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Abstract
The field of GeoAI or Geospatial Artificial Intelligence has undergone rapid develop-
ment since 2017. It has been widely applied to address environmental and social science 
problems, from understanding climate change to tracking the spread of infectious disease. 
A foundational task in advancing GeoAI research is the creation of open, benchmark data-
sets to train and evaluate the performance of GeoAI models. While a number of datasets 
have been published, very few have centered on the natural terrain and its landforms. To 
bridge this gulf, this paper introduces a first-of-its-kind benchmark dataset, GeoImageNet, 
which supports natural feature detection in a supervised machine-learning paradigm. A dis-
tinctive feature of this dataset is the fusion of multi-source data, including both remote 
sensing imagery and DEM in depicting spatial objects of interest. This multi-source dataset 
allows a GeoAI model to extract rich spatio-contextual information to gain stronger confi-
dence in high-precision object detection and recognition. The image dataset is tested with 
a multi-source GeoAI extension against two well-known object detection models, Faster-
RCNN and RetinaNet. The results demonstrate the robustness of the dataset in aiding 
GeoAI models to achieve convergence and the superiority of multi-source data in yielding 
much higher prediction accuracy than the commonly used single data source.

Keywords  GeoAI · Deep learning · Object detection · RetinaNet · Remote sensing

1  Introduction

The world has been experiencing increasing changes in its natural and built environment; 
addressing pressing issues, such as global climate change, infectious disease, and more fre-
quent and damaging natural disasters, requires the synthesis of data and knowledge across 
traditional disciplinary boundaries. Fortunately, advances in earth observing techniques 
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and progress in smart city initiatives have resulted in a large, interconnected physical- and 
cyber-infrastructure that instantaneously amasses data about nature and human activity [1, 
2]. Despite this progress, traditional data analytical techniques, such as object-based image 
analysis, which are tailored to process low-quantity and high-quality data, have shown sig-
nificant limitations in processing the big data available today [3].

Artificial intelligence and machine learning, especially the recent revolution in deep 
learning, have established a new domain for the analytics of geospatial big data [4]. Con-
volutional neural networks (CNNs) are prominent as a deep learning approach because of 
their outstanding ability to extract discriminative features from raw data (such as optical 
images) and perform classification or prediction tasks effectively. Its unique use of the con-
volutional module with localized connections also makes the neural network easy to paral-
lelize and run on a multi-processor Graphic Processing Unit (GPU), which has recently 
decreased in cost while enjoying increased computational power. Geospatial artificial intel-
ligence (GeoAI) is an emerging research realm that integrates artificial intelligence into 
geospatial data analytics for solving big data problems across environmental and social sci-
ence domains [5].

Geospatial research has immediate need for GeoAI and deep learning, because of the 
vast amount of data that are currently available in image form, such as high-resolution 
remote sensing imagery, digital maps, and the output of numerical simulation models. 
Many remote sensing applications, such as land use and land cover classification [6], disas-
ter management [7], natural feature detection [8], and semantic segmentation of geospatial 
objects [9, 10], have demonstrated the successful application of GeoAI in support of image 
analysis and computer vision. Similar to other supervised machine learning tasks, a key 
factor for ensuring the success of GeoAI research is the availability of high-quality train-
ing data, without which a machine can hardly deduce useful knowledge and gain sufficient 
decision intelligence.

The geospatial community has actively pursued the development and publishing of 
benchmark datasets for training deep learning models. Depending on the GeoAI task, the 
level of difficulty in preparing training datasets varies. For instance, deep-learning appli-
cations in image analysis can be categorized into image-level classification, object detec-
tion, and pixel-wise segmentation [11]. Image-level classification aims to predict content 
or object type in an image scene. Only class labels (e.g., urban, agriculture, building) are 
needed to annotate an image,there is no need to pinpoint the location of the object. Hence, 
this task requires the least labeling effort. Object detection goes one step beyond determin-
ing object class, because with geographic extent (expressed in a bounding box or BBOX), 
the machine can make predictions about object location within an image scene. There-
fore, two types of labels, object class and object BBOX, are required for training an object 
detection model. The preparation of BBOX labels is much more labor intensive than the 
classification task [12]. Pixel-wise segmentation, in comparison, requires the machine to 
make decisions about the classes of each individual pixel. To accomplish this, the machine 
needs the same level of detail (pixel-level) during model training. Training data preparation 
for the segmentation task is therefore the most challenging.

At present, many familiar benchmark datasets supporting geospatial applications, such 
as the popular UC Merced Land-Use dataset [13], WHU-RS19 [14] and NWPU-RESISC45 
[15], have been developed to support image-level classification. These datasets do not con-
tain labels for individual elements of interest. For object detection tasks, in addition to the 
widely used datasets in the computer vision community, such as ImageNet Object Detec-
tion Dataset [16], Pascal VOC (Visual Object Classes; [17], and COCO (Common Objects 
in Context; [18], the earth observation community has prepared benchmark datasets using 
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remote sensing and aerial images. For instance, VEDAI (Vehicle Detection in Aerial 
Imagery; [19], and DLR-MVDA (German Aerospace Center – Multi-class Vehicle Detec-
tion and Orientation in Aerial Imagery; [20]) datasets are created for vehicle detection. 
The DOTA dataset (Detecting Objects in Aerial Images; [21] contains multi-class labels 
for detecting popular objects in an urban scene. The DIOR (Object Detection in Optical 
Remote Sensing) dataset is another large-scale dataset containing 20 object classes from 
over 20,000 images collected from Google Earth [1, 2].

