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Abstract

The field of GeoAl or Geospatial Artificial Intelligence has undergone rapid develop-
ment since 2017. It has been widely applied to address environmental and social science
problems, from understanding climate change to tracking the spread of infectious disease.
A foundational task in advancing GeoAl research is the creation of open, benchmark data-
sets to train and evaluate the performance of GeoAl models. While a number of datasets
have been published, very few have centered on the natural terrain and its landforms. To
bridge this gulf, this paper introduces a first-of-its-kind benchmark dataset, GeolmageNet,
which supports natural feature detection in a supervised machine-learning paradigm. A dis-
tinctive feature of this dataset is the fusion of multi-source data, including both remote
sensing imagery and DEM in depicting spatial objects of interest. This multi-source dataset
allows a GeoAl model to extract rich spatio-contextual information to gain stronger confi-
dence in high-precision object detection and recognition. The image dataset is tested with
a multi-source GeoAl extension against two well-known object detection models, Faster-
RCNN and RetinaNet. The results demonstrate the robustness of the dataset in aiding
GeoAl models to achieve convergence and the superiority of multi-source data in yielding
much higher prediction accuracy than the commonly used single data source.

Keywords GeoAl - Deep learning - Object detection - RetinaNet - Remote sensing

1 Introduction

The world has been experiencing increasing changes in its natural and built environment;
addressing pressing issues, such as global climate change, infectious disease, and more fre-
quent and damaging natural disasters, requires the synthesis of data and knowledge across
traditional disciplinary boundaries. Fortunately, advances in earth observing techniques
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and progress in smart city initiatives have resulted in a large, interconnected physical- and
cyber-infrastructure that instantaneously amasses data about nature and human activity [1,
2]. Despite this progress, traditional data analytical techniques, such as object-based image
analysis, which are tailored to process low-quantity and high-quality data, have shown sig-
nificant limitations in processing the big data available today [3].

Artificial intelligence and machine learning, especially the recent revolution in deep
learning, have established a new domain for the analytics of geospatial big data [4]. Con-
volutional neural networks (CNNs) are prominent as a deep learning approach because of
their outstanding ability to extract discriminative features from raw data (such as optical
images) and perform classification or prediction tasks effectively. Its unique use of the con-
volutional module with localized connections also makes the neural network easy to paral-
lelize and run on a multi-processor Graphic Processing Unit (GPU), which has recently
decreased in cost while enjoying increased computational power. Geospatial artificial intel-
ligence (GeoAl) is an emerging research realm that integrates artificial intelligence into
geospatial data analytics for solving big data problems across environmental and social sci-
ence domains [5].

Geospatial research has immediate need for GeoAl and deep learning, because of the
vast amount of data that are currently available in image form, such as high-resolution
remote sensing imagery, digital maps, and the output of numerical simulation models.
Many remote sensing applications, such as land use and land cover classification [6], disas-
ter management [7], natural feature detection [8], and semantic segmentation of geospatial
objects [9, 10], have demonstrated the successful application of GeoAl in support of image
analysis and computer vision. Similar to other supervised machine learning tasks, a key
factor for ensuring the success of GeoAl research is the availability of high-quality train-
ing data, without which a machine can hardly deduce useful knowledge and gain sufficient
decision intelligence.

The geospatial community has actively pursued the development and publishing of
benchmark datasets for training deep learning models. Depending on the GeoAl task, the
level of difficulty in preparing training datasets varies. For instance, deep-learning appli-
cations in image analysis can be categorized into image-level classification, object detec-
tion, and pixel-wise segmentation [11]. Image-level classification aims to predict content
or object type in an image scene. Only class labels (e.g., urban, agriculture, building) are
needed to annotate an image,there is no need to pinpoint the location of the object. Hence,
this task requires the least labeling effort. Object detection goes one step beyond determin-
ing object class, because with geographic extent (expressed in a bounding box or BBOX),
the machine can make predictions about object location within an image scene. There-
fore, two types of labels, object class and object BBOX, are required for training an object
detection model. The preparation of BBOX labels is much more labor intensive than the
classification task [12]. Pixel-wise segmentation, in comparison, requires the machine to
make decisions about the classes of each individual pixel. To accomplish this, the machine
needs the same level of detail (pixel-level) during model training. Training data preparation
for the segmentation task is therefore the most challenging.

At present, many familiar benchmark datasets supporting geospatial applications, such
as the popular UC Merced Land-Use dataset [13], WHU-RS19 [14] and NWPU-RESISC45
[15], have been developed to support image-level classification. These datasets do not con-
tain labels for individual elements of interest. For object detection tasks, in addition to the
widely used datasets in the computer vision community, such as ImageNet Object Detec-
tion Dataset [16], Pascal VOC (Visual Object Classes; [17], and COCO (Common Objects
in Context; [18], the earth observation community has prepared benchmark datasets using
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remote sensing and aerial images. For instance, VEDAI (Vehicle Detection in Aerial
Imagery; [19], and DLR-MVDA (German Aerospace Center — Multi-class Vehicle Detec-
tion and Orientation in Aerial Imagery; [20]) datasets are created for vehicle detection.
The DOTA dataset (Detecting Objects in Aerial Images; [21] contains multi-class labels
for detecting popular objects in an urban scene. The DIOR (Object Detection in Optical
Remote Sensing) dataset is another large-scale dataset containing 20 object classes from
over 20,000 images collected from Google Earth [1, 2].

