

Expect the unexpected: conventional and unconventional roles for cadherins in collective cell migration

C. Luke Messer and Jocelyn A. McDonald*
Division of Biology, Kansas State University, Manhattan, KS 66502

*Correspondence: jmcdona@ksu.edu

Keywords: Cadherin, collective cell migration, development, adhesion, cell movement, border cells, neural crest cells, mesendodermal cells, testis myotubes, follicle cells

Abstract

Migrating cell collectives navigate complex tissue environments both during normal development and in pathological contexts such as tumor invasion and metastasis. To do this, cells in collectives must stay together but also communicate information across the group. The cadherin superfamily of proteins mediates junctional adhesions between cells, but also serve many essential functions in collective cell migration. Besides keeping migrating cell collectives cohesive, cadherins help follower cells maintain their attachment to leader cells, transfer information about front-rear polarity among the cohort, sense and respond to changes in the tissue environment, and promote intracellular signaling, in addition to other cellular behaviors. In this review, we highlight recent studies that reveal diverse but critical roles for both classical and atypical cadherins in collective cell migration, specifically focusing on four *in vivo* model systems in development: the *Drosophila* border cells, Zebrafish mesendodermal cells, *Drosophila* follicle rotation, and *Xenopus* neural crest cells.

Introduction

Cell migration is fundamental to many key events during embryonic development such as gastrulation and organ formation, whereas dysregulation drives progression of diseases such as cancer. Often, individual cells unite to move together in a process called collective cell migration. Like single cells, collectives undergo a motility cycle: polarized protrusions form at the leading edge, cells attach to the migratory substrate, adhesions are released at the rear, then the cells can move forward (1,2). In collectives, however, cells within the group also must stay together to move as a single unit (3). Cell-cell adhesions help maintain such group integrity, especially given the space constraints imposed by the tissue environment and help convey information across the cohort. More detail on collective cell migration and the general roles of diverse adhesion proteins in cell collectives can be found in several recent reviews (4–8). Here, we focus on the cadherin family of proteins, whose numerous functions together are integral to the success of collective cell migration.

The cadherin superfamily of calcium-dependent transmembrane proteins connect cells together and aid in cell-cell recognition (9). The highly conserved cadherins share a common feature, an extracellular domain of cadherin repeats that facilitates homophilic and heterophilic interactions. A great diversity of cadherins exist, with 114 different cadherin coding genes in humans, such as the ‘type 1’ classical cadherins E-cadherin and N-cadherin, protocadherins (PCDHs), and the so-called ‘atypical’ cadherin-related proteins (CDHRs) Dachsous and FAT (9,10). Classical cadherins are the main components of the adherens junction that serve as primary mechanosensitive contacts between adherent cells (11). The intracellular domain of type 1 classical cadherins bind to p120-catenin, β -catenin, and α -catenin, which in turn provides direct connection to the F-actin cytoskeleton (12). Atypical cadherins such as Fat (Ft) and Fat2 have very large extracellular domains consisting of 34 cadherin repeats and signal through their intracellular domains (10,13).

While cadherins are well known for their roles in mediating junctional adhesions between cells, they serve many additional functions in collective cell migration. Besides keeping collectives cohesive, cadherins help follower cells maintain their attachment to leader cells, facilitate information transfer across groups of cells, sense the environment, and facilitate intracellular signaling and remodeling events that are required for efficient migration. In this review, we highlight roles for both classical and atypical cadherins in collective cell migration during development. Specifically, we focus on recent studies that find both expected and unexpected functions of cadherins in four models of *in vivo* collective cell migration, border cells, polster cells, rotating follicle cells, and neural crest cells.

An efficient multitasker: E-cadherin controls many facets of *Drosophila* border cell migration

E-Cadherin has a surprising number of roles in the migration of border cells during *Drosophila* oogenesis. Border cells are a small group of six to ten epithelial follicle cells that are recruited by a pair of specialized ‘polar cells’ to form a migratory ‘cluster’ (**Figure 1A**). Within this cluster,

outer migratory border cells completely surround the inner, non-motile polar cells (**Figure 1A**). The border cell cluster then detaches from the surrounding follicular epithelium, moves between 15 large nurse cells, and finally stops at the oocyte. Eventually, border cells and polar cells together form the micropyle (14,15). During migration, border cells stay tightly attached to each other and to the polar cells, form directional protrusions toward the oocyte, and crawl between the nurse cells. E-cadherin is required for all these functions – and more.

Before border cells even begin their migration, there is a marked increase in E-cadherin mRNA levels compared to non-migratory epithelial follicle cells (16). This is reflected at the protein level, where high levels of E-cadherin and associated complex members such as β -catenin are found at cell-cell contacts between polar cells, between polar and border cells, and between border cells (**Figure 1A**). Precise levels of E-cadherin are critical for migration; complete loss of E-cadherin, β -catenin, or α -catenin, causes border cells to stay stuck in the epithelium and prevents their ability to move (16–18). Increased levels are also detrimental, as overexpression of E-cadherin blocks border cell migration (19).