Table 1 lists the main characteristics of popular benchmark datasets for image classifica-
tion and object detection using remote sensing images as the primary data source. A few 
other well-known datasets, such as Pascal VOC, COCO and ImageNet, which use images 
taken primarily from cameras, are also listed. All of these datasets provide labels for things 
and objects, and mostly man-made features, such as a plane or ship. Very few benchmark 
datasets contain bounding box labels, which are essential for natural feature detection and 
terrain analysis. GeoNat v1.0 [22] may be the first dataset to support natural feature detec-
tion and serves as the basis of our work. However, it only contains object annotations (in 
the form of polygons) and does not contain associated image data ready for GeoAI and 
deep learning tasks. Also, all of these datasets prepare only single-source image data for 
machine learning; there is no location information available to help identify where the 
images are located or where the photos were taken. However, it is widely acknowledged 
that geospatial applications could significantly benefit from multi-source earth observation 
data as they jointly provide a much richer context about the study area and object than sin-
gle-source data [23, 24]. Hence, having location information explicitly represented in the 
dataset could facilitate training data validation, expansion, and multi-source data fusion.

Because natural features tend to have vague boundaries due to both physical processes, 
such as erosion and deposition and the cognitive conceptualization of these fiat features, 
they are much more challenging to detect than man-made features. In addition, natural fea-
tures often possess high intra-class variation and inter-class similarity [22], making them 
difficult to classify. Another challenging trait is their likelihood of varying significantly 
in both size and appearance across diverse landscapes. Moreover, many natural features, 
such as ridges and valleys, reside in mountainous regions and express more dramatic eleva-
tion change than do built features. These challenges make multi-source data and multi-
source learning a hugely valuable solution, as each individual dataset captures for study 
unique and different characteristics of an object and they jointly contribute to a more com-
prehensive understanding of the object. Building a GeoAI benchmark dataset that uses 
multi-source data to support analysis of natural features will also promote the application 
of cutting-edge AI in landform and terrain analysis, increasing the scientific value of AI 
methods.

To achieve this, our paper introduces a novel, multi-source benchmark dataset, GeoIma-
geNet, to support natural feature detection and recognition using GeoAI and deep learning. 
All the other popular datasets, listed in Table 1, contain only single-source data. Another 
distinction of our dataset is that it contains location information for each image scene so 
geographic validation and training data expansion is easy to achieve. For instance, it would 
be feasible to add additional datasets when they become available if the geographical 
framework (location, extent and spatial reference) is provided. It is also possible for users 
and dataset reviewers to “fly-in” to the region on Google Earth based on the available loca-
tion information and gain more information about the study area and to verify the dataset 
and annotations.

In our GeoImageNet dataset, besides the use of remotely sensed imagery, each labeled 
image is paired with the Digital Elevation Model (DEM) dataset and its derived parameters 
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(such as slope, aspect, and hillshade) to capture terrain characteristics from multiple per-
spectives. Data enrichment strategies are applied to make numerical data (e.g., DEM) more 
suitable for consumption in a deep learning paradigm. Currently, our GeoImageNet 2022 
dataset contains six complex terrain features, including ridge, valley and basin, which have 
significant terrain changes, and lake, island, and bay, which themselves are more homoge-
neous in slope. Experiments were conducted on modern object detection models to verify 
the effectiveness of this dataset for detecting natural features.

The remainder of the paper is organized as follows. Section 2 introduces a search-and-
rescue use case where GeoImageNet and AI play a central role in automating and accelerat-
ing its process. Section 3 describes data source, selection and preparation of GeoImageNet. 
Section 4 provides statistics of GeoImageNet. Section 5 reports deep learning-based object 
detection experiments leveraging the new multi-source benchmark dataset to demonstrate 
its superior object detection performance as compared to a single remote sensing-based data 
source. Section 6 concludes the paper with a discussion of possible research directions.

2 � A search‑and‑rescue use case

GeoImageNet and GeoAI can be integral to the workflow of search and rescue operations. 
Figure 1 simulates the scenario in which a tourist or military troops get lost in a mountain-
ous region. There is no GPS signal, so an accurate location cannot be reported. A rough 
description about the local terrain is provided: I am down in a valley with an elongated 
lake in front of me and a tall mountain sits on one side. There are shrubs near the foothills 
and snow on the summit. A lower mountain sits on the opposite side of the lake.

