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Interrogating the Configuration Space of
Postbuckled Beams

Charles Cervi'; Sophia T. Santillan?; and Lawrence N. Virgin®

Abstract: This paper considers the global configuration space of postbuckled structures. Initially, a slender buckled beam is considered. The
boundary conditions are pinned at one end and fully fixed at the other. The pin-end of the initially flat beam is moved toward the other end by
a small amount. This causes the beam to buckle laterally (the beam is axially inextensional) with a characteristic shape. Since this is the
outcome of a stable-symmetric pitchfork bifurcation, the buckled shape possesses a near mirror-image shape on the other side. Which of the
two available equilibrium configurations is taken up depends on the usual, often small, symmetry-breaking effects commonly encountered in
axially loaded systems. Given fixed conditions to maintain this initial buckled shape we then apply a moment at the pinned end. The relation
between the applied moment and the change in shape is the primary focus of this study. The extent of the buckling (end shortening) is varied,
with the magnitude of the moment, as a function of the angle, providing considerable information about the potential energy landscape in which
the axially loaded system operates. The applied moment can be thought of as a probing mechanism whereby various equilibrium configurations
are revealed, together with information regarding their stability and robustness. A similar approach is then used where the structure consists of
two nominally identical beams attached at a right angle. In both cases, the opposite end from the actuation is clamped. An experimental study is
conducted on 3D-printed specimens, and this is compared with a finite element analysis using ANSY'S, and a large-deflection elastica analysis.
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Introduction

Reconfigurable structural systems exhibiting bistability have
become popular recently. This is especially true in microelectrical
mechanical systems (MEMS) applications including switches and
actuators (Qiu et al. 2004; Nan et al. 2021), and metamaterials have
shown the potential for structured configurations with highly desir-
able characteristics (Xia et al. 2019; Zhang et al. 2020; Deng et al.
2021). For the latter, 3D printing has facilitated the production of
versatile and quite complicated elastic structural forms possessing
distinct equilibrium configurations and exhibiting origami-like
behavior and even materials with effective negative Poisson’s ratio
(Lakes 1993; Huang and Chen 2016). The ability to predict the buck-
ling behavior of structural elements and hence influence or tailor
their design is an important goal (Vollmecke et al. 2021).

We focus here on the moment actuation of a buckled beam. A
similar system has been studied previously in the literature (Pan
et al. 2022). The original contribution of this article is associated
with moment actuation, reconstruction of the configuration space
(using two carefully chosen points along the beam), and a compari-
son between FEA, elastica analysis (which we believe has not been
applied to this type of problem before), and experimental data.

The analysis is extended to a right-angle frame, which is a minor
extension of the beam model. It exhibits a strong symmetry, at least

!Graduate Student, Dept. of Mechanical Engineering and Materials
Science, Duke Univ., Durham, NC 27708. Email: charles.cervi@duke.edu

2Associate Professor, Dept. of Mechanical Engineering and Materials
Science, Duke Univ., Durham, NC 27708. Email: sophia.santillan @duke.edu

3Professor, Dept. of Mechanical Engineering and Materials Science,
Duke Univ., Durham, NC 27708 (corresponding author). ORCID: https:/
orcid.org/0000-0001-5990-0722. Email: L.virgin@duke.edu

Note. This manuscript was submitted on July 1, 2022; approved on
November 29, 2022; published online on January 12, 2023. Discussion
period open until June 12, 2023; separate discussions must be submitted
for individual papers. This paper is part of the Journal of Engineering
Mechanics, © ASCE, ISSN 0733-9399.

© ASCE

04023009-1

under the conditions here, and provides an additional opportunity
to acquire data and apply the analysis. This type of configuration is
especially useful in applications associated with energy harvesting,
switching, and compliant mechanisms in general. The ability to
radically tune the stiffness of a system has clear advantages for
bistable gripper design, for example (Tissot-Daguette et al. 2022).

