
SoftwareX 19 (2022) 101194

Contents lists available at ScienceDirect

SoftwareX
journal homepage: www.elsevier.com/locate/softx

Original software publication

ixpeobssim: A simulation and analysis framework for the imaging X-ray
polarimetry explorer
Luca Baldini a,b,⇤, Niccolò Bucciantini c,d,e, Niccolò Di Lalla f, Steven Ehlert g,
Alberto Manfreda b, Michela Negro h,i,j, Nicola Omodei f, Melissa Pesce-Rollins b,
Carmelo Sgrò b, Stefano Silvestri a,b
a Università di Pisa, Dipartimento di Fisica Enrico Fermi, Largo B. Pontecorvo 3, I-56127 Pisa, Italy
b Istituto Nazionale di Fisica Nucleare, Sezione di Pisa, Largo B. Pontecorvo 3, I-56127 Pisa, Italy
c Istituto Nazionale di Astrofisica, Osservatorio Astrofisico di Arcetri, Largo E. Fermi 5, I-50125, Firenze, Italy
d Dipartimento di Fisica & Astronomia, Univesità degli Studi di Firenze, Via G. Sansone 1, 50019, Sesto F.no, Italy
e Istituto Nazionale di Fisica Nucleare, Sezione di Firenze, Via G. Sansone 1, 50019 Sesto F.no, Italy
f W.W. Hansen Experimental Physics Laboratory, Kavli Institute for Particle Astrophysics and Cosmology, Department of Physics and SLAC National
Accelerator Laboratory, Stanford University, Stanford, CA 94305, USA
g NASA Marshall Space Flight Center, Huntsville, AL 35812, USA
h University of Maryland, Baltimore County, Baltimore, MD 21250, USA
i NASA Goddard Space Flight Center, Greenbelt, MD 20771, USA
j Center for Research and Exploration in Space Science and Technology, NASA/GSFC, Greenbelt, MD 20771, USA

a r t i c l e i n f o

Article history:
Received 12 March 2022
Received in revised form 21 July 2022
Accepted 20 August 2022

Keywords:
X-ray polarimetry

a b s t r a c t

ixpeobssim is a simulation and analysis framework specifically developed for the Imaging X-ray
Polarimetry Explorer (IXPE). Given a source model and the response functions of the telescopes, it
is designed to produce realistic simulated observations, in the form of event lists in FITS format,
containing a strict superset of the information included in the publicly released IXPE data products.
The core simulation capabilities are complemented by a full suite of post-processing applications
which support the spatial, spectral, and temporal models needed for analysis of typical polarized X-
ray sources, allowing for the implementation of complex, polarization-aware analysis pipelines, and
facilitating the interoperation with the standard visualization and analysis tools traditionally in use by
the X-ray community. Although much of the framework is specific to IXPE, the modular nature of the
underlying implementation makes it potentially straightforward to adapt it to different missions with
polarization capabilities.

© 2022 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).

Code metadata

Current code version 29.0.0
Permanent link to code/repository used for this code version https://github.com/ElsevierSoftwareX/SOFTX-D-22-00065
Permanent link to Reproducible Capsule
Legal Code License GPL-3.0
Code versioning system used git
Software code languages, tools, and services used python
Compilation requirements, operating environments & dependencies numpy, scipy, matplotlib, astropy, regions, skyfield
If available Link to developer documentation/manual https://ixpeobssim.readthedocs.io
Support email for questions luca.baldini@pi.infn.it

⇤ Corresponding author at: Università di Pisa, Dipartimento di Fisica Enrico
Fermi, Largo B. Pontecorvo 3, I-56127 Pisa, Italy.

E-mail address: luca.baldini@pi.infn.it (Luca Baldini).

1. Introduction

Launched on December 9, 2021, the Imaging X-ray Polarimetry
Explorer (IXPE) is a NASA Small Explorer Mission developed in
collaboration with the Italian Space Agency [1–3], and the first

https://doi.org/10.1016/j.softx.2022.101194
2352-7110/© 2022 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

https://doi.org/10.1016/j.softx.2022.101194
http://www.elsevier.com/locate/softx
http://www.elsevier.com/locate/softx
http://crossmark.crossref.org/dialog/?doi=10.1016/j.softx.2022.101194&domain=pdf
http://creativecommons.org/licenses/by/4.0/
https://github.com/ElsevierSoftwareX/SOFTX-D-22-00065
https://ixpeobssim.readthedocs.io
mailto:luca.baldini@pi.infn.it
mailto:luca.baldini@pi.infn.it
https://doi.org/10.1016/j.softx.2022.101194
http://creativecommons.org/licenses/by/4.0/

Luca Baldini, Niccolò Bucciantini, Niccolò Di Lalla et al. SoftwareX 19 (2022) 101194

Fig. 1. Simplified ixpeobssim architectural overview. The dark boxes identify specific ixpeobssim applications, whereas light boxes represent different types of data
products. (XSPEC, as an external program, is rendered in a different style.) The numbers in parentheses provide the reference to the proper section of the paper
where each item is discussed. The interface to the Geant 4 [7] detector simulation, which will be briefly discussed in Section 3.4, is rendered with a dotted line
style because it is not part of the public release.

ever to provide position-resolved polarimetric capabilities in the
2–8 keV energy band.

IXPE recovers the linear polarization of the source on a statis-
tical basis by measuring the azimuthal distribution of the photo-
electrons generated by X-rays absorbed in the detector, and
complements the polarization sensitivity with timing, spectral
and imaging capabilities [1]. From the standpoint of high-level
science analysis, each event is characterized by five independent
quantities: the arrival time, the energy, two sky-coordinates and
the azimuthal angle �i of the photo-electron in the tangent-plane
projection. This information is complemented by an additional
quantity representing the estimated quality of the direction re-
construction (or weight) wi, that can be exploited in an ensemble
analysis to enhance the polarization sensitivity [4].

Rather than using �i directly, we encode the polarization
information in two event-by-event Stokes parameters

qi = 2 cos 2�i and ui = 2 sin 2�i, (1)

following the formalism in [5].1 This is primarily due to the ap-
proach used for calibrating the detector response to un-polarized
radiation [6]: the event-by-event Stokes parameters after the
subtraction of the spurious modulation are no longer properly
normalized, and (although the effect is irrelevant in any large
ensemble of events) cannot be readily interpreted in terms of
azimuthal angles. In addition, a formulation in Stokes parameter
space is less prone to the pitfalls associated to the fact that
the polarization angle and degree, unlike the Q and U Stokes
parameters, are not statistically independent.

In this paper we describe ixpeobssim, a framework designed to
simulate IXPE observations of celestial sources, producing event
lists in a FITS format that is intended to be a strict superset of that
of the standard data products used for science analysis. To our
best knowledge, the polarization-specific functionalities provided
by ixpeobssim are not readily available in any of the existing X-
ray simulation toolkits tailored to imaging, spectroscopy and/or
timing — be they mission-specific, such as MARX [8], NuSim [9]
or the now discontinued SciSim [10], or general-purpose, such as
simx [11] and SIXTE [12].