Table 1 lists the main characteristics of popular benchmark datasets for image classifica-
tion and object detection using remote sensing images as the primary data source. A few
other well-known datasets, such as Pascal VOC, COCO and ImageNet, which use images
taken primarily from cameras, are also listed. All of these datasets provide labels for things
and objects, and mostly man-made features, such as a plane or ship. Very few benchmark
datasets contain bounding box labels, which are essential for natural feature detection and
terrain analysis. GeoNat v1.0 [22] may be the first dataset to support natural feature detec-
tion and serves as the basis of our work. However, it only contains object annotations (in
the form of polygons) and does not contain associated image data ready for GeoAl and
deep learning tasks. Also, all of these datasets prepare only single-source image data for
machine learning; there is no location information available to help identify where the
images are located or where the photos were taken. However, it is widely acknowledged
that geospatial applications could significantly benefit from multi-source earth observation
data as they jointly provide a much richer context about the study area and object than sin-
gle-source data [23, 24]. Hence, having location information explicitly represented in the
dataset could facilitate training data validation, expansion, and multi-source data fusion.

Because natural features tend to have vague boundaries due to both physical processes,
such as erosion and deposition and the cognitive conceptualization of these fiat features,
they are much more challenging to detect than man-made features. In addition, natural fea-
tures often possess high intra-class variation and inter-class similarity [22], making them
difficult to classify. Another challenging trait is their likelihood of varying significantly
in both size and appearance across diverse landscapes. Moreover, many natural features,
such as ridges and valleys, reside in mountainous regions and express more dramatic eleva-
tion change than do built features. These challenges make multi-source data and multi-
source learning a hugely valuable solution, as each individual dataset captures for study
unique and different characteristics of an object and they jointly contribute to a more com-
prehensive understanding of the object. Building a GeoAl benchmark dataset that uses
multi-source data to support analysis of natural features will also promote the application
of cutting-edge Al in landform and terrain analysis, increasing the scientific value of Al
methods.

To achieve this, our paper introduces a novel, multi-source benchmark dataset, Geolma-
geNet, to support natural feature detection and recognition using GeoAl and deep learning.
All the other popular datasets, listed in Table 1, contain only single-source data. Another
distinction of our dataset is that it contains location information for each image scene so
geographic validation and training data expansion is easy to achieve. For instance, it would
be feasible to add additional datasets when they become available if the geographical
framework (location, extent and spatial reference) is provided. It is also possible for users
and dataset reviewers to “fly-in” to the region on Google Earth based on the available loca-
tion information and gain more information about the study area and to verify the dataset
and annotations.

In our GeolmageNet dataset, besides the use of remotely sensed imagery, each labeled
image is paired with the Digital Elevation Model (DEM) dataset and its derived parameters
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(such as slope, aspect, and hillshade) to capture terrain characteristics from multiple per-
spectives. Data enrichment strategies are applied to make numerical data (e.g., DEM) more
suitable for consumption in a deep learning paradigm. Currently, our GeolmageNet 2022
dataset contains six complex terrain features, including ridge, valley and basin, which have
significant terrain changes, and lake, island, and bay, which themselves are more homoge-
neous in slope. Experiments were conducted on modern object detection models to verify
the effectiveness of this dataset for detecting natural features.

The remainder of the paper is organized as follows. Section 2 introduces a search-and-
rescue use case where GeolmageNet and Al play a central role in automating and accelerat-
ing its process. Section 3 describes data source, selection and preparation of GeolmageNet.
Section 4 provides statistics of GeolmageNet. Section 5 reports deep learning-based object
detection experiments leveraging the new multi-source benchmark dataset to demonstrate
its superior object detection performance as compared to a single remote sensing-based data
source. Section 6 concludes the paper with a discussion of possible research directions.

2 A search-and-rescue use case

GeolmageNet and GeoAl can be integral to the workflow of search and rescue operations.
Figure 1 simulates the scenario in which a tourist or military troops get lost in a mountain-
ous region. There is no GPS signal, so an accurate location cannot be reported. A rough
description about the local terrain is provided: I am down in a valley with an elongated
lake in front of me and a tall mountain sits on one side. There are shrubs near the foothills
and snow on the summit. A lower mountain sits on the opposite side of the lake.