E-cadherin mechanically couples border cells to provide directional information to the cluster (**Figure 1A**). Border cells typically extend one or more dynamic actin-rich protrusions toward the direction of migration (20,21). High Rac GTPase activity in a lead cell polarizes the cluster and cell-cell communication suppresses protrusions from the other border cells (22,23). Cai and colleagues (2014) found a key role for E-cadherin in this process (24). Specific knockdown of E-cadherin in just the migratory border cells disrupts overall directional migration and leads to more protrusions from the other, non-leading border cells. Further, loss of E-cadherin delocalizes Rac activity from the leading border cell. These phenotypes closely resemble those caused by inhibition of the guidance receptors EGFR and PVR, which together respond to secreted ligands from the oocyte (20,23,25,26). Co-expression of dominant-negative forms of EGFR and PVR increases Rac activity in all border cells and causes all border cells to produce non-directed protrusions (20,23). Thus, E-cadherin, downstream of guidance activation through EGFR and PVR, connects border cells to communicate localized Rac activity information to all cells within the cluster for directed migration (24). Similarly, E-cadherin (Cadherin-1; Cdh1) helps direct the collective migration of the zebrafish lateral line primordium (27). Lateral line cells in the lead pull follower cells through Cdh1-dependent cell-cell adhesion, which, together with chemokine signaling, results in directional migration. Likewise, during zebrafish gastrulation, mesendodermal cells migrate and require E-cadherin (28). While individual mesendodermal progenitor cells are motile, they require E-cadherin-based cell adhesion between cells to provide greater coordinated migration, speed and directionality at the collective level.

One way E-cadherin could communicate among border cells is via mechanical connection through the actomyosin cytoskeleton. At the outer periphery of the border cell collective, non-muscle myosin II (myosin II) is locally restricted yet dynamic (29,30). Localized myosin II promotes the overall shape of the border cell cluster and the ability to migrate as a group (18,29). F-actin is highly enriched on the outside of the border cell cluster resembling what has been termed ‘supracellular,’ or ‘above the cellular level,’ organization in other cell collectives

(31). This supracellular F-actin helps suppress protrusions from non-leading border cells (18,32). Interestingly, E-cadherin regulates the localization and dynamics of myosin II within the border cell cluster (30). Loss of myosin II causes non-leading border cells to protrude, similar to loss of E-cadherin (24,30). Physical linkage of the cadherin-catenin complex to the localized actomyosin cortex at the cluster periphery through α -catenin thus could keep individual border cells mechanically coupled.

In a perhaps more expected role, E-cadherin keeps cells within the border cell cluster adhered to each other. The cluster contains two cell types, the central polar cells, and the outer surrounding border cells, with high levels of E-cadherin between all cells (**Figure 1A**). Specific knockdown of E-cadherin in either polar cells or in border cells using RNA interference (RNAi) causes border cells to fall off the cluster (18,24,33). Interestingly, wild type border cells that fall off E-cadherin-deficient polar cells are still motile and form protrusions, though their speed is slower than normal (24,34). RNAi knockdown of E-cadherin, β -catenin, or α -catenin only in border cells, or simultaneously in polar cells and border cells, causes the cluster to fall apart with poor border cell movement (18,33). Thus, heterotypic cadherin-catenin adhesion keeps border cells attached to polar cells and homotypic adhesion keeps border cells attached to each other.

Border cells do not migrate on an extracellular matrix. Instead, E-cadherin provides traction for border cells to migrate upon their nurse cell substrate (**Figure 1A**). Complete loss of E-cadherin in just the nurse cells blocks border cell migration, similar to loss of E-cadherin only in border cells (16,24,35). When nurse cells are mutant for E-cadherin, border cells cannot invade between nurse cells and instead they migrate up the side of the egg chamber, along the epithelial follicle cells that still express E-cadherin (24,35). E-cadherin is thus required in both border cells and nurse cells for proper collective movement and likely needs to be carefully regulated in both cell types. More work, however, is needed to determine the mechanism by which E-cadherin mediates dynamic adhesion of border cells to nurse cells. Intriguingly, although E-cadherin is required for traction, the physical packing of nurse cells acts as a topographic cue for border cells to journey down the correct central pathway between nurse cells (35). Other migrating cells also use E-cadherin for movement on other cells. For example, during zebrafish gastrulation, the internalizing mesendodermal cells migrate along the overlying epiblast epithelial cell layer and during gonad formation, primordial germ cells migrate upon adjacent somatic cells, both of which require E-cadherin (36,37).

Guiding from behind: E-Cadherin mediates backseat driving behavior of Zebrafish polster cells

Within cell collectives, follower cells also contribute to migration of the group. In some cases, the followers drive movement from behind, which requires cadherins. Such is the case with zebrafish polster cells and cells of the closely associated prechordal plate in the gastrulating embryo (**Figure 1B**). During gastrulation of the zebrafish embryo, the polster cells are the first, anterior-most mesendodermal cells to internalize (38). The polster cells migrate from the

blastoderm margin towards the yolk layer, then turn at the yolk surface to migrate along the epiblast towards the animal pole (36,39,40). The polster cells are followed by the anterior axial mesendodermal cells that give rise to the prechordal plate; behind both cell types are the posterior axial mesodermal cells (36,39,41).

E-Cadherin is expressed in prechordal plate cells and is required for their efficient cell movement (36). At the tissue level, downregulation of E-Cadherin in the axial mesendoderm allows their efficient migration through application of a “push” from the posterior cells (42). Intriguingly, cells at the front, middle, or rear positions of the prechordal plate all have similar migration speeds and extend actin-rich protrusions toward the animal pole (41). While this might suggest that prechordal plate cells move as single cells, elegant transplant experiments show that these cells migrate collectively (41). When transplanted ahead of the endogenous prechordal plate, prechordal plate cells lose protrusion directionality. However, protrusion orientation is regained once the endogenous plate catches up to the transplanted cell population. E-Cadherin, along with Rac1 and planar cell polarity signaling, orients individual cell protrusions. Dumortier and colleagues propose a model in which the directional cue emerges as an intrinsic property of the collective migration of the cell cohort (41).

