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ABSTRACT

This paper introduces a real-time GeoAl workflow for large-scale
image analysis and the segmentation of Arctic permafrost features
at a fine-granularity. Very high-resolution (0.5m) commercial im-
agery is used in this analysis. To achieve real-time prediction, our
workflow employs a lightweight, deep learning-based instance seg-
mentation model, Sparselnst, which introduces and uses Instance
Activation Maps to accurately locate the position of objects within
the image scene. Experimental results show that the model can
achieve better accuracy of prediction at a much faster inference
speed than the popular Mask-RCNN model.
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1 INTRODUCTION

Polar regions are one of Earth’s remaining frontiers that play a
vital role in global climate, ecosystems, and economy. Global warm-
ing over the past century is driving dramatic change in the Arctic
ecosystem, endangering its natural environment, infrastructure,
and life of the indigenous population. Permafrost, ground that re-
mains below 0°C for at least two consecutive summers, is at the
center of this change. Covering nearly % of the land in the northern
hemisphere, thawing permafrost is causing significant local and
regional impacts on the Arctic community. As the ice-rich frozen
ground thaws, land subsides causing severe damage to buildings,
roads, pipelines, and industrial infrastructure [9]. Permafrost degra-
dation also increases rates of coastal erosion, wildfires, and flooding,
which may further accelerate the thawing process and make the
Arctic ecosystem even more vulnerable to climate change [6]. At
a global scale, the thawing of Arctic permafrost will result in the
release of an immense amount of carbon dioxide and methane,
exaggerating the greenhouse effect and global warming through
complex feedback mechanisms [17].

To improve our understanding of permafrost dynamics and its
linkages to other Arctic ecosystem components in the midst of rapid
Arctic change, it is critically important to have spatial data readily
available that provide fine-granularity mapping of permafrost fea-
tures, their extent, distribution, and longitudinal changes. Achiev-
ing this goal requires new approaches that can perform automated
mining from Arctic big data. It is exciting that the Arctic community
has started to embrace GeoAI [11, 12] and big data to support Arctic
research, from predicting Arctic sea ice concentration [1], to find-
ing marine mammals on ice [15], creating Arctic land cover maps
[18], and automated mapping of permafrost features [2]. Pioneer-
ing research in performing automated characterization of Arctic
permafrost features has also been reported in the literature. An
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GeoAl-based Mapping Application for Permafrost Land Environ-
ment (MAPLE) is being developed to integrate Big Imagery, GeoAl,
and High-Performance Computing (HPC) to achieve classification
of permafrost features, in particular, ice-wedge polygons (IWP)
[19]. The delineation of IWPs is achieved using a popular instance
segmentation model, Mask R-CNN [7]. Huang et al. [10] applied
a semantic segmentation model U-Net for mapping retrogressive
thaw slumps, another important feature type of Arctic permafrost
for understanding permafrost thaw and Arctic warming.

While these deep learning models, such as Mask R-CNN, result
in satisfying performance in terms of prediction accuracy, they can
hardly achieve real-time processing because the algorithms often
require placement of a large number of candidate bounding boxes
and complex post-processing to remove redundant information.
To reduce computational cost and perform efficient permafrost
mapping at the pan-Arctic scale (which covers over 5 million km?
of tundra region), it is necessary to develop and apply new mod-
els that can achieve high-accuracy and real-time prediction. This
paper aims to achieve this goal by integrating a novel real-time
instance segmentation model, Sparselnst [5], in our automated per-
mafrost feature mapping pipeline. The next section describes the
methodological workflow in detail.
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Figure 1: Real-time GeoAl workflow for Arctic permafrost
segmentation and mapping. FC: Fully Connected layer

2 METHOD

Figure 1 demonstrates the workflow of real-time GeoAlI for Arc-
tic permafrost mapping. We adopt a novel instance segmentation
model Sparselnst into the workflow, which contains three major
components: a feature extractor, an instance context encoder, and
an Instance Activation Map (IAM)-based decoder. The feature ex-
tractor is responsible for extracting multi-scale features from the
input. The encoder will process the extracted features and fuse
them into single-level features with multi-scale representations.
The encoded features are then processed by the decoder to generate
IAMs for instance classification and segmentation. Each component
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is designed under the consideration of lightweight architecture and
low computational complexity to achieve fast inference speed.