46°01'S6"N  7°24'22"E

Fig.1 Search and rescue case in the Alps. Images were retrieved from Google Earth. The satellite image
was taken in December 2016, and the street-view photo (upper left photo) was uploaded in July 2016. The
center of the photos is located at 46°01'56"N, 7°24"22"E. Images listed in the second row show potential
locations with the cyan ellipse referring to actual location of the lost persons
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Instead of relying solely on manual searches of potential locations, a natural feature
dataset and a multi-source learning framework will empower machine intelligence and
enable an automatic search process. At the first level of localization, GeolmageNet images
can be incorporated into a GeoAl model to detect and extract prominent terrain features
(results shown in the photo at the upper-right of Fig. 1). This will result in a list of can-
didate scenes that need to be further investigated (bottom photos of Fig. 1). Then, Geo-
ImageNet can be further leveraged to extract detailed information about the terrain features
(such as location, extent, and shape) in each candidate scene. To facilitate locating the cor-
rect lakeside, the elevation dataset in GeoImageNet will play a key role. By comparing the
characteristics of the terrain features within a candidate scene with the description from
those who are lost, the target location can be identified. Hence, the multi-source dataset is
capable of empowering the machine to gain more geospatial intelligence and automation.

3 GeolmageNet: data source, selection and preparation
3.1 Data preparation and labeling method

Data preparation followed several principles: (1) Geographic representativeness and feature
variety. According to Tobler’s First Law of Geography, nearby things are more alike than are
distant things [25]. If features are selected from a single geographic region, their representa-
tiveness of external regions will be weakened. The transferability of a GeoAl model trained
on such datasets will also be negatively affected. (2) Scale issues. Unlike built features, natural
features have a much broader range in their sizes, even within a single class. The complexity
in structure and diversity in appearance of natural terrain features make their detection much
more challenging than identifying artificial features [26]. Therefore, to ensure the machine’s
best predictive ability, the size of each feature with regard to the image scene should not be too
small (so that they remain visually inspectable from the image), because otherwise their repre-
sentative characteristics will be difficult to capture with the GeoAl model. Hence, feature res-
caling is needed to better present small objects. (3) Data alignment. When multi-source data
are used in a deep learning pipeline, they should be aligned in terms of spatial resolution, spa-
tial reference, and geographical extent. Figure 2 demonstrates the data processing workflow.

The first step is to download a local copy of the Geographic Names Information System
(GNIS) database, which contains over 3 million named features (both natural and artificial)
of the Earth’s surface (https://www.usgs.gov/u.s.-board-on-geographic-names/download-gnis-
data). From this database, we can obtain category and location information (latitude and lon-
gitude) of natural features in the US. Both the DEM data and remote sensing imagery cover-
ing the extent of selected natural features are downloaded from the U.S. Geological Survey’s
(USGS) The National Map (TNM). Specifically, the 1/3 arc-second seamless DEM at about
10 m spatial-resolution is used as the elevation data and the National Agriculture Imagery Pro-
gram (NAIP) aerial imagery at 1 m-resolution is used as the remote sensing data source.

In step 2, candidate features are randomly sampled from the GNIS database as long as
they meet the minimum requirement that they have been identified on the historical topo-
graphic map. To ensure geographical representativeness, the selected features were spaced
out geographically by setting a distance threshold of 48 km (approximately 0.5 degree at
30 degree north). This means the distance between any two selected features should be
larger than this set threshold. Once a feature is picked, a distance calculation operation
will be invoked; if its distance to any other features that are already included in the feature
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Step 1: Download a local copy of
the GNIS database

Step 2: Feature selection

Randomly select
named features per
each category

v

N is distance
threshold met?

Yy

Step 4: Multi-source data preparation

Download multi-source
data from the NationalMap

i

Align and rescale
multi-source data

y

Enrich DEM and image data

v

Rotate and crop images to
make BBOX horizonally
placed

v

Translate BBOX to make the

Add to the object randomly located in
feature database the scene
\ \

Step 3: Label the feature extents

and save them in a shape file Step 5: Prepare labeled metadata

Fig.2 Data processing workflow for training data preparation

database does not meet the distance threshold, the feature will be disregarded. The search
process continues until the number of features per category has reached a certain size. In
the 2021 version of GeolmageNet, the expected number is set to be 150 per category.

Step 3 is to label the BBOX of each selected feature. Because the locations of these
features are given by a single latitude and longitude in the GNIS database, we need to
further provide the BBOX label for each feature. Labeling is completed through visual
inspection based on the USGS Historical Topographic Map Collection (HTMC) data-
set, aided by NAIP imagery. The HTMC contours are especially helpful in inspecting
the basin, valley, and ridge features, which have more significant terrain changes but
less obvious variations in color or texture. Note that the BBOX is not labeled in the
upright position (Fig. 3. Instead, it is labeled along the longest axis of the feature to
make the BBOX as close to the feature’s actual extent as possible. The labeling pro-
cess was conducted in a GIS software (for example, ArcMap). A multi-step data labe-
ling and validation strategy is adopted. Graduate students with background in GIS and
terrain analysis are first trained by domain experts from USGS on feature inspection
and boundary determination. After the first round of labeling, the results are reviewed
and cross-validated by domain experts. For features with semantic ambiguity, USGS’s
official cartographical mapping principles are followed to finalize the annotation. The
resultant feature boundaries are saved as an Esri shapefile.
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7 P