The polster cells and prechordal plate undergo directional migration, but who does the steering? In a follow up study, Boutillon and colleagues find that the rearmost posterior mesodermal cells actively orient the direction of the polster and prechordal plate cells (**Figure 1B**) (39). Using laser ablation, cuts at the leading edge do not alter speed or protrusions, but cuts in the middle of the polster cells or between the polster cells and the posterior mesoderm significantly reduces both speed and protrusion orientation of the cells ahead of the ablation site. Thus, polster cells not only receive directional information from contact with the rear posterior axial mesodermal cells but also require active migration of the axial mesoderm (39,41). α -catenin, which links the cadherin complex to the actin cytoskeleton, orients polster cell protrusions and accumulates at protrusion contacts with the cell in front (39). Laser ablation experiments at these contact sites indicate that the protrusions are under tissue tension. Together the authors conclude that follower cells, by actively migrating and forming protrusions, generate a mechanical cue that guides the cells ahead of them. Successful communication of this cue requires E-Cadherin through linkage to α -catenin and vinculin (39).

Seamless motility: The atypical cadherin Fat2 drives *Drosophila* follicle cell rotation

The atypical cadherin Fat2, rather than classical cadherins, regulates the collective rotation of *Drosophila* follicle cells, an emerging model of edgeless collective cell migration (9,43). The follicular epithelium is a continuous sheet of cells that surrounds the inner germline cells (**Figure 2A**). There are no gaps in this tissue; thus, follicle cells lack the typical cues that *a priori* dictate who is a leader and who is a follower in collective migration, yet they still move directionally. Migration of the entire follicle cell layer occurs along an overlying basement membrane (44). This rotational movement begins as soon as egg chambers form and continues until stage 8 of oogenesis (44,45). Failure to rotate causes the resultant eggs to become round (44,46,47). A combination of follicle cell migration, expansion of the germline, and stiffening of the basement

membrane layer cooperate to elongate the egg into its final ellipsoid shape (44,45,48–51). Importantly, mammalian epithelial cell collectives can undergo similar ‘seamless’ rotational collective migration (52–55).

In the absence of free edges, the atypical cadherin Fat2 breaks symmetry in the epithelium and establishes the direction of follicle cell migration. Loss of Fat2 (also called Kugelei) prevents egg elongation and disrupts the orientation of F-actin filaments and microtubules (47,56,57). Further live imaging revealed that Fat2 promotes egg chamber rotation (47). Fat2 localizes to the trailing edge of follicle cells, suggesting a role in migration direction (47,57). Egg chambers are able to rotate either clockwise or counterclockwise, which requires Fat2-dependent polarized microtubule growth (47). Interestingly, follicle cell migration begins shortly after the egg chamber forms in the germarium (45). Even this early, Fat2 promotes the orientation of microtubule plus-ends, which predicts the direction of follicle migration inside the germarium (58).

After helping establish the direction of rotation, Fat2 fine-tunes the machinery for motility to help establish leading and trailing (lagging) edges of migrating follicle cells. Although a seamless epithelium, follicle cells are planar polarized in the direction of migration. F-actin-based protrusions orient to the leading edge of each cell (45,56,59). These lamellipodial protrusions are required for rotation (45). Fat2 promotes proper protrusion extension and retraction at the leading edge (59–61). Loss of *fat2* prevents protrusion formation (60,61). This requirement is counterintuitive, as Fat2 localizes to the trailing edge of migrating follicle cells (47). However, subsequent work identified a non-cell autonomous role for Fat2 in promoting the extension of protrusions from the cell immediately behind (**Figure 2A**; (59,61)).

How does Fat2 control protrusions? Closer analysis of *fat2* mutant follicle cells reveals that while the cells are less protrusive overall, some protrusions still form though they are no longer oriented in the direction of migration (59). It was already known that the WASP family verprolin homolog regulatory (WAVE) complex, which stimulates F-actin growth, promotes follicle cell protrusion formation during migration (45). Interestingly, Fat2 functions non-cell autonomously at the lagging edge to polarize and stabilize WAVE complex members at the leading edge of the immediately-following cell (59). Live analysis of cells with fluorescently tagged proteins reveal tight punctate colocalization of both Fat2 and WAVE complex proteins at the leading-trailing interface. Fat2 also promotes the localization of the receptor tyrosine phosphatase Lar to the leading edge of follicle cells (**Figure 2A**) (61). Lar is required for leading edge protrusions and WAVE complex localization (60,61). Fat2 thus recruits and stabilizes WAVE complex to cell-cell contacts, along with Lar, thus inducing leading edge protrusions to direct the rotational collective migration of follicle cells.

Cadherins in contact: CIL and CIL-like behaviors in collective migration

Another type of collective cell migration that requires cadherins is the coordination of streams of closely associated cells through contact inhibition of locomotion (CIL). First described 70 years ago, CIL is the process by which cells that collide into other cells pause, reorient, and then

move away from each other (62). CIL functions as both a barrier to cancer metastasis and a promoter of normal embryonic development and wound healing (63). Cadherins are an increasingly appreciated component required for CIL. This includes the cellular avoidance responses commonly associated with CIL, which together lead to directional collective movement, migrating cell interactions with their substrate, and a variation termed contact-stimulated locomotion (64–68).

