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Abstract

Inferring gene regulatory networks (GRNs) from single-cell gene expression

]
2 datasets is a challenging task. Existing methods are often designed heuristically
3 for specific datasets and lack the flexibility to incorporate additional information
4 or compare against other algorithms. Further, current GRN inference methods do
5 not provide uncertainty estimates with respect to the interactions that they predict,
6 making inferred networks challenging to interpret. To overcome these challenges,
7 we introduce Probabilistic Matrix Factorization for Gene Regulatory Network infer-
8 ence (PMF-GRN). PMF-GRN uses single-cell gene expression data to learn latent
9 factors representing transcription factor activity as well as regulatory relationships

10 between transcription factors and their target genes. This approach incorporates

11 available experimental evidence into prior distributions over latent factors and

12 scales well to single-cell gene expression datasets. By utilizing variational infer-

13 ence, we facilitate hyperparameter search for principled model selection and direct

14 comparison to other generative models. To assess the accuracy of our method,

15 we evaluate PMF-GRN using the model organisms Saccharomyces cerevisiae and

16 Bacillus subtilis, benchmarking against database-derived gold standard interactions.

17 We discover that, on average, PMF-GRN infers GRNs more accurately than current

18 state-of-the-art single-cell GRN inference methods. Moreover, our PMF-GRN ap-

19 proach offers well-calibrated uncertainty estimates, as it performs gene regulatory

20 network (GRN) inference in a probabilistic setting. These estimates are valuable

21 for validation purposes, particularly when validated interactions are limited or a

22 gold standard is incomplete.

23 Keywords— Probabilistic Matrix Factorization, Variational Inference, Gene Regulatory Network Inference,
24 Single Cell, Gene Expression.
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»s 1 Background

26 An essential problem in systems biology is to extract information from genome wide sequencing data to unravel
27 the mechanisms controlling cellular processes within heterogeneous populations (1). Gene regulatory networks
28 (GRNs) that annotate regulatory relationships between transcription factors (TFs) and their target genes (2) have
29 proven to be useful models for stratifying functional differences between cells (3; 4; 5; 6) that can arise during
30 normal development (7), responses to environmental signals (8) and dysregulation in the context of disease
31 (9;10; 11).

32 GRNs cannot be directly measured with current sequencing technology. Instead, methods must be developed
33 to piece together snapshots of transcriptional processes in order to reconstruct a cell’s regulatory landscape
34 (12). Initial approaches to GRN inference relied on Microarray technology (13; 14; 15), a hybridization-based
35 method to measure the expression of thousands of genes simultaneously (16). This technology was biased
36 as it was limited to only those genes that were annotated at the time, which in turn presented challenges for
37 inferring the complete regulatory landscape (1). Subsequently, the high-throughput sequencing method RNA-seq
38 provided a genome wide readout of transcriptional output, allowing for the detection of novel transcripts (17)
39 and thus improving GRN inference potential. More recently, single-cell RNA-seq technology has enabled the
40 characterization of gene expression profiles within heterogeneous populations (18), vastly increasing the potential
41 for GRN inference algorithms (19; 20). In contrast to bulk RNA experiments (Microarray and RNA-seq) that
42 average measurements of gene expression across heterogenous cell populations, GRNs inferred from single-cell
43 data have the advantage of unmasking biological signal in distinct cells (21).

44 Several matrix factorization approaches have been proposed to overcome the limitations of reconstructing GRNs
45 from Microarray data (22). These include use of statistical techniques such as Singular Value Decomposition
46 and Principal Component Analysis (23), Bayesian Decomposition (24), and Non-negative Matrix Factorization
47 (25;26; 27). More recently, matrix factorization approaches have been applied to integrative analysis of DNA
48 methylation and miRNA expression data (28), as well as single-cell RNA-seq and single-cell ATAC-seq data
49 (29). However, to the best of our knowledge, these matrix factorization approaches have not yet been used to
50 infer GRNs from single-cell gene expression data. Meanwhile, several regression-based methods have been
51 proposed to learn GRNs from single-cell RNA-seq and single-cell ATAC-seq to capture regulatory relationships
52 at single-cell resolution (30). So far, these integrative approaches to GRN inference have been successfully
53 implemented using regularized regression (31), self-organizing maps (32), tree-based regression (33), and
54 Bayesian Ridge regression (34).

55 Although regression-based methods for inferring GRNs from single-cell data are available, they still suffer
56 from significant limitations (35). Firstly, these methods heavily rely on the input data used to learn the GRN,
57 causing issues when new data becomes available or new assumptions are required in the model. This can result
58 in inaccurate predictions if the new data or assumptions are not well integrated into the existing model, leading
59  to the need for a complete re-design of the algorithm, which can be costly and time-consuming. Additionally,
60 these methods typically focus on inferring a single GRN that explains the available data, without performing
61 hyperparameter search to determine the optimal model. This can lead to heuristic model selection, with no
62 justification for the approach taken or evidence that the best possible model has been selected. Conversely,
63 hyperparameter search ensures the accuracy of the GRN inference algorithm by finding the optimal model
64 that fits the data well while avoiding overfitting. Regression-based GRN inference algorithms that do not
65 perform hyperparameter search may miss important data features or overemphasize irrelevant ones, leading to
66 inaccurate or incomplete models. Moreover, these methods do not provide an indication of their uncertainty
67 about the predictions that they make. Finally, several regression-based GRN inference algorithms struggle to
68 scale optimally to the size of typical single-cell datasets, limiting inference to small subsets of data or requiring
69 enormous amounts of computational time."