(@) (b (© (d

Fig.3 An illustration of the processing steps for training data preparation. The scene shows Florin Valley,
Wisconsin, which is a member of the GNIS class valley. The top row depicts the NAIP images and the bot-
tom row shows the corresponding DEM covering the same extent. The columns illustrate an example of a
the original NAIP data and the enriched DEM data after synthesizing elevation, slope, and hillshade, b the
labeled results, ¢ the resulting image and BBOX after rotation, and d the rescaled and translated feature and
image ready for model training

Step 4 involves downloading data and preparing the training dataset. The USGS National Map’s
TNMAccess API (https://tnmaccess.nationalmap.gov/api/v1/) is used to enable automated data
downloading. We use the center of each BBOX to download the remote sensing images (NAIP)
and the corresponding DEM data. Once the data are downloaded, the resolutions of the remote
sensing imagery and the DEM are aligned by rescaling both onto a grid to be the same size. Specifi-
cally, bi-cubic resampling is used to up-sample the DEM data (10 m) and down-sample the remote
sensing image (1 m) to the same image scale. Because the DEM data provide elevation information
in numerical values, its value distribution is therefore very different from the optical remote sensing
images, which consist of smoother color or texture changes. To adapt the DEM to the deep learning
framework, a data enrichment strategy is performed to render the DEM into a color-scheme image.
This image is fused with other terrain data, including slope and hillshade as grey-scale images, to
reproduce a final elevation product as the final training image (Fig. 3a, bottom image).

Next, the images are rotated to render the BBOX vertical or horizontal relative to the image
edges (Fig. 3b and c). The rotated images are then cut to the desired image size (Fig. 3d). To
avoid missing data in the rotated scene, a large margin is chosen when downloading images. The
length of any edge of the downloaded image scene is at least four times as long as the longer
edge of the BBOX. Specifically, to rotate an image i, the angle o between one arbitrary edge /
of the BBOX (see examples in Fig. 2b) and the horizontal edge of the image scene are first cal-
culated. The horizontal edge is in parallel with the x axis of the geographic coordinate system
(GCS) of the multi-source data. Next, a rotational matrix based on « is applied to the coordinates
(Xgeor Ygeo) OF the vertices of the original BBOX to derive the new location (x,, ¥,,) of the
BBOX vertices in the rotated image. Mathematically, the transformation can be expressed as:

xl .

ceo | _ | cosa —sina | | x,,
=1

Yeeo sina cosa | | Yeeo
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< AY o >
a = arctan
Axgeo

where Ax,,, and Ay,,, indicates projection lengths of the selected edge / in the x and y axes
in the GCS, respectively. After the image rotation, the BBOX is placed in the upright direc-
tion in the rotated image i’ (Fig. 3c).

To further increase the diversity of the data, the feature is also moved out of the center
of the image scene to be randomly placed within the image window. A small margin (10%
of the image height/width) is reserved between the feature BBOX and the image edge to
prevent information loss during the convolution for any part of the BBOX falling along
the image edge. The feature relocation is accomplished by cropping the originally down-
loaded image scene (Fig. 3d), which is much larger (four times on each side) than the
desired image size. We define the height and width of the training image i/ . to produce
h' and w'. A randomization process determines the upper-left coordinates (x’,,;, y',,;) of
the image window (/' x w') used to crop the image scene i’. To meet the constraint of the

preserved margin, the randomly generated point needs to satisfy the following conditions:

with:

Dy =X o = 010, Vp €B
Py =Y o 2 0.1, Vp €B
Xi+w —p,>01w, VpeB
Voith —p, 2010, VpeB

where B is the collection of all the vertices {p} of the feature BBOX. p, and p, indicate
the coordinates of a vertex p. All of these coordinates use the same coordinate system (i.e.,
WGS84) as that used in the originally downloaded image. This transformation reduces
location dependency in the training data. By increasing the diversity of relevant locations
of features in an image scene, the model robustness and adaptability will also increase.
This assumption has been validated through experiments in Section 4.

After the training images are generated, the label metadata are created. The transformation
from geographic coordinates to image row and column indices can be expressed as follows:

. , 1
[ fcol ] — [ Px X 71‘i ] El
Lrow _py =Y ori R
where (p,, py) are the coordinates of a vertex of the feature BBOX to be transformed,

(& > ¥ o) 1s the geographic coordinate of the upper-left point of the image scene, and R is
the spatial resolution of the image. Figure 3d shows the resultant images after data processing.

4 GeolmageNet statistics

4.1 GeolmageNet: an illustration

Table 2 lists the feature type and number of image scenes containing different features in
the GeolmageNet 2022 dataset. These features are selected because they are common and
popular features for terrain research. In addition, we selected features of two main types:
(1) features categorized as “TFe” (e: elevation), including basin, ridge and valley, and (2)
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features categorized as “TFc” (c: color), including bay, island, and lake. “TFe” is concep-
tualized so as to categorize features that have more significant terrain changes, and there-
fore are more easily detected from elevation data. “TFc” is conceptualized so as to catego-
rize features that reside in relatively flat terrains, and therefore are more easily detected
from analyzing remote sensing color imagery. Regardless of their terrain characteristics,
each feature is prepared with a pair of image scenes, a remote sensing NAIP image, and a
color-rendered DEM covering the same geographical extent in the same image resolution
and spatial reference system. There is some variety in the numbers of images for differ-
ent feature classes because of availability of the high-resolution NAIP or DEM data in the
selected area.