Cadherins and CIL are key to the directed migration of the cranial neural crest, which undergo a collective migration to populate craniofacial structures during development (**Figure 2B**) (64,69). Specifically, an E-cadherin to N-cadherin switch is required for CIL in *Xenopus* neural crest cell migration (64). Pre-migratory neural crest cells express E-cadherin and cannot perform CIL, whereas migratory neural crest cells express N-cadherin and can now undergo CIL. Cell-cell contacts form between colliding migratory neural crest cells, but these adhesions are transient. N-cadherin-expressing migratory neural crest cells polarize Rac1 activity and protrusions opposite to the sites of cell-cell contact, thus allowing separation and migration of the cells away from each other after cell collision. Ectopic expression of E-cadherin in migratory neural crest cells disrupts protrusions and cells can no longer orient traction forces away from the point of cell-cell contacts. Thus, E-cadherin blocks CIL and N-cadherin promotes CIL. This cadherin switch during neural crest development regulates Rac1 activity, providing forces to disassemble cell-cell junctions, leading to classic CIL avoidance behaviors (64). Altogether, migration of the neural crest requires CIL through adhesion and oriented protrusion regulation, along with mutual ‘co-attraction’ through chemoattractant signaling (64,70). Simultaneously, a physical supracellular actomyosin cable that surrounds the rear edge of the neural crest cells actively contracts to help drive persistent forward movement of the group (71).

In addition to initiating Rac1 activity required for CIL through polarized protrusions, cadherins have other important roles in neural crest migration. Cells undergoing CIL need traction with the migratory substrate to provide the forces to move apart. In migratory neural crest cells, N-cadherin mediates the local disassembly of focal adhesions at neural crest-matrix contacts (66). Specifically, transient N-cadherin adhesion between the colliding cells upregulates Src kinase activity, disassembly of cell-matrix adhesions at cell-cell contacts, and a redistribution of forces (**Figure 2B**). This leads to separation of neural crest cells and their movement away from each other. Similarly, N-cadherin mediates the heterotypic ‘chase-and-run’ behavior of neural crest and their neighboring epithelial placode cells (**Figure 2B**) (65). In this case, the placode tissue secretes a chemoattractant, the chemokine Sdf1 (CXCL12), that draws the neural crest forward. Then, N-cadherin-mediated neural crest-placode heterotypic cell contacts result in a CIL, where the placode cells migrate away from the neural crest (**Figure 2B**). Recent biophysical studies further revealed a stiffness gradient in the retreating placodal tissue upon neural crest migration (67). N-cadherin helps generate the stiffness gradient for neural crest migration. The neural crest then chases this retreating gradient of stiffer tissue. Together, these results underscore the importance of cadherin-based cell-cell contacts in both homotypic and heterotypic CIL mechanisms.

Finally, a new model of collective cell migration was recently described in the *Drosophila* testis that uses an interesting twist on CIL called 'contact-stimulated locomotion' (CSL; (68)). During pupal development, nascent myotubes migrate collectively to eventually cover the entire testis in a muscular sheath (72,73). Much like in neural crest cells, N-cadherin regulates cell-cell and cell-matrix adhesions (68). Testis myotubes migrate using filopodia, rather than broad lamellipodia, to drive their collective locomotion. Laser ablation experiments reveal that testis myotubes migrate towards and fill in tissue gaps. N-cadherin knockdown blocks the ability of nascent myotubes to cover the testis (73). Rather than preventing cell motility, cells with reduced N-cadherin still migrate but are prevented from moving together in a directional manner (68). Notably, knocking down N-cadherin increases the number of myotubes with free edges that have stable cell-matrix adhesions, which in turn promote forward movement. Bischoff and colleagues propose that nascent testis myotubes move through CSL, a variant on CIL that was described more than 30 years ago in quail neural crest and human primary melanocytes (68,74). In the case of CSL of testis myotubes, N-cadherin biases cell-matrix adhesions towards the free space, but the cells need to touch and reinforce their cell-cell contacts for directional migration (68).

Conclusions

While cadherins contribute to diverse roles beyond the classical view of epithelial cell-cell adhesion, the complexity of these mechanisms is just beginning to be uncovered in collective cell migration. In this review, we highlighted both expected and unexpected functions of classical and atypical cadherins in collective cell migration. Several themes emerge from recent studies of four *in vivo* models of collective cell migration, border cells, polster cells, follicle rotation, and neural crest cells. Cadherins often mediate cell-cell adhesion to keep cells cohesive and adhered to each other during migration. Counterintuitively, in CIL, cadherins provide contact cues for cells to move away from each other. In the case of neural crest cells, directional protrusions, along with other mechanisms, help the cells move together. Cadherins can promote traction of cell collectives onto migratory substrates, either other cells or extracellular matrix. A major emerging theme is that cadherins help to determine the direction of migration. Directional information via cadherins often occurs through connections to the cytoskeleton, such as direct linkage of E-cadherin to F-actin via α -catenin in border cells and polster cells, but also by asymmetric Fat2-dependent WAVE localization and directed protrusions in follicle rotation. A major open question is whether the roles for classical and atypical cadherins are conserved, for example during various types of collective cell migrations in human development and diseases such as cancer. Moreover, are unique roles for cadherins truly unique? For example, do atypical cadherins like Fat2 have broader roles in the directed migration of cell collectives? Finally, collective cell migration is a common mode of tumor metastasis (3,8), thus understanding these diverse cadherin functions may ultimately offer new therapeutic targets.

