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A B S T R A C T

A bistable structural component possesses more than one stable equilibrium configuration. In terms of the strain
energy stored in bending, this can be thought of as a system with not only an initial equilibrium configuration
represented by an isolated minimum, but also a remote minimum that might be accessed given a sufficient
disturbance. Whether the system is able to stay in this new position, or revert back to the initial state when
the disturbance is removed is an important practical issue. This distinction is largely determined by geometry.
Continuous elastic structures of the type produced using a 3D-printer are necessarily of relatively high-order
in a dimensional sense, and most previous studies have used nonlinear finite element analysis to determine
parameter sensitivity. However, there is a role to be played by discrete low-order models in which the same
type of essential qualitative behavior can be captured, but where the parameter dependency (in this case
whether a system stays in its inverted, snapped, configuration, or not) can be assessed more directly than
numerical simulation. This short note develops a discrete model specifically designed to address this issue,
and presents the outcomes of some tests on 3D-printed elements.
1. Introduction

There has been considerable recent interest in reconfigurable struc-
ural forms, often based on a lattice arrangement, that can exhibit
nap-through buckling [1,2]. Conventionally, most forms of buckling
ave been viewed as undesirable, especially when it leads to plastic
eformation, or stress-induced brittle failure. However, there are also
ituations in which structural (elastic) instability can be exploited,
nd additive manufacturing has provided a versatile and powerful
latform for experimentation [3]. One such example is energy trapping
4–6], in which a flexible structural component or lattice is specifically
onfigured such that when compressed it exhibits controlled trapping of
lastic energy. That is, the system possesses a highly deformed (higher-
nergy) stable state that is recoverable, and thus presents intriguing
ossibilities for architectured and phase-changing materials [7].
Much of the recent impetus in this area has included developments

ithin the scope of micro-electrical mechanical systems (MEMS) and
etamaterials, in which specific geometry is exploited to influence
eatures including bi-stability. Applications are myriad, for example,
witches and actuators [8,9], soft robotics [10], and locomotion [11],
an all benefit from a component designed to suddenly change its
opology. Others applications of such structures include impact and
nergy absorption [4,12–17], origami [18], energy harvesting [19–22],
nd waveguides [23–25]. 3D-printing is very well suited to produc-
ng framework-lattice-type structures, and to relatively high levels of
eometric precision [3,26–28].
On the analysis side, the majority of research has involved finite

lement methods (FEM), numerical simulation [4], together with some
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large-deflection analysis [29,30]. Often, the snap-through is observed
from the lateral loading of a buckled beam or arch [31,32]. Typically
this loading is compressive, and assuming the structure is not attached
to the loading device, the system will become detached if the load
direction is reversed (effectively tensile pulling is not supported). This
directly leads to the question: when a load or disturbance is removed,
does the structure remain in the ‘remote’, or closed, equilibrium, or
move back to its original, or open, shape. Determining this distinction
is the motivation for the current study.

Snap-through is a classic limit-point buckling phenomenon in which
the stiffness of a structure under load drops to zero and precipitates
a sudden dynamic jump to a remote stable equilibrium configuration
[33,34]. On the removal of the load the structure may snap-back or not,
and hysteresis is quite typical in this elastic, highly nonlinear situation.
In related research, certain specific structural arrangements have been
developed to exhibit zero [35], and even negative Poisson’s ratio
[36–38]. Structural components may snap even under tension [39,40].
Lattice, honeycomb-like structures are especially versatile [41–46] in
this regard, and may be activated by temperature changes.

Some prior research has determined the geometric parameter
regimes and their influence on bistable behavior of shallow elas-
tic arches [5], and bistable behavior is sometimes precipitated by
fluctuations in the thermal environment [47], and in higher-order
systems the pathways between stable equilibria can be very compli-
cated indeed [48,49]. Other kinds of buckling have also been explored,
including column (Euler-type) buckling [2,6,50,51], but it is worth
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Fig. 1. Some examples of bistable structural arrangements. (a) valve, (b) gripper, (c) snapping elements in parallel, (d) snapping elements in series, (e) snapping lattice. More
examples of the 3D-printed lattices can be found in [1,3,30], and the Appendix.
Fig. 2. Two 3D-printed elements that snap. (a)–(c) loading and unloading, (d)–(f) loading and unloading for a slightly deeper curved component.
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entioning that in 3D-printing the initial shape is essentially stress-
ree (as opposed to a shape that is elastically deformed into an initial
hape).