70 In this study, we introduce PMF-GRN, a novel approach that uses probabilistic matrix factorization (36) to
71 infer gene regulatory networks from single-cell gene expression and chromatin accessibility information. This
72 approach extends previous methods that applied matrix factorization for GRN inference with Microarray data,
73 to address the current limitations in regression-based single-cell GRN inference. We implement our approach
74 in a probabilistic setting with variational inference, which provides a flexible framework to incorporate new
75 assumptions or biological data as required, without changing the way the GRN is inferred. We also use a
76 principled hyperparameter selection process with the Evidence Lower Bound (ELBO) objective function, which
77 optimizes the parameters of our probabilistic model for automatic model selection. In this way, we replace
78 heuristic model selection by comparing a variety of generative models and hyperparameter configurations before
79 selecting the optimal parameters with which to infer a final GRN. Our probabilistic approach provides uncertainty
80 estimates for each predicted regulatory interaction, serving as a proxy for the model confidence in each predicted
81 interaction. Uncertainty estimates can be useful in the situation where there are limited validated interactions
82 or a gold standard is incomplete. By using stochastic gradient descent (SGD), we perform GRN inference on
83 a GPU, allowing us to easily scale to a large number of observations in a typical single-cell gene expression
84 dataset. Unlike many existing methods, PMF-GRN is not limited by pre-defined organism restrictions, making it
85 widely applicable for GRN inference.
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86 To demonstrate the novelty and advantages of PMF-GRN, we apply our method to two single-cell gene expression
87 datasets for the model organism Sacchromyces cerevisiae. We evaluate our model’s performance in a normal
g8 inference setting, as well as with cross-validation and noisy data. To assess the accuracy of predicted regulatory
89 interactions, we evaluate all regulatory predictions using Area Under the Precision Recall Curve (AUPRC)
90 against database derived gold standards. Our findings show that the uncertainty estimates are well-calibrated for
91 inferred TF-target gene interactions, as the accuracy of predictions increases when the associated uncertainty
92 decreases. Here, in comparison to three state-of-the-art regression-based methods for inferring single-cell GRNS,
93 namely the Inferelator (31), Scenic (33), and Cell Oracle (34), our method demonstrates an overall improved
94 performance in recovering the true underlying GRN. We also include GRNs inferred using two microarray
95 datasets for Bacillus subtilis by converting expression values to integers to simulate a single-cell-like experiment,
96 demonstrating our method’s performance on a second dataset.

o7 2 Results

9¢ 2.1 The PMF-GRN Model

99 The goal of our probabilistic matrix factorization approach is to decompose observed gene expression into latent
100 factors, representing TF activity (TFA) and regulatory interactions between TFs and their target genes. These
101 latent factors, which represent the underlying GRN, cannot be measured experimentally, unlike gene expression.
102 We model an observed gene expression matrix W € R™*M ysing a TFA matrix U € RgOXK , a TF-target gene

103 interaction matrix V € R™*¥ _ observation noise oops € (0, 00) and sequencing depth d € (0,1)", where N
104 is the number of cells, M is the number of genes and K is the number of TFs. We rewrite V' as the product
105 of amatrix A € (0,1)™** representing the degree of existence of an interaction, and a matrix B € RM*¥
106 representing the interaction strength and its direction:

V=A0B5B,
107 where ® denotes element-wise multiplication. An overview of the graphical model is shown in Figure 1A.

108 These latent variables are mutually independent a priori, ie., p(U, A, B,0ops,d) =
109 p(U)p(A)p(B)p(oobs)p(d). For the matrix A, prior hyperparameters represent an initial guess of the
110 interaction between each TF and target gene which need to be provided by a user. These can be derived from
111 genomic databases or obtained by analyzing other data types, such as the measurement of chromosomal
112 accessibility, TF motif databases, and direct measurement of TF-binding along the chromosome, as shown in
113 Figure 1B (see Methods section for details).

114 The observations W result from a matrix product UV " . We assume noisy observations by defining a distribution
115 over the observations with the level of noise oops, i.e., p(W|U,V = A ® B, 0obs, d).

116  Given this generative model, we perform posterior inference over all the unobserved latent variables; U, A, B, d
117 and o,ps, and use the posterior over A to investigate TF-gene interactions. Exact posterior inference with an
118 arbitrary choice of prior and observation probability distributions is, however, intractable. We address this issue
119 by using variational inference (37; 38), where we approximate the true posterior distributions with tractable,
120 approximate (variational) posterior distributions.

121 We minimize the KL-divergence Dk 1.(¢||p) between the two distributions with respect to the parameters of
122 the variational distribution ¢, where p is the true posterior distribution. This allows us to find an approximate
123 posterior distribution ¢ that closely resembles p. This is equivalent to maximizing the evidence lower bound
124 (ELBO) i.e. a lower bound to the marginal log likelihood of the observations W':

logp(W) > Ey,a,B,0,,,d~q(U,A,B,0gps,d) [ 108 D(WIU,V = AO B, 00bs,d)
+ Ing(U7 A: B, Oobs d)
—logq(U, A, B,0obs, d)]

125 The mean and variance of the approximate posterior over each entry of A from maximizing the ELBO are then
126 used as the degree of existence of an interaction between a TF and a target gene and its uncertainty, respectively.

127 It is important to note that matrix factorization based GRN inference is only identifiable up to a latent factor
128 (column) permutation. In the absence of prior information, the probability that the user assigns TF names to the
129 columns of U and V' in the same order as the order in which the inference algorithm implicitly assigns TFs to
130 these columns is %, which is essentially O for any reasonable value of K. Incorporating prior-knowledge of
131 TF-target gene interactions into the prior distribution over A is therefore essential to give the inference algorithm
132 information about which column corresponds to which TF.

133 With this identifiability issue in mind, we design an inference procedure that can be used on any dataset, described
134 in Figure 1C. The first step is to randomly hold out prior information for some percentage of the genes in p(A)
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Figure 1: (A) PMF-GRN graphical model overview. Input single-cell gene expression W is decomposed into
latent factors U and V/, representing TF activity and TF-gene interactions respectively. V' is further decomposed
into A and B, representing the degree of existence of interaction, and the strength and direction of an interaction,
respectively. Information obtained from chromatin accessibility data or genomics databases is incorporated
into the prior distribution for A. Additional latent variables are included to model observation noise o,ps and
sequencing depth d, in order to better model our observed single-cell gene expression input data. (B) Input
experimental data for PMF-GRN includes single-cell RNA-seq gene expression data. ATAC-seq is used to
determine chromatin accessibility through peak calling. Motif enrichment within these accessible regions can be
used to create a prior-known network to better inform the prior distribution. When experimental information is
unavailable, databases can be used instead to construct a known-prior network. (C) Hyperparameter selection
process is performed for model selection. The provided prior-known network is split into a train and validation
dataset. 80% of the prior-known information is used to infer a GRN, while the remaining 20% is used for
validation by computing AUPRC. This process is repeated multiple times, using different hyperparameter
configurations in order to determine the optimal hyperparameters for the GRN inference task at hand. Finally,
using the optimal hyperparameters, as determined by the highest achieved AUPRC, a final network is inferred
using the full prior and evaluated using an independent gold standard.
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135 (we choose 20%) by leaving the rows corresponding to these genes in A but setting the prior logistic normal
136 means for all entries in these rows to be the same low number.