Fig. 1   Search and rescue case in the Alps. Images were retrieved from Google Earth. The satellite image 
was taken in December 2016, and the street-view photo (upper left photo) was uploaded in July 2016. The 
center of the photos is located at 46°01′56″N, 7°24′22″E. Images listed in the second row show potential 
locations with the cyan ellipse referring to actual location of the lost persons
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Instead of relying solely on manual searches of potential locations, a natural feature 
dataset and a multi-source learning framework will empower machine intelligence and 
enable an automatic search process. At the first level of localization, GeoImageNet images 
can be incorporated into a GeoAI model to detect and extract prominent terrain features 
(results shown in the photo at the upper-right of Fig. 1). This will result in a list of can-
didate scenes that need to be further investigated (bottom photos of Fig. 1). Then, Geo-
ImageNet can be further leveraged to extract detailed information about the terrain features 
(such as location, extent, and shape) in each candidate scene. To facilitate locating the cor-
rect lakeside, the elevation dataset in GeoImageNet will play a key role. By comparing the 
characteristics of the terrain features within a candidate scene with the description from 
those who are lost, the target location can be identified. Hence, the multi-source dataset is 
capable of empowering the machine to gain more geospatial intelligence and automation.

3 � GeoImageNet: data source, selection and preparation

3.1 � Data preparation and labeling method

Data preparation followed several principles: (1) Geographic representativeness and feature 
variety. According to Tobler’s First Law of Geography, nearby things are more alike than are 
distant things [25]. If features are selected from a single geographic region, their representa-
tiveness of external regions will be weakened. The transferability of a GeoAI model trained 
on such datasets will also be negatively affected. (2) Scale issues. Unlike built features, natural 
features have a much broader range in their sizes, even within a single class. The complexity 
in structure and diversity in appearance of natural terrain features make their detection much 
more challenging than identifying artificial features [26]. Therefore, to ensure the machine’s 
best predictive ability, the size of each feature with regard to the image scene should not be too 
small (so that they remain visually inspectable from the image), because otherwise their repre-
sentative characteristics will be difficult to capture with the GeoAI model. Hence, feature res-
caling is needed to better present small objects. (3) Data alignment. When multi-source data 
are used in a deep learning pipeline, they should be aligned in terms of spatial resolution, spa-
tial reference, and geographical extent. Figure 2 demonstrates the data processing workflow.

The first step is to download a local copy of the Geographic Names Information System 
(GNIS) database, which contains over 3 million named features (both natural and artificial) 
of the Earth’s surface (https://​www.​usgs.​gov/u.​s.-​board-​on-​geogr​aphic-​names/​downl​oad-​gnis-​
data). From this database, we can obtain category and location information (latitude and lon-
gitude) of natural features in the US. Both the DEM data and remote sensing imagery cover-
ing the extent of selected natural features are downloaded from the U.S. Geological Survey’s 
(USGS) The National Map (TNM). Specifically, the 1/3 arc-second seamless DEM at about 
10 m spatial-resolution is used as the elevation data and the National Agriculture Imagery Pro-
gram (NAIP) aerial imagery at 1 m-resolution is used as the remote sensing data source.

In step 2, candidate features are randomly sampled from the GNIS database as long as 
they meet the minimum requirement that they have been identified on the historical topo-
graphic map. To ensure geographical representativeness, the selected features were spaced 
out geographically by setting a distance threshold of 48 km (approximately 0.5 degree at 
30 degree north). This means the distance between any two selected features should be 
larger than this set threshold. Once a feature is picked, a distance calculation operation 
will be invoked; if its distance to any other features that are already included in the feature 

https://www.usgs.gov/u.s.-board-on-geographic-names/download-gnis-data
https://www.usgs.gov/u.s.-board-on-geographic-names/download-gnis-data
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database does not meet the distance threshold, the feature will be disregarded. The search 
process continues until the number of features per category has reached a certain size. In 
the 2021 version of GeoImageNet, the expected number is set to be 150 per category.

Step 3 is to label the BBOX of each selected feature. Because the locations of these 
features are given by a single latitude and longitude in the GNIS database, we need to 
further provide the BBOX label for each feature. Labeling is completed through visual 
inspection based on the USGS Historical Topographic Map Collection (HTMC) data-
set, aided by NAIP imagery. The HTMC contours are especially helpful in inspecting 
the basin, valley, and ridge features, which have more significant terrain changes but 
less obvious variations in color or texture. Note that the BBOX is not labeled in the 
upright position (Fig.  3. Instead, it is labeled along the longest axis of the feature to 
make the BBOX as close to the feature’s actual extent as possible. The labeling pro-
cess was conducted in a GIS software (for example, ArcMap). A multi-step data labe-
ling and validation strategy is adopted. Graduate students with background in GIS and 
terrain analysis are first trained by domain experts from USGS on feature inspection 
and boundary determination. After the first round of labeling, the results are reviewed 
and cross-validated by domain experts. For features with semantic ambiguity, USGS’s 
official cartographical mapping principles are followed to finalize the annotation. The 
resultant feature boundaries are saved as an Esri shapefile.