Figure 4 shows sample training images that contain pairs of NAIP images and color
composite DEMs representing terrain features in the training dataset. The USGS defini-
tion of a basin is a “Natural depression or relatively low area enclosed by higher land
(amphitheater, cirque, pit, sink).” Many basins are circular or oval in appearance. Com-
mon types of basins include drainage basins, structural basins, and ocean basins. For
example, the fact that Mickey Basin, east of Steens Mountain in southeastern Oregon, is
lower than the surrounding area is more evident in the DEM product than in the remote
sensing image (Fig. 4a). USGS defines a ridge as an “Elevation with a narrow, elon-
gated crest which can be part of a hill or mountain.” A ridge normally covers a large
extent but appears as a linear feature because its top is narrow relative to its base. Light-
ening Ridge in the Uinta Mountain region of northeastern Utah is less discernible on the
remote sensing image than on the DEM product, which clearly shows the high eleva-
tion along the ridgeline and west—east running direction (Fig. 4b). A valley is a “Lin-
ear depression in the Earth’s surface that generally slopes from one end to the other,”
distinguishing it from the more rounded basin. Because valleys are normally found in
mountainous regions, they also have more significant terrain changes. Florin Valley, a
small valley that channels runoff to the Mississippi River in western Wisconsin, is also
more visible in the DEM product than the remote sensing imagery (Fig. 4c).

Table 2 GeolmageNet feature type and count

Dataset GeolmageNet

Feature category Feature Image count

TFe Basin 155
Ridge 171
Valley 181

TFc Bay 93
Island 106
Lake 170

Description Multi-source benchmark dataset which contains remote sensing imagery,

DEM, and its deliverables (Slope and Hillshade data)

Image size 636594 (averaged)

Applications Object detection, natural feature detection

Multi-source? Yes

Location information? Yes

TFe denotes terrain features that are more easily detected from elevation profile, whereas TFc signifies ter-
rain features that can be better detected from color imagery, such as NAIP data
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(a) Basin (b) Ridge

(c) Valley - -
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Fig.4 Sample training images (Left: remote sensing NAIP image. Right: composited color-scheme DEM)
with labels (in red BBOX) for the natural features. a Basin. b Ridge. ¢ Valley. d Bay. e Lake. f Island

The remaining features—bay, lake, and island—are related to water. A bay is defined as
an “indentation of a coastline or shoreline enclosing a part of a body of water; a body of
water partly surrounded by land.” A bay is often demarcated by three land borders, with the
remaining open to water. Burtis Bay, just southeast of Lake Erie in western New York, dis-
plays this common pattern. A lake, on the other hand, is a “natural body of inland water,”
meaning it is surrounded by land, as in South Lake, which is just west of Titusville on
the central east coast of Florida (Fig. 4e).” An island, as an “area of dry or relatively dry
land surrounded by water or low wetland” can be conceptualized as the inverse of a lake.
Sandy Island, OR, in the Columbia River near Longview, WA is classic example of an
island (Fig. 4f). The latter three feature classes are more easily detected in the remote sens-
ing imagery than in the DEM because of the strong contrast between water and land.

4.2 Geographical representativeness

Figure 5 shows the geographical distribution of selected features in the training dataset. Despite
the geographically constrained feature sampling plan, some features classes are clustered in par-
ticular regions. This is unavoidable due to the environmental conditions required to host particular
feature types. For example, lakes are more common in wet regions than dry; named basins fall
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in the basin and range region of the western US; and ridges are limited mostly to mountainous
regions. Nevertheless, the distance threshold applied during the feature selection process ensures
the geographical representativeness of the dataset. For instance, these features are widely distrib-
uted in 44 states of the US, including Hawaii, but not in Alaska due to lack of a source of high-res-
olution data for that region. California and Utah host the most selected features, especially in the
categories of basin, valley, and ridge. Bays and lakes are mostly found in the northeastern states,
Washington, and Florida. Not surprisingly, islands are located in coastal and Great Lake states.

4.3 Dataset robustness

Developing a robust dataset is as important as developing a robust computational model. As
the knowledge extracted by the model is largely dependent upon the input data dataset, it is
critical to create a dataset that is diverse and representative to ensure model generalizability.
The previous section reveals the geographic representativeness of the GeolmageNet. This sec-
tion discusses additional important issues addressed when preparing the dataset: (1) random-
ness of relative feature location; (2) running direction of the BBOX labels, and (3) relevant
feature scales regarding the image scene.

First, it has been increasingly recognized that neural network models are not shift-invariant [27],
which means a small shift of the image may result in a dramatic change in results. The model shift-
invariance issue is caused mainly by the popular max-pooling strategies used for down-sampling
feature maps in the deep learning pipeline. Max-pooling, the strategy to select the maximal value
in a sliding window will suppress low-pass frequencies, resulting in a bias in the sampling proce-
dure. When it comes to object detection, the relative location of the labeled BBOX will influence
a GeoAl model’s predictability. For instance, when the BBOX is always located in the center of
the image, or near the edge, the model may create a memory of this location characteristic and will
predict a BBOX at those locations, resulting in a location bias in the knowledge gained. Addressing
this issue requires careful preparation of the training dataset. Section 3.1 describes in detail on how
the GeolmageNet is created. Experiments in Section 5 verify that such datasets will reduce model
bias and improve model robustness in handling diverse datasets and prediction tasks.