137 The second step is to carry out a hyperparameter search using this modified prior-knowledge matrix. The early
138 stopping and model selection criteria are both the ‘validation” AUPRC of the posterior point estimates of A
139 corresponding to the held out genes against the entries for these genes in the full prior hyperparameter matrix.
140  This step is motivated by the idea that inference using the selected hyperparameter configuration should yield a
141 GRN whose columns correspond to the TF names that the user has assigned to these columns.

142 The third step is to choose the hyperparameter configuration corresponding to the highest validation AUPRC and
143 perform inference using this configuration with the full prior. An importance weighted estimate of the marginal
144 log likelihood is used as the early stopping criterion for this step. The resulting approximate posterior provides
145  the final posterior estimate of A.

146 2.2 Advantages of PMF-GRN

147  Existing methods almost always couple the description of the data generating process with the inference
148 procedure used to obtain the final estimated GRN (31; 34; 33). Designing a new model thus requires designing a
149 new inference procedure specifically for that model, which makes it difficult to compare results across different
150 models due to the discrepancies in their associated inference algorithms. Furthermore, this ad hoc nature of
151 model building and inference algorithm design often leads to the lack of a coherent objective function that can be
152 used for proper hyperparameter search as well as model selection and comparison, as evident in (31). Heuristic
153 model selection in available GRN inference methods presents the challenge of determining and selecting the
154 optimal model in a given setting.

155 The proposed PMF-GRN framework decouples the generative model from the inference procedure. Instead of
156  requiring a new inference procedure for each generative model, it enables a single inference procedure through
157  (stochastic) gradient descent with the ELBO objective function above, across a diverse set of generative models.
158 Inference can easily be performed in the same way for each model. Through this framework, it is possible to
159 define the prior and likelihood distributions as desired with the following mild restrictions: we must be able to
160 evaluate the joint distribution of the observations and the latent variables, the variational distribution and the
161 gradient of the log of the variational distribution.

162 The use of stochastic gradient descent in variational inference comes with a significant computational advantage.
163 As each step of inference can be done with a small subset of observations, we can run GRN inference on a very
164 large dataset without any constraint on the number of observations. This procedure is further sped up by using
165 modern hardware, such as GPUs.

166 Under this probabilistic framework, we carry out model selection, such as choosing distributions and their
167 corresponding hyperparameters, in a principled and unified way. Hyperparameters can be tuned with regard
168 to a predefined objective, such as the marginal likelihood of the data or the posterior predictive probability of
169 held out parts of the observations. We can further compare and choose the best generative model using the same
170 procedure.

171 This framework allows us to encode any prior knowledge via the prior distributions of latent variables. For
172 instance, we incorporate prior domain knowledge about TF-gene interactions as hyperparameters that govern the
173 prior distribution over the matrix A. If prior knowledge about TFA is available, this can be similarly incorporated
174 into the model via the hyperparameters of the prior distribution over U'.

175 Because our approach is probabilistic by construction, inference also estimates uncertainty without any separate
176  external mechanism. These uncertainty estimates can be used to assess the reliability of the predictions, i.e.,
177 more trust can be placed in interactions that are associated with less uncertainty. We verify this correlation
178 between the degree of uncertainty and the accuracy of interactions in the experiments.

179 Overall, the proposed approach of probabilistic matrix factorization for GRN inference is scalable, generalizable
180 and aware of uncertainty, which makes its use much more advantageous compared to most existing methods.

181 2.3 PMF-GRN Recovers True Interactions in Simple Eukaryotes

182 To demonstrate PMF-GRNs ability to infer informative and robust GRNs, we use two single-cell RNA-seq
183 datasets from the model organism Sacchromyces cerevisiae. S.cerevisiae is a relatively simple and well studied
184 eukaryote with an available and reliable gold standard, which allows us to test and evaluate our models
185 performance.

186 We perform three experiments using two independently collected single-cell RNA-seq S. cerevisiae datasets
187 (8; 39) to test PMF-GRN and compare our performance against three state-of-the-art GRN inference methods,
188 the Inferelator (AMuSR, BBSR, StARS) (31), Scenic (33), and CellOracle (34). In the first experiment, we infer
189 a GRN for each of the two single-cell datasets and average the posterior means of A to simulate a "multi-task”
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190 GRN inference approach for building the final combined network. Using AUPRC, we show that PMF-GRN
191 outperforms AMuSR, StARS, and Scenic, while performing competitively with BBSR and CellOracle (Figure
192 2A). To provide a baseline for each method in the scenario where data cannot be cleanly separated into tasks, we
193 combine the two expression datasets into one observation before inferring a GRN. This baseline demonstrates a
194 large performance decrease for BBSR, indicating that the method may only be useful when gene expression
195 is organized into tasks. This could present challenges when attempting to infer GRNs in more complicated
196 organisms where cell-types or conditions are less easily defined. Here, we show the effectiveness of PMF-GRN
197  in recovering the true underlying GRN for both scenarios, as performance remains relatively stable whether a
198 network was inferred using the individual or combined data. We also provide an example as to how we can
199 use PMF-GRN on a single observation or multiple observation matrices to infer a consensus GRN by simple
200 averaging.

201 In the second experiment, we implement a 5 fold cross-validation approach to establish a baseline for each
202 model. Cross-validation is an essential technique for evaluating the performance of machine learning models like
203 PMF-GRN as it allows us to test our method’s ability to generalize to new data. Cross-validation further allows
204 us to simulate the process of training and testing PMF-GRN on multiple subsets of the available data, providing
205 a more robust and reliable estimate of model accuracy. In the context of GRN inference, cross-validation is
206 particularly important because it helps us assess the performance of PMF-GRN in predicting TF-target gene
207 interactions based on limited data, which is often the case in experimental settings.

