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ANOTHER LOOK AT THE
BALAZS-QUASTEL-SEPPALAINEN THEOREM

YU GU AND TOMASZ KOMOROWSKI

ABSTRACT. We study the KPZ equation with a 1+ 1-dimensional space-
time white noise, started at equilibrium, and give a different proof of
the main result of [4], i.e., the variance of the solution at time t is of
order t¥3. Instead of using a discrete approximation through the exclu-
sion process and the second class particle, we utilize the connection to
directed polymers in random environment. Along the way, we show the
annealed density of the stationary continuum directed polymer equals to
the two-point covariance function of the stationary stochastic Burgers
equation, confirming the physics prediction in [25].

KEYWORDS: Directed polymer, KPZ equation, scaling relation.

1. MAIN RESULT

Consider the stochastic heat equation (SHE) started from the exponential
of a drifted two-sided Brownian motion:

AR = GAL) LD Z1), (2) € (0,00) X
‘ Zy(0,x) = V(@)

Here Wy(x) = W(x) + 0z, and W is a two-sided Brownian motion with
W(0) =0 and 6 € R is an arbitrary constant. The noise £ is a space-time
white noise, i.e., it is a generalized Gaussian random field with the covariance
function E&(t,2)E(s,y) = d(t—s)d(x—y). Both the noise £ and the Brownian
motion W are defined over some probability space (2, F,P), with E denoting
the expectation.

Define hy(t,x) =log Zy(t,x). The following is the main result:

Theorem 1.1. There exists a constant C > 1 such that
(1.2) 73 < Var ho(t,0) < Ctg, fort>1.

1.1. Context. The study of the KPZ equation with a 1+ 1 spacetime white

noise has witnessed tremendous progress during the past decade. One of

the main achievements is to show that, under the 1:2:3 scaling and after

a centering, the solution converges in law to the KPZ fixed point, that

is, the Markov process, which is expected to be the limit of all models in

the 1+1 KPZ universality class, see [31, 36, 26] for the related results and
1
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[17, 30, 32] for reviews and surveys in this area. Despite important progresses,
many problems remain, in particular, how to extend the existing results to
non-integrable models is of great interest.

Many studies on the KPZ equation rely on connections to discrete models,
in particular the asymmetric simple exclusion process (ASEP), see e.g. [7, 4,
33, 1]. In this paper, we revisit an “old” problem: it was shown in [4] that
the solution to the KPZ equation, started at equilibrium, has a 113 size of
fluctuations in large time (see [15] for the results on general initial data).
The proof in [4] relied on the study of the second class particle in ASEP.
We provide a different proof here, through a connection to the directed
polymer instead. As a crucial ingredient, we will derive a variance identity
and show that the variance of the height function equals to the first moment
of the endpoint of the continuum directed polymer at stationarity. This,
combined with the result in [4], shows the two-point covariance function
of the stochastic Burgers equation at stationarity actually coincides with
the annealed density function of the endpoint of the directed polymer, see
Remark 2.2. This was conjectured in the physics literature [25]. Our proof
is based on an integration by parts in the Gaussian space induced by the
two-sided Brownian motion. Similar strategies have actually been adopted
to study the KPZ fixed point started at equilibrium [29]. See the more recent
development in [24].

Using the aforementioned variance identity, the study of the fluctuations
of the height function reduces to that of the endpoint of the directed polymer.
A few directed polymer models are shown to be in the 1+ 1 KPZ universality
class, see e.g. [34, 35, 20, 1, 11, 8, 9, 10, 16, 6, 36] for relevant results of
proving the scaling exponents, deriving the Tracy-Widom type fluctuations
etc. Our proof of the upper bound is inspired by the approach used to
study the O’Connell-Yor polymer in [35], which was further explored in
[27] (see the recent study on the interacting diffusions [23] using a similar
strategy). The key is to make use of the convexity of the function hy(t,0)
in the #-variable, and the statistical invariance of the driving noise under
shear transformations, which leads to the quadratic form of the free energy
Ehy(t,0), as a function of 6, see Proposition 2.7 below. For the lower bound,
we apply a similar approach as [4], which was inspired by [5], where a similar
result for ASEP was derived. The main coupling argument used in [5, Lemma
4.1] was replaced by Lemma 4.2 below. An advantage of directly studying
the SHE or KPZ equation is to apply the comparison principle, namely, if
we start the equation with ordered initial conditions and drive the equation
by the same noise, then the solutions are also ordered.