Flat Configuration

Prior to any end-shortening, we have a linear elastic system, see
Fig. 1(a). That is, a simple beam that is most readily analyzed using
the beam stiffness matrix (Hughes 1987). The stiffness coefficient
relating an applied end moment to its corresponding rotation is
given by 4E1/L, based on the standard cubic shape function, and
shown in Fig. 1(b) (Hughes 1987). Given the simplicity of the lin-
ear stiffness, it can be useful in a practical context to estimate
Young’s modulus, since E = (L/4I)(M /). That is, given the cross
section dimensions (and hence /) and the length of the beam L, the
slope of the moment-rotation relation can be used to find an esti-
mate for E. Based on experimental data to be described later, the
estimated value of Young’s modulus (for 3D-printer ABS thermo-
plastic), was consistent with values suggested in previous studies
(Virgin 2017), i.e., E = 2.1 GPa.

The simple linear expression does not address the issue of
whether the pin-end moves in the axial direction. If the translational
position of the pin-end is held in position, then a stretching (mem-
brane action) is quickly induced under end rotation. If the end of the
beam is moved (relative to the other end and by the application of a
compressive end force for example), this also becomes a highly
nonlinear problem and is the focus of the current study. Previous
research in buckling has a long history (Timoshenko and Gere 1961;
Thompson and Hunt 1984), including limit-point buckling in which
the stiffness of a structure gradually reduces to zero due to axial
loading effects. Snap-through behavior and the classic saddle-node
bifurcation underpin much of the research of a specific form of
buckling in which the instability is typically accompanied by a
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Fig. 1. (a) The clamped-pinned beam; (b) unbuckled deflected shape
due to an end moment, M, 4; (c) buckled, deflected shape due to end
shortening, ¢; and (d) the first two buckled modes.

sudden dynamic jump (as opposed to an often benign transition to a
postbuckled state) (Virgin 2007; Taffetani et al. 2018; Zhong et al.
2018). There has been increased recent interest partly motivated
by the probing of postbuckled equilibria (Thompson et al. 2017;
Ehrhardt et al. 2020) and also the prospect of exploiting bistable
structural behavior in micromechanical electrical systems (MEMS)
(Camescasse et al. 2013; Tissot-Daguette et al. 2022; Wang et al.
2020; Pan et al. 2022) and metamaterials, with Cao et al. providing
a recent review in this area (Cao et al. 2021).

Postbuckling

When one end of a thin, inextensional, prismatic flat beam is
pushed toward the other end the end shortening e is related to the
lateral deflection W by the relation (Thompson and Hunt 1984):

e:L—/OL(l—W’Z)WdX (1)

where L = length of the beam [Fig. 1(c)]. For the boundary
conditions at hand, the buckled mode shape is given by

(L—-X) sin(k(L —X))
L sin(kL)

W(X)=A { (2)

with kL = 4.493, obtained from solving tan kL — kL = 0 (Chen
and Lui 1987). Placing Eq. (2) into Eq. (1) and evaluating W' (L)
provides a purely quadratic relation between end-shortening and
end angle. For example, an end-shortening of ¢/L = 0.02 results in
an end angle of (L) &~ £0.35 rad, and the lateral deflection grows
rapidly with end shortening. An elastica analysis, to be described
later, gave very similar results. However, once the beam is buckled
into a specific (nontrivial) deflected configuration with a new
enforced equilibrium, symmetry is broken. We then apply a moment
at the pinned end, and the problem becomes highly nonlinear, with
snap-through inevitable (Plaut and Virgin 2009).
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Fig. 2. Relation between the end angle 6, and the difference in lateral
deflection ¢ for e =4.75 mm (¢/L = 0.025) for a clamped-pinned
beam. The small open circle symbols represent the measurement
points.