208 We first combine the two S. cerevisiae single-cell RNA-seq datasets into one observation matrix for simplicity. To
209 perform cross-validation, the gold standard is divided into an 80% — 20% split, where a network is inferred using
210 80% of the gold standard as "prior-known information", and evaluated using the remaining 20%. We repeat this
211 cross-validation process five times using different random splits of the gold standard to obtain meaningful results.
212 We observe that PMF-GRN outperforms Scenic and CellOracle, while achieving competitive performance to
213 BBSR and StARS (Figure 2B). We note that for this experiment, we are unable to implement the AMuSR
214 algorithm as it is a multi-task inference approach that requires more than one task (dataset).

215  Finally, in the third experiment, we demonstrate the robustness of each GRN inference method against noisy
216 prior information. To do so, we infer GRNs where increasing amounts of noise have been added to the input
217 prior-known information. Here, we show that as noise increases, PMF-GRN’s AUPRC decreases similarly to
218 CellOracle, while on average, performing better than BBSR, StARS and CellOracle, demonstrating that it is one
219 of the most robust approaches to inferring accurate GRNs from noisy priors (Figure 2C).

220  From the results of our experiments on the S. cerevisiae data, we have the following observations. The first main
221 observation is that on average the proposed PMF-GRN performs better than the Inferelator in recovering the true
222 GRN, regardless of whether we pick the mean or median Inferelator algorithm in terms of AUPRC. Specifically,
223 we see that PMF-GRN performs markedly better than two Inferelator algorithms (AMuSR and StARS), and
224  similarly to the remaining algorithm (BBSR). However, when the expression data is not separated into tasks,
225  PMF-GRN outperforms BBSR. In comparison to CellOracle, we observe that PMF-GRN infers competitive
226 GRNs during normal inference. However, PMF-GRN greatly outperforms CellOracle when performing cross-
227 validation. Finally, we observe that PMF-GRN consistently outperforms Scenic in all experiments considered.

228 The second main observation is that our approach eliminates the high variance associated with choosing between
229  different inference algorithms. Implementing the Inferelator on the S. cerevisiae datasets in a normal setting
230 yields AUPRCs approximately in the range 0.2 to 0.4, without any a priori information on which of these
231 algorithms to use. The resulting inferred GRN could be arbitrarily accurate or inaccurate depending on which
232 algorithm is chosen. In contrast, our method is reliable as it provides one set of results, chosen using a
233  principled objective function, performing competitively with the best performing Inferelator algorithm (BBSR)
234 and CellOracle.

235 Finally, in order to highlight the identifiability issue and ensure that the prior-known information provided is
236 useful, we demonstrate the performance of PMF-GRN where prior information is not used (e.g. all prior logistic
237 normal means of A are set to the same low number). We use the same process for all other GRN inference
238 algorithms by providing an empty prior. Additionally, we demonstrate PMF-GRN’s performance when we
239 randomly shuffle the prior-known TF-target gene interaction hyperparameters before using them to build the
240 prior distribution for A. We repeat this process for all other GRN inference algorithms by providing them with
241 prior-known information in which the gene names have been shuffled randomly. As anticipated, the resulting
242 AUPRC scores are close to 0, implying that our approach, as well as the Inferelator and CellOracle are capable
243  of taking into account such prior information well and that the prior information we provided is useful and
244 reliable (see Methods section for details). The results for GRNs inferred without prior-known information are
245 demonstrated by the black dots, while the gray dots demonstrate GRNs inferred with shuffled prior-known
246 information, shown in Figure 2A.
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Figure 2: GRN inference in Saacharomyces cerevisiae. (A) Consensus network AUPR using gold standard
network. Performance of PMF-GRN (red) is compared to three Inferelator algorithms, AMuSR (yellow), BBSR
(orange), StARS (green), as well as to Scenic (blue), and CellOracle (purple). A baseline for each method
(dashed line), demonstrates performance if the expression data is combined into one task. Two negative controls,
no prior information (black) and shuffled prior information (gray), are inferred to ensure reliable results. (B)
5 fold cross-validation establishes a baseline for each model. Low-opacity dots represent each of the five
cross-validation experiments. The mean AUPR = standard deviation for each GRN inference method is depicted
by colored dot and line. (C) GRNSs inferred with increasing amounts of noise added to the prior. (D) Calibration
results on the S.cerevisiae (GSE144820 (8) only) dataset. Posterior means are cumulatively placed in bins based
on their posterior variances. The x-coordinate x of each point in the plot represents all posterior means that
correspond to the bottom x% of posterior variances. The y-coordinate is the ‘overlap” AUPRC (see Methods
section for details) calculated on these posterior means against the gold standard.
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247 2.4 PMF-GRN Recovers True Interactions in Prokaryotes as Evaluated by Cross-Validation

248 To demonstrate GRN inference on a second dataset, we carry out experiments using two microarray datasets for
249  the prokaryote Bacillus Subtilis (B1 - GSE27219 (40) and B2 - GSE67023 (41)). Although PMF-GRN is not
250 primarily designed to learn GRNs from microarray data, we show that it is still possible to learn informative
251 GRNSs with this data. For our B. subtilis experiments, we have access to prior-knowledge derived from the
252 subtiwiki database (42; 43; 44). Here, we implement a 5 fold cross-validation approach by using five random
253 splits of the subtiwiki database-derived information, where 80% is used as prior knowledge and 20% is used as
254 the gold standard for evaluation.

255 The two B. subtilis datasets were previously normalized after data collection as part of standard microarray
256 processing. However, each dataset was normalized using different approaches (described in 4). For B1, the
257 expression data underwent no further normalization and was simply converted to integers to simulate single-
258 cell-like data. For B2, the expression data was re-scaled and then converted to integers, in order to contain
259  only positive integers resembling single-cell-like data. The results from our experiments are shown in Figure
260 3, and the numbers used to create this figure are given in Supplementary Table 4 and 5. Using five repeats
261 of cross-validation, we show the performance of GRNs inferred for the two B. subtilis datasets (B1 and B2).
262 We remark that the difference in performance between B1 and B2 is likely a result of the chosen microarray
263  processing normalization. To further support this claim, we demonstrate GRN performance after re-scaling the
264 data with min-max scaling (Supplemental Figure S1).

265 ‘No Prior’ and ‘Shuffled’ results are also shown in Figure 3 by black and gray dots respectively. Here, we are
266 able to demonstrate that for B1 and B2, each GRN yields a better performance as compared to negative controls.