The main point here is to provide a somewhat different and simpler proof
of the seminal results in [4]. Although more precise information was obtained
later, see e.g. [10, Theorem 1.2] for the convergence in distribution of the
rescaled random fluctuations, we are hoping that a different perspective
could be of independent interest.
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To see the connection to the directed polymer more clearly, we write the
solution to (1.1) through a formal Feynman-Kac formula as

Zo(t,2) - EB[exp([Otf(t ~ 5, By)ds) exp(Wy(By)) | Bo = z].

Here B is a standard Brownian motion that is independent of (£,') and
Ep is the expectation on B only. The above expression can be viewed as
the partition function of a directed polymer in the random environment
&, with the boundary condition Wy. In other words, the polymer measure
is the Wiener measure reweighted by the exponential factor exp( fot§ (t -
s, Bs)ds) exp(Wy(By)). Note that it is only a formal expression here since &
is a space-time white noise — we will give a rigorous meaning of it in Section 2
below.

A common feature of our proof and that of [4] is to employ the variance
identity which relates the height function and the displacement of the directed
polymer. Similar identities appeared in other solvable models, see [35,
Theorem 3.6] and [3, Lemma 4.6]. The difference is that, we will derive the
identity directly on the level of the SHE, while [4] used a discrete counterpart.
Our proof through an integration by parts relies heavily on the Gaussian
nature of the invariant measure. For the SHE with a colored noise, the
existence/uniqueness of the invariant measure was shown in [2, 18], but we
do not know whether there is a similar variance identity.

The rest of the paper is organized as follows. In Section 2, we use
a Gaussian integration by parts to show that the variance of the height
function is related to the displacement of the polymer endpoint. In Sections 3
and 4, we prove the upper and the lower bounds in (1.2) separately.

Throughout the paper, we use [ as a shorthand notation for [, and |- |,
to denote the norm of LP(Q, F,P) for any p > 1.

Acknowledgements. Y.G. was partially supported by the NSF through
DMS-2203014. T.K. acknowledges the support of NCN grant 2020/37/B/ST1/00426.
We thank the two anonymous referees for multiple suggestions which helped

to improve the presentation

2. CONTINUUM DIRECTED POLYMER

In this section, through a Gaussian integration by parts, we rewrite
Var ho(t,0) as the first absolute moment of a directed polymer in random
environment. To state the main result, we first introduce some notations.

Let Zi(x,y) be the Green’s function of (1.1), i.e., for any y € R,

02u(,) = 300 Zi(,) + LD Zrlwy), (1) € (0,00) xR,
Zo(ﬂf,y) = 5(.%' - y)
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Define the quenched density of the directed polymer starting from (¢,z) and
running backwards in time as

Zt(l’, y)ewe(y)
J Ze(z,y)eVoWdy"
We denote the endpoint of the polymer path by By, and let P be the annealed
probability on the endpoint, i.e.,

(2.1) py(t,y) =

Ja Ze(a,y)e™*Wdy

J 2@,y )eWoWdy'

The expectation under P will be denoted by [Ej. We shall mostly focus our
attention on pg, so to simplify the notation we use p = pg.

(22)  F(BicA)=B [ pit.y)dy-E

Before presenting the main result of the section, we recall an elementary
fact about the KPZ equation and the directed polymer. Using the Green’s
function and the definition of p, we can write

ho(t,0) = log Zo(t,0) = log f 2,(0,y)eV @0y gy

Z,(0,y)eV W)y ,
(2:3) ZIOg/ tht((O ZZJ})eW(y’)dy’dyHOg.fZt(o’y/)eW(y)dy/

=10gfp(tvy)eeydyﬂogfZt(O,y')ew(y')dy'-

In the first expression on the r.h.s., we note that y is the variable corre-
sponding to the endpoint of the directed polymer, 6 is the dual variable,
and [ p(t, y)e?dy is a moment generating function indexed by 6 € R. Thus,
Oy he(t,0) |- is the corresponding n—th cumulant of the density p(t,-).