Projection of the Deflected Shape

The initial shape is described by the first buckling mode [Eq. (2)].
However, as an end moment is applied the beam deflects with the
growth of a shape that contains a second-mode effect, especially
just prior to the loss of stability at snap-through. This more com-
plicated shape resembles Eq. (2) with kL = 7.725 (Chen and Lui
1987). The difficulty in experimentally measuring the end angle (to
be described later), together with limited information about the span-
wise shape, motivated the development of a pseudo measurement to
represent the changing shape with a kind of higher modal influence.
This was achieved by focusing on two points, X = X, and X = X,
along the beam, that have lateral displacements W(X,) = W, and
W(X,) = W,, respectively. The values X, and X, were determined
such that they best represent the first two mode shapes, i.e., for the
first buckling mode, W, — W, ~ 0, with W, — W, as large as pos-
sible when the beam is primarily in the second-mode shape, see
Fig. 1(d). Although by no means exact, the locations X, = 0.79L
and X, = 0.38L give an effective measure, or projection, of the
deflected shape [Fig. 1(d)] based on this limited sampling. Thus,
defining the quantity 6 = W, — W,, gives us significant additional
information about the beam’s shape. This is tantamount to a con-
ventional finite difference approximation based on discrete data.
Using these representative points, plotting 6 vs other variables,
we can observe the progression toward snap-through, initially
dominated by the first mode in the stable equilibrium (6 ~ 0), and
transitioning to a second-mode dominated shape as the structure is
nearing snap-through, with 6 near a maximum. Postsnap, the beam
settles in a shape similar to the initial shape but on the other side.
Fig. 2 shows the relation between the end angle, 0.4, and this
second-mode measure, 6. The near-linear relation supports the use
of this proxy (only stable paths are plotted in this figure), which is
easily measured experimentally using two proximity lasers.

Initial Buckling

For a single column with clamped-pinned boundary conditions,
the critical elastic buckling load is given by P~ 20.1EI/L?
(Timoshenko and Gere 1961). That is, the Euler load adjusted for
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Fig. 3. Photographic image of the experimental column: (a) the two lasers used to measure lateral deflection at W, and W,; and (b) the template for

the upper-end position.

an effective length of 0.7L for these end conditions, assuming a
slender geometry, i.e., L/r is large, where r = \/I/A, with
A = bd, I = bd®/12. For the dimensions of the experimental sys-
tems to be described later, we generally have » = 25.4 mm, d =
1.36 mm, L = 188 mm, giving a slenderness ratio of L/r a 478,
ie., very slender (Virgin 2007). Assuming a Young’s modulus
of E = 2.1 GPa, we expect a critical load in the vicinity of 6.3 N,
and preliminary experimental tests indicated buckling close to this
value.

Experimental Setup

Prior to data acquisition, the structure (which incorporated an in-
tegrally printed base) is fixed to an isolation table, as shown in
Fig. 3. The other end of the structure is then placed inside two bear-
ings that are locked into stands on each side of the structure to
create a pinned boundary condition. The stands allow a consistent
end-shortening to be applied, within the bearings and in prescribed
vertical increments of 1 mm. A torque cell is then connected to the
pinned end. To measure displacements, two microepsilon proxim-
ity sensors (OptoNCDT, Micro-Epsilon, Raleigh, North Carolina)
are directed at the sampling points. Both the torque cell and laser
displacement sensors are connected to a computer for simultaneous
data acquisition via LabVIEW. During this process, the torque cell
is first slowly rotated in the direction away from snap-through to
collect data on the nonlinear stiffening of the structure. Then, the
direction of the torque cell rotation is reversed and slowly rotated
toward snap-through. Data collection is then stopped postsnap.
Then, data collection is started again, and the process is repeated
for the other side until it snaps back to the original position. This
behavior is unambiguously hysteretic. The data are then compared
to FEA and the Elastica model.

Analytical Formulation

Numerical Analysis—ANSYS

Finite element models were developed using ANSYS for both the
beam and structure to characterize the nonlinear stiffening and snap-
through behavior of the bistable structures. Tetrahedron elements
were used with a mesh size set to 2.0 mm due to convergence and
computational speed. A Young’s modulus £ = 2.1 GPa and v =
0.39 was utilized. The large-deflection capability of the software
was activated for the entire simulation.

Four steps are employed in each analysis. The first three steps
buckle the structure into the first stable buckling mode, and the
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fourth step applies the angle to trigger snap-through. In the first step,
a lateral force is applied to the span of the beam. In the second step,
the desired end shortening is applied to the pinned boundary con-
dition. In the third step, the lateral force is removed to leave the
stable buckled shape.

During the fourth step, an angle is imposed on the pinned boun-
dary condition and swept through a range of values. The enforced
angle is initially rotated away from snap-through to examine the
nonlinear stiffening of the structure. Changing directions, the angle
is then rotated to trigger the snap-through behavior. Reaction mo-
ments, as well as the displacements of two sampling points, are
obtained from the simulations and compared to other models.