Second, the horizontal or vertical placement of the BBOX may also affect dataset diversity.
To make sure the labeled BBOX is as close to the actual feature extent as possible, it is drawn
along the running direction of the feature. For instance, if a ridge runs southeast to northwest,
the BBOX will be along that direction. However, because mainstream object detectors require
an image edge-aligned BBOX as input, we rotated the BBOX (and the image) so that its edges
are in parallel with the border of the image scene. In doing this, we created a random factor to
allow the BBOX to be placed either horizontally (when the width is longer than the height) or
vertically (the height is longer than the width) instead of only in one fixed direction (Fig. 4).

Third, scale — particularly the size of the target features relative to the entire image scene—
is always an important parameter to consider in both terrain analysis and deep learning. Scale
research has focused on multi-scale analysis to extract scale-dependent features for classification
and object detection, and for small object detection leveraging image pyramids and feature fusion
[28-30]. GeolmageNet addresses the second issue by preparing the feature at a recognizable scale
regardless of its original size. This is because terrain feature detection has been a very challenging
topic compared to the detection of built features, which is compounded by multi-sourcing learn-
ing. Therefore, in our 2022 GeolmageNet dataset, we control the relative ratio between the feature
size and the image scene to allow both small and large features to be displayed at a detectable
scale. This requires proper down-sampling of high-resolution images and up-sampling of low-res-
olution images, as well as multi-source image alignment in the rescaling process.
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Category of Terrain Feature
® bay O basin
©® lake A ridge
@ island V valley

(b) State-based pie chart showing terrain feature distribution

Fig. 5 Geographical distribution of training features in GeolmageNet
5 Experiments

5.1 Performance benchmark for object detection leveraging cutting-edge models

To enable detection of natural features leveraging multi-source data, we designed exten-
sions to two popular deep learning-based object detection architectures, Faster-RCNN
[31] and RetinaNet [32]. Object detection architectures can be categorized into two-stage
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detectors which separate regional proposal generation (for BBOX prediction from object
classification. Faster-RCNN is a representative object detection model and it has achieved
both a faster detection speed and higher detection efficiency than its predecessors in the
RCNN family. On the other hand, one-stage detectors accomplish object detection in a sin-
gle pass, and models, such as YOLO (You Only Look Once; [33], typically have higher
detection efficiency but lower accuracy than the two-stage models. With recent advances in
RetinaNet, as a one-stage detector, it is reported to achieve a higher detection accuracy, as
well as running efficiency on the Microsoft COCO dataset, due to taking advantage of its
focal loss function and the adoption of a feature pyramid network [32].

All experiments utilized two 6-core CPUs at 1.90 GHz with 64 GB RAM and the Nvidia
GeForce GTX980Ti GPU with 6 GB memory. The training learning rate was le-5 utilizing
an Adam optimizer. The data split was 80% for training and 20% for validation/testing.

The detection accuracy of the trained models, training efficiency, and how the models
converge over time are examined on our dataset using the two detectors. In this experiment,
both detectors take the remote sensing NAIP image and the DEM data as input and fuse the
information from both sources at the feature (map)-level. For each detector, the two differ-
ent data sources are fed to two identical CNN-based feature extractors running in parallel.
The output feature maps are concatenated through an expansion of the third channel, fol-
lowed by a dimension reduction layer which reduces the number of expanded channels by
half such that the fused feature map can be fitted into the rest of the object detection net-
work. To achieve better accuracy, several data augmentation techniques are adopted in both
detectors, including rotation, image inversion, pepper and salt noise injection, and Gauss-
ian noise injection [11].

The best-performing model of the RetinaNet detector has the higher mean Average Pre-
cision (mAP) in terms of predictive accuracy within the first 40 training epochs (Fig. 6a)
and lower average time cost of processing one pair of color/DEM images (Fig. 6b). One
RetinaNet epoch includes 2000 iterations/steps and Faster-RCNN epoch includes 10,000
iterations. mAP is a commonly used performance measure which evaluates predictive abil-
ity by combining both precision and recall. It has a value range between O and 1, with 1 the
highest value. Both detectors achieve a testing mAP in a range between 0.7 to 0.8, indicat-
ing that 1) the dataset is well prepared and fits the task for training popular object detection
models, and 2) there is still the possibility of gaining higher detection accuracy by devel-
oping enhanced models and training strategies. Our experiment also shows that RetinaNet
runs twice as fast as Faster-RCNN, because of the reduced complexity of the one-stage
model design. The two detectors converge smoothly as the training proceeds, leveraging
our GeolmageNet dataset (Fig. 6b). The testing efficiency of both models increases sharply
within the first 15 epochs. Thereafter, the accuracy fluctuates and slightly improves over
time. The Faster-RCNN model’s testing accuracy drops slightly on the last few epochs,
but its training accuracy keeps increasing. This is an indication of overfitting. In compari-
son, RetinaNet shows stable performance due to the introduction of the focal loss func-
tion, which can effectively avoid easy cases dominating the learned weights in the model.
Experimental results show that RetinaNet reaches its peak mAP at the 22" epoch and
Faster-RCNN gained the highest mAP at the 32" epoch. From the results of this experi-
ment, we suggest that training GeolmageNet for object detection tasks should generally be
controlled within 40 epochs.