1 Note the extra factor of 2 with respect to the original paper.

In addition to the simulation facilities, ixpeobssim provides a
set of applications to filter, reduce, analyze and visualize both
simulated and real data, which we anticipate will be a useful
resource for the community engaged in the analysis of IXPE data.
To this end, we shall briefly discuss, where appropriate, the inter-
play and the overlap with the software tools and data products
released by the HEASARC in support of the IXPE mission, and we
shall emphasize the specific functionalities that are peculiar to
ixpeobssim.

2. Architectural overview

The ixpeobssim framework is based on the Python program-
ming language and makes extensive use of the associated sci-
entific ecosystem, most notably numpy [13], SciPy [14] and mat-
plotlib [15], as well as the de-facto standard package for numerical
analysis in astronomy: Astropy [16,17]. Leveraging the Python in-
tuitive syntax, extensibility and introspection capabilities, ixpeob-
ssim is streamlined for speed and modularity, with the ultimate
goal of making it easy for the user to create complex simulations
and analysis workflows. The lack of an X-ray simulation frame-
work written in a modern high-level, interpreted language was
in fact one of the main motivations for us to develop one from
scratch, rather than building upon the aforementioned existing
toolkits [8–12].

Fig. 1 shows a simplified architectural overview of the frame-
work. The main application, xpobssim, takes a complete source
model (including the temporal, morphological, spectral and po-
larimetric characteristics) and a coherent set of parameterized
response files – most notably the effective area and associated
vignetting function, the response matrix, the modulation factor as
a function of the energy, as well as a model of the point-spread
function (PSF) – to produce an event list that is germane to an
actual file from a celestial observation. The construction of the
source models, the response files and the format of the event
lists will be covered in more detail in Sections 3.1, 2.1 and 2.2,
respectively.

ixpeobssim provides tools for modifying and post-processing
event lists, among which xpselect allows to apply arbitrary selec-
tions, e.g., on time, energy and position in the sky. Filtered event
lists are intended to be functionally identical to their parents to

2

Luca Baldini, Niccolò Bucciantini, Niccolò Di Lalla et al. SoftwareX 19 (2022) 101194

be able to inter-operate with all the analysis tools in exactly the
same fashion.

xpbin provides the capability of reducing event lists, gener-
ating binned data products in a number of different fashions,
including Stokes spectra (that is, OGIP-compliant, type 1 PHA
files [18] for I , Q and U , in detector space, suitable to per-
form spectro-polarimetric fits as described in [19]) as well as
several different data structures encapsulating the results of a
model-independent ensemble analysis a la [5] (this will be further
discussed in Section 4.1).

We note that the HEASOFT xselect FTOOL provides support for
part of the same functionality since version 6.30 — more specif-
ically for filtering IXPE event lists and creating binned Stokes
spectra. At this time, we consider the benefits deriving from the
full integration with the rest of package to outweigh the cost of
the limited duplication. As ixpeobssim evolves, we shall strive to
adapt its public interfaces to make them as similar as possible
to the HEASARC FTOOL equivalent; the ixpeobssim documenta-
tion includes a comprehensive and up-to-date description of the
interplay with HEASOFT.

2.1. Output data format

The standard IXPE high-level data products distributed by the
HEASARC include:

1. level-1 FITS files containing individual photoelectron track im-
ages and associated reconstructed quantities in detector coor-
dinates;

2. level-2 filtered event lists providing all the physical informa-
tion in sky coordinates that is relevant for science analysis [20].

Event lists generated by ixpeobssim include the two extensions
of the standard level-2 file: EVENTS, containing the event data,
and GTI, listing the good time intervals for the observation. The
EVENTS extension for simulated event contains a few columns for
diagnostic purposes (e.g., event positions in detector coordinates)
that for real observations are only included in level-1 files — and
none of which is used by the high-level analysis tools.

The ground truth, including the true photon energy, the true
direction in the sky and a unique identifier of the particular
source (or source component) in the field of view that originated
the event, is captured in a dedicated MONTE_CARLO extension.
The latter is useful for debugging purposes, and because it readily
provides a way to evaluate the effect of the detector response
on the relevant high-level observables. These include, e.g., the
polarization dilution effect due to the finite angular resolution
for extended sources where the polarization angle varies over
spatial scales comparable to the PSF, and the effect of the energy
dispersion on high-level polarization analysis. A few additional
binary extensions can be optionally generated, and will be briefly
described in the following sections.

2.2. Response functions: the pseudo calibration database

The instrument response functions (IRFs) are a fundamental
part of ixpeobssim, and they are used, in identical form, for both
the simulation and the science analysis. Notably, this allows for
a comprehensive verification of the full analysis workflow under
controlled conditions. All the response files are OGIP-compliant
and are intended to be inter-operable with the analysis tools
provided by HEASARC.

More specifically, we identify six different types of response
functions: on-axis effective area and response matrix (stored in
standard .arf and .rmf FITS files), vignetting, point-spread func-
tion, modulation factor and modulation response function. The
modulation factor represents the response of the detector to

100% polarized radiation, and serves the purpose of converting
the azimuthal modulation measured by the detector into the
actual source polarization. The modulation response function is
the product of the modulation factor and the on-axis effective
area, and is used as the proper ancillary response files for Q and
U spectra in polarimetric fits, as explained in Section 4.1.

ixpeobssim provides facilities for generating, reading, display-
ing and using IRFs. Due to the specific needs of the simulation
facilities, ixpeobssim is distributed with its own, self-contained
calibration database, that we shall refer to as the pseudo-CALDB
and is structurally equivalent to the real database distributed
through HEASARC. All the response files that are relevant for
science analysis (i.e., effective area, response matrix, and modu-
lation response files) are properly synchronized between the two
databases, and a dedicated table mapping the correspondence
between the pseudo-CALDB and the real CALDB is maintained as
part of the ixpeobssim documentation.

3. Simulating observations

3.1. Source model definition

The basic characteristics of each model component are spec-
ified as ordinary Python functions: the photon spectrum can be
an arbitrary function of energy and time (or phase, for periodic
sources), while the polarization degree and angle can be an ar-
bitrary function of energy, time (or phase), and sky-direction:

8
<

:

S(E, t) [cm�2 s�1 keV�1]
PD(E, t, x, y)
PA(E, t, x, y) [rad].

(2)

This approach allows for a large degree of flexibility, as the
function bodies can contain, e.g., complex analytic functions or
interpolators built from numerical tables, provided that the sig-
nature is correct. We emphasize that, since the input model
does not have associated errors by its nature, our treatment is
strictly equivalent to a formulation in Stokes parameter space,
and none of the nuisances connected with the fact that measured
polarization degree and angle are not independent applies to the
simulation process.

ixpeobssim supports a wide range of models for source mor-
phology via a hierarchy of classes describing point sources, simple
geometrical shapes like disks or annuli, and arbitrary extended
sources based on intensity maps in FITS format. Extended sources
defined in this way come with the limitation that the input image
only controls the normalization of the spectrum, while spectral
shapes explicitly depending on the position cannot be specified
in Eq. (2) — although one can always tessellate the source with
an arbitrary number of independent patches. Alternatively, an
interface to Chanda ACIS S/I event lists allows defining model
components that can take advantage of the superior angular and
energy resolution of this observatory with respect to IXPE and
provides an alternative simulation strategy fully preserving the
correlations between the position in the sky and the spectral
shape, overcoming the seemingly restrictive constraints on the
signature of the photon spectrum.