Elastica Analysis

The thin, uniform beam is depicted in Fig. 1 in both its undeflected
and buckled configurations. It is considered inextensional, with
length L, and constant bending stiffness E/. Points on the beam
have coordinates X(S,7) and ¥ = W(S,T) and rotation 6(S,T)
with respect to the X axis, where S is the arclength and T is time.
The axial end-shortening of the beam is e.

The internal forces in the beam are denoted, P(S,T) and
Q(S,T) parallel to the X and Y axes, respectively, and the bending
moment is M(S, T). The governing equations, based on geometry,
moment-curvature relation, and equilibrium are:

0X/0S = cos 0, OW/0S = sin,
00/0S = M/EI, OM/0S = Qcosf — Psinb,
OP/0S = —(mg)az)(/8T2 00Q/0S = —(mg)32W/c‘9T2 (3)

where m, = mass per unit length.
The following nondimensional quantities are defined

x=X/L, w=W/L, s=S/L, t=(T/L?)\/EI/m,,
p=PL?/EI, q=QL?/El, m=ML/EI ()

In nondimensional terms, Eq. (3) become

Ox/ds = cos 0, Ow/ds = sin 6,
00/0s = m, om/ds = gcosf — psinb,
Op/0s = —0x/ 01, 0q/0s = —0*w/ 0 (5)

At equilibrium, the equations are given by
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x', =cosé,, w, =sind,,

0, =m,, m} = q,cosb, — p,sinf, (6)
where primes denote derivatives with respect to arclength, and the
internal forces are

Pe(s) =0 a.(s)=4q, (7)
with py and g representing values at s = 0 (Santillan et al. 2005;
Chen and Tsao 2013).

For a given nondimensional end-shortening, ¢/L, we then
choose either 0.,y = 0,(1) or mg,q = m,(1) as the control param-
eter to follow a solution path and use a shooting method with the
known boundary conditions, x,(0) = w,(0) = 6,(0) = w,(1) =0,
x,(1)=1—¢/L,and 0,(1) = Ogpq or m,(1) = mepq, to find equi-
librium solutions.

The stability of the equilibrium configurations is determined by
computing the frequencies of small amplitude vibrations (Santillan
et al. 2005). To do so, the nondimensional variables (which are now
functions of arclength and time) are written

x(s,1) = x,(s) + x4(s) sin Qz,
0(s, 1) = 0,(s) + b,(s) sin 4,
p(s,1) = po + pals) sin €,

w(s, 1) = w,(s) + wy(s) sin Qz,
m(s,t) = m,(s) + my(s) sin Qt,

q(s,1) = q, + qa(s)sinQr  (8)

where the nondimensional frequency, €2, is defined

Q =wL*/m,/EI 9)

and w = dimensional frequency. These expressions, using Egs. (5),
(6), and (8), result in the following dynamic variable equations

x'y=6,sin6,, w) = 6,cosb,,

05 = my, my = (g4 — Poba) cos b, — (pa + q,04) sin0,,

ph=Dx,, gl = QPwy (10)

Again, for a given equilibrium configuration, a shooting method
is used with the known boundary conditions, x;(0) = w,(0) =
0,4(0) = x4(1) =wy(1) = 0,4(1) = 0 and an arbitrary, small value
for m,(0) to find the first vibration mode and corresponding vibra-
tion frequency, ;.

Torque cell
¢ | application point

Proximity |am,
sensors \

(a)

Right-Angled Frame

We next consider a right-angled frame that in many ways is very
similar to the column, but consists of two columns inclined at 45 de-
grees and joined at their apex, the point at which a vertical load, or
end-shortening, is applied. An image of the experimental setup is
shown in Fig. 4.