Bacillus Subtilis @ No Prior Shuffled Prior

No Normalization
B1 B2

- .

0.2 1

AUPR

0.14

1 ]
Normal Normal

Figure 3: Results for GRNs learned in B. subtilis datasets B1 and B2 without data normalization. Light gray
dots represent the results for each of the 5 cross-validation experiments. Colored dots represent the mean of the
cross-validation experiments & standard deviation. Negative controls are demonstrated by black dots for "No
Prior" and grey dots for "Shuffled Prior".

267 2.5 PMF-GRN Provides Well-Calibrated Uncertainty Estimates

268 Through our inference procedure, we obtain a posterior variance for each element of A, in addition to the
269 posterior mean. We interpret each variance as a proxy for the uncertainty associated with the corresponding
270  posterior point estimate of the relationship between a TF and a gene. Due to our use of variational inference as
271 the inference procedure, our uncertainty estimates are likely to be underestimates. However, these uncertainty
272 estimates still provide useful information as to the confidence the model places in its point estimate of each
273 interaction. We expect posterior estimates associated with lower variances (uncertainties) to be more reliable
274 than those with higher variances.
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275 In order to determine whether this holds for our posterior estimates, we cumulatively bin the posterior means of
276 A according to their variances, from low to high. We then calculate the AUPRC for each bin as shown for the
277 GSE125162 (8) S.cerevisiae dataset in Figure 2 D. It is evident from the figures that the AUPRC decreases as
278 the posterior variance increases. Stated differently, inferred interactions associated with lower uncertainty are
279 more likely to be accurate than those associated with higher uncertainty. This is in line with our expectations.
280 The more certain the model is about the degree of existence of a regulatory interaction, the more accurate it is
281  likely to be, showing that our model is well-calibrated.

22 3 Conclusion

283 In this paper we present a framework for probabilistic matrix factorization, optimized using automatic variational
284 inference, for inferring GRNs from single cell gene expression data. In contrast with previous methods, our
285 framework decouples the model that defines the data generation process from the inference procedure. Concretely,
286  this means that we can modify the latent variables that constitute the model, along with their distributions,
287 without altering the inference procedure. This flexibility will allow for different sequencing data and modeling
288 assumptions to be readily incorporated into the model. Building new models no longer requires defining a new
289 inference procedure, which has previously been the case.

290 Additionally, PMF-GRN provides a principled way to carry out model selection and hyperparameter configuration
291 by using the same objective function and inference procedure across all models. This feature differs from previous
292 GRN methods, where it is often unclear which algorithm or hyperparameters to use for a given dataset. In
293 the PMF-GRN framework, we carry out hyperparameter searches across generative models and choose the
294 configuration that corresponds to the optimal value of the objective function. This greatly reduces the need for
295 heuristic model selection.

296 In order to demonstrate successful GRN inference, we infer a consensus GRN for S.cerevisiae using our
297  principled model selection method, and compare our results to GRNSs inferred by the Inferelator, Scenic and
298 CellOracle with respect to a reliable gold standard. Whereas the Inferelator yields a set of highly varying
299 results across the variants, our approach results in a single inferred GRN. This GRN yields an AUPRC that
300 is higher than Scenic, as well as than the mean and median AUPRC achieved by the Inferelator’s respective
301 algorithms (AMuSR and StARS), and is comparable to the AUPRC achieved by the best performing Inferelator
302 algorithm (BBSR), in addition to CellOracle. However, when the expression data is not separated into tasks,
303 we demonstrate that BBSR can no longer recover a competitive network. Our model hence yields a reliable
304 high-performing set of results without any need for heuristic model selection.

305 We further evaluate PMF-GRN by performing cross-validation and find that PMF-GRN, BBSR, and StARS
306 yield high performance, indicating that these methods are able to generalize well to new data and do not overfit
307 to training data. In contrast, Scenic and CellOracle do not perform well during cross-validation, indicating that
308 these methods may not be generalizable.

309 Finally, because prior-known networks are inherently noisy due to limited validated regulatory interactions,
310 we design an experiment to test each algorithm’s robustness against increasing amounts of noise in the input
311 prior-known information. This experiment identifies PMF-GRN and CellOracle as the methods which are
312 overall most robust against noisy priors, indicating that inferred GRNs will remain reliable regardless of noisy
313 interactions introduced into the prior during inference.

314 Using two microarray B. subtilis datasets, we further demonstrate that PMF-GRN is capable of learning
315 informative GRNs. To include database information into both the prior knowledge and evaluation, we use an
316 approach motivated by cross-validation. Here, we find that scaling allow us to place these datasets on the same
317 scale, allowing them to be more comparable during inference. Although PMF-GRN is not primarily designed for
318 microarray data, we show that is still possible to learn informative networks by simply converting the expression
319 to integers to represent single-cell-like counts.

320 In order to determine the effect of incorporating our prior domain knowledge into the model, we compare results
321 obtained using shuffled and unshuffled hyperparameters for the matrix A. We observe that for both S. cerevisiae
322 and B. subtilis, not using prior information or shuffling the prior information results in very low AUPRCs,
323 whereas using the prior information as intended results in significantly better AUPRCs. This result holds for
324 PMF-GRN as well as for CellOracle and all Inferelator algorithms. However, for Scenic, we show that it is
325 challenging to obtain a GRN that performs better than these negative controls. This shows that prior information
326 is essential for addressing the latent factor identifiability issue and obtaining interpretable results from matrix
327 factorization, as well as regression based approaches.

328 In contrast to previous methods, our model provides well-defined uncertainty estimation in addition to point
329 estimates of GRNs. We evaluate these uncertainty estimates as provided by our model, by computing the AUPRC
330 for inferred TF-target gene interactions corresponding to different levels of posterior uncertainty. We find that the
331 AUPRC increases as the posterior variance decreases, demonstrating that when our model is more certain about
332 its estimates, it produces better rankings of TF-target gene interactions compared to when it is uncertain. This
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333 indicates that our model is well-calibrated. For downstream experimental validation, biologists could therefore
334 place more trust in model estimates that have a lower posterior variance. We also note that the computational
335 cost of our model scales linearly with the number of cells in the dataset. This enables application of our method
336 to single-cell RNA-seq datasets of any size.