Perspectives

- Many cells migrate as collectives during development, in wound healing, and in tumor invasion and metastasis. Cell adhesion proteins, such as classical and atypical cadherins, are required for collective cell migration.
- Classical and atypical cadherins have many functions in collective cell migration, ranging from keeping cells together, communicating where and when protrusions form, which direction the group will move, and the efficiency of group movement.
- It is still unclear how these highly similar cadherin proteins have such diverse functions in collective cell migration. New optogenetic and optochemical tools to manipulate cadherins and/or cell-cell junctions, though challenging to create and implement especially inside tissues, may be needed to help disentangle these functions (75,76).

Funding

Work in the J.A.M. laboratory is supported by a grant from the National Science Foundation (NSF 2027617).

Author contributions

C.L.M. and J.A.M. wrote the manuscript. C.L.M. prepared the figure.

Acknowledgements

We would like to thank Yujun Chen for sharing the image of E-cadherin protein localization in border cells shown in Figure 1A.

Abbreviations

CIL, contact inhibition of locomotion; CSL, contact-stimulated locomotion; CDHR, cadherin-related; PCDH, protocadherin

References

1. Lauffenburger DA, Horwitz AF. Cell Migration: A Physically Integrated Molecular Process. *Cell*. 1996 Feb;84(3):359–69.
2. Ridley AJ, Schwartz MA, Burridge K, Firtel RA, Ginsberg MH, Borisy G, et al. Cell migration: integrating signals from front to back. *Science*. 2003 Dec 5;302(5651):1704–9.
3. Friedl P, Gilmour D. Collective cell migration in morphogenesis, regeneration and cancer. *Nature Reviews Molecular Cell Biology*. 2009 Jul;10(7):445–57.
4. Mayor R, Etienne-Manneville S. The front and rear of collective cell migration. *Nat Rev Mol Cell Biol*. 2016 Feb;17(2):97–109.
5. De Pascalis C, Etienne-Manneville S. Single and collective cell migration: the mechanics of adhesions. *Mol Biol Cell*. 2017 Jul 7;28(14):1833–46.
6. Mishra AK, Campanale JP, Mondo JA, Montell DJ. Cell interactions in collective cell migration. *Development*. 2019 Dec 5;146(23):dev172056.
7. Scarpa E, Mayor R. Collective cell migration in development. *Journal of Cell Biology*. 2016 Jan 18;212(2):143–55.
8. Friedl P, Mayor R. Tuning Collective Cell Migration by Cell–Cell Junction Regulation. *Cold Spring Harb Perspect Biol*. 2017 Apr;9(4):a029199.
9. Gul IS, Hulpiau P, Saeys Y, van Roy F. Evolution and diversity of cadherins and catenins. *Exp Cell Res*. 2017 Sep 1;358(1):3–9.
10. Fulford AD, McNeill H. Fat/Dachsous family cadherins in cell and tissue organisation. *Curr Opin Cell Biol*. 2020 Feb;62:96–103.
11. Pinheiro D, Bellaïche Y. Mechanical Force-Driven Adherens Junction Remodeling and Epithelial Dynamics. *Developmental Cell*. 2018 Oct;47(1):3–19.
12. Takeichi M. Dynamic contacts: rearranging adherens junctions to drive epithelial remodelling. *Nat Rev Mol Cell Biol*. 2014 Jun;15(6):397–410.
13. Sharma P, McNeill H. Chapter Ten - Fat and Dachsous Cadherins. In: van Roy F, editor, *The Molecular Biology of Cadherins*, Prog Mol Biol Transl Sci. Academic Press; 2013;116:215–235.
14. Montell DJ, Rorth P, Spradling AC. slow border cells, a locus required for a developmentally regulated cell migration during oogenesis, encodes Drosophila CEBP. *Cell*. 1992 Oct;71(1):51–62.

