection and preparation

A mesocosm was created in a MART following the method
described by Lee et al. (2015) during the Investigation into
Marine Particle Chemistry and Transfer Science (IMPACTS)
laboratory study. The experiment was conducted under natu-
ral sun light using natural sea water collected at the end of
Scripps Pier (La Jolla, CA; 32°52’00”N, 117°15’21”W; 275m
offshore). Guillard’s f medium diluted by a factor of two (f/2)
including Na,SiO; was used as nutrients to stimulate the
growth of phytoplankton. A full list of nutrient components,
their concentrations and microorganisms present in a parallel
MART experiment are described in detail by Lee et al. (2015).
The phytoplankton biomass of the MART was monitored
immediately before the sample collection by chlorophyll-a
(chl-a) levels using a Wetlabs ECO BBFL2 sensor and Turner
AquaFluor handheld unit, with further details and calibration
procedures provided by Wang et al. (2015).

Seawater samples were collected from 15 to 20 cm below
the air-water interface of the MART using a disposable
plastic pipette and SSML samples were collected from the
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upper 35-42 um of the air-water interface following the mem-
brane filter method for nine consecutive days (Cunliffe et al.
2013). Foam samples were collected from day 3 to 9 using an
auto-pipette by rastering the pipette tip over the foam layer
(Supplementary Fig. S1). The foam was generated by plunging
the MART acheived by impacting a water sheet on the water
surface to mimic the plunging jet of water from a breaking
wave crest (Stokes et al. 2013; Collins et al. 2014). The MART
was plunged for 5min and accumulated foam was immedi-
ately collected. Several plunging cycles (10-15 cycles) were
carried out to collect sufficient volume of foam for the chemi-
cal analysis. All samples were stored in polypropylene bottles
in the dark and frozen (—20°C). Prior to chemical analysis,
samples were filtered (450nm PTFE filters, Whatman) to
isolate DOC, operationally defined as solutes and colloids
smaller than 450 nm. A subset of seawater, SSML and foam
samples (corresponding to days 1-3, 5, 7 and 9) were sub-
jected to ultrafiltration for fractionation of material <3 kDa
and <100 kDa using Amicon centrifugal ultracel membrane
filters (Sigma-Aldrich). These cutoff diameters are referenced
to globular proteins and in general ~1 kDa refers to a globu-
lar protein of ~1nm in diameter (Ogura 1974; McCarthy
et al. 1996; Erickson 2009). Based on that approximation
DOC smaller than 450 nm corresponds to solutes and colloids
smaller than ~450 kDa.

Saccharide and DOC analysis

Instrumental analysis of saccharides was performed by high
performance anion exchange chromatography (HPAEC)
(Dionex-ICS 5000) with pulsed amperometric detection
(PAD) following the conditions described by Jayarathne
et al. (2016). Samples were analysed in four ways: (1) direct
analysis to quantify free monosaccharides, (2) hydrolysis
using trifluoroacetic acid (0.1 M) at 100°C for 12h for
total saccharides, (3) 3 kDa ultrafiltration and then hydroly-
sis and (4) 100 kDa ultrafiltration and then hydrolysis. This
allowed for saccharides to be quantified in four size bins:
free monosaccharides, low molecular weight (LMW) oligo-
and polysaccharides less than 3 kDa, high molecular weight
(HMW) polysaccharides ranging from 3 to 100kDa and
colloidal polysaccharides ranging from 100 kDa to 450 nm.
Analytical uncertainties were propagated from the method
detection limits and 10% of the saccharide concentration
based on spike recovery samples.