2.1 Feature Extractor

The feature extractor adopted in this work is ResNet-50 [8]. Among
various deep neural network (DNN) architectures, ResNet-50 enjoys
a good trade-off between accuracy and model complexity so to
support real-time applications [3]. ResNet extracts representative
features for objects of different types using a deep residual network.
After a series of convolutional operations, multi-scale feature maps
can be generated, among which high-resolution maps are better
at small-object segmentation and low-resolution feature maps can
better support segmentation of large objects. To accurately segment
objects of varying sizes, hierarchical feature maps at multiple scales
and resolutions are passed to the encoder (see Figure 1).

2.2 Instance Context Encoder

The main purpose of the encoder is to generate a single feature map
containing multi-scale representations. Conventional approaches
use multi-scale features with multi-level predictions [13] for seg-
menting objects at different scales [20]. However, this will increase
overall processing time of the model, making it less efficient and
less favorable for real-time applications. Recent real-time instance
segmentation models [4, 16] fuse multi-scale information into a
single feature map to reduce both prediction and post-processing
time. Sparselnst utilizes a similar idea and it fuses three feature
maps obtained from different convolution stages. The fusion first
follows the feature pyramid network (FPN) [14] to use a top-down
pathway for building semantic-rich features. To further enhance
the scale information, the last feature map (Cs3) also undergoes a
pyramid pooling operation [23] to increase the global contextual
information without increasing the size of the feature maps. Next,
all feature maps are upsampled to the same resolution and con-
catenated together to generate feature maps at a single resolution
but with multi-scale representations. The output is then sent to the
decoder for classification and segmentation.

2.3 IAM-based Decoder

The function of the decoder is to take the fused feature map from
the encoder as input to generate N predictions. Each prediction
contains a triple <object class, objectness score, kernel>. The ob-
jectness score refers to the probability of an object belonging to a
certain class and the kernel is a low-dimensional representation of
location information for that object. This instance-level prediction
is achieved through the generation of Instance Activation Maps
(IAMs) which are capable of highlighting important image areas.
Different from conventional approaches which use dense anchors
to detect and segment objects, Sparselnst trains the decoder to
create IJAMs, which have a one-to-one mapping with the objects
to segment. This design helps the decoder to achieve real-time
performance as it avoids the time-consuming post-processing of
some models, such as Mask R-CNN, which need to select from
thousands of anchors to predict the most accurate mask and to
perform matching between predicted masks and the ground-truth.
Once the predictions are generated, they are sent to perform bipar-
tite matching to associate each ground-truth object with its most
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Table 1: Comparisons with Mask R-CNN [7] for mask AP
and speed on IWP dataset. Inference speeds of all models are
tested with single NVIDIA A5000 GPU.

Model FPS APsy APs APy AP;

Mask R-CNN  27.01 52.86 33.28 60.03 64.39
Sparselnst 45.61 5397 3170 60.78 68.10

similar prediction, then the difference between the prediction and
the ground-truth is encoded into the loss function. As the model is
being trained, it learns to generate more accurate IAMs and thus
more accurate predictions, lowering the loss until the model fully
converges.

3 EXPERIMENTS AND RESULTS
3.1 Data

To assess the performance of the models, we created an Al-ready
dataset containing 867 image tiles and a total of 34,931 ice-wedge
polygons (IWPs). The dataset covers dominant tundra vegetation
types in the polygonal landscapes, including sedge, tussock, and
barren tundra. Very high resolution (0.5 m) remote sensing imagery
acquired by Maxar sensors is used for annotation and model train-
ing. The average image size is ~ 226 x 226 with the largest image
size 507 X 507. Each image has a label indicating the image size and
coordinates of the IWPs.

The labeled images are divided into three sets: training (70%), val-
idation (15%), and testing (15%). The maximum number of IWPs per
image is 447. This statistic is critical in determining the maximum
number of detections per image, as it is an important hyperparam-
eter to set in the segmentation model. It also affects both accuracy
and speed and provides a trade-off between them (Section 3.3).