The concept ofmodel component is used throughout ixpeobssim
to indicate a number of different objects, ranging from a simple
celestial source to different physical components of the same
source (e.g., the thermal and non-thermal emission), or different
physical sources in the same field (e.g., a PWN and its pulsar).
The basic simulation unit, that we refer to as a region of interest
(ROI), is a collection of an arbitrary number of model components
within the IXPE field of view, encapsulated in a Python config-
uration file that can be fed into xpobssim. A minimal working
example is listed in Appendix A.

3

Luca Baldini, Niccolò Bucciantini, Niccolò Di Lalla et al. SoftwareX 19 (2022) 101194

Fig. 2. Representation of a simple model for the count spectrum of the Crab
pulsar (note that, because the source is periodic, the y-axis represents the pulse
phase). Any horizontal slice represents the photon spectrum, convolved with the
on-axis effective area of the telescope, at a given phase, while any vertical slice
represents the pulse profile at a given energy.

3.2. Simulation workflow

Considering an on-axis point source for simplicity, the basic
flow of the simulation for a single model component starts with
the calculation of the count spectrum, as a function of energy
and time (or phase), given the photon spectrum S(E, t) and the
on-axis effective area Aeff(E):

C(E, t) = S(E, t) ⇥ Aeff(E) [s�1 keV�1]. (3)

A simple model for the phase-resolved count spectrum of the
Crab pulsar is shown in Fig. 2 for illustrative purposes.

The light curve (or the pulse profile) in counts space is readily
obtained by integrating over the energy

L(t) =
Z Emax

Emin

C0(E, t) dE [s�1], (4)

which in turn allows to calculate the total number of expected
events Nexp by integrating over the observation time:

Nexp =
Z tmax

tmin

L(t) dt. (5)

We extract the number of observed events Nobs according to
a Poisson distribution with mean Nexp and treat the light curve
as a one-dimensional probability density function (pdf) to extract
the initial vector of event times ti (or phases pi, for periodic
sources). For each event we use the count spectrum C(E, ti),
calculated at the proper time or phase, as a one-dimensional pdf
from which we extract the true energy Ei. The true sky-direction
(xi, yi) is extracted independently — more specifically, each class
in the model hierarchy provides a specific implementation of a
dedicated base method, encapsulating the proper sampling of the
underlying model (2), at the given Ei and ti.

The basic steps outlined above complete the generation of
the ground truth for the simulation, which is then convolved
with the instrument response. In this respect, the ixpeobssim im-
plementations of data structures encapsulating the point-spread
function and the energy dispersion readily provide facilities for

efficient random sampling of the corresponding probability den-
sity functions, which are used to extract the measured energy and
direction in the sky.

At this point of the simulation workflow we also have all
the necessary ingredients to extract the photo-electron emission
angle, according to the proper azimuthal distribution

p�(�;m, �0) = 1
2⇡

{1 + m cos(2(� � �0))} , (6)

where the visibility of the modulation is given by the product of
the polarization degree PD of the underlying model (2) and the
modulation factor, calculated at the event energy Ei

mi = PD(Ei, ti, xi, yi) ⇥ µ(Ei). (7)

The phase �0, corresponding to the position angle PA in Eq. (2),
can then be added, provided that the result is folded back into
the desired interval [�⇡ , ⇡].

The process is repeated independently for all the source com-
ponents in the ROI, and the partial event lists are then merged
and sorted in time. All the additional instrumental corrections are
applied in dedicated filtering stages before the final, consolidated
event list is written to file. More specifically:

• the events are initially generated using the on-axis effective
area, and the correct vignetting function is obtained by ran-
domly discarding a fraction of the events with the proper
dependence on the off-axis angle;

• events with a projected position on the focal plane lying out-
side the fiducial area of the readout chip are discarded;

• events occurring during the readout of an earlier event are
discarded, as well.

3.3. Low-level implementation

The vast majority of the pdfs involved in the simulation of
celestial sources can only be sampled via numerical methods
— even a simple power-law photon spectrum, when convolved
with the telescope effective area, cannot be sampled by analytical
means. We largely rely on interpolating splines as an effective
means to sample arbitrary random variables.

For one-dimensional pdfs, we calculate the cumulative func-
tion on a suitable, regular grid and use the values to build an
interpolated spline representing the percent point function (ppf),
that can in turn be used to sample the underlying random vari-
able r via inverse transform [21]:

r = ppf(⇠) where ⇠ ⇠ Uniform(0, 1). (8)

Provided that the order of the spline and grid spacing are selected
properly for the situation at hand, this allows for a formulation of
the problem that can be naturally vectorized in an efficient fash-
ion through the numpy facilities. Implementation details aside,
this is the basic strategy that we use to sample the event times
from the light curve (or the phase values from the pulse profile
for periodic sources).

The problem of extracting the event energies given a count
spectrum is intrinsically more complex, due to the fact that the
spectral shape, in general, depends on the event time or phase.
As re-computing the one-dimensional pdf for each event would
be overly computationally-intensive, we resort to pre-calculating
the ppf values on a regular grid of time (or phase) values and use
them to build an interpolated bi-variate spline, that we refer to
as the horizontal ppf (hppf), as illustrated in Fig. 3. The latter can
then be used to sample the underlying 2-dimensional distribution
in a vectorized fashion:

E = hppf(⇠ , t) where ⇠ ⇠ Uniform(0, 1). (9)

4

Luca Baldini, Niccolò Bucciantini, Niccolò Di Lalla et al. SoftwareX 19 (2022) 101194

Fig. 3. Bi-dimensional ppf corresponding to the count Crab spectrum in Fig. 2.
Each horizontal slice represents the actual ppf at a given pulse phase, and can
be used to sample the underlying event energy in a fully vectorized fashion.

This is the basic approach that, properly re-cast in azimuthal
angle-modulation space, we also use to sample the emission
direction of the photo-electrons. It is worth noting that being
able to specify a source model in terms of a position-dependent
spectrum S(E, t, x, y) would require generalizing this method
from two to four dimensions, which is the main reason for the
corresponding limitation in Eq. (2).

3.4. Event weights

Since the ixpeobssim simulation facilities are entirely based
on a parametrization of the detector response, as opposed to an
actual microscopic simulation of particle interactions, one of the
intrinsic limitations is the inability to generate track images. This,
in turn, makes it non trivial to properly simulate the event-by-
event weights and provide the complete set of information that
one would find in real data.