. Specific motivation

This paper presents a simple discrete model specifically designed
o shed light on the conditions under which an arch-like structural
omponent may exhibit bistable behavior. The emphasis is on a single-
egree-of-freedom (SDOF) analysis and what it tells us about anal-
gous continuous elastic systems of the type easily produced using
D-printing. The use of simple discrete models allows an appreciable
onnection to system parameters [52,53].
Fig. 1 shows a few schematic examples of shallow curved elements

hat are liable to snap-through, and perhaps remain in a post-buckled
onfiguration.
The specific type of behavior we wish to qualitatively address can be

een in Fig. 2. Here, we note the sequence when two structural elements
re subject to compression (and release). In parts (a)–(c), the structure
naps-back to its original configuration on removal of the compression.
his contrasts with parts (d)–(f) in which the structure remains in its
napped configuration. The geometric difference between these two is
ery small, with the structure in the lower panels having a slightly
igher rise (all other things being held equal).

. Qualitative analysis

The essential snap-through behavior of laterally-loaded curved con-
inuous structural components can be captured using a discrete model.
conventional approach might involve a finite element analysis, or

ome kind of large deflection (elastica) analysis [5], but there is some
dvantage in developing a relatively simple (single-degree-of-freedom)
iscrete model that can be analyzed to provide closed-form relations
etween representative system parameters and snap-through behavior.
he approach used here is in the same spirit as that adopted in [52,53].
2

Consider the model shown schematically in Fig. 3. Part (a) shows
two rigid links of length 𝐿, connected to each other via a hinge, and
also to lateral and axial springs of coefficient 𝑐 and 𝑘 respectively. The
generalized coordinate 𝜃 is measured from the initial angle 𝛼. The arch
model is constrained to deflect symmetrically, and although a continu-
ous arch typically exhibits some asymmetry (a second mode influence
that will be discussed later) especially close to snap-through buckling,
the specific form of the 3D-printed elements under consideration here,
especially when incorporated within a lattice configuration, result in
symmetric ‘free’ equilibrium configurations. The angle 𝛼 describes the
nitial unloaded equilibrium shape, in which the springs are in their
atural stress-free condition. The 3D-printed structures are essentially
tress-free (as opposed to being deformed from an initially flat beam,
or example). Part (b) shows the link model in a loaded/deflected state
n which symmetry ensures a vertical deflection 𝛥1 under the load 𝑃 ,
nd a corresponding horizontal deflection 𝛥2, with

𝛥1 = 𝐿 [sin 𝛼 − sin (𝛼 − 𝜃)]
𝛥2 = 𝐿 [cos (𝛼 − 𝜃) − cos 𝛼] .

(1)

We can write the potential energy 𝑉 of this system in terms of the
train energy associated with lateral deflection 𝑈𝑐 (𝛥1), axial deflection
𝑘(𝛥2), and the work done by the load 𝑊𝑝(𝛥1):

𝑉 = (1∕2)𝑐𝐿2 [sin 𝛼 − sin (𝛼 − 𝜃)]2 + 𝑘𝐿2 [cos (𝛼 − 𝜃) − cos 𝛼]2

−𝑃𝐿 [sin 𝛼 − sin (𝛼 − 𝜃)]
(2)

he behavior of the arch depends on the parameters 𝑃 , 𝑐, 𝑘, and 𝛼. In
eference to the 3D-printed models in the previous section we make the
ollowing compelling analogy. We consider the load 𝑃 as the control
arameter, associated with pushing down on the cell or lattice, i.e., via
n imposed displacement. The spring 𝑐 takes on the role of the lateral
tiffness of the curved elements, incorporating the beam thickness,
ength, cross-sectional properties, and the material used. The spring 𝑘
akes on the role of a little lack of axial rigidity in the models, i.e., there
s some flexibility in the supports, and possibly some axial extensibility.
t seems plausible that 𝑘 ≫ 𝑐 for the geometries printed (see Fig. 2).
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Fig. 3. Schematics of the arch model. (a) the geometry and springs, (b) the initial and loaded/deflected shape.
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Fig. 4. Contours of potential energy as a function of the angle 𝜃, for the unloaded
structure (𝑃 = 0), i.e., strain energy, and different values of the spring ratio 𝑘̄, with
fixed 𝛼 = 𝜋∕8.