3.2 Model Training and Results

In this work, we compare Sparselnst with one of the most popular
instance segmentation models, Mask R-CNN [7]. Both models are
built upon Detectron2 [21], a module of the PyTorch deep learn-
ing framework which provides state-of-the-art segmentation algo-
rithms. The training is conducted on four NVIDIA A5000 GPUs. The
batch size is 16 and the maximum number of iterations is 20,000. The
maximum number of detections per image N is set to 500. Table 1
shows the performance comparison between Mask R-CNN (default
setting) and Sparselnst. The evaluation metric for model inference
speed is frame per second (FPS) and for accuracy, average precision
(AP) [22] is used. As the results show, Sparselnst demonstrates
better performance in terms of both speed and accuracy than Mask
R-CNN. We also separate IWPs into three groups by their areas:
small (area < 200 pixels), medium (area in between 200 and 450
pixels), and large (area > 450 pixels). Table 1 also shows the average
precision (AP) in each group. Sparselnst performs slightly worse
than Mask R-CNN on small IWPs segmentation, but it works bet-
ter at segmenting medium- to large-size IWPs. Overall, Sparselnst
yields better detection accuracy than Mask R-CNN. Speed-wise, the
model runs nearly twice as fast as Mask R-CNN, achieving real-time
performance (model’s inference speed at 30 FPS or above).
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3.3 Precision vs. Speed

Figure 2 shows the precision and speed trade-off of the Sparse-
Inst model and its comparison with Mask R-CNN. We used the
default setting of Mask R-CNN to conduct training and testing as
it achieves better performance than other experimental settings.
Differently, Sparselnst requires a predefined N to determine the
maximum number of masks and predictions per image. This hyper-
parameter not only affects the model’s prediction accuracy but also
its speed. A larger N will slow down the process of bipartite match-
ing during training and increase model complexity in the decoder
part, therefore negatively affecting the model’s efficiency during
both training and testing. Here, we tested the model performance
at different settings of N (at 100, 300 and 500 respectively). It can be
seen that as N decreases, the model’s prediction speed increases (x
axis) but its predictive power (y axis) decreases (from 54% at N=500
to 51% at N=100). For Mask R-CNN, while its prediction accuracy
is quite high, the speed is below the threshold of models that can
be considered real-time. It is noteworthy that at both N=500 and
N=300, Sparselnst achieves better prediction accuracy than Mask
R-CNN. This result verifies the importance of carefully setting val-
ues of hyperparameters according to data characteristics to achieve
satisfying model performance.

60

58 1

56
Sparselnst(500)

54 1 Mask R-CNN Sparselnst(300)
52 ® Sparselnst(100)
50 A

48 -

Prediction accuracy (average precision)

20 30 40 50 60
Prediction speed (FPS: frame per second)

Figure 2: Speed and accuracy trade-off.

3.4 Prediction Results

Figure 3 illustrates segmentation results for two sample images.
Figure 3a and 3c provides the ground-truth labels of the IWPs. The
ice-wedge polygons in these two images belong to two distinctive
types of IWPs: low-centered (3a, 3b) and high-centered (3c, 3d). A
preliminary analysis has also shown that when separating these
feature types, thus making the segmentation task more challeng-
ing, the performance advantage of Sparselnst over Mask R-CNN
become even more dominant. This reflects the robustness of the
Sparselnst model in performing high-accuracy and real-time IWP
segmentation.

Figure 3b and 3d present the model prediction results for the two
images to their left (3a and 3c). It can be seen that for smaller objects,
although the predicted area is quite close to the ground-truth, the



SIGSPATIAL °22, November 1-4, 2022, Seattle, WA, USA

(© ()

Figure 3: Comparison between ground-truth (a and c) and
model segmentation results (b and d). Red arrow: missing
prediction; Yellow arrow: incorrect prediction

boundary line itself is not as smooth as the human labels, 3b. This
issue does not exist in segmentation results for large objects, 3d.
The model did miss predictions for a few IWPs when there exist no
clear boundaries around them (red arrows in 3b and 3d). There are
also incorrect predictions (yellow arrows in 3d); this is likely due to
the semantically different concepts that expert annotators and the
machine consider. Interestingly, the model can predict labels for
some partial IWP near the border where is not labeled by experts.

4 CONCLUSION

This paper introduces a real-time GeoAl workflow for segmenting
an important permafrost feature, IWPs. Delineating their extent
and qualifying their changes is critically important to understand
Arctic warming and permafrost thaw and its impact to the Arctic
environment, infrastructure, and people. Here, we adopt a light-
weight instance segmentation model into the workflow and verify
its good performance in terms of both prediction accuracy and
speed. In the future, we will further improve both the training data
to explicitly annotate multi-type IWPs, and also refine the model
to improve its detection accuracy of small objects.
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