To this end, the IXPE Collaboration has been largely relying on
the ixpeobssim interface to the microscopic Monte Carlo simula-
tion of the detectors, based on the Geant 4 toolkit [7], developed
to support the design and implementation of the mission and
inform the generation of the response files. This provides the
ultimate fidelity (at the expense of a much longer simulation
time) and has been extensively used to test the use of weights
in the tools that ixpeobssim provides to analyze real observations.
However, due to its inherent complexity, as well as the depen-
dence of various large external libraries, packaging the detector
simulation into a form that could be publicly distributed and
supported was deemed to be too resource consuming, given the
relatively niche use case.

At the time of writing, the only pseudo-weighted workflow that
ixpeobssim supports is to generate event lists using the weighted
response functions — with the weights being automatically set
to 1 for all the events. From a sensitivity standpoint, this sim-
plistic approach provides the exact equivalent of a fully-fledged,
weighted analysis, and guarantees that simulated data are trans-
parently inter-operable with all the high-level analysis tools, but
is not sufficient for an end-to-end test of the entire simulation
and analysis chain. This is currently one of the main limitations
of the package.

Future ixpeobssim versions might conceivably offer realistic
event weights through a hybrid approach, where we use the
full detector simulation to generate a static, three-dimensional
lookup table parameterized in the pulse invariant-true energy
phase space to be used at simulation time to sample the weight
values.

3.5. Advanced source models

ixpeobssim provides a comprehensive set of high-level inter-
faces to facilitate the coding of complex source models. Dedicated
Python facilities allow to compose spectral models with time-
or phase-dependent parameters, e.g., a power law where the
normalization and/or the spectral index are functions of time
or pulse phase. Arbitrary XSPEC spectral models can be auto-
matically wrapped into the proper function signature and fed
natively into xpobssim, building on top of the PyXSPEC Python
interface. In addition, a fully-fledged interface to OGIP-compliant
libraries of tabular fitting models, with interpolation capabili-
ties, is available — and a real-life example, interfacing to the
magnetar models described in [22], is provided. Finally, complex
polarization patterns for extended sources can be specified via a
dedicated data structure encapsulating a collection of sky-maps
of Stokes parameters in different energy layers, leveraging the
SciPy capability of interpolating on a regular grid in an arbitrary
number of dimensions.

A comprehensive review of the ixpeobssim modeling facilities
is beyond the scope of this paper, and the subject is largely
covered in the documentation, to which the reader is referred.

3.6. Good time intervals

IXPE operates in an approximately circular low Earth orbit at
601.1 km altitude and 0.23� inclination. ixpeobssim captures the
main features of the motion of the spacecraft around the Earth
by means of a representative two-line element (TLE) set based
on observations of the spacecraft taken soon after launch

There are three main ways in which the spacecraft orbit needs
to be accounted for in simulated data: the Earth can obstruct
the line of sight between the spacecraft and observation target;
no observations can take place while the spacecraft is above the
South Atlantic Anomaly (SAA); and certain celestial positions are
only available for observations at certain times of the year due to
Sun angle constraints. These values can be of crucial importance
when trying to coordinate observations with other telescopes or
accounting for the expected gaps in coverage for a time or pulse
phase-dependent polarimetry signal. We use the Skyfield [23]
package to geo-locate the spacecraft as a function of time —
which, in turn, enables all three of these effects to be incorporated
into the production of Good Time Intervals (GTI) for simulated
observations. Although they are not identical to those expected
in a real observation, they are statistically representative of the
latter.

3.7. Dithering and pointing history

As explained in [3], the IXPE focal plane detectors feature sys-
tematic deviations from a flat azimuthal response to unpolarized
radiation, characterized by variations over small spatial scales,
that need to be accounted for to reach the design polarization
sensitivity. In order to average out this spurious modulation
over the detector surface and make the correction practically
viable [6], the observatory is dithered around the pointing direc-
tion. The dithering pattern has the form of a Lissajous figure with
a circular envelope
⇢
�x = a cos(!at) cos(!xt)
�y = a sin(!at) sin(!yt)

(10)

5

Luca Baldini, Niccolò Bucciantini, Niccolò Di Lalla et al. SoftwareX 19 (2022) 101194

Fig. 4. Representation of the default dithering pattern. The three small panels on
the top represent the dithering path around the target position for 500, 5000 and
50000 s, while the histogram on the bottom represent the normalized counts
after the convolution with the PSF of the telescope.

with a default amplitude of a = 1.6 arcmin and the three periods
corresponding to the angular pulsations !a, !x and !y being
907 s, 101 s and 449 s, respectively (see Fig. 4).

While the effect of the dithering is removed in the ground
processing pipeline through the knowledge of the aspect solution,
and does not affect the source image in sky coordinates, the
specifics of the observation strategy need to be captured by the
simulation in order to reproduce the morphology of the energy
flux in detector coordinates (which is in turn relevant for some
instrumental effects) and for a correct calculation of the exposure.
ixpeobssim keeps track of the effect of the dithering and stores the
pointing history, sampled on a fixed-step, user-selectable, time
grid in the (optional) SC_DATA extension.

4. Analysis tools

ixpeobssim comes with a set of facilities for binning event lists
in several different flavors. From an architectural standpoint, each
binning algorithm comes with its own interface classes for output
(i.e., creating binned files from event lists) and input (i.e., reading,
visualizing and manipulating binned FITS files).

4.1. Basic polarization analysis

The simplest approach that ixpeobssim provides for polariza-
tion analysis is largely borrowed from the model-independent
approach described in [5]. More specifically, for each event we

define the three additive reconstructed quantities
8
>>>>><

>>>>>:

ĩi = wi

Aeff(Ei)

q̃i = wiqi
Aeff(Ei)µ(Ei)

ũi = wiui

Aeff(Ei)µ(Ei)
,

(11)

where wi represents the (optional) event weights introduced in
Section 1. The on-axis effective area term in Eq. (11) acts as an
acceptance correction guaranteeing that the relevant quantities
are summed over a proxy of the input source spectrum, as op-
posed to the measured count spectrum; note that qi and ui need
to be divided by the proper modulation factor to transform the
detector modulation into the actual polarization of the source.

We emphasize that the effective area and modulation factor
in equation Eq. (11) are calculated by default at the measured
energy, i.e., the effect of the energy dispersion is neglected. Ex-
perience shows that the effect is generally small, but ixpeobssim
allows to verify it on a case-by-case basis, by using the ground
truth for reference.

The measured Stokes parameters over a generic subset S of
the events (be that a specific energy range, or a spatial bin
in sky coordinates), is obtained by simply summing the event-
by-event quantities over S . The polarization degree and angle
can be recovered with the usual formulæ, and the formalism
to propagate the statistical uncertainties is thoroughly described
in [5]. ixpeobssim provides facilities to calculate the broadband
polarization properties over an arbitrary energy binning, inte-
grated over a given sub-region of the field of view, or binned
in the sky, as illustrated in Fig. 5. We note that, when coupled
to a suitable minimizer, the ixpeobssim convolution capabilities
could be effectively exploited to fit arbitrary spectro-polarimetric
parametric models for extended sources to a given observation
— and this possibility is being actively investigated in the form a
ThreeML [24] plugin currently under development.