And 𝛼 represents the rise of the arch, and associated with the initial
height/span ratio.

The potential energy of the system possesses a minimum in the
unloaded state (at 𝜃 = 0). Depending on the ratio of the spring
stiffnesses and the rise, the model can also possess a deflected free
equilibrium configuration associated with a remote minimum, or not.
This is typically associated with configurations in which the arch is
somewhat inverted. Contours of potential energy, as a function of the
spring ratio 𝑘̄ = 2𝑘∕𝑐, are shown in Fig. 4. The transition between
a geometry with a single (unique) equilibrium configuration and one
exhibiting three equilibria (one of which is typically unstable) cor-
responds to a point of inflection in the potential energy (the middle
inset in Fig. 4). That is, for small values of 𝑘̄ (a stronger axial than
lateral spring stiffness) the unloaded model can only maintain its initial
configuration in the absence of any external load or constraint. The
key issue is then access to that remote equilibrium given either a (not
necessarily small) dynamic disturbance, or, as the case of interest here,
a uni-directional force. That is, a system limited to positive values of
the load 𝑃 only, that determines energy trapping.

We consider the behavior of the model under the action of the load.
The condition for equilibrium is 𝑑𝑉 ∕𝑑𝜃 = 0, from which we obtain

𝑝̄ = sin 𝛼 − sin (𝛼 − 𝜃) + 𝑘̄ [cos (𝛼 − 𝜃) − cos 𝛼] tan (𝛼 − 𝜃) (3)

where 𝑝̄ = 𝑃∕(𝑐𝐿) and 𝑘̄ = 2𝑘∕𝑐.
We start by fixing the model in its initial configuration, charac-

erized by 𝛼, and consider the force–deflection behavior described
by Eq. (3) for a few sample parameter values. Fig. 5(a) shows typical
responses for 𝛼 = 𝜋∕8, with the initial shape labeled point 1. Setting
𝑘̄ = 70 we observe an initially linear response before a softening effect

as the load 𝑝̄ is increased. At (𝑝̄, 𝜃) = (0.98, 0.186) a horizontal tangency

3

is encountered (point 2), the conventional stiffness has dropped to zero,
and a sudden snap would cause the system to undergo a fast inversion
to point 5, where (𝑝̄, 𝜃) = (0.98, 0.802), under a force-control loading, for
example, if the load was due to the application of a free-weight was
added.

However, under displacement-controlled loading, the full nonlinear
path is followed beyond the horizontal tangency, including where the
force becomes negative (the force is pulling on the arch to keep in
contact). Depending on the way the loading is applied, the system may
lose contact from position 3 to position 4, for example if the structure
is free to move (or snap) away from the load.

Configurations in the vicinity of point 5 correspond to some in-
version in the shape (buckled down). The interesting behavior occurs
during unloading. If the load is gradually reduced the system moves
to point 4, (𝑝̄, 𝜃) = (0, 0.693), where it remains: at 𝑝̄ = 0 this is a
location of ‘free’ equilibrium, with positive stiffness. A further loading
into negative values (pulling) is needed to cause the system to fully
unload. For 𝑘̄ = 30, the system would also experience a snap, albeit
more moderate, under dead loading. However, for this case, there is no
remote equilibrium, and even though there might be a certain amount
of hysteresis (under dead loading), on unloading the force does not
become negative and hence the system has no choice but to return
(eventually) to its original state.

As just illustrated, whether the system stays inverted, or not, de-
pends on whether the force–deflection curve passes back through zero
force, and thus the two examples just given (with 𝑘̄ = 30 and 70)
span this condition. In the 3D-printed specimens mentioned earlier,
the propensity to snap when a structure is pushed together and its
propensity to snap-back once the squashing is removed in thus ex-
plained. We can determine the condition of where the zero-crossing
occurs analytically, i.e., where the equilibrium curve transitions from
one root to three roots. For example, 𝛼 = 𝜋∕8, and 𝑘̄ ≈ 50, is close to
this condition, and occurs at 𝜃 ≈ 0.59. Any spring stiffness ratio greater
than this value leads to sticking behavior, for this value of the initial
‘rise’.