DOC was analysed using a Sievers 5310C Laboratory Total
Organic Carbon Analyzer (GE Instruments) and inorganic ion
concentrations were analysed by ion-exchange chromatogra-
phy coupled with conductivity detection as described in
detail elsewhere (Jayarathne et al. 2014). The enrichment
of saccharide relative to Na™ in SSML and foam with respect
to seawater was calculated using Eqn 1. Equal volumes of
day 1-4 and day 5-9 seawater, SSML and foam samples were
composited together to represent time periods of high chl-a
and bacteria, respectively.
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Results and discussion

Biological activity of the seawater

The initial chl-a concentration of the seawater was 3.1 ug L ™"
(day 0) indicating a mild phytoplankton bloom was occurring
in the coastal ocean (Quinn et al. 2014; Lee et al. 2015).
Addition of nutrients and exposure to natural sunlight trig-
gered the growth of phytoplankton, increasing to a maximum
chl-a level of 45.4 ug L~ " on day 2 (Fig. 1). Natural levels of
chl-a in the open and coastal ocean have been observed in the
range of 0.03-40 ug L™! (Cloern 1996; Quinn et al. 2014).
Chl-a levels rapidly declined to a minimum of 0.24 ugL~' on
day 5. Potential reasons for this decline include nutrient
deficiency, growth of heterotrophic bacteria and viruses and
mechanical breakdown of phytoplankton due to plunging of
the MART (Azam and Malfatti 2007; Lee et al. 2015). After
day 5, chl-a levels steadily increased up to 3.1 ugL ™' by the
end of experiment on day 9. The growth of phytoplankton
after day 5 was likely promoted by nutrients released to the
seawater by the crash of the previous phytoplankton bloom, a
process that is commonly observed in the ocean (Ittekkot
1982; Norrman et al. 1995; Azam and Malfatti 2007).

The ratio of the sum of fucose and rhamnose concentrations
to the sum of arabinose and xylose concentrations in seawater
was used as an indicator for the bacterial activity in the tank
(Fig. 1). Typically, ratios <1 indicate the presence of less-labile
organic matter which is indicative of higher bacterial concen-
tration (Frimmel 1998; Engbrodt and Kattner 2005; Jiao et al.
2010). In this experiment, this ratio decreased below one (0.69)
on day 4, with a consistent decrease to 0.50 on day 9 indicating
the growth of marine bacteria after the phytoplankton bloom
(Frimmel 1998; Engbrodt and Kattner 2005).

Contribution of saccharides to DOC

The total quantified saccharide concentration (<450 nm)
in seawater ranged from 0.9 to 5.1 uM and averaged
3 + 1uM. These concentration levels agree well with
previously reported saccharide concentrations in seawater

50 4
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| _C>?‘
= 2 [+
T 20 o€
< 2|
O 10 TR

~
-a-p_ s g g

— 0
01 2 3 4 5 6 7 8 9
Day of the experiment

Fig. 1. Chlorophyll-a concentration and ratio of fucose and rham-
nose to arabinose and xylose concentrations in seawater. Chlorophyll-a
concentration peaked on day 2 and came to a minimum on day 5.
Saccharide ratio decreased to below one from day 4 indicating higher
bacterial activity from day 4 to 9.

(Amon and Benner 2003; Engbrodt and Kattner 2005). The
total saccharide concentration in SSML ranged from 1.4 to
51 uM, averaging 18 = 15 uM. In foam, saccharide concentra-
tions ranged from 11 to 32 uM and averaged 22 + 7 uM. Total
measured saccharides comprised a considerable fraction of
DOC in seawater (13%), SSML (27%) and foam (31%).

Sugar alcohols

Concentrations of three sugar alcohols - xylitol, arabitol and
mannitol — varied from below method detection limits to
674 = 67nM for mannitol on day 9 in the SSML
(Supplementary Table S1). Sugar alcohol contributions to
quantified total saccharides were small, contributing an
average of 2.1 + 0.8% in seawater, 2.5 = 1.9% in SSML
and 2.4 = 0.5% in foam with a maximum contribution of
5.8% on day 9 in SSML. From this, we conclude that xylitol,
arabitol and mannitol have minor contributions to the total
saccharide pool in the ocean. The sugar alcohol concentra-
tion significantly increased at the latter part of the meso-
cosm suggesting a probable bacterial origin (Fig. 2a—c)
(Pramanik et al. 2011; Dai et al. 2015). Sugar alcohols
were primarily (>43%) in the form of free monosaccharides
(Fig. 3a), likely due to direct release of free alditols by
bacteria from lignocellulosic material breakdown (Pérez-
Bibbins et al. 2016). Furthermore, a systematic distribution
of sugar alcohols in different size fractions was not observed
(Fig. 3), suggesting that the transfer of sugar alcohols to the
ocean surface was relatively independent of particle size.