Among the additional analysis tools that are impossible to
cover in the limited scope of this paper, we mention in passing
xpstokesalign, that allows to align the Stokes parameters, on an
event-by-event basis, to a given polarization model, facilitating
the search for large-scale polarization signatures (e.g., radial or
tangential) in extended sources.

4.2. Spectro-polarimetric fitting

xpbin provides dedicated algorithms to create spectra of Stokes
parameters, binned in pulse invariant channels, that can be read-
ily used in conjunction with the standard fitting tools used by the
X-ray community, e.g., XSPEC [25], ThreeML [24] and Sherpa [26],
to perform spectro-polarimetric fits [19]. More specifically, xpbin
can write standard PHA type-I files (with specific header key-
words for polarization analysis) containing the relevant binned
quantities — that in the unweighted flavor read
8
>>>>>>>>><

>>>>>>>>>:

Ik = Nk

T
�Ik =

p
Nk

T

Qk = 1
T

X

PI=k

qi �Qk = 1
T

sX

PI=k

q2i

Uk = 1
T

X

PI=k

ui �Uk = 1
T

sX

PI=k

u2
i .

(12)

It is important to notice that the binned spectra follow a pure
counting statistics only for the I Stokes parameter in the un-
weighted case, which has non trivial implications in specific

6

Luca Baldini, Niccolò Bucciantini, Niccolò Di Lalla et al. SoftwareX 19 (2022) 101194

Fig. 5. Polarization maps in the 2–8 keV energy band for a simulated, 2 Ms
Cassiopea A observation, with a simple composite model including a thermal,
un-polarized component, and a non-thermal, polarized component based on a
simple geometric tangential pattern. (As it turned out after the actual observa-
tion of the source, the polarization degree of the model is largely unrealistic, but
the figure is provided here purely for illustration purposes). The two panels on
the top show the maps of the Q and U Stokes parameters in sky coordinates,
while the main panel is a count map with the polarization direction for the
pixels with a significance larger than 3� overlaid. (The length of the arrows is
proportional to the measured polarization degree.).

areas, such as the choice of a proper fitting statistics and/or of the
optimal grouping algorithm for rebinning data where necessary.

We also emphasize that Ik, Qk and Uk are expressed in detector
space, and the detector response is taken into account by setting
the proper response matrix and ancillary response files — the
effective area for the I and the modulation response function
for Q and U . The ixpeobssim pseudo-CALDB provides response
functions in both weighted and un-weighted fashion; a few sim-
ple, multiplicative polarimetric models are provided by HEASARC
through the page hosting XSPEC additional models,2 and shipped
with ixpeobssim for convenience.

4.3. Interface to XSPEC

Although the xpbin output can be used directly in XSPEC
with the proper response files, ixpeobssim provides a lightweight
Python wrapper, dubbed xpxspec that facilitates combined spec-
tral and spectro-polarimetric fits using the full data set from
the three IXPE detector units. Fig. 6 shows an example of such
a combined fit for a simulated point source with a power-law
spectrum and a constant polarization degree and angle, displayed
using the ixpeobssim visualization facilities.

2 https://heasarc.gsfc.nasa.gov/docs/xanadu/xspec/newmodels.html

Fig. 6. Spectro-polarimetric fit in XSPEC to simulated data of a point source
with a power-law spectrum and constant polarization degree and angle. This is
a simultaneous, combined fit to 9 independent data sets (I, Q and U for each of
the three detector units) using a pollin * powerlaw model. The empty markers
in the Q and U spectra represent negative values, that could not otherwise be
rendered in logarithmic scale.

4.4. Analysis pipelines

As mentioned in the previous sections, one of the ixpeobssim
design goals since the very beginning was to allow the user to
develop simulation and analysis pipelines with minimal effort.
To this end, every single ixpeobssim application is wrapped into
a dedicated, top-level module so that it can be effectively called
from within a generic Python script with the exact same keyword
arguments that one would pass to the command line version
of the same script. These wrappers typically return the list of
all the files that the function call has created, which makes it
very easy to chain application calls one after the other. The user
is referred to the documentation for more information on this
functionality, that we deem as one of the most powerful of the
entire framework, and a basic example is provided in Appendix A.

5. Conclusions

To support preparation for the IXPE mission, ixpeobssim was
developed to support advanced simulation and analysis facilities.
With the IXPE data now being regularly delivered to the public,
we decided to change our development model and release the
codebase under an OSI-approved license, with the twofold pur-
pose of benefiting the community engaged in the data analysis
and encourage reuse for future X-ray missions.

We emphasize that ixpeobssim is under active development.
In addition to the lack of support for event weights discussed
in Section 3.4 we are aware of a number of additional limi-
tations, and we do have a clear path forward in most of the

7

https://heasarc.gsfc.nasa.gov/docs/xanadu/xspec/newmodels.html

Luca Baldini, Niccolò Bucciantini, Niccolò Di Lalla et al. SoftwareX 19 (2022) 101194

cases. The relevant areas where we have room for improvement
include the instrument description (e.g., the current simplistic,
azimuthally-symmetric model for the PSF), the analysis algo-
rithms in general, as well as the definition of the public interfaces
and their alignment with the publicly available external tools.

We anticipate ixpeobssim will be a useful tool for supporting
the Guest Observing program. In addition, the ability to easily run
nearly-identical analysis pipelines (including up-to-date calibra-
tion products) to both simulated and real IXPE observations will
enhance the ability of the scientific community to interpret this
new and complex frontier of X-ray observations.

Declaration of competing interest

The authors declare that they have no known competing finan-
cial interests or personal relationships that could have appeared
to influence the work reported in this paper.

Data availability

No data was used for the research described in the article.

Acknowledgments

The Italian contribution to the IXPE mission is supported by
the Italian Space Agency (ASI) through the contract ASI-OHBI-
2017-12-I.0, the agreements ASI-INAF-2017-12-H0 and ASI-INFN-
2017.13-H0, and its Space Science Data Center (SSDC), and by the
Istituto Nazionale di Astrofisica (INAF) and the Istituto Nazionale
di Fisica Nucleare (INFN) in Italy.

This work was supported by the EU Horizon 2020 Research
and Innovation Program under the Marie Sklodowska-Curie Grant
Agreement 734303.

We gratefully acknowledge members of the IXPE Collaboration
for stimulating discussions and contributions to this work.

Appendix A. Code snippets

See Listings 1 and 2.
1 import numpy
2
3 from ixpeobssim.srcmodel.bkg import

xTemplateInstrumentalBkg
4 from ixpeobssim.srcmodel.polarization import

constant
5 from ixpeobssim.srcmodel.roi import xPointSource ,

xROIModel
6 from ixpeobssim.srcmodel.spectrum import power_law
7
8 # Sky position and spectral parameters of the

source.
9 SRC_RA, SRC_DEC = 20., 30.