Figure 7 shows the breakdown of prediction accuracy of the two detectors. It can be
seen that both detectors gain higher AP scores on TFc type of features, including bays,
lakes, and islands than the TFe type of features, such as basins, ridges, and valleys (Fig. 7).
This is because the TFc features have more obvious boundaries than the TFe features and

@ Springer



634 Geolnformatica (2023) 27:619-640

0.8
FaSter-RCNN -
0 0.2 0.4 0.6 0.8

mAP

0.6
0.4

------------- Faster-RCNN (training)
RetinaNet (training)

= Faster-RCNN (testing)
RetinaNet (testing)

RetinaNet
0.2

1
0 5 10 15 20 25 30 35 40

H Time Cost (sec/step) M Accuracy (mAP) epochs

(a) (b)

Fig.6 Performance comparison between Faster-RCNN and RetinaNet. a Comparison of mAP and effi-
ciency of the best models trained using both detectors. One step is one iteration that finishes processing
one pair of remote sensing and DEM images. b Comparison of the two models on an mAP increase during
model training, where Y-axis stands for mAP and X-axis stands for number of epochs. Because the itera-
tions within each epoch of Faster-RCNN and RetinaNet are different (2000 for RetinaNet and 10,000 for
Faster-RCNN), RetinaNet only uses 1/10 of the time of Faster-RCNN at the same epoch on the x axis. Dot-
ted and solid lines show model training and prediction/testing accuracy, respectively

are usually more easily detected from the optical remote sensing imagery because of the
high contrast between foreground (target terrain features) and the background, in terms of
the color, texture, and brightness. However, the TFe features often have low contrast in
optical imagery; they are deeply embedded and are often considered as the background
of an image scene, rending them difficult to recognize. The strategy of adding DEM data,
which can better depict the TFe features by capturing their elevation changes, offers richer
information to help better discern natural features. When cross comparing the performance
of the two models, the results show that RetinaNet is superior than Faster-RCNN for the
detection of most natural features (except valley), demonstrating its prominent perfor-
mance. For valley prediction, RetinaNet shows slightly lower accuracy (0.07) than Faster-
RCNN. Although it is difficult to examine what exactly caused this subtle difference due to
the model complexity, we believe that this is at an acceptable level of uncertainty.

The next section further demonstrates the added value of the multi-source GeolmageNet
to support object detection in a GeoAl model.

5.2 Performance comparison between the multi-source and single-source object
detection

This section presents experiments that compare the performance of single source data
(remote sensing imagery) and multi-source data (remote sensing imagery plus DEM) in
support of natural feature detection. RetinaNet is used as the object detector in the experi-
ments. The multi-source training follows the same configuration as that described in Sec-
tion 5.1. Single-source training is conducted with the original RetinaNet model.

Both multi-source and single-source detectors converge smoothly (Fig. 8). Not surpris-
ingly, more epochs are required to flatten the increasing curve of multi-source learning
than the single-source version. The single-source RetinaNet model peaked at the 5™ epoch,
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Fig.7 Accuracy comparison between Faster-RCNN and RetinaNet on different terrain features. AP = Aver-
age Precision

as compared to the 21™ epoch for the multi-source model. The additional training time is

due to the complexity in processing and analyzing more data. Based on model architec-
ture, the introduction of a new feature extractor for processing the DEM data also extends
computation time. However, the results (mAP) clearly demonstrate the superiority of the
multi-source GeolmageNet over single-source data in improving a GeoAl model’s predic-
tive performance. The predictive accuracy increases from~50% to nearly 80%, a dramatic
improvement.

Accuracy drops across all tested terrain features when removing the DEM data from
model training (Fig. 9), even, notably, for the TFc features, which rely heavily on the
remote sensing imagery. Accuracy falls most significantly among basins, ridges, and val-
leys, as expected, in which the remote sensing images are not very effective when used
alone for their detection. This experiment verifies the effectiveness of the multi-source data
in GeolmageNet to support natural feature detection.