Fig. 2   Data processing workflow for training data preparation
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Step 4 involves downloading data and preparing the training dataset. The USGS National Map’s 
TNMAccess API (https://​tnmac​cess.​natio​nalmap.​gov/​api/​v1/) is used to enable automated data 
downloading. We use the center of each BBOX to download the remote sensing images (NAIP) 
and the corresponding DEM data. Once the data are downloaded, the resolutions of the remote 
sensing imagery and the DEM are aligned by rescaling both onto a grid to be the same size. Specifi-
cally, bi-cubic resampling is used to up-sample the DEM data (10 m) and down-sample the remote 
sensing image (1 m) to the same image scale. Because the DEM data provide elevation information 
in numerical values, its value distribution is therefore very different from the optical remote sensing 
images, which consist of smoother color or texture changes. To adapt the DEM to the deep learning 
framework, a data enrichment strategy is performed to render the DEM into a color-scheme image. 
This image is fused with other terrain data, including slope and hillshade as grey-scale images, to 
reproduce a final elevation product as the final training image (Fig. 3a, bottom image).

Next, the images are rotated to render the BBOX vertical or horizontal relative to the image 
edges (Fig. 3b and c). The rotated images are then cut to the desired image size (Fig. 3d). To 
avoid missing data in the rotated scene, a large margin is chosen when downloading images. The 
length of any edge of the downloaded image scene is at least four times as long as the longer 
edge of the BBOX. Specifically, to rotate an image i, the angle � between one arbitrary edge l 
of the BBOX (see examples in Fig. 2b) and the horizontal edge of the image scene are first cal-
culated. The horizontal edge is in parallel with the x axis of the geographic coordinate system 
(GCS) of the multi-source data. Next, a rotational matrix based on � is applied to the coordinates 
( xgeo , ygeo ) of the vertices of the original BBOX to derive the new location ( x′

geo
 , y′

geo
 ) of the 

BBOX vertices in the rotated image. Mathematically, the transformation can be expressed as:
[

x�
geo

y�
geo

]

=

[

cos� −sin�

sin� cos�

][

xgeo
ygeo

]

Fig. 3   An illustration of the processing steps for training data preparation. The scene shows Florin Valley, 
Wisconsin, which is a member of the GNIS class valley. The top row depicts the NAIP images and the bot-
tom row shows the corresponding DEM covering the same extent. The columns illustrate an example of a 
the original NAIP data and the enriched DEM data after synthesizing elevation, slope, and hillshade, b the 
labeled results, c the resulting image and BBOX after rotation, and d the rescaled and translated feature and 
image ready for model training

https://tnmaccess.nationalmap.gov/api/v1/
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with:

where Δxgeo and Δygeo indicates projection lengths of the selected edge l in the x and y axes 
in the GCS, respectively. After the image rotation, the BBOX is placed in the upright direc-
tion in the rotated image i’ (Fig. 3c).

To further increase the diversity of the data, the feature is also moved out of the center 
of the image scene to be randomly placed within the image window. A small margin (10% 
of the image height/width) is reserved between the feature BBOX and the image edge to 
prevent information loss during the convolution for any part of the BBOX falling along 
the image edge. The feature relocation is accomplished by cropping the originally down-
loaded image scene (Fig.  3d), which is much larger (four times on each side) than the 
desired image size. We define the height and width of the training image i′

train
 to produce 

h′ and w′ . A randomization process determines the upper-left coordinates ( x′ori , y′ori ) of 
the image window ( h′ x w′ ) used to crop the image scene i’. To meet the constraint of the 
preserved margin, the randomly generated point needs to satisfy the following conditions:

where B is the collection of all the vertices { p } of the feature BBOX. px and py indicate 
the coordinates of a vertex p . All of these coordinates use the same coordinate system (i.e., 
WGS84) as that used in the originally downloaded image. This transformation reduces 
location dependency in the training data. By increasing the diversity of relevant locations 
of features in an image scene, the model robustness and adaptability will also increase. 
This assumption has been validated through experiments in Section 4.

After the training images are generated, the label metadata are created. The transformation 
from geographic coordinates to image row and column indices can be expressed as follows:

where ( px , py) are the coordinates of a vertex of the feature BBOX to be transformed, 
(x�ori, y

�
ori) is the geographic coordinate of the upper-left point of the image scene, and R is 

the spatial resolution of the image. Figure 3d shows the resultant images after data processing.

4 � GeoImageNet statistics

4.1 � GeoImageNet: an illustration

Table 2 lists the feature type and number of image scenes containing different features in 
the GeoImageNet 2022 dataset. These features are selected because they are common and 
popular features for terrain research. In addition, we selected features of two main types: 
(1) features categorized as “TFe” (e: elevation), including basin, ridge and valley, and (2) 

� = arctan

(

Δygeo

Δxgeo

)

px − x�ori ≥ 0.1w�, ∀p ∈ B

py − y�ori ≥ 0.1h�, ∀p ∈ B

x�ori + w� − px ≥ 0.1w�, ∀p ∈ B

y�ori + h� − py ≥ 0.1h�, ∀p ∈ B

[

icol
irow

]

=

[

px x�ori
−py −y�ori

]

[

1

R

−
1

R

]
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features categorized as “TFc” (c: color), including bay, island, and lake. “TFe” is concep-
tualized so as to categorize features that have more significant terrain changes, and there-
fore are more easily detected from elevation data. “TFc” is conceptualized so as to catego-
rize features that reside in relatively flat terrains, and therefore are more easily detected 
from analyzing remote sensing color imagery. Regardless of their terrain characteristics, 
each feature is prepared with a pair of image scenes, a remote sensing NAIP image, and a 
color-rendered DEM covering the same geographical extent in the same image resolution 
and spatial reference system. There is some variety in the numbers of images for differ-
ent feature classes because of availability of the high-resolution NAIP or DEM data in the 
selected area.