The main result of this section is the following variance identity:

Proposition 2.1. For any t >0, we have
(2.4) Var ho(t,0) = E f lylp(t, y)dy = Eg| Byl.

Remark 2.2. It was shown in [4, Proposition 3.1] that Var ho(¢,0) = [ |y|S(t, dy),
with S(t,dy) the symmetric probability measure which is the space-time cor-
relation measure of the stochastic Burgers equation, see [4, Proposition 1.4].
Combining with the above result, we conclude that S(t,dy) = Ep(¢t,y)dy,
which was conjectured and proved nonrigorously in the physics literature,
see [25, Eq. (16)]. As a matter of fact, applying a proof similar to that of
Lemma 2.4 below, one can directly show that for any test functions f,g,

B [ f@ho(t.o) [ §Who(0.p)dy= [ f@)g()Ep(t,z ~y)dady,

which implies that on a formal level we have

E[0,ho(t,2)9:h0(0,) | = Ep(t,z - y).
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To prove the above proposition, we start with a few lemmas. First, for two
random variables X and Y over 0, we let Cov [X, Y] denote their covariance.
Define also

(2.5) H(t,x) = ho(t,z) - ho(0,z) = ho(t,x) - W(x).
Lemma 2.3. For any t,z >0 we have
(2.6) Varhg(t,0) = Cov[H(t,0) - H(t,z), W (x)] + Cov[H(t,z), H(t,0)].

Proof. For any x > 0, we start from the elementary identity
. Var[ho(t,z) — ho(t,0)] = Var[H(t,x) — H(t,0) + W(z)]
27) =Var[H(t,z) - H(t,0)] + z + 2Cov[H (¢, z) - H(t,0), W (z)].
Through the Green’s function of SHE, we can write
H(t,2) =log [ Zu(w,p)e" OV Oy

(2.8)
= log[RZt(x,x+y)eW(x+y)7W(m)dy,

which implies that, for each fixed ¢ > 0 and as a process indexed by z,
{H(t, )} .er is stationary. In particular, we have

Var[H(t,z) — H(t,0)] = 2Var ho(t,0) — 2Cov[H(t, z), H(t,0)].
Thus, (2.7) becomes

1 1
Var ho(t,0) = §Var[ho(t, x) = ho(t,0)] - 535

(2.9) + Cov[H(t,0) - H(t,z), W(z)]
+ Cov[H(t,x), H(t,0)].
By the invariance of W, i.e. the fact that {ho(t,z) — ho(t,0)}zer is a two-

sided Brownian motion for any ¢ > 0 (see [21]), we conclude that the first line
on the r.h.s. of (2.9) is zero, which completes the proof. O

Note that the second term on the r.h.s. of (2.6) is the covariance function
of H(t,-). For any fixed ¢ > 0, the strong correlation has not kicked in yet so
one naturally expect the random field to decorrelate on a large distance, i.e.,

(2.10) lim Cov[H(t,z),H(,0)] = 0.

|z|— 00

Indeed, this was proved in [4, Proposition 5.2]. We will provide a self-
contained proof of (2.10) through an application of the Gaussian-Poincaré
covariance inequality. Since this holds only for finite time and does not
involve any KPZ behavior, we leave it to the appendix.

Given (2.10), to prove Proposition 2.1 we only need to show

Lemma 2.4. As |z|— oo, we have

Cov[’l—[(t,O)—’l—l(t,x),W(x)]—>E/|y|p(t,y)dy, £>0.
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The proof of the above lemma is through an integration by parts in the
Gaussian space. Note that we have two Gaussian processes here, the noise £
and the two-sided Brownian motion W. We will perform an integration by
parts on W, for each realization of €.

We first introduce some notations. Let # be the spatial white noise
associated with W, i.e., in the distributional sense we have # (z) = W'(x).
For any ¢ € L%(R), we write # () = [ ¢(2)# (2)dz, which is the usual
Wiener integral. In this way, for z >0, we write W(x) = # (1j9,()). Let
D be the Malliavin derivative with respect to # . For a random variable X
that is a smooth functional of #, DX is an L?(R)-valued random variable,
which we write as DX = (D, X ),r, and one interprets D, X as the derivative
of X with respect to #'(r). For an introduction to Malliavin calculus, we
refer to [28, Chapter 1].