Energy-related saccharides

Concentrations of energy-related saccharides were elevated
during the phytoplankton bloom, declined with bloom crash-
ing and consistently increased thereafter (Fig. 2d, e).
The high concentrations of energy-related saccharides as
the phytoplankton bloom progressed were likely due to the
synthesis of energy storage products (e.g. glucans, fructans)
and their release to surrounding water upon cell lysis
(Ittekkot 1982; Compiano et al. 1993; Mopper et al. 1995).
Bacteria rapidly utilise these labile polysaccharides as energy
substrates, leading to their sharp decline in concentration
after the bloom crashed (Handa and Yanagi 1969). In this
process, either in situ enzymatic hydrolysis or extra-cellular
hydrolysis by bacterial enzymes could release free monosac-
charides, producing free glucose and fructose (Mopper et al.
1980), which was observed on day 3 following the peak of the
phytoplankton bloom. The steady increase of total saccharide
from day 4 was likely related to breakdown of more stable
structural saccharides (e.g. cellulose, hemicellulose) by bacte-
rial hydrolysis (Hecky et al. 1973; Haug and Myklestad 1976).
The dominant form of energy-related saccharides was the
LMW fraction that accounted for 34-65% by mass (Fig. 3b).
The colloidal fraction considerably increased in SSML and
foam (27-36%) relative to seawater, likely due to enrichment
of cellular materials at the air-water interface.
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seawater during the mesocosm experiment.
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Structure-related saccharides

Concentrations of structural saccharides differed from the
previously discussed energy-related saccharides in that they
were not elevated during the phytoplankton bloom and
instead steadily increased throughout the experiment
(Fig. 2f-k). This is likely due to gradual bacterial degrada-
tion of more stable cellular materials, such as marine partic-
ulate organic carbon (POC) or high molecular weight DOC
(Coombs and Volcani 1968; Handa and Yanagi 1969; Haug
and Myklestad 1976; Liebezeit et al. 1980; Mopper et al.
1980). The saccharide composition in the ocean was
observed to shift towards structural polysaccharides at the
end of a mesocosm as a result of preferential bacterial
uptake of LMW algal exopolymers during the initial stage,
followed by feeding on less labile structural components
(Chrost and Faust 1983; Gershey 1983). In this process
bacteria reduce detrital organic matter to soluble foams
and convert algal exopolysaccharides into bacterial polysac-
charides as evident by elevated levels of structural and
bacterial-related saccharides at the end of the experiment
(Mopper et al. 1995). Galactose has some characteristics of
energy-related saccharides such as elevated concentrations
during the phytoplankton bloom and release of free galac-
tose monosaccharide after bloom crashing. This trend is
probably due to galactan, the polysaccharide form of galac-
tose that is used as an energy storage material by some
phytoplankton species (Ittekkot et al. 1982; Biersmith and
Benner 1998). Ribose also showed a distinct variation pat-
tern over the experiment (Fig. 2i) relative to other structure-
related saccharides. The lysis of phytoplankton nucleotides
during the phytoplankton bloom and the lysis of bacterial
nucleotides at the latter part of the bloom is likely the source
of ribose oligo/polysaccharides (Cowie and Hedges 1984;
McCarthy et al. 1996). Unlike sugar alcohols and energy-
related saccharides, structure-related saccharides showed a
distinct distribution pattern in different compartments.
The LMW saccharide (free-3kDa) fraction dominated
(44-59%) the seawater saccharide pool while the HMW
saccharide (3-100kDa) fraction dominated the SSML and
foam (45-88%) saccharide pool (Fig. 3c). This is attributed
to selective transfer of higher molecular weight oligo/poly-
saccharides towards ocean surface likely due to scavenging on
rising bubbles due their high surface activity. Furthermore,
smaller surface active oligo/polysaccharides can coagulate to
form HMW polysaccharides and these could rise to the ocean
surface due to positive buoyancy (Ogura 1977; McCarthy
et al. 1996).