Figure 4 shows sample training images that contain pairs of NAIP images and color 
composite DEMs representing terrain features in the training dataset. The USGS defini-
tion of a basin is a “Natural depression or relatively low area enclosed by higher land 
(amphitheater, cirque, pit, sink).” Many basins are circular or oval in appearance. Com-
mon types of basins include drainage basins, structural basins, and ocean basins. For 
example, the fact that Mickey Basin, east of Steens Mountain in southeastern Oregon, is 
lower than the surrounding area is more evident in the DEM product than in the remote 
sensing image (Fig.  4a). USGS defines a ridge as an “Elevation with a narrow, elon-
gated crest which can be part of a hill or mountain.” A ridge normally covers a large 
extent but appears as a linear feature because its top is narrow relative to its base. Light-
ening Ridge in the Uinta Mountain region of northeastern Utah is less discernible on the 
remote sensing image than on the DEM product, which clearly shows the high eleva-
tion along the ridgeline and west–east running direction (Fig. 4b). A valley is a “Lin-
ear depression in the Earth’s surface that generally slopes from one end to the other,” 
distinguishing it from the more rounded basin. Because valleys are normally found in 
mountainous regions, they also have more significant terrain changes. Florin Valley, a 
small valley that channels runoff to the Mississippi River in western Wisconsin, is also 
more visible in the DEM product than the remote sensing imagery (Fig. 4c).

Table 2   GeoImageNet feature type and count

TFe denotes terrain features that are more easily detected from elevation profile, whereas TFc signifies ter-
rain features that can be better detected from color imagery, such as NAIP data

Dataset GeoImageNet

Feature category Feature Image count

TFe Basin 155
Ridge 171
Valley 181

TFc Bay 93
Island 106
Lake 170

Description Multi-source benchmark dataset which contains remote sensing imagery, 
DEM, and its deliverables (Slope and Hillshade data)

Image size 636 × 594 (averaged)
Applications Object detection, natural feature detection
Multi-source? Yes
Location information? Yes
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The remaining features—bay, lake, and island—are related to water. A bay is defined as 
an “indentation of a coastline or shoreline enclosing a part of a body of water; a body of 
water partly surrounded by land.” A bay is often demarcated by three land borders, with the 
remaining open to water. Burtis Bay, just southeast of Lake Erie in western New York, dis-
plays this common pattern. A lake, on the other hand, is a “natural body of inland water,” 
meaning it is surrounded by land, as in South Lake, which is just west of Titusville on 
the central east coast of Florida (Fig. 4e).” An island, as an “area of dry or relatively dry 
land surrounded by water or low wetland” can be conceptualized as the inverse of a lake. 
Sandy Island, OR, in the Columbia River near Longview, WA is classic example of an 
island (Fig. 4f). The latter three feature classes are more easily detected in the remote sens-
ing imagery than in the DEM because of the strong contrast between water and land.

4.2 � Geographical representativeness

Figure 5 shows the geographical distribution of selected features in the training dataset. Despite 
the geographically constrained feature sampling plan, some features classes are clustered in par-
ticular regions. This is unavoidable due to the environmental conditions required to host particular 
feature types. For example, lakes are more common in wet regions than dry; named basins fall 

(a) Basin (b) Ridge 

(c) Valley yaB)d(

dnalsI)f(ekaL)e(

Fig. 4   Sample training images (Left: remote sensing NAIP image. Right: composited color-scheme DEM) 
with labels (in red BBOX) for the natural features. a Basin. b Ridge. c Valley. d Bay. e Lake. f Island
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in the basin and range region of the western US; and ridges are limited mostly to mountainous 
regions. Nevertheless, the distance threshold applied during the feature selection process ensures 
the geographical representativeness of the dataset. For instance, these features are widely distrib-
uted in 44 states of the US, including Hawaii, but not in Alaska due to lack of a source of high-res-
olution data for that region. California and Utah host the most selected features, especially in the 
categories of basin, valley, and ridge. Bays and lakes are mostly found in the northeastern states, 
Washington, and Florida. Not surprisingly, islands are located in coastal and Great Lake states.

4.3 � Dataset robustness

Developing a robust dataset is as important as developing a robust computational model. As 
the knowledge extracted by the model is largely dependent upon the input data dataset, it is 
critical to create a dataset that is diverse and representative to ensure model generalizability. 
The previous section reveals the geographic representativeness of the GeoImageNet. This sec-
tion discusses additional important issues addressed when preparing the dataset: (1) random-
ness of relative feature location; (2) running direction of the BBOX labels, and (3) relevant 
feature scales regarding the image scene.