10 PL_NORM = 6.e-3
11 PL_INDEX = 2.
12 # The pointing direction is the same as the source

coordinates.
13 PNT_RA, PNT_DEC = SRC_RA, SRC_DEC
14
15 # Definition of the photon spectrum.
16 spec = power_law(PL_NORM, PL_INDEX)
17
18 def pol_deg(E, t=None, ra=None, dec=None):
19 """Definition of the polarization degree as a

function of the energy.
20
21 The polarization degree is 5% at 1 keV,

increasing linearly with energy.
22 """
23 return 0.05 * E
24
25 # Definition of the polarization angle---0. is

aligned with the North.

26 pol_ang = constant(0.)
27
28 # Definition of the sources and the region of

interest.
29 src = xPointSource(’Point source’, SRC_RA, SRC_DEC,

spec, pol_deg, pol_ang)
30 bkg = xTemplateInstrumentalBkg()
31 ROI_MODEL = xROIModel(PNT_RA, PNT_DEC, src, bkg)

Listing 1: Minimal example of a configuration file for a field
containing a single, stationary point source with a power-law
photon spectrum and a polarization degree linearly increasing
with energy (the corresponding position angle is constant, and
aligned with the celestial North).

1 import os
2
3 import numpy
4
5 from ixpeobssim import IXPEOBSSIM_CONFIG
6 import ixpeobssim.core.pipeline as pipeline
7 from ixpeobssim.binning.polarization import

xBinnedPolarizationCube
8
9 # Basic simulation parameters.

10 CFG_FILE_PATH = os.path.join(IXPEOBSSIM_CONFIG , ’
toy_softwarex.py’)

11 DURATION = 2000000.
12 # Global flag---toggle this not to overwrite

existing files.
13 OVERWRITE = True
14 # Region selection: the source is a circular patch,

while the background is a larger annulus
centered

15 # in the same position (by default the reference
position in the WCS of the original event file)
.

16 # All radii are in arcmin.
17 SRC_RAD = 0.75
18 BKG_INNER_RAD = 1.5
19 BKG_OUTER_RAD = 3.
20 # Energy binning for the polarization cubes.
21 ENERGY_BINNING = numpy.array([2., 4., 6., 8.])
22
23 # Run the simulation.
24 file_list = pipeline.xpobssim(configfile=

CFG_FILE_PATH , duration=DURATION , overwrite=
OVERWRITE)

25
26 # Select the source and the background regions.

Note this will keep track of the area for each
27 # selection by setting the BACKSCAL header keyword

in the output file.
28 src_file_list = pipeline.xpselect(*file_list , rad=

SRC_RAD, suffix=’src’, overwrite=OVERWRITE)
29 bkg_file_list = pipeline.xpselect(*file_list ,

innerrad=BKG_INNER_RAD , rad=BKG_OUTER_RAD ,
30 suffix=’bkg’, overwrite=OVERWRITE)
31
32 # Create the polarization cubes.
33 kwargs = dict(algorithm=’PCUBE’, ebinalg=’LIST’,

ebinning=ENERGY_BINNING , overwrite=OVERWRITE)
34 src_pcube_file_list = pipeline.xpbin(*src_file_list

, **kwargs)
35 bkg_pcube_file_list = pipeline.xpbin(*bkg_file_list

, **kwargs)
36
37 # Read back the polarization cubes and perform the

background subtraction.
38 src_pcube = xBinnedPolarizationCube.from_file_list(

src_pcube_file_list)
39 bkg_pcube = xBinnedPolarizationCube.from_file_list(

bkg_pcube_file_list)
40 bkg_pcube *= src_pcube.backscal() / bkg_pcube.

backscal()
41 src_pcube -= bkg_pcube
42

8

Luca Baldini, Niccolò Bucciantini, Niccolò Di Lalla et al. SoftwareX 19 (2022) 101194

43 # You are good to go!
44 print(’Polarization degree : ’, src_pcube.PD)
45 print(’Polarization degree error : ’, src_pcube.

PD_ERR)
46 print(’Polarization angle : ’, src_pcube.PA, ’deg’)
47 print(’Polarization angle error : ’, src_pcube.

PA_ERR, ’deg’)

Listing 2: Sample simulation and analysis pipeline for the
example. This will run a simulation for the specified configuration
file, select data for the source and the background regions, and
perform a model-independent polarization analysis in a series of
energy bins.

References

[1] Weisskopf Martin C, Soffitta Paolo, Baldini Luca, Ramsey Brian D,
O’Dell Stephen L, Romani Roger W, et al. The imaging X-Ray polarime-
try explorer (IXPE): Pre-launch. J Astron Telescopes Instruments Syst
2022;8(2):026002.

[2] Soffitta Paolo, Baldini Luca, Bellazzini Ronaldo, Costa Enrico, Latronico Luca,
Muleri Fabio, et al. The instrument of the imaging X-Ray polarimetry
explorer. Astron J 2021;162(5):208.

[3] Baldini L, Barbanera M, Bellazzini R, Bonino R, Borotto F, Brez A, et al.
Design, construction, and test of the gas pixel detectors for the IXPE
mission. Astropart Phys 2021;133:102628.

[4] Marco Alessandro Di, Costa Enrico, Muleri Fabio, Soffitta Paolo, Fabiani Ser-
gio, Monaca Fabio La, et al. A weighted analysis to improve the X-ray
polarization sensitivity of IXPE. Astron J 2022;163(2):39.

[5] Kislat F, Clark B, Beilicke M, Krawczynski H. Analyzing the data from X-ray
polarimeters with Stokes parameters. Astropart Phys 2015;68:45–51.

[6] Rankin John, Muleri Fabio, Tennant Allyn F, Bachetti Matteo, Costa Enrico,
Marco Alessandro Di, et al. An algorithm to calibrate and correct the
response to unpolarized radiation of the X-ray polarimeter onboard IXPE.
Astron J 2022;163(2):39.

[7] Agostinelli S, Allison J, Amako K, Apostolakis J, Araujo H, Arce P, et
al. Geant4—A simulation toolkit. Nucl Instrum Methods Phys Res A
2003;506(3):250–303.

[8] Davis John E, Bautz Marshall W, Dewey Daniel, Heilmann Ralf K,
Houck John C, Huenemoerder David P, et al. Raytracing with MARX: X-
ray observatory design, calibration, and support. In: Takahashi Tadayuki,
Murray Stephen S, den Herder Jan-Willem A, editors. Space telescopes
and instrumentation 2012: Ultraviolet to gamma ray, vol. 8443. SPIE,
International Society for Optics and Photonics; 2012, p. 375–86.

[9] Zoglauer Andreas, Kruse-Madsen K, Kitaguchi T, Bhalerao V, Boggs SE,
Bradford SC, et al. Simulating extended galactic sources with the NuSTAR
simulator nusim. In: AAS/high energy astrophysics division #12. AAS/high
energy astrophysics division, vol. 12, 2011, p. 43.07.