337 We envision many possible directions for future work to design a better algorithm for inferring GRNs under
338 our framework. This framework could be extended to explicitly model multiple expression matrices and their
339 batch effects. We could probabilistically model prior information for A obtained from ATAC-seq and TF motif
340 databases, and include this as part of the probabilistic model over which we carry out inference. Evaluating
341 the posterior estimates of the direction of transcriptional regulation, provided by the matrix B, could provide
342 auseful benchmark for the computational estimation of TF activation and repression. Research could also be
343 carried out on improved self-supervised objectives for hyperparameter selection.

344  Future work could also focus on how to use results from our framework to guide experimental wet-lab work. For
345 example, the uncertainty quantification provided by our model could open up new research directions in active
346 learning for GRN inference. Highly ranked, uncertain interactions could be experimentally tested and the results
347 fed back into the prior hyperparameter matrix for A. Inference with this updated matrix would ideally yield a
348 better posterior GRN estimate. Posterior estimates of TFA provided by our model could be useful to wet lab
349  scientists, as this quantity incorporates information on post-transcriptional modifications.

350 Most importantly, the study of GRN inference is far from complete. So far, this has required new computational
351 models and assumptions in order to keep up with relevant sequencing technologies. It is thus essential to develop
352 a model that can be easily adapted to new biological datasets as they become available, without having to
353 completely re-build each model. We have therefore proposed PMF-GRN as a modular, principled, probabilistic
354 approach that can be easily adapted to both new and different biological data without having to design a new
355 GRN inference method.

s 4 Methods

357 4.1 Model Details

358 We index cells, genes and TFs usingn € {1,--- ,N},m € {1,--- ,M}and k € {1,---, K}, respectively.
359 We treat each cell’s expression profile W, as a random variable, with local latent variables U,, and d,, and
360 global latent variables (that are shared among all cells) oo,s and V = A © B. We use the following likelihood
361 for each of our observations:

p(Wn‘U, ‘/, Uobs,d) - N(dn * UTLVTy O—gbs)'

362 We assume that U, V, 0,5 and d are independent i.e. p(U, V, oops,d) = p(U)p(V)p(0obs)p(d). In addition to
363 our iid assumption over the rows of U and d, We also assume that the entries of U,, are mutually independent,
364 and that all entries of A and B are mutually independent. We choose a lognormal distribution for our prior over
365 U and a logistic Normal distribution for our prior over d:

p(logit(d,)) = N(0,9)
366 where i, € Rand o, € RT.

367 We use a logistic Normal distribution for our prior over A, a Normal distribution for our prior over B and a
368 logistic Normal distribution for our prior over ops:

p(]Oglt(Amk)) = /\/'(loglt(dlp(z‘imk, Amax, amin))7 03)7
p(Bmk) = N(0, 0'13)
p(log(oos)) = N(0,1),
s69 where Ay, € {0,1}, @max € (0,1), @min € (0,1), 0o € Rso, clip(Amk, Gmax, Gmin) =
370 max(min(Amk, Gmax), Amin) and o, € Rso. A, is given by a pipeline that is used by other methods
371 such as the Inferelator. The pipeline leverages ATAC-seq and TF binding motif data to provide binary initial

372 guesses of gene-TF interactions. amax and amin are hyperparameters that determine how we clip these binary
373 values before transforming them to the logit space.

374  For our approximate posterior distribution, we enforce independence as follows:
q(U, A, B,0obs, d) = q(U)q(A)q(B)q(oobs)q(d).
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375 We impose the same independence assumptions on each approximate posterior as we do for its corresponding
376 prior. Specifically, we use the following distributions:

q(log(Unr)) = N Uk, 61, ,)
q(logit(dy)) = N(dn,53,)
q(logit(Ami)) = N (Amk, 5,24m,k)
4(Bmi) = N (Bur, 63,,,)
q(log(oovs)) = N(6,52),

377 where the parameters on the right hand sides of the equations are called variational parameters; Upk, drn, Amk,
378 By, 0 Randéy,,,5a,,04,,,08,,,., 5o € RT. To avoid numerical issues during optimization, we place
379  constraints on several of these variational parameters.

ss0 4.2 Inference

381 We perform inference on our model by optimizing the variational parameters to maximize the ELBo. In doing
382 so, we minimise the KL-divergence between the true posterior and the variational posterior. In practice, to help
383  with addressing the latent factor identifiability issue, we use a modified version of the ELBo where the prior and
384 posterior terms are weighted by a constant § > 1 (45):

Eu,A,B,0,,. d~q(U,A,B,0u.,d) | 108 D(W|U,V = A® B, 0obs, d)
+ B(logp(U, A, B, 0obs,d) —log q(U, A, B, 0obs,d))]

385 Inference is carried out using the Adam optimizer with learning rate 0.1 and beta values of 0.9 and 0.99. We clip
3ss  gradient norms at a value of 0.0001. We set amin = 0.005, Gmax = 0.995, 67 = 1 and jt,, = 0. We vary o,
387 and o, as hyperparameters that control the strengths of the priors over A and U, respectively. We also vary (3 as
388 a hyperparameter.

389 We choose a hyperparameter configuration using validation AUPRC as the objective function as well as the
390 early stopping metric. We hold out hyperparameters for p(A) for a fraction of the genes. We do this by setting
391 Ax = 0 for m corresponding to these genes for all k. During inference we regularly obtain posterior point
392 estimates for these entries and measure the AUPRC against the original values of these entries as given in the
393 full prior. This quantity is known as the validation AUPRC.

394  Once we have picked the hyperparameter configuration corresponding to the best validation AUPRC, we perform
395 inference with this model using the full prior without holding out any information. We use an importance
396 weighted estimate of the marginal log likelihood as our early stopping criterion:

p(WIU, A, B, 0obs, d)p(U, A, B, 00ps,d)
1 W) =1 E - ~ - )
ogp(W) = log ( U,A, B0 obsdna(U, A, B0 b ) Q(U, A, B, 0oy, )
397 where the expectation is computed using simple Monte Carlo and the log-> -exp trick is used to avoid numerical
398 issues.

399 4.3 Computing Summary Statistics for the Posterior

400  After training the model, we use A and & 4, the variational parameters of g(A), to obtain a mean and a variance
401 for each entry of A. Since ¢(A) is logistic normal, it admits no closed form solution for the mean and variance.
402 We therefore use Simple Monte Carlo i.e. we sample each entry of A several times from its posterior distribution
403 and then compute the sample mean and sample variance from these samples. We use each mean as a posterior
404 point estimate of the probability of interaction between a TF and a gene, and its associated variance as a proxy
405 for the uncertainty associated with this estimate.