The following lemma is the key to link the variance of the hg to the density
of the continuum directed polymer.

Lemma 2.5. For any z >0 and t,x >0, we have
COV[H(ta Z)v W(I’)] =E f p(ta y)]l{z+y>0} min(:v, z+ y)dy - min(:c, Z)

Proof. Recall that H(t,z) = ho(t,z) — W(z), so we only need to consider the
covariance of hg(t,z) and W (x). For every realization of £, by the integration
by parts formula, see e.g. [28, (1.42), p. 37], we have

Cov[ho(t,z), W(z)] = E[W (x)ho(t,2)] = E[# (1[0,41(:)) ho(t, 2)]
= E<1[O,x](')7Dh0(taz)>'

Here (-,-) is the inner product in L?(R). Using the expression

ho(t, z) = 10gf Z(z,9)e" Wy,

we have for any r > 0 that

(2.11)

157 2u(z,y)eV W1 1 (r)dy

DrhO(t,Z) = [ Zt(z,y)ew(y)dy

This, in turn, implies
(Uor (). Dho(t.2)) = [ " Dohot, 2)dr
[ Z(z,9)e" D10y min(z, y)dy
[ Z2i(z,9)eV Wdy
WEACES )V ENWEL oy min(z, 2 + y)dy
[ 21(z, 2 +y)eW G- W2 dy '

Here in the last “=” we changed variable y —» y + z. Taking expectation,
using the stationarity and the definition of p(t,-) (see (2.1)), we have

E<1[0,x] ()a DhO(tv Z)) =E f p(ta y)]]-{z+y>0} min(x, z+ y)dya
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which completes the proof. O

Using the previous lemma we can complete the proof of Lemma 2.4 hence
that of Proposition 2.1:

Proof. By Lemma 2.5, we have
COV[H(tv O) - H(tv J}), W(l’)] =E [ p(ta y):[l{y>0} min(x7 y)dy

-E f p(tv y):ﬂ-{a:+y>0} min(x, T+ y)dy + .
By the fact that Ep(t,-) is an even probability density, we can rewrite it as
Cov[H(t,0) - H(t,z), W ()]

:2Ef0 yp(t,y)dy+2wEfw p(t,y)dy.

Applying Lemma 2.6 below, we complete the proof. O

(2.12)

Lemma 2.6. For any t >0, there exists Cy >0 so that
Ep(t,z) < Crexp(-2%/C), xeR.

Proof. First, we write, by the Cauchy-Schwarz inequality,
Z,(0,z)eV @)

[ Z1(0,2")eW @) da’

< E( f 2,(0,2")eV @) dz ) 2PEZ,(0, )22V @),

Ep(t,z)=E

For the first expectation, by Jensen’s inequality we derive

( f 2,00,z @ )2 < ( [ 2,(0,2")dz") 2 [ 2,(0,2)e 2V @ gy,

which implies

E( f 2,00, 2")eW @) dz") 2

S\/E(/Zt(O,ar”)dSC”)“‘fHZt(O,96')”4!\6_2”/(’”')H4dﬂﬂ'-

We also have

EZ(0,2)%*W @ = 27EZ,(0,2)2.

Then the proof is completed by invoking the following negative and positive
moment estimates: for any p > 1,

B([ 200.0)d)7 < Clp 1Z:0.2) 1y < Copexp(-a2/Coy),
see [22, Corollary 4.8] and [12, Theorem 2.4, Example 2.10] respectively. O

At the end of this section, we present the following result which will be
used frequently.
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Proposition 2.7. (i) For any t >0,z € R, we have

Ehg(t,z) = Eho(t,0) + 0z + %e%.
(ii) For any t > 0,0 € R, we have

V/ Var hy(t,0) < /Var ho(t,0) + \/@
(iii) For any 0,z e R,;t >0 and Ac R, we have
Ps(By e A) =Py(z+ By + 0t € A).
(iv) For any t >0 the function 6 — hy(t,0), 6 € R is convez.