[10] Gabriel C, Ibaibarriaga A Ibarra, Hoar J. SciSim: the XMM-Newton X-ray
observatory data simulator. In: Siegmund Oswald HW, editor. UV, X-ray,
and gamma-ray space instrumentation for astronomy XIV, Vol. 5898. SPIE,
International Society for Optics and Photonics; 2005, p. 469–78.

[11] Yamaguchi Hiroya, Sato Kosuke. SIMX Manual. 2014, http://hea-www.
harvard.edu/simx/.

[12] Dauser Thomas, Falkner Sebastian, Lorenz Maximilian, Kirsch Christian,
Peille Philippe, Cucchetti Edoardo, et al. SIXTE: A generic X-ray instrument
simulation toolkit. Astron Astrophys 2019;630:A66.

[13] Harris Charles R, Millman K Jarrod, van der Walt Stéfan J, Gommers Ralf,
Virtanen Pauli, Cournapeau David, et al. Array programming with NumPy.
Nature 2020;585(7825):357–62.

[14] Virtanen Pauli, Gommers Ralf, Oliphant Travis E, Haberland Matt,
Reddy Tyler, Cournapeau David, et al. SciPy 1.0: Fundamental algorithms
for scientific computing in Python. Nature Methods 2020;17:261–72.

[15] Hunter JD. Matplotlib: A 2D graphics environment. Comput Sci Eng
2007;9(3):90–5.

[16] Astropy Collaboration, Robitaille TP, Tollerud EJ, Greenfield P, Droet-
tboom M, Bray E, et al. Astropy: A community Python package for
astronomy. Astron Astrophys 2013;558:A33.

[17] Astropy Collaboration, Price-Whelan AM, SipÆcz BM, Günther HM, Lim PL,
Crawford SM, et al. The astropy project: Building an open-science project
and status of the v2.0 core package. Astron J 2018;156(3):123.

[18] Arnaud Keith A, George Ian M, Tennant Allyn F. The OGIP spectral file
format. 2021, OGIP Memo OGIP/92-007.

[19] Strohmayer TE. X-Ray spectro-polarimetry with photoelectric polarimeters.
Astrophys J 2017;838(1):72.

[20] K. Dietz A Tennant, Odell Stephen. IXPE SOC: Data format of level-1, level-2
and CALDB products. 2022, IXPE-SOC-DOC-007.

[21] Zyla PA, et al., Particle Data Group Collaboration. Review of particle
physics. PTEP 2020;2020(8):083C01, and 2021 update.

[22] Taverna R, Turolla R, Suleimanov V, Potekhin A Y, Zane S. X-ray spec-
tra and polarization from magnetar candidates. Mon Not R Astron Soc
2020;492(4):5057–74.

[23] Rhodes Brandon. Skyfield: High precision research-grade positions for
planets and earth satellites generator. 2019, ascl:1907.024.

[24] Vianello Giacomo, Lauer Robert J, Younk Patrick, Tibaldo Luigi,
Burgess James M, Ayala Hugo, et al. The multi-mission maximum
likelihood framework (3ML). 2015, arXiv:1507.08343.

[25] Arnaud KA. XSPEC: The first ten years. In: Jacoby George H, Barnes Jean-
nette, editors. Astronomical data analysis software and systems V.
Astronomical society of the pacific conference series, vol. 101, 1996, p.
17.

[26] Freeman Peter, Doe Stephen, Siemiginowska Aneta. Sherpa: A
mission-independent data analysis application. In: Starck Jean-Luc,
Murtagh Fionn D, editors. Astronomical Data Analysis. Society of photo-
optical instrumentation engineers (SPIE) conference series, vol. 4477,
2001, p. 76–87.