We can again consider the initial buckling behavior of this struc-
tural arrangement. A useful approximate approach, well-suited to
the current application, was developed by Newmark (Newmark
1949), to take account of the effect of elastic end-restraint. It was
shown that a close approximation to the buckling load of a column
with elastic end restraints is given by

_ mEL[(04+X,)(04+),)
TLY (024 2,)(02+),)

where \, = EI/(C,L) and \, = EI/(C,L), and where C; and C,
represent rotational spring constants at the ends. This enables
bracketing of anticipated buckling behavior in a situation where a
boundary condition is somewhat intermediate between pinned and
clamped in an experimental support. For example, with clamped
ends corresponding to C; = C, = oo and thus A\, = A\, =0, we
obtain P,, = 47?EI/L?, with and pinned ends corresponding to
C, = C, = 0 and thus \, = \, = oo, we obtain P, = n°EI/L?,
for an isolated (Euler) column.

A schematic of the frame is shown in Fig. 5. The initial buckled
configuration is not symmetric with respect to the postbuckled
equilibria. This occurs because as the buckled shape grows, there
is an uneven distribution of resistance to the loading, and this will
be further discussed in the “Results” section.

For the right-angled frame, the lower ends of the two columns
are clamped and the upper ends have some elastic constraint, and
the axial load is shared between the two columns. In similarity with
the single clamped-hinged column, we would expect a frame buck-
ling load somewhat between these two extremes. The rotational
stiffness provided by the adjacent beam at the upper end is C, =
4EI/L (aright angle is maintained at the apex). Using Eq. (11), we
would thus expect a buckling load close to P, ~ 29EI/L?, a value
confirmed using ANSYS, and consistent with an estimate based on
experimental data.

A similar elastica analysis is carried out here as well, where each
equilibrium variable is integrated along the two nondimensional
arclengths, s; and s,, and again, a shooting method is used with a
prescribed upper joint rotation angle, 6,,4. Here, the known boun-
dary conditions are

(11)

a
{ PRY
‘.1.\

4 %1 B, L y !
N
»
placement 4
ntrol template | =
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Fig. 4. Photographic image of the experimental frame: (a) the two lasers used to measure lateral deflection at W, and W,; and (b) the template for the

upper-end position.
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(a) (b)

Fig. 5. A schematic of the right-angled frame: (a) the coordinate
system; and (b) buckled configuration (after the connected joint is
subject to a symmetric ‘end’ displacement ).

xle(o) = Wle(o) = ale(o) =0,

€ €
Wle(l) =

\/EL’ er(]):_ﬁ’

ﬁ, 01.(1) = 05, (1) = Oepg~ (12)

A stability analysis is also conducted here, resulting in the same
dynamic variable equations as in the column analysis. Here, the
known boundary conditions are

X2e (0) = WZE(O) = by, (0) =0,

xle(l) :)ng(l) =1-
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x14(0) = w14(0) = 0,4(0) =0,
x14(1) = wig(1) = 0,4(1) =0,

Results

Column

The estimated buckling load for the column is P, ~ 20EI/L*> =
6.3 N based on an ideal geometry and assumed material properties,
and although buckling loads were not measured directly, this value
is not inconsistent with an approximate measurement. The elastica
approach gave a buckling load of 20.19EI/L>.

For the case of € = 4.75 mm (¢/L = 0.025), Fig. 6 shows the
relation between the various deflection parameters as the pinned
end is subject to a moment. Starting from an initial buckled shape
corresponding approximately to W, = W, = £14 mm, § ~ 0, the
end rotation proceeds until a snap event occurs, when the system
suddenly jumps to the remote mirror-image solution. These are in-
dicated by the arrows. There is excellent agreement between FEA,
elastica analysis, and the experimental data.

Fig. 7 shows the moment - ¢ relation for this same case. The reso-
lution of the torque cell was limited to 0.005 N-m, and this can be
observed in the granularity of the vertical axis data. Although the
qualitative agreement between the experimental data and analyses
is very good, the experimental moments are somewhat less than
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(b) W, (mm)
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Fig. 6. A comparison between analysis, FEA (ANSYS), and experimental data for a clamped-pinned beam, for ¢ = 4.75 mm (¢/L = 0.025):
(a) 6 versus W,; (b) 6 versus W; (¢c) W, versus W,; and (d) M., versus W,.
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Fig. 7. A comparison between analysis, FEA (ANSYS), and experi-
mental data for ¢ = 4.75 mm (¢/L = 0.025). M,q versus &.