Enrichment of saccharides in foam and SSML
over seawater

Total saccharides (<450 nm) were significantly enriched
(P <0.05) in SSML and foam with individual median
EFs ranging from 1.7-6.4 to 2.1-12, respectively (Fig. 4).
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in SSML (n=9) and foam (n =7). (The two end caps indicate the data
range, boxes indicate the first quartile, median and third quartile,
respectively.) All the carbohydrates were significantly enriched in
SSML and foam.

ical activity of the seawater.

The size of the saccharide played a significant role in the
enrichment process. LMW oligo/polysaccharides (free-3 kDa)
were the major enriched species for sugar alcohols (Fig. 5a, b)
and showed 2-15 times greater EFs than those for
total dissolved (<450 nm) saccharides. The enrichment of
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energy-related saccharides was dominated by colloidal
(100 kDa-450 nm) polysaccharides (Fig. 5c, d). This is likely
due to bulky glucan and fructan polysaccharides and TEP
which are found to be effectively transported to the ocean
surface by scavenging on bubble surfaces due to their larger
radius and/or positive buoyancy (Marty et al. 1988; Verdugo
et al. 2004; Kuznetsova et al. 2005; Burrows et al. 2014; Dai
et al. 2015). Furthermore, these bulky colloids could drain
back to the SSML during the bubble ageing, thus resulting in
higher EFs in SSML than foam (Supplementary Fig. S2d, e).
HMW (3-100 kDa) saccharides dominated the enrichment of
structure-related saccharides (Fig. 5e, f) showing a 2—4 times
higher enrichment than total dissolved (<450nm) saccha-
rides. This enrichment was more prominent in foam than
SSML. This is likely due to a higher surface activity of these
saccharides than other saccharide types, and coating of inte-
rior and exterior surfaces of the bubble film by these highly
surface-active saccharides (Burrows et al. 2014). In addition
this could be due to the co-adsorption of HMIW saccharides
into organic surfactants such as fatty acids and effective
transfer of them into the SSML and greater enrichment in
foam (Vazquez de Vasquez et al. 2022). Interestingly, LMW
structure-related oligo/polysaccharides were depleted in both
SSML and foam. According to the competitive Langmuir
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of (a, b) xylitol, (c, d) glucose and (e, ) fucose in SSML
and foam.

adsorption model, there is a competition within molecules
for surface area at the air—water interface, therefore the
most surface-active compounds are retained at the air-water
interface, while less surface-active molecules tend to be in the
bulk sea water. The depletion of LMW polysaccharides in both
SSML and foam could result from their low surface activity
compared to HMW saccharides and colloidal polysaccharides,
which show higher EFs in SSML (Burrows et al. 2014).
Interestingly, free monosaccharide fractions of glucose,
galactose, fructose, xylitol, arabitol and mannitol were signif-
icantly enriched in SSML and foam with EFs ranging from 3 to
18 despite their complete solubility in water. This suggests a
preferential movement of these water-soluble saccharides
towards the ocean surface and provides experimental evi-
dence to support the theoretical concept of the OCEANF-
ILM-2 model that describes co-adsorption of water soluble
saccharides on organic surfactants and their enrichment at
the air—water interface (Burrows et al. 2016). Furthermore,
these EFs of monosaccharides at the SSML is also supported
by the work of Vazquez de Vasquez et al. (2022) which
showed co-adsorption interactions of glucuronate which is
the representative monomer of alginate at a proxy SSML
(Vazquez de Vasquez et al. 2022). In addition, the enrich-
ment of free monosaccharides at the ocean surface may also
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Table I. Glucose EFs measured in SSML, foam and sea spray aerosol in the present and prior studies.
Study location (campaign Measurement SSML EF Foam EF SSA SSA EF Reference
name) — sample diameter (um)
Coastal California, USA (IMPACTS) — Free glucose 2.5-61.8 6.0-55.9 - - This study
MART Free-3 kDa 2.1-7.8 3.6-25.3
3-100 kDa 1.4-12.8 2.9-14.6
100 kDa—450 nm 7.0-97.6 8.8-74.6
Total glucose 2.6-57.1 4.3-294
Coastal California, USA (IMPACTS) — Total glucose 1.1-3.7 A <25 53-340 Jayarathne et al. (2016)
wave flume 25-10 17-138
Coastal California, USA (BEAST) — Total glucose - - <l 700-20 000 Hasenecz et al. (2020)
control >| 93-780
Coastal California, USA (BEAST) — Total glucose - - <l 8300—420 000 Hasenecz et al. (2020)
addition of heterotrophic bacteria 1 280-940
Baltic Sea, Germany Free glucose 0.6-1.2 - - - van Pinxteren et al.
(2012)
Laboratory studies of model systems Free glucose 1.0 - <25 <l Hasenecz et al. (2019)