First, it has been increasingly recognized that neural network models are not shift-invariant [27], 
which means a small shift of the image may result in a dramatic change in results. The model shift-
invariance issue is caused mainly by the popular max-pooling strategies used for down-sampling 
feature maps in the deep learning pipeline. Max-pooling, the strategy to select the maximal value 
in a sliding window will suppress low-pass frequencies, resulting in a bias in the sampling proce-
dure. When it comes to object detection, the relative location of the labeled BBOX will influence 
a GeoAI model’s predictability. For instance, when the BBOX is always located in the center of 
the image, or near the edge, the model may create a memory of this location characteristic and will 
predict a BBOX at those locations, resulting in a location bias in the knowledge gained. Addressing 
this issue requires careful preparation of the training dataset. Section 3.1 describes in detail on how 
the GeoImageNet is created. Experiments in Section 5 verify that such datasets will reduce model 
bias and improve model robustness in handling diverse datasets and prediction tasks.

Second, the horizontal or vertical placement of the BBOX may also affect dataset diversity. 
To make sure the labeled BBOX is as close to the actual feature extent as possible, it is drawn 
along the running direction of the feature. For instance, if a ridge runs southeast to northwest, 
the BBOX will be along that direction. However, because mainstream object detectors require 
an image edge-aligned BBOX as input, we rotated the BBOX (and the image) so that its edges 
are in parallel with the border of the image scene. In doing this, we created a random factor to 
allow the BBOX to be placed either horizontally (when the width is longer than the height) or 
vertically (the height is longer than the width) instead of only in one fixed direction (Fig. 4).

Third, scale – particularly the size of the target features relative to the entire image scene—
is always an important parameter to consider in both terrain analysis and deep learning. Scale 
research has focused on multi-scale analysis to extract scale-dependent features for classification 
and object detection, and for small object detection leveraging image pyramids and feature fusion 
[28–30]. GeoImageNet addresses the second issue by preparing the feature at a recognizable scale 
regardless of its original size. This is because terrain feature detection has been a very challenging 
topic compared to the detection of built features, which is compounded by multi-sourcing learn-
ing. Therefore, in our 2022 GeoImageNet dataset, we control the relative ratio between the feature 
size and the image scene to allow both small and large features to be displayed at a detectable 
scale. This requires proper down-sampling of high-resolution images and up-sampling of low-res-
olution images, as well as multi-source image alignment in the rescaling process.
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5 � Experiments

5.1 � Performance benchmark for object detection leveraging cutting‑edge models

To enable detection of natural features leveraging multi-source data, we designed exten-
sions to two popular deep learning-based object detection architectures, Faster-RCNN 
[31] and RetinaNet [32]. Object detection architectures can be categorized into two-stage 

(a) Geographic distribution of individual features 

(b) State-based pie chart showing terrain feature distribution 

Fig. 5   Geographical distribution of training features in GeoImageNet
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detectors which separate regional proposal generation (for BBOX prediction from object 
classification. Faster-RCNN is a representative object detection model and it has achieved 
both a faster detection speed and higher detection efficiency than its predecessors in the 
RCNN family. On the other hand, one-stage detectors accomplish object detection in a sin-
gle pass, and models, such as YOLO (You Only Look Once; [33], typically have higher 
detection efficiency but lower accuracy than the two-stage models. With recent advances in 
RetinaNet, as a one-stage detector, it is reported to achieve a higher detection accuracy, as 
well as running efficiency on the Microsoft COCO dataset, due to taking advantage of its 
focal loss function and the adoption of a feature pyramid network [32].

All experiments utilized two 6-core CPUs at 1.90 GHz with 64 GB RAM and the Nvidia 
GeForce GTX980Ti GPU with 6 GB memory. The training learning rate was 1e-5 utilizing 
an Adam optimizer. The data split was 80% for training and 20% for validation/testing.

The detection accuracy of the trained models, training efficiency, and how the models 
converge over time are examined on our dataset using the two detectors. In this experiment, 
both detectors take the remote sensing NAIP image and the DEM data as input and fuse the 
information from both sources at the feature (map)-level. For each detector, the two differ-
ent data sources are fed to two identical CNN-based feature extractors running in parallel. 
The output feature maps are concatenated through an expansion of the third channel, fol-
lowed by a dimension reduction layer which reduces the number of expanded channels by 
half such that the fused feature map can be fitted into the rest of the object detection net-
work. To achieve better accuracy, several data augmentation techniques are adopted in both 
detectors, including rotation, image inversion, pepper and salt noise injection, and Gauss-
ian noise injection [11].