In a similar vein, suppose we fix the stiffness ratio at 𝑘̄ = 50 and vary
the initial angle 𝛼. Fig. 5(b) shows the behavior. In this case the system,
haracterized by a higher initial angle (𝛼 = 𝜋∕7), results in a persistent
snapped-through shape, whereas a lower initial angle (𝛼 = 𝜋∕9) does
ot. This is consistent with the behavior shown in Fig. 2. We also notice
hat the straight configuration (𝜃 = 𝛼) does not play an important
ole. Furthermore, if 𝑘̄ = 0, we obtain sinusoidal behavior which is
essentially linear for small deflections. If 𝑘̄ → ∞, or 𝑐 = 0, we obtain
a system that exhibits an unstable equilibrium configuration when it is
straight, i.e., 𝜃 = 𝛼, and essentially an equal force to cause snapping in
either direction symmetrically.

Fig. 6 shows where the force–deflection response passes through
zero as a function of the system parameters. Part (a) shows the effect of
changing the spring stiffness ratio for a fixed initial angle 𝛼 = 𝜋∕8. We
bserve the case 𝑘̄ = 50 does not quite meet the zero force condition.
Similarly, in part (b) the fixed spring stiffness ratio (𝑘̄ = 50) does not

quite cross the zero-force axis when 𝛼 = 𝜋∕8.
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Fig. 5. Force–deflection behavior. (a) 𝛼 = 𝜋∕8, varying 𝑘̄, (b) 𝑘̄ = 50, varying 𝛼.
Fig. 6. A summary of the parameters allowing a persistent snapped configuration on removal of the load. (a) 𝛼 = 𝜋∕8, varying 𝑘̄, (b) 𝑘̄ = 50, varying 𝛼. The red-dashed lines
correspond to the representative cases described earlier. The green and orange lines correspond to turning points in the load–deflection characteristics. (For interpretation of the
references to color in this figure legend, the reader is referred to the web version of this article.)
The turquoise regions correspond to parameter values that possess
stable (remote) equilibria indicating the model staying in a partially
inverted shape on removal of the load. Also superimposed in this plot
are the loci of turning points in the force–deflection relation, with
the green lines representing the maximum load and the green lines
representing the minimum load. These curves were obtained by solving
the equation corresponding to setting the second derivative of potential
energy equal to zero. For values of 𝑘̄ and 𝛼 outside of these loci, the
force–deflection response is monotonic (single-valued) in parts (a) and
(b) respectively.

Finally, we can plot the critical condition in parameter space, as
shown in Fig. 7. Here the light yellow shading again corresponds
4

to parameter combinations that do not possess a remote stable equi-
librium. Within the tolerance limits of the root-finding algorithm in
Mathematica we obtain more accurate values on the critical boundary:
𝛼 = 𝜋∕7.92 when 𝑘̄ = 50, and 𝑘̄ = 51.04 when 𝛼 = 𝜋∕8. Fig. 7 confirms
the intuitive expectation that the model is more likely to stay in a
snapped-through position if the initial angle is relatively large, and
if the axial springs are somewhat stiffer than the lateral springs, and
one can imagine how the critical boundary might be used in a design
context.

Although the generalized coordinate used in the model to describe
the deflected shape was the angular deviation from the initial con-
figuration, we can also view the response in terms of the vertical
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Fig. 7. The regions of parameter space corresponding to a persistence of a
snapped-through shape.

deflection (since this is what the experimental data would typically
correspond to): 𝑥 ≡ 𝛥1. We note that for the parameters chosen there is
ery little numerical difference between 𝑥∕𝐿 and 𝜃. Fig. 8 shows two
epresentative examples of force–deflection behavior, one that returns
o the initial shapes on removal of the load (part a), and one that stays
nverted (part b).
The red and blue arrows represent loading and subsequent unload-

ng, respectively. It is important to recall that this sequence of events
orresponds to a displacement-controlled loading device. The stiffness
f the remote state (indicated by the red square) reflects the degree of
tability in this position.