15. Horne-Badovinac S. The *Drosophila* micropyle as a system to study how epithelia build complex extracellular structures. *Philos Trans R Soc Lond B Biol Sci.* 2020 Oct 375(1809):20190561.
16. Niewiadomska P, Godt D, Tepass U. DE-Cadherin Is Required for Intercellular Motility during *Drosophila* Oogenesis. *Journal of Cell Biology.* 1999 Feb;144(3):533–47.
17. Sarpal R, Pellikka M, Patel RR, Hui FYW, Godt D, Tepass U. Mutational analysis supports a core role for *Drosophila* α -Catenin in adherens junction function. *Journal of Cell Science.* 2012 Jan;125(1):233–45.
18. Chen Y, Kotian N, Aranjuez G, Chen L, Messer CL, Burtscher A, et al. Protein phosphatase 1 activity controls a balance between collective and single cell modes of migration. *Elife.* 2020 May 5;9:e52979.
19. Schober M, Rebay I, Perrimon N. Function of the ETS transcription factor Yan in border cell migration. *Development.* 2005 Aug;132(15):3493–504.
20. Prasad M, Montell DJ. Cellular and Molecular Mechanisms of Border Cell Migration Analyzed Using Time-Lapse Live-Cell Imaging. *Developmental Cell.* 2007 Jun;12(6):997–1005.
21. Bianco A, Poukkula M, Cliffe A, Mathieu J, Luque CM, Fulga TA, et al. Two distinct modes of guidance signalling during collective migration of border cells. *Nature.* 2007 Jul 19;448(7151):362–5.
22. Ramel D, Wang X, Laflamme C, Montell DJ, Emery G. Rab11 regulates cell-cell communication during collective cell movements. *Nat Cell Biol.* 2013 Mar;15(3):317–24.
23. Wang X, He L, Wu YI, Hahn KM, Montell DJ. Light-mediated activation reveals a key role for Rac in collective guidance of cell movement *in vivo*. *Nat Cell Biol.* 2010 Jun;12(6):591–7.
24. Cai D, Chen SC, Prasad M, He L, Wang X, Choesmel-Cadamuro V, et al. Mechanical feedback through E-cadherin promotes direction sensing during collective cell migration. *Cell.* 2014;157(5).
25. Duchek P, Somogyi K, Jékely G, Beccari S, Rørth P. Guidance of Cell Migration by the *Drosophila* PDGF/VEGF Receptor. *Cell.* 2001 Oct;107(1):17–26.
26. McDonald JA, Pinheiro EM, Kadlec L, Schupbach T, Montell DJ. Multiple EGFR ligands participate in guiding migrating border cells. *Developmental Biology.* 2006 Aug;296(1):94–103.
27. Colak-Champollion T, Lan L, Jadhav AR, Yamaguchi N, Venkiteswaran G, Patel H, et al. Cadherin-Mediated Cell Coupling Coordinates Chemokine Sensing across Collectively Migrating Cells. *Curr Biol.* 2019 Aug 5;29(15):2570-2579.e7.

28. Arboleda-Estudillo Y, Krieg M, Stühmer J, Licata NA, Muller DJ, Heisenberg CP. Movement directionality in collective migration of germ layer progenitors. *Curr Biol*. 2010 Jan 26;20(2):161–9.

29. Aranjuez G, Burtscher A, Sawant K, Majumder P, McDonald JA. Dynamic myosin activation promotes collective morphology and migration by locally balancing oppositional forces from surrounding tissue. *Mol Biol Cell*. 2016 Jun 15;27(12):1898–910.

30. Mishra AK, Mondo JA, Campanale JP, Montell DJ. Coordination of protrusion dynamics within and between collectively migrating border cells by myosin II. *MBoC*. 2019 Sep;30(19):2490–502.

31. Shellard A, Mayor R. Supracellular migration - beyond collective cell migration. *J Cell Sci*. 2019 Apr 15;132(8):jcs226142.

32. Plutoni C, Keil S, Zeledon C, Delsin LEA, Decelle B, Roux PP, et al. Misshapen coordinates protrusion restriction and actomyosin contractility during collective cell migration. *Nat Commun*. 2019 Sep 2;10(1):3940.

33. Raza Q, Choi JY, Li Y, O'Dowd RM, Watkins SC, Chikina M, et al. Evolutionary rate covariation analysis of E-cadherin identifies Raskol as a regulator of cell adhesion and actin dynamics in *Drosophila*. *PLoS Genet*. 2019 Feb;15(2):e1007720.

34. Cai D, Dai W, Prasad M, Luo J, Gov NS, Montell DJ. Modeling and analysis of collective cell migration in an in vivo three-dimensional environment. *Proceedings of the National Academy of Sciences of the United States of America*. 2016 Apr;113(15):E2134–41.

35. Dai W, Guo X, Cao Y, Mondo JA, Campanale JP, Montell BJ, et al. Tissue topography steers migrating *Drosophila* border cells. *Science*. 2020 Nov 20;370(6519):987–90.

36. Montero JA, Carvalho L, Wilsch-Bräuninger M, Kilian B, Mustafa C, Heisenberg CP. Shield formation at the onset of zebrafish gastrulation. *Development*. 2005 Mar;132(6):1187–98.

37. Kardash E, Reichman-Fried M, Maître JL, Boldajipour B, Papusheva E, Messerschmidt EM, et al. A role for Rho GTPases and cell-cell adhesion in single-cell motility in vivo. *Nat Cell Biol*. 2010 Jan;12(1):47–53; sup pp 1-11.

38. Kimmel CB, Ballard WW, Kimmel SR, Ullmann B, Schilling TF. Stages of embryonic development of the zebrafish. *Dev Dyn*. 1995 Jul;203(3):253–310.

39. Boutillon A, Escot S, Elouin A, Jahn D, González-Tirado S, Starruß J, et al. Guidance by followers ensures long-range coordination of cell migration through α -catenin mechanoperception. *Developmental Cell*. 2022 Jun 20;57(12):1529-1544.e5.

40. Heisenberg CP, Tada M. Zebrafish gastrulation movements: bridging cell and developmental biology. *Semin Cell Dev Biol*. 2002 Dec;13(6):471–9.