The best-performing model of the RetinaNet detector has the higher mean Average Pre-
cision (mAP) in terms of predictive accuracy within the first 40 training epochs (Fig. 6a) 
and lower average time cost of processing one pair of color/DEM images (Fig. 6b). One 
RetinaNet epoch includes 2000 iterations/steps and Faster-RCNN epoch includes 10,000 
iterations. mAP is a commonly used performance measure which evaluates predictive abil-
ity by combining both precision and recall. It has a value range between 0 and 1, with 1 the 
highest value. Both detectors achieve a testing mAP in a range between 0.7 to 0.8, indicat-
ing that 1) the dataset is well prepared and fits the task for training popular object detection 
models, and 2) there is still the possibility of gaining higher detection accuracy by devel-
oping enhanced models and training strategies. Our experiment also shows that RetinaNet 
runs twice as fast as Faster-RCNN, because of the reduced complexity of the one-stage 
model design. The two detectors converge smoothly as the training proceeds, leveraging 
our GeoImageNet dataset (Fig. 6b). The testing efficiency of both models increases sharply 
within the first 15 epochs. Thereafter, the accuracy fluctuates and slightly improves over 
time. The Faster-RCNN model’s testing accuracy drops slightly on the last few epochs, 
but its training accuracy keeps increasing. This is an indication of overfitting. In compari-
son, RetinaNet shows stable performance due to the introduction of the focal loss func-
tion, which can effectively avoid easy cases dominating the learned weights in the model. 
Experimental results show that RetinaNet reaches its peak mAP at the 22nd epoch and 
Faster-RCNN gained the highest mAP at the 32nd epoch. From the results of this experi-
ment, we suggest that training GeoImageNet for object detection tasks should generally be 
controlled within 40 epochs.

Figure 7 shows the breakdown of prediction accuracy of the two detectors. It can be 
seen that both detectors gain higher AP scores on TFc type of features, including bays, 
lakes, and islands than the TFe type of features, such as basins, ridges, and valleys (Fig. 7). 
This is because the TFc features have more obvious boundaries than the TFe features and 
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are usually more easily detected from the optical remote sensing imagery because of the 
high contrast between foreground (target terrain features) and the background, in terms of 
the color, texture, and brightness. However, the TFe features often have low contrast in 
optical imagery; they are deeply embedded and are often considered as the background 
of an image scene, rending them difficult to recognize. The strategy of adding DEM data, 
which can better depict the TFe features by capturing their elevation changes, offers richer 
information to help better discern natural features. When cross comparing the performance 
of the two models, the results show that RetinaNet is superior than Faster-RCNN for the 
detection of most  natural  features (except valley), demonstrating its prominent perfor-
mance. For valley prediction, RetinaNet shows slightly lower accuracy (0.07) than Faster-
RCNN. Although it is difficult to examine what exactly caused this subtle difference due to 
the model complexity, we believe that this is at an acceptable level of uncertainty.

The next section further demonstrates the added value of the multi-source GeoImageNet 
to support object detection in a GeoAI model.

5.2 � Performance comparison between the multi‑source and single‑source object 
detection

This section presents experiments that compare the performance of single source data 
(remote sensing imagery) and multi-source data (remote sensing imagery plus DEM) in 
support of natural feature detection. RetinaNet is used as the object detector in the experi-
ments. The multi-source training follows the same configuration as that described in Sec-
tion 5.1. Single-source training is conducted with the original RetinaNet model.

Both multi-source and single-source detectors converge smoothly (Fig. 8). Not surpris-
ingly, more epochs are required to flatten the increasing curve of multi-source learning 
than the single-source version. The single-source RetinaNet model peaked at the 5th epoch, 
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Fig. 6   Performance comparison between Faster-RCNN and RetinaNet. a Comparison of mAP and effi-
ciency of the best models trained using both detectors. One step is one iteration that finishes processing 
one pair of remote sensing and DEM images. b Comparison of the two models on an mAP increase during 
model training, where Y-axis stands for mAP and X-axis stands for number of epochs. Because the itera-
tions within each epoch of Faster-RCNN and RetinaNet are different (2000 for RetinaNet and 10,000 for 
Faster-RCNN), RetinaNet only uses 1/10 of the time of Faster-RCNN at the same epoch on the x axis. Dot-
ted and solid lines show model training and prediction/testing accuracy, respectively
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as compared to the 21th epoch for the multi-source model. The additional training time is 
due to the complexity in processing and analyzing more data. Based on model architec-
ture, the introduction of a new feature extractor for processing the DEM data also extends 
computation time. However, the results (mAP) clearly demonstrate the superiority of the 
multi-source GeoImageNet over single-source data in improving a GeoAI model’s predic-
tive performance. The predictive accuracy increases from ~ 50% to nearly 80%, a dramatic 
improvement.

Accuracy drops across all tested terrain features when removing the DEM data from 
model training (Fig.  9), even, notably, for the TFc features, which rely heavily on the 
remote sensing imagery. Accuracy falls most significantly among basins, ridges, and val-
leys, as expected, in which the remote sensing images are not very effective when used 
alone for their detection. This experiment verifies the effectiveness of the multi-source data 
in GeoImageNet to support natural feature detection.