expected. This could be a result of typical experimental issues related
to modeling, manufacturing, material properties, and tolerances.
If the end of the column has moved a distance of 6.75 mm
(¢/L = 0.036) toward the other end of the column, we have a more
heavily buckled system. Applying an end moment to this initial
configuration leads to the results shown in Fig. 8. Again, there is
excellent agreement between theory and experiment. The M — §
relation for this case is shown in Fig. 9. It should be noted that
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in both the elastica analysis and FEA the solution becomes unstable
at the snap instability. This is a classic saddle-node, or fold, insta-
bility (Virgin 1986). At the other end of each equilibrium path, as
the angle is moved away from a snap, the corresponding applied
moment becomes very large (stretching) and the experiment and
both sets of analyses are simply terminated.

In contrast to the experiment and ANSYS, the elastica approach
provides complete equilibrium paths including unstable branches,
but, again, here only stable paths are shown. The stability of the
equilibrium configurations is determined using vibration analysis
in the elastica approach, as detailed earlier. Fig. 10 shows how
the lowest (nondimensional) natural frequency €2 varies with the
end angle (6.,q) and nondimensional end moment (.,4), and the
corresponding change in shape: the sequence labeled 1 — 6, with
the snap instability occurring as the frequency (and hence stiffness)
drops to zero. We draw attention to some specific shapes. The point
(Meng = 0, O.nq = 0.48) corresponds to the initial buckled shape,
i.e., when the ends are moved together by ¢/L = 0.036, causing
the pinned end to rotate prior to the application of an external
end moment. Also, the open circle data points indicate the case
of zero end angle, and the end moment required to maintain it
in that specific position (6., = —0.24). A subtle feature of stability
analysis depends on which parameter is prescribed and which
is solved for. This is related to the alternatives of applying a
moment-controlled actuation or angle-controlled actuation and sub-
sequent instability (often at a tangency in the response) (Tissot-
Daguette et al. 2022). It is interesting to observe that the snap
buckling occurs just prior to the applied moment dropping to zero.
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Fig. 8. A comparison between analysis, FEA (ANSYS), and experimental data for a clamped-pinned beam for € = 6.75 mm (¢/L = 0.036):
(a) 6 versus W,; (b) 6 versus W; (¢c) W, versus W,; and (d) M., versus W,.
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mental data for e = 6.75 mm (¢/L = 0.036). M4 versus &.

Following these sometimes convoluted solutions numerically re-
quires special techniques, especially if unstable solutions (2> < 0)
are followed (Yang et al. 2007). We should also mention that there
has been some recent progress in using continuation to follow
unstable paths experimentally (Sieber et al. 2008; Barton and
Burrow 2010; Neville et al. 2018).

Right-Angled Frame

In similarity with the isolated postbuckled column, the estimated
buckling load for the postbuckled right-angled frame is P, ~
29EI/L> = 7.3 N, based on Eq. (11) (and ANSYS). Note, the
member lengths and thicknesses are different from the single
column and thus the buckling loads are not directly comparable.
The elastica analysis gave a buckling load of 28.55EI/L?.
Similar results are shown for the right-angled frame in Fig. 11,
in which the corner of the frame is moved symmetrically downward
(i.e., diagonally) by an amount of 6.25 mm. In this case, the length
of each column is 140 mm, and the thickness of each column is
1.04 mm. The relation between M and ¢ is shown in Fig. 12. Again,
characterizing the shapes using the lateral deflection at two points,

-04 -03 -02 -01 0 01 02 03 04 0

(@)

end

as indicated in the figure, provides a useful description of the change
in shape under the moment applied at the corner. Not only is the
moment-shape relation very similar in the experiment and analysis,
the points of snap from both results are comparable. Similar to the
column, we see a consistent overestimation of the end moment
during snap through, likely a result of the issues discussed about
the column.