41. Dumortier JG, Martin S, Meyer D, Rosa FM, David NB. Collective mesendoderm migration relies on an intrinsic directionality signal transmitted through cell contacts. *Proceedings of the National Academy of Sciences*. 2012 Oct 16;109(42):16945–50.
42. Blanco MJ, Barrallo-Gimeno A, Acloque H, Reyes AE, Tada M, Allende ML, et al. Snail1a and Snail1b cooperate in the anterior migration of the axial mesendoderm in the zebrafish embryo. *Development*. 2007 Nov 15;134(22):4073–81.
43. Horne-Badovinac S. Fat-like cadherins in cell migration-leading from both the front and the back. *Curr Opin Cell Biol*. 2017 Oct;48:26–32.
44. Haigo SL, Bilder D. Global Tissue Revolutions in a Morphogenetic Movement Controlling Elongation. *Science*. 2011 Feb;331(6020):1071–4.
45. Cetera M, Ramirez-San Juan GR, Oakes PW, Lewellyn L, Fairchild MJ, Tanentzapf G, et al. Epithelial rotation promotes the global alignment of contractile actin bundles during *Drosophila* egg chamber elongation. *Nature Communications*. 2014 Dec;5(1):5511–5511.
46. Lewellyn L, Cetera M, Horne-Badovinac S. Misshapen decreases integrin levels to promote epithelial motility and planar polarity in *Drosophila*. *J Cell Biol*. 2013 Mar 18;200(6):721–9.
47. Viktorinová I, Dahmann C. Microtubule Polarity Predicts Direction of Egg Chamber Rotation in *Drosophila*. *Current Biology*. 2013 Aug;23(15):1472–7.
48. Crest J, Diz-Muñoz A, Chen DY, Fletcher DA, Bilder D. Organ sculpting by patterned extracellular matrix stiffness. Spradling AC, editor. *eLife*. 2017 Jun 27;6:e24958.
49. Isabella AJ, Horne-Badovinac S. Rab10-Mediated Secretion Synergizes with Tissue Movement to Build a Polarized Basement Membrane Architecture for Organ Morphogenesis. *Developmental Cell*. 2016 Jul;38(1):47–60.
50. Chen DY, Crest J, Streichan SJ, Bilder D. Extracellular matrix stiffness cues junctional remodeling for 3D tissue elongation. *Nat Commun*. 2019 Jul 26;10(1):3339.
51. Balaji R, Wechselberger V, Classen AK. Response of *Drosophila* epithelial cell and tissue shape to external forces in vivo. *Development*. 2019 Sep 6;146(17):dev171256.
52. Glentis A, Blanch-Mercader C, Balasubramaniam L, Saw TB, d'Alessandro J, Janel S, et al. The emergence of spontaneous coordinated epithelial rotation on cylindrical curved surfaces. *Sci Adv*. 2022 Sep 16;8(37):eabn5406.
53. Fernández PA, Buchmann B, Goychuk A, Engelbrecht LK, Raich MK, Scheel CH, et al. Surface-tension-induced budding drives alveogenesis in human mammary gland organoids. *Nat Phys*. 2021 Oct;17:1130–6.

54. Tanner K, Mori H, Mroue R, Bruni-Cardoso A, Bissell MJ. Coherent angular motion in the establishment of multicellular architecture of glandular tissues. *Proc Natl Acad Sci U S A*. 2012 Feb 7;109(6):1973–8.

55. Wang H, Lacoche S, Huang L, Xue B, Muthuswamy SK. Rotational motion during three-dimensional morphogenesis of mammary epithelial acini relates to laminin matrix assembly. *Proc Natl Acad Sci U S A*. 2013 Jan 2;110(1):163–8.

56. Gutzeit HO, Eberhardt W, Gratwohl E. Laminin and basement membrane-associated microfilaments in wild-type and mutant *Drosophila* ovarian follicles. *Journal of Cell Science*. 1991 Dec;100(4):781–8.

57. Viktorinová I, König T, Schlichting K, Dahmann C. The cadherin Fat2 is required for planar cell polarity in the *Drosophila* ovary. *Development*. 2009 Dec;136(24):4123–32.

58. Chen DY, Lipari KR, Dehghan Y, Streichan SJ, Bilder D. Symmetry Breaking in an Edgeless Epithelium by Fat2-Regulated Microtubule Polarity. *Cell reports*. 2016;15(6):1125–33.

59. Williams AM, Donoughe S, Munro E, Horne-Badovinac S. Fat2 polarizes the WAVE complex in trans to align cell protrusions for collective migration. Applewhite D, Cooper JA, Applewhite D, editors. *eLife*. 2022 Sep 26;11:e78343.

60. Squarr AJ, Brinkmann K, Chen B, Steinbacher T, Ebnet K, Rosen MK, et al. Correction: Fat2 acts through the WAVE regulatory complex to drive collective cell migration during tissue rotation. *J Cell Biol*. 2016 Mar 28;212(7):883.

61. Barlan K, Cetera M, Horne-Badovinac S. Fat2 and Lar Define a Basally Localized Planar Signaling System Controlling Collective Cell Migration. *Dev Cell*. 2017 Mar 13;40(5):467–477.e5.

62. Abercrombie M, Heaysman JE. Observations on the social behaviour of cells in tissue culture. I. Speed of movement of chick heart fibroblasts in relation to their mutual contacts. *Exp Cell Res*. 1953 Sep;5(1):111–31.

63. Stramer B, Mayor R. Mechanisms and in vivo functions of contact inhibition of locomotion. *Nat Rev Mol Cell Biol*. 2017 Jan;18(1):43–55.