5.3 � Location sensitivity of the trained model on datasets with different feature 
positioning strategies

In this section, we further examine the impact of relative locations of a target feature in 
the image scene on a model’s performance. According to our data processing workflow, 
the original image scene that contains a named feature is downloaded by setting the feature 
location as the image’s center location. However, always placing the target feature in the 
same location of an image in a training dataset may cause the GeoAI model to memorize the 
feature locations and be biased when inspecting images with a different feature distribution. 
Our assumption is that the strategy of locating the labeled targets may have an impact on the 
transferability of the corresponding trained model. Thus, a set of experiments is performed 
to examine such model sensitivity. By default, the data are downloaded centered around the 
labeled feature with a certain buffer (referred to as “center dataset”), i.e., each feature is in 
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the center of the image window. Based on center dataset, we prepared another two datasets 
with different feature placement strategies: the edge dataset forces the target to locate near a 
random edge of the image scene with very small padding (i.e., 10% of the image size); and 
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the random dataset allows the targeted feature to locate anywhere within the image scene. 
The 10% padding is also applied in the random dataset. We also ensure that each target in 
the three datasets comprise the same proportion of the image scene. This consistency elimi-
nates the impact of the size ratio between a target and its image scene during model training 
using different datasets. We randomly split each dataset into training and testing as a ratio of 
8:2. The other two datasets then follow the same split. This treatment allows us to test three 
trained models across different testing sets in order to examine their robustness. We trained 
three models separately using the multi-source deep learning model based on RetinaNet 
with each of the three datasets, resulting in nine testing scenarios. The predictive accuracy 
(in mAP) of each of the nine scenarios is demonstrated in Fig. 10.

It can be observed that when training and testing use the same datasets with exactly the same 
feature-positioning configuration, the performances of the trained models in terms of testing 
mAP are very similar (Fig. 10, the first three columns from the left). The one trained and tested 
on the random dataset (third column from the left) shows a slightly lower mAP than the other 
two (first and second columns from the left). This is likely due to the greater (location) diver-
sity in the random dataset than in the other two. But the difference is very small and negligi-
ble. From this, we can tell that regardless of the challenge level in these datasets (random data-
set > edge dataset & center dataset), the trained models can all achieve convergence.

As shown in Fig. 10, the first group of results (left three columns) demonstrates that the 
model presents little sensitivity to the target location, if the consistency of target location 
between training set and the data for inferencing is ensured. However, the inferencing data 
in real applications can be arbitrary. The right group columns demonstrate the results when 
such consistency no longer apply. The testing scores of the models that are trained by the 
datasets with targets location in the center (the 4th and 5th columns from the left) or on the 
edge (the 6th and 7th columns from the left) of the image window decrease noticeably when 
testing on a different testing set. Those models show poor transferability. On the other 
hand, the three-chessboard filled green columns (model trained using the random dataset) 
show consistently higher mAPs when tested on different datasets. The results verify that 
the random dataset, which presents more location-diversity, is more robust than the center 
and edge datasets in tackling object detection problems.

Fig. 10   Location sensitivity of the trained models on datasets with different feature positioning strategies. 
The dotted orange bars show the prediction mAP of the models trained on the center dataset and tested 
using different datasets. The horizontal line filled yellow bars show the mAP of the models trained on the 
edge dataset and the chessboard filled green columns show the mAP of the models trained on the random 
dataset
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6 � Conclusion

This paper introduces GeoImageNet, a first-of-its-kind multi-source dataset that supports ter-
rain analysis and natural feature recognition. It addresses the increasing concern over the lack 
of diverse databases to advance the field of GeoAI and supervised machine learning [34]. Dif-
ferent from existing geospatial benchmark data, this new dataset combines color imagery and 
DEMs to offer richer spatial and contextual information for GeoAI modeling to achieve better 
detection accuracy. The availability of location information for each image scene offers great 
flexibility for geographic referencing and data expansion. Because of this, GeoImageNet is the 
first “geospatial” benchmark dataset for object detection and image analysis. The principles of 
geographic representativeness and scale and location sensitivity in preparation of geospatial 
training datasets are discussed. This dataset is evaluated using two popular and representative 
object detection models, Faster-RCNN and RetinaNet, and its validity is proved for aiding a 
GeoAI model to achieve convergence and satisfactory detection performance.

Looking forward, GeoImageNet should continue to be enriched by appending more fea-
ture types and more instances of each, as well as more data sources. We will test how the 
characteristics learned by the deep learning models using the natural features, primarily 
located in the US, can be adapted for feature detection in other countries. Deep domain 
adaptation techniques [35, 36] will be exploited and applied to ensure the terrain knowl-
edge extracted from this work is, to the maximal extent possible, transferable and gener-
alizable. We are also developing new visualization techniques to open-up the black-box of 
GeoAI models to better understand and explain the models’ reasoning processes.

The GeoImageNet data and model code will be openly accessible to the geospatial com-
munity. We hope to make this a community-driven effort toward developing more foundational 
datasets to support geospatial research and facilitate progress in GeoAI. The scale variety of 
the features should also increase in the training data and advanced model capabilities need to 
be developed to address small object detection [37]. The realm of GeoAI research can extend 
to the study of natural features on other planets and their moons, such as Mars and Phobos and 
Deimos.
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