. Experimental data

Although the main focus of this paper has been on the qualitative
ehavior of the simple discrete model, some experimental data, gen-
rated from some axial loading of elements, shows the broad relation
etween the persistency of snap-through with geometry. Consider a
ypical component, or element, shown in Fig. 9. It consists of two
elatively rigid bars that are connected via a thin arch-like element.
he span of the arch is 100 mm with a nominal thickness of 1.25 mm.
he ‘rise’ of the arch is the variable that is subject to systematic change:
rom 5.25 mm to 7.5 mm in 0.25 mm increments. These values were
hosen in order to span the geometry between elements that both
napped-back and stayed snapped. These elements were 3D-printed
5

sing a Startsys printer with ABS thermoplastic. Part (c) shows a typical
lement in the testing machine (Lloyds Instruments LRX Plus with a
00 N load cell).
Fig. 10 shows the outcome of the vertical load versus vertical dis-

lacement for the ten elements. The testing machine used a prescribed
ate of descent (10 mm/minute) to produce the data shown in part (a).
he machine moved down until the ends of each element met, after
hich the direction of loading was reversed. It is important to note that
he loading cell is not attached to the element, such that the force only
pushes’ on the element — it cannot ‘pull’. Thus, a zero load reading
an be associated with a loss of contact.
In each case there was an initial linear response, sometimes followed

y a sudden snapping event, marked asymmetry, contact on one side
nd then fully closing. After the ends of the element are forced together
he load rapidly increases. On subsequent unloading the elements either
etraced their path back to their original ‘open’ shape, or stayed in the
closed’ position. The transition between the geometry that snapped-
ack (open) and stay snapped together (closed) occurs for the element
ith a rise in the vicinity of 6.5 mm. Part (b) of this figure shows the
aximum and minimum loads as a function of the rise. For example, for
he most shallow arch (5.25 mm) the maximum load reaches approxi-
ately 8 N, and then declines to about 1 N before rapidly rising as the
lement closes shut. However, as the direction of loading is reversed,
he arch retraces its path and opens back onto its original shape. In
eneral, the minimum load occurs at zero for the rise of 6.5 mm and
reater, indicating that the elements will stay closed and not remain
n contact with the load cell as the loading device moves back up
shaded light yellow). Also, as an example, the element with a rise of
.5 mm reaches a maximum load of about 13 N before losing contact
or a while, until the ends contact. In this case the elements remains
n its closed configuration when the loading direction is reversed. The
road regimes of rise that correspond to bi-stability are indicated by
he turquoise-shaded region. Thus, we can view Fig. 10(b) as being
nalogous to a horizontal traverse through Fig. 7, i.e., a varying the rise
initial angle, 𝛼) with all other parameters held constant. The light gray
hading in this figure indicates a small transition range of geometries
or which subtle effects can influence whether an element stays snapped
ogether or not. This will be discussed later.
However, this overall behavior is by no means simple, and in

rder to focus on the dichotomy surrounding bi-stability behavior we
crutinize two specific cases in more detail: 5.5 mm and 7 mm. These
lements are highlighted in blue and red respectively, and replotted in
ig. 11. We start by considering a relatively shallow arch with a rise
f 5.5 mm. Under slow loading conditions the (black) data shows a
radually softening stiffness with a maximum load of about 8 N (point
). Very soon after there is a small jump in the response as the arch
uddenly tilts to one side (point B). This tilted behavior causes one side
o contact (point C) and the deformation proceeds under a reducing
oad until a minimum is reached (point D). Subsequent deformation
hen causes both sides to contact and the load rapidly increases (point
Fig. 8. Force–deflection behavior for two different spring ratios in terms of vertical position, measured from an initial rise of 𝛼 = 𝜋∕8, (a) a return to the initial shape on load
removal, (b) a system that remains in a snapped-state on load removal. (For interpretation of the references to color in this figure legend, the reader is referred to the web version
of this article.)
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Fig. 9. A typical experimental element. (a) the dimensions (in mm) with the equation of the curved component given by 𝐴∕2(1 − cos (2𝜋𝑥∕𝐿)), where 𝐴 is the central rise
(5.25–7.5 mm), and 𝐿 is the span (100 mm), (b) an angled view, (c) a 3D-printed specimen in the loading machine.
Fig. 10. Force–deflection relations for ten snapping elements, loading and unloading, (b) the loci of maximum and minimum loads. The behavior highlighted in red and blue are
considered in more detail in Fig. 11. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
e

Fig. 11. Force–deflection behavior for two elements, one that snaps-back (black and
blue) and one that stays in a snapped configuration (red and green). (For interpretation
of the references to color in this figure legend, the reader is referred to the web version
of this article.)

E). The direction of loading is reversed (the load cell moves up) and
this path is indicated in blue data points. There appears to be a little
hysteresis as a somewhat different path is followed during the return
to the original shape.