406 4.4 Calculating AUPRC

407 The gold standards for the datasets used in this paper do not necessarily perfectly overlap with the genes and
408 TFs that make up the rows and columns of A as defined by the prior hyperparameters i.e. there may be genes
409 and TFs in the gold standard with a recorded interaction or lack of interaction, that do not appear in our model at
410 all because they are not present in the prior. The reverse is also true: the prior may contain genes and TFs that
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411 are not in the gold standard. For this reason, we compute the AUPRC using one of two methods: ‘keep all gold
412 standard’ or ‘overlap’, which correspond to evaluating only interactions that are present in the gold standard or
413 only interactions that are present in both the gold standard and the prior/posterior. We present results with ‘keep
414 all gold standard’ AUPRC as the evaluation metric when comparing our model to the Inferelator in Figures 2 and
415 3. For our evaluation of uncertainty calibration (Figure 2 D), we use the overlap AUPRC so that bins containing
416 a lower number of posterior means do not have artificially deflated AUPRCs (see the Evaluating Calibration of
417 Posterior Uncertainty part of the Methods Section for further information).

418 4.5 [Evaluating Calibration of Posterior Uncertainty

419 We create 10 bins, corresponding to the lowest 10%, 20%, 30% and so on of posterior variances. We place
420 the posterior point estimates of TF-gene interactions associated with these variances into these bins and then
421 calculate the ‘overlap AUPRC’ for each bin using the corresponding gold standard. The AUPRC for each bin is
422 calculated using those interactions that are in the gold standard and also in the bin. We use such a cumulative
423  binning scheme because using a non-cumulative scheme could result in some bins having very small numbers of
424  posterior interactions that are present in the gold standard, which would lead to noisier estimates of the AUPRC.

425 4.6 Inference and Evaluation on Multiple Observations of W

426 The Inferelator method applies two scCRNA-seq experiments separately on S. cerevisiae, with each resulting in a
427  distinct model. These models are used to infer TF-gene interaction matrices, which are then sparsified. The
428 final matrix is obtained by taking the intersection of the two matrices and retaining only the entries that are
429 non-zero in both matrices. In our approach, we also train a separate model on each expression matrix, and obtain
430 a posterior mean matrix for A for each of them. To obtain the final posterior mean matrix for A, we average
431 the posterior mean matrices from each model. While this approach works well, future research could focus on
432 explicitly modeling separate expression matrices within the model, as discussed in the Conclusion section.

433 4.7 Measuring the Impact of Prior Hyperparameters

434 We evaluate the utility of each of the prior hyperparameter matrices used in our experiments. In Figures
435  2A and 3A, we present with grey dots the AUPRCs achieved when performing inference using shuffled
436 prior hyperparameters for A. This corresponds to randomly assigning to each row (gene) of A, the prior
437 hyperparameters that correspond to a different row of A. Shuffling the hyperparameters should lead to worse
438 performance, as the posterior estimates should then also be shuffled, whereas the row/column labels for the
439 posterior will remain unshuffled. For the ‘no prior’ setting, shown with black dots in the figures, we set

440 Ak = 0V m, k. The difference in AUPRC achieved using the unshuffled vs shuffled or no hyperparameters
441 measures the usefulness of the provided hyperparameters for the inference task on the dataset in question.

442 4.8 Cross-Validation

443 For each model organism, S. cerevisiae and B. subtilis, we perform a five-fold cross validation experiment.
444  Cross-validation is performed by partitioning the gold standard into an 80% - 20% split, where 80% of the data
445  represents prior-known information to be used as a prior for p(A), and the remaining 20% is treated as the gold
446 standard for evaluation. This process is repeated five times to generate five random splits of the data in order to
447 robustly evaluate GRN inference. It is important to note that PMF-GRN performs hyperparameter search before
448 inferring a final GRN within each cross-validation split. For each of the five partitioned cross-validation folds
449 the 80%, or prior portion, is further split into 80% train and 20% test for hyperparameter search and evaluation.
450  Once the optimal hyperparameters have been determined, the initial 80% split is treated as the training data,
451 while the remaining 20%, which was not seen during hyperparameter selection, is used for evaluation.

452 4.9 Datasets and Preprocessing

453 We inferred each GRN using a single-cell RNA-seq expression matrix, a TF-target gene connectivity matrix, and
454 a gold standard for bench-marking purposes. We modeled the single-cell expression matrices based on the raw
455  UMI counts obtained from sequencing for the S. cerevisiae datasets, which were therefore not normalized for
456 the purpose of this work. For the two B. subtilis datasets used in this work, we demonstrate the effect of different
457 normalization and scaling techniques, and convert all data used to integers in order to create a single-cell-like
458  dataset. We further obtained binary TF-gene matrices representing prior-known interactions, which served as
459  prior hyperparameters over A, and were derived from the YEASTRACT and subtiwiki databases. We acquired a
460  gold standard for S. cerevisiae our datasets from independent work which is detailed below.
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461 Saccharomyces cerevisiae

462 We used two raw UMI count expression matrices for the organism S. cerevisiae obtained from NCBI GEO
463 (GSE125162 (8) and GSE144820 (39)). For this well studied organism, we employed the YEASTRACT (46; 47)
464 literature derived network of TF-target gene interactions to be used as a prior over A in both S. cerevisiae
465 networks. A gold standard for S. cerevisiae was additionally obtained from a previously defined network (48)
466 and used for bench-marking our posterior network predictions.We note that the gold standard is roughly a reliable
467 subset of the YEASTRACT prior. Additional interactions in the prior can still be considered to be true but have
468 less supportive evidence than those in the gold standard.

469 Bacillus subtilis

470  We used two microarray datasets for B. subtilis, which we label as B1 (GSE27219) and B2 (GSE67023). Both
471 B1 and B2 underwent different normalization as part of standard microarray processing, described in detail in
472 (40) and (41). For the experiment "No Normalization", B1 was simply converted to integers, while B2 contained
473 negative numbers and had to be scaled and then converted to integers so that the data represented positive integers
474  similar to single-cell data.