Proof. The result is rather standard, so we only sketch the argument.
(i) Recall that Zy solves (1.1), with Zy(0,z) = e"o(®) and hy = log Zy. We
claim

I 1p2
(2.13) {Zo(t, ) }isozer = {Zo(t,x +0t)e™ 271} 0 s,

which comes from the fact that Zy(t, x+9t)ee"”%92t solves (1.1) with {£(¢,x)}
replaced by {£(¢t, z+6t)} and the two random fields have the same distribution.
With (2.13), we have Ehy(t,z) = Eho(t,z +0t) + 0x + %GQt. But we also have

Eho(t, T+ 9t) = Eho(t, 0),
as {ho(t,z)—ho(t,0)}.er is a two-sided Brownian motion, thus, (i) is proved.
(ii) By (2.13), we have Varhgy(t,0) = Varhg(t,60t). Since ho(t,0t) —
ho(t,0) taw N(0,|0]t), we complete the proof of (ii) by the triangle inequality.
(iii) We write the probability explicitly and change variables to obtain

[ Zi(@,y)e"o W 1 uydy
[ Zi(z,y)eVeWdy
o E( i+ 0t y) NIy dy
[ Zi(z,x + 0t +y)eWo(z+0i+y) gy
_ _[ Zt(07 ot + y)€W(y)+0y1{x+9t+yeA}dy
[ 200,06t +y)eW W)+0ydy ’

(B, ¢ A) =E

where in the last “=" we used the stationarity. By the time reversal we have
{Z(0,2) }rer law {Zi(x,0)}1er, so the above probability can be written as

f Zt(et +Y, O)GW(y)+ey1{x+9t+y€A} dy

(ByeA)=E
o(Bred) [ Z:(0t +y,0)eW W)+ gy

Similar to (2.13), we have

1p2 1
{Zt(et +Y, O)€9y+20 t}t>0,yER = {Zt(ya 0)}t>0,y€R7
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using which we rewrite the probability as
f Zt(yv 0)€W(y) 1{m+9t+y€A}dy
[ 2y, 0)eVWay

Using the time reversal again, we complete the proof of (iii).

Pi(Byec A) = E

(iv) This is similar to the discussion in (2.3). Using the Green’s function
of the SHE, we can write

(2.14) ho(t, ) = lOgAZt(x,y)eW(y)+9ydy.

By a straightforward calculation, using the representation (2.14) and the
definition of p) in (2.1), we get

(2.15) the(t,0)=nyp(e)(t,y)dy—(f ypg(t, y)dy)*,

and the conclusion of part (iv) is a consequence of the Jensen inequality. O

3. UPPER BOUND

The goal of this section is to show the upper bound
(3.1) Var ho(t,0) < Ct23,  ¢>1.
We have the following lemma:

Lemma 3.1. For any t >0, we have
(3.2) EnyP(t,y)dy=t+E(f yp(t,y)dy)?

Proof. The result is a direct consequence of formula (2.15) used for € = 0 and
part (i) of Proposition 2.7. O

For the polymer endpoint By, there are two sources of randomnesses:
(i) the random environment (&, W); (ii) for each realization of the random
environment, By is sampled from the Gibbs measure. Thus, the equation (3.2)
can be viewed as a total variance formula: the l.h.s. is the total variance of
By, t is the expectation of the quenched variance, and E( [ yp(¢, y)dy)? is the
variance of the quenched expectation (the mean vanishes since y — Ep(t,y)
is even). As the total variance E [ 3?p(t,y)dy is expected to be of order
413 > t, we see the main contribution must come from the variance of the
quenched mean. This is consistent with the localization behavior of the
polymer paths [19].

To estimate E( [ yp(t,y)dy)?, we need

Lemma 3.2. For any § >0 and t >0, we have

(3.3) H/ yp(t,y)dy‘

<4671/ Var ho(t,0) + 2V 61t + 6t.
2
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Proof. First, we recall that
/ yp(tv y)dy = aGhQ(tv O) ‘9=0'

By convexity of hg(t,0) in 6 (part (iv) of Proposition 2.7) for any § > 0 we
have

1 1
|/ wpt.y)ds] < Shs(t.0) = ho(2.0)] + 51h-s(.0) = Ro (2,0
We remove the mean on the r.h.s. to further obtain
1. N 1. «
[ yp(t.y)dy) <lhs(2,0) = hot, 0| + =lh-5(t,0) = ho(£,0)

1 1
+ 5|Eh5(t7 0) - EhO(t7O)| + 5|Eh—5(t7 0) - EhO(t7O)|7

where we have denoted h = h — Eh. For the second line on the r.h.s., which
is purely deterministic, by part (i) of Proposition 2.7, we have Eh,s(¢,0) —
Ehy(t,0) = %6215, which leads to the upper bound of §-'§%t = 6t. Applying
the triangle inequality we have

(3.4) nyp(t,y)dy‘

1(, - A A
< 510012t 0+ . 001 ) + .