For an arch with a slightly higher rise, for example 7 mm we obtain
the data shown in red and green in Fig. 11. A higher initial load is
reached, nearly 10 N, in which the arch more distinctly bifurcates into
6

an asymmetric shape (point F). On subsequent displacement one end
again comes into contact (point G) before the load drops to zero. At
this point (H) contact is lost until the load cell catches back up with
the arch (point J) and proceeds to take more load until the direction
of displacement is reversed (point K) and the color coding switches
from red to green. The important difference is that now, when the
force drops back down to zero, contact is again lost (point J), and the
element remains closed as the load continues to move up, with the test
terminated at point L.

We see a broad correspondence between the model in Fig. 8 and the
xperimental data in Fig. 11. Some of the differences are examined in
the next section.

5. Limitations of the discrete model and discussion

There are a number of ways in which the discrete link-model differs
from the 3D-printed (continuous) elements. In terms of the analogy
with the 3D-printed systems described earlier, a shortcoming of the
discrete model is the restriction to symmetric behavior. It is well-
established that unless an arch-like structure is very shallow, there is
typically a non-trivial asymmetric component to the deflection espe-
cially in the vicinity of where snap-through occurs for force-controlled
loading. Typically, the loaded-straight configuration represents a very
high level of strain energy, and an arch finds it much more energetically
expedient to pass around this energy hill-top by deflecting asymmetri-
cally. However, the geometry of the unit cells within a lattice tends to
reduce the asymmetrical behavior, and in the context of the current
study we are primarily interested in whether the systems exhibits bi-
stability, rather than how it might transition from one equilibrium to
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Fig. 12. Examples of 3D-printed lattices. (a) and (b) a simple lattice arrangement that exhibits snapping when compressed, but does not stay in the compressed configuration, (c)
degree of tailoring can be achieved by varying geometry, (d) a snapping lattice incorporated into a cylindrical arrangement.
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nother (with both free equilibrium shapes symmetric). It would be
ossible to measure the angle associated with this form of asymmetry,
nd even incorporate this effect into the discrete model.
Another issue, often important within a buckling context is the role

f imperfections, where even very small deviations from a symmetric
eometry (say) can have a profound effect on behavior under load [33].
he flat arch-like geometry is somewhat imperfection-sensitive (de-
ending on the geometry) [33,54], and in referring to Fig. 3 it can be
een that a reasonable variation to this model might be to allow the two
xial springs to have different stiffnesses, or having the lateral spring
ffset at a small angle from the vertical. The condition of one root
ransitioning into three roots is associated with a horizontal tangency,
hich is quite sensitive. This issue relates to the accuracy with which
lements can be 3D-printed, especially in the thickness dimension, as
ell as certain limitations of common 3D-printer materials, e.g., a
ittle plastic yielding, thermal effects, and stress concentrations. A small
mount of viscoelasticity can also be observed in Fig. 10, in which some
f the paths do not quite return to their original configuration when
he load is removed. Also, in Fig. 11 an offset between the loading
nd unloading paths can be observed, and even a significantly different
ransition between symmetric and asymmetric behavior depending on
he direction of loading. A slight discoloration was observed near the
lamped ends of the flexible component, especially under repeated
napping, indicating some minor yielding of the material. This prob-
bly contributed to some of the subtle uncertainty in establishing an
ccurate transition point, i.e., the lightly-shaded region near a rise of
.75 mm in Fig. 10(b).

. Concluding remarks

This short note looks at a simple discrete structural model consisting
f rigid links and elastic springs. The model was devised to shed light
n the observed snapping behavior of some 3D-printed components,
classic example of buckling [55–57]. Under a typical sequence of

oading (compressing and releasing), the system may snap-back to its
riginal shape or remain in a post-snap configuration (bi-stability). The
arameters of the model (representing geometry and stiffness) and their
nfluence on this behavior is displayed. Specifically, the effect of the
ise of the 3D-printed arches plays essentially the same role as the initial
ngle (𝛼) of the theoretical model. Some 3D-printed elements were

ested experimentally and data confirmed the transition to bi-stability.
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ppendix

Some examples of 3D-printed lattices were inspired by [3,4,40], and
hown in Fig. 12.
These elements were printed with a variety of thicknesses, spans,

nd rises (with the flexible component in the form of a complete
osine wave). There is a broad analogy between these parameters and
he springs and initial angles of the discrete model. 3D-printing the
napping elements in series or parallel suggests a versatile control over
pring stiffness.
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