475  For this well studied organism, we use the subtiwiki database (42; 43; 44) to obtain a network of prior-known
476 TF-target gene interactions to be used as a prior over A as well as a gold standard for benchmarking posterior
477 predictions.

a7 5 Data Availability

479 The datasets used in this work are publicly available. They are referenced in the Methods section and are
480 available through https://github.com/nyu-dl/pmf-grn.

i1 6 Code Availability

482 Code, inferred GRNs, and inference and evaluation scripts can be found at https://github. com/nyu-dl/
483 pmf-grn.
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o  Supplementary Information: Probabilistic Matrix
« Factorization for Gene Regulatory Network Inference

s09 A Supplementary Tables

Prior Information
Method Regular | None | Shuffled
PMF-GRN 0.375 0.014 0.023
AmUSR 0.223 0.024 0.019
BBSR 0.402 0.022 0.018
StARS 0.186 0.028 0.017
Scenic 0.014 0.014 0.014
CellOracle 0.383 N/A 0.013
Supplementary Table 1: AUPRCs achieved by PMF-GRN, the Inferelator algorithms (AMuSR, BBSR, and
StARS), Scenic and CellOracle on S. cerevisiae datasets.

Cross Validation Split
Method | go1it 1 | Split2 | Split3 | Split4 | Split5
PMF-GRN | 0.114 | 0.096 | 0.086 | 0.1342 | 0.118
BBSR 0.112 | 0.128 | 0.161 0.171 0.139
StARS 0.109 | 0.137 | 0.154 | 0.195 0.151
Scenic 0.020 | 0.021 0.018 0.025 0.021
CellOracle | 0.034 | 0.042 | 0.034 | 0.043 0.034
Supplementary Table 2: AUPRCs achieved by PMF-GRN, the Inferelator algorithms (AMuSR, BBSR, and
StARS), Scenic and CellOracle on S. cerevisiae datasets using the gold standard for 5-fold cross validation.

Method . Noise Added . .
No Noise | 100% Noise | 250% Noise | 500% Noise
PMF-GRN 0.343 0.280 0.198 0.149
BBSR 0.264 0.208 0.186 0.174
StARS 0.136 0.125 0.114 0.118
Scenic 0.075 0.068 0.059 0.055
CellOracle 0.417 0.306 0.226 0.175
Supplementary Table 3: AUPRCs achieved by PMF-GRN, the Inferelator algorithms (AMuSR, BBSR, and

StARS), Scenic and CellOracle on S. cerevisiae datasets using increasing amounts of noise added to the prior-
knowledge data.

so B Supplementary Methods

611 B.1 TF Target Gene Connectivity Matrix Generation

612 B.1.1 Saccharomyces cerevisiae

613  Datasets were obtained from (31) without further modification.

614 B.1.2 Bacillus subtilis

615 A prior-known TF-target gene interactions matrix was obtained from the Subtiwiki database (49) from "regula-
616 tions" (downloaded 07/21/22). Using the columns "regulator locus" and "gene locus" a cross-tab integer matrix
617 was created, where 1 represents the existence of an interaction and O represents no interaction. This matrix
618 was randomly split 5 times in 80%-20% proportions along the gene axis to generate independent prior-known
619  information and gold standard matrices.

620 To demonstrate the importance of scaling microarray data to place independently collected datasets on the same
621 scale, we demonstrate how Min-Max Scaling improves inference in both B. subtilis datasets. For "Min-Max
622 Scaling", both B1 and the positive scaled B2 dataset were subsequently normalized using the following logic.
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623 Using the observation axis, values were linearly transformed so that the minimum value was mapped to 0 and the
624 ~maximum value was mapped to 1. Each value was then multiplied by 100 and converted to integers to produce
625 the resulting expression matrix of scaled single-cell-like integers.

Bacillus Subtilis @ No Prior Shuffled Prior
No Normalization Min-Max Scaling
B1 B2 B1 B2
0.3 — + —
0.2 1
o«
o
D
<
0.1
04 @ {4 ® o ( ] @ [ ] o
Normal Normal Normal Normal

Supplemental Figure S1: Results for GRNs learned in B. subtilis datasets B1 and B2 comparing "No Normaliza-
tion" to "Min-Max Scaling". Light gray dots represent the results for each of the 5 cross-validation experiments.
Colored dots represent the mean of the cross-validation experiments & standard deviation. Negative controls are
demonstrated by black dots for "No Prior" and grey dots for "Shuffled Prior".

Method B. subtilis Cross—ValiQation Dataset B1
Regular \ No Prior \ Shuffled
No Normalization | 0.0509 + 0.0273 | 0.0048 £ 0.0003 | 0.0050 4 0.0028
Min-Max Scaling | 0.1931 + 0.0171 | 0.0042 £ 0.0003 | 0.0042 £+ 0.0018
Supplementary Table 4: AUPRCs achieved by PMF-GRN on B. subtilis B1 dataset. Results are reported as the
mean AUPRC across five ‘cross-validation’ splits & standard deviation

Method B. subtilis Cross—ValiFiation Dataset B2
Regular \ No Prior \ Shuffled
No Normalization | 0.2508 £ 0.0232 | 0.0062 £ 0.0006 | 0.0052 £ 0.0004
Min-Max Scaling | 0.2886 + 0.0312 | 0.0048 £ 0.0008 | 0.0038 £ 0.0005
Supplementary Table 5: AUPRCs achieved by PMF-GRN on B. subtilis B2 dataset. Results are reported as the
mean AUPRC across five ‘cross-validation’ splits & standard deviation

626 B.2 Inferelator, Scenic, and CellOracle Networks

627z B.2.1 Saccharomyces cerevisiae

628 Networks were inferred using the "multitask" workflow setting of the Inferelator for the same single-cell
629 S.cerevisiae datasets described in (31). For each algorithm, BBSR, StARS, and AMuSR, the following parameters
630 were used: gold_standard_filter_method="keep_all_gold_standard", num_bootstraps=5. Aggregated multi-task
631 networks were used for benchmarking, while single-task networks were disregarded for the purpose of this work.
632 To make these networks directly comparable to PMF, we did not make use of normalization, count minimum, or
633 meta-data options available within the Inferelator workflow.

634 Networks inferred with Scenic and CellOracle used the same input files, with no additional parameters specified.
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