It is interesting to observe the asymmetry in the deflection.
The frame is quite highly buckled (see the insets in Fig. 12),
so, for example, the two values of W, at the free equilibrium (when
M = 0), corresponding to each direction of initial buckling, are
approximately —15 mm and 7 mm. This is caused by the manner
in which the load direction is oriented relative to the two buckled
shapes. It is also apparent in Fig. 11 in which the two equilibria are
not symmetric about 6 = 0, and the snap occurs from somewhat
different shapes, as signified again by different magnitudes of §
values. By comparison, the buckled column exhibits symmetry
as seen in Figs. 6-9, where results are symmetric about W, = 0
and 6 = 0.

Conclusions

Interrogating the postbuckled equilibrium configurations of struc-
tures provides useful information, especially if the structure is sub-
sequently subject to intense dynamic excitation, for example. The
current study focuses on the relationship between a moment ap-
plied at one end of a column (already buckled) and its correspond-
ing deflected shape. Given the postbuckled and highly nonlinear
nature of the response, we observe an interesting transition from a
mode-one-dominated shape to a mode-two-dominated shape prior
to a sudden snap between equilibrium shapes. This is classic bista-
ble behavior. Similar results were also obtained for a right-angled
frame compressed along its axis of symmetry. The experimental
data exhibited close agreement with FEA using the ANSYS pack-
age, as well as an elastica analysis using large-deflection arclength
coordinates. The correlation between theory and experiment is
excellent, not only for the equilibrium shapes but also in terms
of the loss of stability.

This modeling was successful and provides a strong resource
for the design of bistable structural systems that can be used in
switches, energy harvesting, and grippers.

(b) ()

Fig. 10. The stability of the equilibrium shapes (lowest vibration frequency) as a function of (a) end angle; (b) end moment (under changing end
angle); and (c) snapshots of representative shapes € = 6:75 mm (¢/L = 0.036).

© ASCE

04023009-7

J. Eng. Mech.

J. Eng. Mech., 2023, 149(3): 04023009



Downloaded from ascelibrary.org by Lawrence Virgin on 01/12/23. Copyright ASCE. For personal use only; all rights reserved.

20 T T T T T
* Experimental
15 F * ANSYS
s Elastica
10 N i
T
5 - -
T Ll |
é 0
w5t i
10 F 4
'~\
-15 F N -
_20 1 1 1 1 1 1 1
-20 -15 -10 -5 0 5 10 15 20
(a) W, (mm)
20 T T T T T T T
15 b
10 m |
—_ - * .
e ° .
= or ," _
;‘Q . s
L4
-5F R 1
4
4
10 ‘ R¢ E
-15 |
20 1 1 1 1 1 1 1
-20 -15 -10 -5 0 5 10 15 20
(c) W_ (mm)

a

20 T T T T T T T

4 (mm)

-20 -15 -10 -5 0 5 10 15 20

(d) W, (mm)

Fig. 11. A comparison between analysis, FEA (ANSYS), and experimental data for the right-angled frame for ¢ = 6.25 mm: (a) 6 versus W,,;

(b) 6 versus W,; (c) W, versus W,; and (d) M,y versus W,,.
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Fig. 12. A comparison between analysis, FEA (ANSYS), and experi-
mental data for the right-angled frame for ¢ = 6.25 mm. M4 versus .

Appendix. Moment-angle Relation

As mentioned in the text, the deflected shape was inferred using the
measurement of lateral translation at two locations, rather than a
direct measurement of the end angle. A preliminary study, albeit
with lower accuracy and measurement resolution, is briefly pre-
sented here for completeness.
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Fig. 13. Preliminary moment-angle experimental data for three cases:
e = 0; 3; 5 mm, progressively into the postbuckled regime.

Fig. 13 shows the moment-angle relation based on experimental
data for three end-shortenings for a slightly different geometric col-
umn. The data are the result of a number of sweeps (traverses through
end angle) and the data superimposed. It is interesting to see the
unbuckled case (0 mm end-shortening) with the initial linear
response soon giving way to a stiffening response due to stretching.
Some of the geometric parameters for this early study were not
the same used as in the main study described in this paper. It is also
interesting to note the asymmetry in the 3 mm end-shortening case.
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This mildly buckled case exhibits a very low stiffness and a degree
of uncertainty in the locations of the equilibrium configurations.

Data Availability Statement

All data, models, or code that support the findings of this study are
available from the corresponding author upon reasonable request.
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