ADashes indicate that data is not available.

result from faster enzymatic hydrolysis rates at the air-water
interface due to favourable conditions (e.g. higher tempera-
ture and dissolved oxygen), even though there are other
conditions (e.g. high UV radiation) that could decrease rates
of enzymatic hydrolysis (Whatley et al. 1951; Levinson 1968;
Mopper et al. 1980; Compiano et al. 1993).

The EF of glucose measured in this study is compared to
prior studies of its EF in SSML and SSA to gain a better
understanding of the enrichment process (Table 1). The EFs
of free glucose in SSML in the field study by van Pinxteren
et al. (2012) and the laboratory model study by Hasenecz
et al. (2019) indicate a slight depletion or no enrichment. The
EF for free glucose in the SSML indicates enrichment, which
could be influenced by the observed high biological activity
within the active bloom period compared to these prior stud-
ies. Total glucose demonstrates enrichment in the SSML in this
study and that of Jayarathne et al. (2016), with different
ranges of EF likely a result of different biological systems.
These increased EFs for total glucose relative to free glucose
reflect the selective transfer of oligomers or polysaccharides
into the SSML. In the aerosol phase, the EF further increased.
Jayarathne et al. (2016) showed that the EFs of total glucose
in SSA particles were greater than those in the SSML, by
factors of 50-90 for PM, 5 and 15-40 for PM;,. The EFs can
be further magnified in smaller SSA particles, such as PMy,
because of size-dependent enrichment and the presence of
heterotrophic bacteria as shown in Hasenecz et al. (2020).

The comparison of EFs across all seawater, SSML, foam
and SSA implies a connection between the enrichment of
organic matter in foam and the larger EFs in SSA. With EFs
for saccharides in foam exceeding those of SSML, it indicates
that the maturation of bubble films at the ocean surface

leads to greater organic enrichment. The process of this
enrichment is likely due to the drainage of less surface-
active molecules at the air-water interface, which leads to
greater enrichment of highly surface-active molecules on the
thin bubble film. Hence, ultimately those molecules on the
thin bubble film are those that are transferred into the SSA.

Conclusions

Here we provide the first quantitative enrichment of saccha-
rides on bubble film surfaces where SSA is generated.
We observed higher saccharide enrichment in persistent
foam compared to SSML, which suggests that maturation
of bubbles at the air-water interface contributes to enrich-
ment of organic matter at the ocean surface and ultimately
in SSA. Structure-related saccharides, particularly those
with HMW, are selectively enriched at the ocean surface.
Because of the size of HMW structure-related saccharides,
they are unlikely to be transferred to sub-micrometre sized
particles, and are more likely to be in super-micron SSA. The
quantitative results obtained from this study support the
theoretical concept of free monosaccharide enrichment at
the ocean surface (Burrows et al. 2014, 2016) and field
observations of saccharide enrichment in SSA.

Supplementary material

The supplementary material includes a table of saccharide
and sodium ion concentrations in bulk sea water, sea surface
microlayer and foam (Supplementary Table S1), a picture of
the marine aerosol reference tank (MART) before and after
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plunging (Supplementary Fig. S1), a figure of the daily
variation of total saccharide (<450 nm) enrichment factors
(Supplementary Fig. S2) and the daily variation of DOC
(<450 nm) enrichment factors (Supplementary Fig. S3).
Supplementary material is available online.
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