From part (ii) of Proposition 2.7, we have

(3.5) [ (£,0) 12 < [ o, 0) 2 + /6.
Putting together (3.4) and (3.5) we conclude (3.3). O

Now we can complete the proof of the upper bound in Theorem 1.1:

Proof of (3.1). Applying Proposition 2.1, Jensen’s inequality, and Lemma 3.1,
we have

Var ho(t,0) < \/EnyP(t,y)dy=\/t+E(f yp(t,y)dy)?.

Further applying Lemma 3.2, we derive that

Var ho(t,0) <Vt +451\/Var ho(t,0) + 2V 51t + 6t

for all § > 0. Choosing 6 = t~'/3, we have for ¢ > 1 that

Var ho(t,0) < C(¢Y3\/Var ho(t,0) + t*/?),

where C' > 0 is some universal constant. This is equivalent with

(\/Var ho(£,0) - %Ct1/3)2 < (i02 L OV,

Hence the proof is complete. O
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4. LOWER BOUND

Recall that Var ho(t,0) = EJ|By|, see (2.4). In the present section we shall
show that there exists C' > 1, for which
(4.1) Var ho(t,0) > C™ 43, ¢> 1.

Let w >0 and 6 >0 be two constants to be determined later on. Fix ¢ > 1
and define
(4.2) n=u+0t.

The idea is to estimate the two probabilities P)(B; > n) and P)(B; < n)
separately from above by ¢t~2/3Var ho(t,0). The first probability can be easily
estimated by the Chebyshev inequality:

Lemma 4.1. We have
Var ho(t, 0)

u

PY(B; > n) <

Proof. By Proposition 2.7, we have
PY(B; > n) = PY(B; + 6t >n) = PY(B; > u).
By the Markov inequality we have
E9|Bi| _ Varhg(t,0)
u u

]P)g(Bt > U) <
which completes the proof. O

To estimate the other probability, inspired by the argument in [5], we
introduce another initial data W, which is a perturbation of W in [0,n]:

(4.3) Wy(z) = (W(x) +02)Lizeponyy + (W () + 1) Lipspy + W(2)Lizeoy-

In other words, we add a drift 8 in the intgrval [0,n]. Define Bg as the
solution to the KPZ equation started from Wy driven by the same noise &,
ie.,

hot2) =1og [ Zu(w,y)e"" Wy,

Let X be a random variable with exponential distribution of parameter 1
that is independent of the random element (&, W), where £ is the spacetime
white noise and W is the two-sided Brownian motion.

The idea is to compare hy(t,0) with hg(t,0). By construction, we have
Wy (z) < Wy(x) in the region of x < n, therefore, in the event of By < n, we
do not expect that hg(t,0) to be much larger than hg(t,0). The following
key lemma makes the heuristics precise. It corresponds to [5, Lemma 4.1] in
the context of ASEP, which was proved through a coupling argument.

Lemma 4.2. We have
PY(B; <n) < P(hg(t,0) - hg(t,0) < X).
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Proof. First, we can write

J 200,V ndy 1
[ Z1(0,y)eWe W) dy 1+X’

Py(B;<n)=E

with
J 2:0,9)e™* W1, dy
) [ Z:(0,y)eVeW 1y, dy
On the other hand, we have

J 2:(0.)e"* Wy

[ 2:(0,y)eMeay

[ 20 y)eW9(y)]l{y>n}dy+th(O y)eW(’(y)ﬂ{ <n}dy
[ 20,1)eWe @1, dy

Y := hy(t,0) - hy(t,0) =1

<log

By construction, we have Wy (y) < Wy(y) when y < n, which implies that

(4.4)

J 20(0,9)e"* WLy dy + [ 2,(0,)e" WL,y dy
J Zi(0,y)eWe@ Ly, dy

This, in turn, implies that
1 1 1
E—— :fo P[X <z!-1]dz = fo Plog(1 + X) <logz"1]dz

1
< fo P[Y <logz']dz.