9

http://refhub.elsevier.com/S2352-7110(22)00116-9/sb1
http://refhub.elsevier.com/S2352-7110(22)00116-9/sb1
http://refhub.elsevier.com/S2352-7110(22)00116-9/sb1
http://refhub.elsevier.com/S2352-7110(22)00116-9/sb1
http://refhub.elsevier.com/S2352-7110(22)00116-9/sb1
http://refhub.elsevier.com/S2352-7110(22)00116-9/sb1
http://refhub.elsevier.com/S2352-7110(22)00116-9/sb1
http://refhub.elsevier.com/S2352-7110(22)00116-9/sb2
http://refhub.elsevier.com/S2352-7110(22)00116-9/sb2
http://refhub.elsevier.com/S2352-7110(22)00116-9/sb2
http://refhub.elsevier.com/S2352-7110(22)00116-9/sb2
http://refhub.elsevier.com/S2352-7110(22)00116-9/sb2
http://refhub.elsevier.com/S2352-7110(22)00116-9/sb3
http://refhub.elsevier.com/S2352-7110(22)00116-9/sb3
http://refhub.elsevier.com/S2352-7110(22)00116-9/sb3
http://refhub.elsevier.com/S2352-7110(22)00116-9/sb3
http://refhub.elsevier.com/S2352-7110(22)00116-9/sb3
http://refhub.elsevier.com/S2352-7110(22)00116-9/sb4
http://refhub.elsevier.com/S2352-7110(22)00116-9/sb4
http://refhub.elsevier.com/S2352-7110(22)00116-9/sb4
http://refhub.elsevier.com/S2352-7110(22)00116-9/sb4
http://refhub.elsevier.com/S2352-7110(22)00116-9/sb4
http://refhub.elsevier.com/S2352-7110(22)00116-9/sb5
http://refhub.elsevier.com/S2352-7110(22)00116-9/sb5
http://refhub.elsevier.com/S2352-7110(22)00116-9/sb5
http://refhub.elsevier.com/S2352-7110(22)00116-9/sb6
http://refhub.elsevier.com/S2352-7110(22)00116-9/sb6
http://refhub.elsevier.com/S2352-7110(22)00116-9/sb6
http://refhub.elsevier.com/S2352-7110(22)00116-9/sb6
http://refhub.elsevier.com/S2352-7110(22)00116-9/sb6
http://refhub.elsevier.com/S2352-7110(22)00116-9/sb6
http://refhub.elsevier.com/S2352-7110(22)00116-9/sb6
http://refhub.elsevier.com/S2352-7110(22)00116-9/sb7
http://refhub.elsevier.com/S2352-7110(22)00116-9/sb7
http://refhub.elsevier.com/S2352-7110(22)00116-9/sb7
http://refhub.elsevier.com/S2352-7110(22)00116-9/sb7
http://refhub.elsevier.com/S2352-7110(22)00116-9/sb7
http://refhub.elsevier.com/S2352-7110(22)00116-9/sb8
http://refhub.elsevier.com/S2352-7110(22)00116-9/sb8
http://refhub.elsevier.com/S2352-7110(22)00116-9/sb8
http://refhub.elsevier.com/S2352-7110(22)00116-9/sb8
http://refhub.elsevier.com/S2352-7110(22)00116-9/sb8
http://refhub.elsevier.com/S2352-7110(22)00116-9/sb8
http://refhub.elsevier.com/S2352-7110(22)00116-9/sb8
http://refhub.elsevier.com/S2352-7110(22)00116-9/sb8
http://refhub.elsevier.com/S2352-7110(22)00116-9/sb8
http://refhub.elsevier.com/S2352-7110(22)00116-9/sb8
http://refhub.elsevier.com/S2352-7110(22)00116-9/sb8
http://refhub.elsevier.com/S2352-7110(22)00116-9/sb9
http://refhub.elsevier.com/S2352-7110(22)00116-9/sb9
http://refhub.elsevier.com/S2352-7110(22)00116-9/sb9
http://refhub.elsevier.com/S2352-7110(22)00116-9/sb9
http://refhub.elsevier.com/S2352-7110(22)00116-9/sb9
http://refhub.elsevier.com/S2352-7110(22)00116-9/sb9
http://refhub.elsevier.com/S2352-7110(22)00116-9/sb9
http://refhub.elsevier.com/S2352-7110(22)00116-9/sb10
http://refhub.elsevier.com/S2352-7110(22)00116-9/sb10
http://refhub.elsevier.com/S2352-7110(22)00116-9/sb10
http://refhub.elsevier.com/S2352-7110(22)00116-9/sb10
http://refhub.elsevier.com/S2352-7110(22)00116-9/sb10
http://refhub.elsevier.com/S2352-7110(22)00116-9/sb10
http://refhub.elsevier.com/S2352-7110(22)00116-9/sb10
http://hea-www.harvard.edu/simx/
http://hea-www.harvard.edu/simx/
http://hea-www.harvard.edu/simx/
http://refhub.elsevier.com/S2352-7110(22)00116-9/sb12
http://refhub.elsevier.com/S2352-7110(22)00116-9/sb12
http://refhub.elsevier.com/S2352-7110(22)00116-9/sb12
http://refhub.elsevier.com/S2352-7110(22)00116-9/sb12
http://refhub.elsevier.com/S2352-7110(22)00116-9/sb12
http://refhub.elsevier.com/S2352-7110(22)00116-9/sb13
http://refhub.elsevier.com/S2352-7110(22)00116-9/sb13
http://refhub.elsevier.com/S2352-7110(22)00116-9/sb13
http://refhub.elsevier.com/S2352-7110(22)00116-9/sb13
http://refhub.elsevier.com/S2352-7110(22)00116-9/sb13
http://refhub.elsevier.com/S2352-7110(22)00116-9/sb14
http://refhub.elsevier.com/S2352-7110(22)00116-9/sb14
http://refhub.elsevier.com/S2352-7110(22)00116-9/sb14
http://refhub.elsevier.com/S2352-7110(22)00116-9/sb14
http://refhub.elsevier.com/S2352-7110(22)00116-9/sb14
http://refhub.elsevier.com/S2352-7110(22)00116-9/sb15
http://refhub.elsevier.com/S2352-7110(22)00116-9/sb15
http://refhub.elsevier.com/S2352-7110(22)00116-9/sb15
http://refhub.elsevier.com/S2352-7110(22)00116-9/sb16
http://refhub.elsevier.com/S2352-7110(22)00116-9/sb16
http://refhub.elsevier.com/S2352-7110(22)00116-9/sb16
http://refhub.elsevier.com/S2352-7110(22)00116-9/sb16
http://refhub.elsevier.com/S2352-7110(22)00116-9/sb16
http://refhub.elsevier.com/S2352-7110(22)00116-9/sb17
http://refhub.elsevier.com/S2352-7110(22)00116-9/sb17
http://refhub.elsevier.com/S2352-7110(22)00116-9/sb17
http://refhub.elsevier.com/S2352-7110(22)00116-9/sb17
http://refhub.elsevier.com/S2352-7110(22)00116-9/sb17
http://refhub.elsevier.com/S2352-7110(22)00116-9/sb18
http://refhub.elsevier.com/S2352-7110(22)00116-9/sb18
http://refhub.elsevier.com/S2352-7110(22)00116-9/sb18
http://refhub.elsevier.com/S2352-7110(22)00116-9/sb19
http://refhub.elsevier.com/S2352-7110(22)00116-9/sb19
http://refhub.elsevier.com/S2352-7110(22)00116-9/sb19
http://refhub.elsevier.com/S2352-7110(22)00116-9/sb20
http://refhub.elsevier.com/S2352-7110(22)00116-9/sb20
http://refhub.elsevier.com/S2352-7110(22)00116-9/sb20
http://refhub.elsevier.com/S2352-7110(22)00116-9/sb21
http://refhub.elsevier.com/S2352-7110(22)00116-9/sb21
http://refhub.elsevier.com/S2352-7110(22)00116-9/sb21
http://refhub.elsevier.com/S2352-7110(22)00116-9/sb22
http://refhub.elsevier.com/S2352-7110(22)00116-9/sb22
http://refhub.elsevier.com/S2352-7110(22)00116-9/sb22
http://refhub.elsevier.com/S2352-7110(22)00116-9/sb22
http://refhub.elsevier.com/S2352-7110(22)00116-9/sb22
http://refhub.elsevier.com/S2352-7110(22)00116-9/sb23
http://refhub.elsevier.com/S2352-7110(22)00116-9/sb23
http://refhub.elsevier.com/S2352-7110(22)00116-9/sb23
http://arxiv.org/abs/1507.08343
http://refhub.elsevier.com/S2352-7110(22)00116-9/sb25
http://refhub.elsevier.com/S2352-7110(22)00116-9/sb25
http://refhub.elsevier.com/S2352-7110(22)00116-9/sb25
http://refhub.elsevier.com/S2352-7110(22)00116-9/sb25
http://refhub.elsevier.com/S2352-7110(22)00116-9/sb25
http://refhub.elsevier.com/S2352-7110(22)00116-9/sb25
http://refhub.elsevier.com/S2352-7110(22)00116-9/sb25
http://refhub.elsevier.com/S2352-7110(22)00116-9/sb26
http://refhub.elsevier.com/S2352-7110(22)00116-9/sb26
http://refhub.elsevier.com/S2352-7110(22)00116-9/sb26
http://refhub.elsevier.com/S2352-7110(22)00116-9/sb26
http://refhub.elsevier.com/S2352-7110(22)00116-9/sb26
http://refhub.elsevier.com/S2352-7110(22)00116-9/sb26
http://refhub.elsevier.com/S2352-7110(22)00116-9/sb26
http://refhub.elsevier.com/S2352-7110(22)00116-9/sb26
http://refhub.elsevier.com/S2352-7110(22)00116-9/sb26

	ixpeobssim: A simulation and analysis framework for the imaging X-ray polarimetry explorer
	Introduction
	Architectural overview
	Output data format
	Response functions: the pseudo calibration database

	Simulating observations
	Source model definition
	Simulation workflow
	Low-level implementation
	Event weights
	Advanced source models
	Good time intervals
	Dithering and pointing history

	Analysis tools
	Basic polarization analysis
	Spectro-polarimetric fitting
	Interface to XSPEC
	Analysis pipelines

	Conclusions
	Declaration of competing interest
	Data availability
	Acknowledgments
	Appendix A. Code Snippets
	References