5.3 Location sensitivity of the trained model on datasets with different feature
positioning strategies

In this section, we further examine the impact of relative locations of a target feature in
the image scene on a model’s performance. According to our data processing workflow,
the original image scene that contains a named feature is downloaded by setting the feature
location as the image’s center location. However, always placing the target feature in the
same location of an image in a training dataset may cause the GeoAl model to memorize the
feature locations and be biased when inspecting images with a different feature distribution.
Our assumption is that the strategy of locating the labeled targets may have an impact on the
transferability of the corresponding trained model. Thus, a set of experiments is performed
to examine such model sensitivity. By default, the data are downloaded centered around the
labeled feature with a certain buffer (referred to as “center dataset™), i.e., each feature is in
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Fig.8 Accuracy comparison of object detector trained using multi-source (remote sensing imagery + DEM)
and single-source (remote sensing imagery only) input of GeolmageNet
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Fig.9 Accuracy comparison between multi-source (remote sensing imagery+DEM) and single-source
(remote sensing imagery only) on different terrain features

the center of the image window. Based on center dataset, we prepared another two datasets
with different feature placement strategies: the edge dataset forces the target to locate near a
random edge of the image scene with very small padding (i.e., 10% of the image size); and
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the random dataset allows the targeted feature to locate anywhere within the image scene.
The 10% padding is also applied in the random dataset. We also ensure that each target in
the three datasets comprise the same proportion of the image scene. This consistency elimi-
nates the impact of the size ratio between a target and its image scene during model training
using different datasets. We randomly split each dataset into training and testing as a ratio of
8:2. The other two datasets then follow the same split. This treatment allows us to test three
trained models across different testing sets in order to examine their robustness. We trained
three models separately using the multi-source deep learning model based on RetinaNet
with each of the three datasets, resulting in nine testing scenarios. The predictive accuracy
(in mAP) of each of the nine scenarios is demonstrated in Fig. 10.

It can be observed that when training and testing use the same datasets with exactly the same
feature-positioning configuration, the performances of the trained models in terms of testing
mAP are very similar (Fig. 10, the first three columns from the left). The one trained and tested
on the random dataset (third column from the left) shows a slightly lower mAP than the other
two (first and second columns from the left). This is likely due to the greater (location) diver-
sity in the random dataset than in the other two. But the difference is very small and negligi-
ble. From this, we can tell that regardless of the challenge level in these datasets (random data-
set>edge dataset & center dataset), the trained models can all achieve convergence.

As shown in Fig. 10, the first group of results (left three columns) demonstrates that the
model presents little sensitivity to the target location, if the consistency of target location
between training set and the data for inferencing is ensured. However, the inferencing data
in real applications can be arbitrary. The right group columns demonstrate the results when
such consistency no longer apply. The testing scores of the models that are trained by the
datasets with targets location in the center (the 4™ and 5" columns from the left) or on the
edge (the 6™ and 7™ columns from the left) of the image window decrease noticeably when
testing on a different testing set. Those models show poor transferability. On the other
hand, the three-chessboard filled green columns (model trained using the random dataset)
show consistently higher mAPs when tested on different datasets. The results verify that
the random dataset, which presents more location-diversity, is more robust than the center
and edge datasets in tackling object detection problems.

0.90 .
Model Trained by:

Center
Edge

Random

mAP

Center Edge Random Edge Random Center Random Center Edge

Models tested by the Center, Edge or the Random datasets

Fig. 10 Location sensitivity of the trained models on datasets with different feature positioning strategies.
The dotted orange bars show the prediction mAP of the models trained on the center dataset and tested
using different datasets. The horizontal line filled yellow bars show the mAP of the models trained on the
edge dataset and the chessboard filled green columns show the mAP of the models trained on the random
dataset
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6 Conclusion

This paper introduces GeolmageNet, a first-of-its-kind multi-source dataset that supports ter-
rain analysis and natural feature recognition. It addresses the increasing concern over the lack
of diverse databases to advance the field of GeoAl and supervised machine learning [34]. Dif-
ferent from existing geospatial benchmark data, this new dataset combines color imagery and
DEMs to offer richer spatial and contextual information for GeoAl modeling to achieve better
detection accuracy. The availability of location information for each image scene offers great
flexibility for geographic referencing and data expansion. Because of this, GeolmageNet is the
first “geospatial” benchmark dataset for object detection and image analysis. The principles of
geographic representativeness and scale and location sensitivity in preparation of geospatial
training datasets are discussed. This dataset is evaluated using two popular and representative
object detection models, Faster-RCNN and RetinaNet, and its validity is proved for aiding a
GeoAl model to achieve convergence and satisfactory detection performance.

Looking forward, GeolmageNet should continue to be enriched by appending more fea-
ture types and more instances of each, as well as more data sources. We will test how the
characteristics learned by the deep learning models using the natural features, primarily
located in the US, can be adapted for feature detection in other countries. Deep domain
adaptation techniques [35, 36] will be exploited and applied to ensure the terrain knowl-
edge extracted from this work is, to the maximal extent possible, transferable and gener-
alizable. We are also developing new visualization techniques to open-up the black-box of
GeoAl models to better understand and explain the models’ reasoning processes.

The GeolmageNet data and model code will be openly accessible to the geospatial com-
munity. We hope to make this a community-driven effort toward developing more foundational
datasets to support geospatial research and facilitate progress in GeoAl. The scale variety of
the features should also increase in the training data and advanced model capabilities need to
be developed to address small object detection [37]. The realm of GeoAl research can extend
to the study of natural features on other planets and their moons, such as Mars and Phobos and
Deimos.
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