An elementary calculation gives

Y <log

=log(1 + X).

oo 1
P[Y < X] - f P[Y < z]e®dz = f P[Y <logz"1]dz,
0 0
which completes the proof. O
It remains to estimate P(hg(t,0) — hy(t,0) < X). For any c,¢a,¢3 € R
satisfying ¢1 = co + c3, we have
P(hg(t, 0) - B@(tv 0) < X)
(4.5) SP({h@(t,O) SCl}U{FLg(t,O) >CQ}U{X>03})
<P(hg(t,0) < c1) + P(hg(t,0) > cp) + P(X > ¢3).
Through the following lemmas, we estimate each probability from the above

display separately. Since X is of exponential distribution with parameter 1,
we have

Lemma 4.3. For any c3 >0, we have P(X > ¢3) = e 4.
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Lemma 4.4. For ¢; < Ehy(¢,0) + %9215, we have

(4.6) P(ho(1,0) < 1) < Y2t ho(t,0) + Vet
Eho(t, 0) + %0215 —C1

Proof. First, we write
P(hg(t,0) < c1) = P(hg(t,0) < ¢1 - Ehg(t,0)).

where, as we recall iLg(t,O) := hg(t,0) — Ehy(t,0). By part (i) of Proposi-

tion 2.7, we have Ehy(¢,0) = Ehg(t,0) + %9215. Under the assumption on ¢y,

we can apply the Markov and Jensen inequalities to conclude that
E|hg(t,0)]

Eho(t, 0) + %9215 -C

P(~hg(t,0) > Ehg(t,0) —¢1) <

v/ Var hg(t, 0)

: Eho(t,0) + 362t —c¢1
Furthermore, by part (ii) of Proposition 2.7,
Eho(t,0) + 362t —c1 ~ Eho(t,0) + 6%t — ¢,
and (4.6) follows. O

Lemma 4.5. Assuming co > Eho(t,0), we have

P(ﬁe(t,()) > 62) < eLQQnM

2 .
c2 — EhO(tv 0)

Proof. Recall that hy starts from Wy which only has a positive drift 6 in
[0,n], applying the Girsanov theorem, we can write

P(Rg(t,0) > ¢2) =EL G 4 0)s00y = ELing(t.0)5¢:) %

with the Radon-Nikodym derivative ¢ = W (n)-36%n, Applying the Cauchy-
Schwarz inequality, we have

(4.7) P(hg(t,0) > c2) < /P (ho(t,0) > c2) VEG2,

A direct calculation gives E4? = Ee20W(n)-0°n _ 0°n  For the probability
appearing on the right hand side of (4.7), an application of the Chebyshev
inequality gives

Var ho(t, 0)
(co = Ehg(t,0))2’

P(ho(t,0) > c2) <
which completes the proof. O

To simplify the notation, from now on we denote
c(t) =Eho(t,0),  (t) = Varho(t,0).
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Combining the above three lemmas, we have

PY(B; <n) < P(hg(t,0) < c1) + P(hg(t,0) > c2) + P(X > c3)

(4.8) < \V ¢(t) + \/% " e%GQn V w(t) e C3
Te(t)+10%t - ca —c(t) ’

provided that ¢; = co + c3 and
1
ey <c(t)+ 502t, co > c(t), cs > 0.

Now we can finish the proof of the lower bound.

Proof of (4.1). Suppose that M > X >0 and A% > 4. They are to be further
adjusted later on. Let

cr=c(t)+ 213, ey =c(t) + 13, ey =13,

and
O=X"3 n=M*, w= (M- N
They obviously satisfy (4.2). From Lemma 4.1 and (4.8), we have

Q)
>n) < m,

1 P(t) 1y W»(t) VA _A/3
0 A2M t
Pg(BtSn)S%)\2_2\/t2/3 +e2 \/t2/3+%)\2—2+6 .

Adding the above two inequalities, we obtain

aw(t)+b MJr VA +et?