64. Scarpa E, Szabó A, Bibonne A, Theveneau E, Parsons M, Mayor R. Cadherin Switch during EMT in Neural Crest Cells Leads to Contact Inhibition of Locomotion via Repolarization of Forces. *Dev Cell*. 2015 Aug 24;34(4):421–34.

65. Theveneau E, Steventon B, Scarpa E, Garcia S, Trepaut X, Streit A, et al. Chase-and-run between adjacent cell populations promotes directional collective migration. *Nat Cell Biol*. 2013 Jul;15(7):763–72.

66. Roycroft A, Szabó A, Bahm I, Daly L, Charras G, Parsons M, et al. Redistribution of Adhesive Forces through Src/FAK Drives Contact Inhibition of Locomotion in Neural Crest. *Developmental Cell*. 2018 Jun 4;45(5):565-579.e3.

67. Shellard A, Mayor R. Collective durotaxis along a self-generated stiffness gradient in vivo. *Nature*. 2021 Dec;600(7890):690-4.

68. Bischoff MC, Lieb S, Renkawitz-Pohl R, Bogdan S. Filopodia-based contact stimulation of cell migration drives tissue morphogenesis. *Nat Commun*. 2021 Feb 4;12(1):791.

69. Carmona-Fontaine C, Matthews HK, Kuriyama S, Moreno M, Dunn GA, Parsons M, et al. Contact inhibition of locomotion in vivo controls neural crest directional migration. *Nature*. 2008 Dec 18;456(7224):957-61.

70. Carmona-Fontaine C, Theveneau E, Tzekou A, Tada M, Woods M, Page KM, et al. Complement fragment C3a controls mutual cell attraction during collective cell migration. *Dev Cell*. 2011 Dec 13;21(6):1026-37.

71. Shellard A, Szabó A, Trepaut X, Mayor R. Supracellular contraction at the rear of neural crest cell groups drives collective chemotaxis. *Science*. 2018 Oct 19;362(6412):339-43.

72. Kozopas KM, Samos CH, Nusse R. DWnt-2, a Drosophila Wnt gene required for the development of the male reproductive tract, specifies a sexually dimorphic cell fate. *Genes Dev*. 1998 Apr 15;12(8):1155-65.

73. Rothenbusch-Fender S, Fritzen K, Bischoff MC, Buttigereit D, Oenel SF, Renkawitz-Pohl R. Myotube migration to cover and shape the testis of Drosophila depends on Heartless, Cadherin/Catenin, and myosin II. *Biol Open*. 2017 Dec 15;6(12):1876-88.

74. Thomas LA, Yamada KM. Contact stimulation of cell migration. *J Cell Sci*. 1992 Dec;103 (Pt 4):1211-4.

75. Ollech D, Pflästerer T, Shellard A, Zambarda C, Spatz JP, Marcq P, et al. An optochemical tool for light-induced dissociation of adherens junctions to control mechanical coupling between cells. *Nature Communications*. 2020 Mar 31;11(1):1681.

76. Cavanaugh KE, Staddon MF, Chmiel TA, Harmon R, Budnar S, Yap AS, et al. Force-dependent intercellular adhesion strengthening underlies asymmetric adherens junction contraction. *Curr Biol*. 2022 May 9;32(9):1986-2000.e5.

Figure Legends

Figure 1. E-cadherin-dependent collective migration of border cells and zebrafish polster cells.

(A) E-cadherin has multiple functions in *Drosophila* border cell migration. E-cadherin (E-Cad, orange lines on schematic) helps form the cluster at stage 8 (top) and promotes directed migration at stage 9. Zoomed-in images show the organization of cells within the cluster (border cells, bc; polar cells, pc) and localization of E-cadherin (green on micrograph). E-cadherin helps cells stay together, form directional protrusions at the leading edge, and crawl upon the nurse cells (nc). **(B)** Zebrafish mesendodermal polster cells require E-cadherin for directional migration, with steering from behind during gastrulation. E-cadherin-dependent directional cues (E-cad arrow) are relayed from the posterior axial mesoderm to the prechordal plate and polster cells, which helps the cells move towards the animal pole. All cells express E-cadherin but a mechanical cue, via α -catenin and the actin cytoskeleton, orients protrusions and movement of the collective (36, 39).

Figure 2. Roles for atypical cadherin Fat2 in follicle rotation and N-cadherin in neural crest migration.

(A) Follicle cell rotation in *Drosophila* oogenesis requires the atypical cadherin Fat2. Fat2 breaks the symmetry and permits follicle cell (fc) rotation (top, arrows) around the axis of the egg chamber. Nurse cells (nc); A, anterior; P, posterior. Zoomed-in schematics (bottom) illustrate that Fat2 promotes WAVE/Lar activity (cyan; bottom left) and WAVE/protrusions at the leading edge of the cells (cyan; bottom right), behind Fat2-enriched lagging cell surfaces (orange). **(B)** *Xenopus* neural crest cells require N-cadherin (N-Cad, orange) for polarized disassembly of cell-cell junctions and for cell matrix focal adhesion remodeling during CIL (zoomed-in view, top). Shown are two neural crest cells undergoing CIL to move away from each other (arrows). The neural crest cells (gray) interact with, but stay separate from, the adjacent epithelial placode cells (blue; zoomed-out view, bottom). As neural crest cells make N-cadherin-mediated contacts with placode cells (gradient arrow), a 'chase and run' behavior is initiated that further contributes to successful tissue development.