PY(B;

(4.9) 1< o 275 %)\2 — ,
where
1 1 1a2p7
= — b= +e2 .
M IFEECE
Fixing the parameters A\, M so that
A
M>X M>4 and lf <1,
Z2\2_9
2

we conclude from (4.9) that liminf, . (t)t™%3 > 0. o

APPENDIX A. PROOF OF (2.10)

For the convenience of readers, we provide a self-contained proof of the
covariance decay result in (2.10). Recall that

(A.1) H(t,x) = ho(t,z) - W(z) = log [ Zy(z,y)eV WV @ gy
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Fix t > 0, the goal in this section is to show that
(A.2) Cov[H(t,0),H(t,x)] -0, as |x| - oo.

There are two independent Gaussian processes appearing in (A.1): the
noise  and the two-sided Brownian motion W. Denote by E; and Ey, the
expectations on ¢ and W respectively. Recall that we used D to denote
the Malliavin derivative with respect to W', and E is the total expectation:

E =E¢Ew. From now on we will use 2 to denote the Malliavin derivative
with respect to £&. We can write

(A.3)
Cov[H(t,0), H(t,n)] = B{[H(t,2) - EcH(t, z) || H(t,0) - EcH(t,0) ]}
+ By {[BeH(t,2) - BH(t,2) |[EeH(t,0) - BH(1,0)]}.

Fix the realization of W and use the Clark-Ocone formula for the £ noise
(see [13, Proposition 6.3]), we can write

(Ad)  H(to)-EH(0)= [ t [ B0 () | Fule(s,2)deds,

where {Fs}ss0 is the natural filtration corresponding to £&. On the other
hand, we can use Clark-Ocone again to express E¢H (t,2) - EH (¢, z) and we
get

|]EW{[E5’H(t, ) - EH(t,x)][E{H(t, 0) - EH(t, 0)]}|
(A.5) < f IDLH(,0) || DaH(t, 2) | odz.

Using (A.4) and (A.5), we can estimate the expression (A.3) with the help
of the Cauchy-Schwarz inequality and get

(Cov[H(t,0), H(t.2)] < [ DA 0) |2 DA ) |2dz

t
. fo [ | D4 H(L,0) 2| Do H(t, ) |2deds = T + I

Before estimating I, I2, we introduce another notation, the propagator of
SHE from (s, 2) to (t,z), which is the solution to

1
8tZt,S(x7 Z) = §A$Zt,s(xaz) + g(t7x)zt,s(wvz)7 t>s

and Z s(x,2) = 6(x - z). For the propagator, we have the moment estimates
[12, Theorem 2.4, Example 2.10]: for any p > 1 and 0 < s <t < T, there exists
a constant C'= C(p,T") > 0 such that

(z-y)*
(A.6) 1215(2, )| < C(t - 5) "2 o)

Throughout the rest of the proof, C' > 0 is some constant that depends
only on ¢ > 0.
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(i) Estimates on I;. For any x,z € R, we have

DA ) = [ Zi(z, )V O W1 v = Teneny]dy
o [ Zi(a,y)eW - W@)dy ‘

By the moment estimate in (A.6) and a proof that is very similar to the one
for Lemma 2.6, we have

)2

_ (e -
IDH(t )2 < C [ e H WLy 41y ldy

_@w? o
Scf e e e WLy e apdy

2
-C [ e EM . aydy = ol - ).

Then it is straightforward to check that

< [ oot - 2)dz >0, as o] - oo.

(ii) Estimates on 5. For the Malliavin derivative with respect to &, we
apply [14, Theorem 3.2] to obtain

2 H(t l’) _ Zt’s(x’z).[ZS(Zay)GW(y)_W(x)dy
- , th(ff,y)eW(y)—W(x)dy )

Applying again a proof that is similar to the one for Lemma 2.6, we have

_@=2)? G=v)?
|7 H(t )2 < Ot = )72 e [ 57265 Chrrlgy

_(@=2)?
<C(t-s) e el =gy (Jo - 2)).

This implies that

t
< [ [ gralla=2Der(lel)dzds.

From the above expression, it is another straightforward calculation to
conclude that Iy - 0 as |z| > co. This finishes the proof of (A.2).
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