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Abstract

Inferring gene regulatory networks (GRNs) from single-cell gene expression1

datasets is a challenging task. Existing methods are often designed heuristically2

for specific datasets and lack the flexibility to incorporate additional information3

or compare against other algorithms. Further, current GRN inference methods do4

not provide uncertainty estimates with respect to the interactions that they predict,5

making inferred networks challenging to interpret. To overcome these challenges,6

we introduce Probabilistic Matrix Factorization for Gene Regulatory Network infer-7

ence (PMF-GRN). PMF-GRN uses single-cell gene expression data to learn latent8

factors representing transcription factor activity as well as regulatory relationships9

between transcription factors and their target genes. This approach incorporates10

available experimental evidence into prior distributions over latent factors and11

scales well to single-cell gene expression datasets. By utilizing variational infer-12

ence, we facilitate hyperparameter search for principled model selection and direct13

comparison to other generative models. To assess the accuracy of our method,14

we evaluate PMF-GRN using the model organisms Saccharomyces cerevisiae and15

Bacillus subtilis, benchmarking against database-derived gold standard interactions.16

We discover that, on average, PMF-GRN infers GRNs more accurately than current17

state-of-the-art single-cell GRN inference methods. Moreover, our PMF-GRN ap-18

proach offers well-calibrated uncertainty estimates, as it performs gene regulatory19

network (GRN) inference in a probabilistic setting. These estimates are valuable20

for validation purposes, particularly when validated interactions are limited or a21

gold standard is incomplete.22

Keywords— Probabilistic Matrix Factorization, Variational Inference, Gene Regulatory Network Inference,23

Single Cell, Gene Expression.24
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1 Background25

An essential problem in systems biology is to extract information from genome wide sequencing data to unravel26

the mechanisms controlling cellular processes within heterogeneous populations (1). Gene regulatory networks27

(GRNs) that annotate regulatory relationships between transcription factors (TFs) and their target genes (2) have28

proven to be useful models for stratifying functional differences between cells (3; 4; 5; 6) that can arise during29

normal development (7), responses to environmental signals (8) and dysregulation in the context of disease30

(9; 10; 11).31

GRNs cannot be directly measured with current sequencing technology. Instead, methods must be developed32

to piece together snapshots of transcriptional processes in order to reconstruct a cell’s regulatory landscape33

(12). Initial approaches to GRN inference relied on Microarray technology (13; 14; 15), a hybridization-based34

method to measure the expression of thousands of genes simultaneously (16). This technology was biased35

as it was limited to only those genes that were annotated at the time, which in turn presented challenges for36

inferring the complete regulatory landscape (1). Subsequently, the high-throughput sequencing method RNA-seq37

provided a genome wide readout of transcriptional output, allowing for the detection of novel transcripts (17)38

and thus improving GRN inference potential. More recently, single-cell RNA-seq technology has enabled the39

characterization of gene expression profiles within heterogeneous populations (18), vastly increasing the potential40

for GRN inference algorithms (19; 20). In contrast to bulk RNA experiments (Microarray and RNA-seq) that41

average measurements of gene expression across heterogenous cell populations, GRNs inferred from single-cell42

data have the advantage of unmasking biological signal in distinct cells (21).43

Several matrix factorization approaches have been proposed to overcome the limitations of reconstructing GRNs44

from Microarray data (22). These include use of statistical techniques such as Singular Value Decomposition45

and Principal Component Analysis (23), Bayesian Decomposition (24), and Non-negative Matrix Factorization46

(25; 26; 27). More recently, matrix factorization approaches have been applied to integrative analysis of DNA47

methylation and miRNA expression data (28), as well as single-cell RNA-seq and single-cell ATAC-seq data48

(29). However, to the best of our knowledge, these matrix factorization approaches have not yet been used to49

infer GRNs from single-cell gene expression data. Meanwhile, several regression-based methods have been50

proposed to learn GRNs from single-cell RNA-seq and single-cell ATAC-seq to capture regulatory relationships51

at single-cell resolution (30). So far, these integrative approaches to GRN inference have been successfully52

implemented using regularized regression (31), self-organizing maps (32), tree-based regression (33), and53

Bayesian Ridge regression (34).54

Although regression-based methods for inferring GRNs from single-cell data are available, they still suffer55

from significant limitations (35). Firstly, these methods heavily rely on the input data used to learn the GRN,56

causing issues when new data becomes available or new assumptions are required in the model. This can result57

in inaccurate predictions if the new data or assumptions are not well integrated into the existing model, leading58

to the need for a complete re-design of the algorithm, which can be costly and time-consuming. Additionally,59

these methods typically focus on inferring a single GRN that explains the available data, without performing60

hyperparameter search to determine the optimal model. This can lead to heuristic model selection, with no61

justification for the approach taken or evidence that the best possible model has been selected. Conversely,62

hyperparameter search ensures the accuracy of the GRN inference algorithm by finding the optimal model63

that fits the data well while avoiding overfitting. Regression-based GRN inference algorithms that do not64

perform hyperparameter search may miss important data features or overemphasize irrelevant ones, leading to65

inaccurate or incomplete models. Moreover, these methods do not provide an indication of their uncertainty66

about the predictions that they make. Finally, several regression-based GRN inference algorithms struggle to67

scale optimally to the size of typical single-cell datasets, limiting inference to small subsets of data or requiring68

enormous amounts of computational time."69

In this study, we introduce PMF-GRN, a novel approach that uses probabilistic matrix factorization (36) to70

infer gene regulatory networks from single-cell gene expression and chromatin accessibility information. This71

approach extends previous methods that applied matrix factorization for GRN inference with Microarray data,72

to address the current limitations in regression-based single-cell GRN inference. We implement our approach73

in a probabilistic setting with variational inference, which provides a flexible framework to incorporate new74

assumptions or biological data as required, without changing the way the GRN is inferred. We also use a75

principled hyperparameter selection process with the Evidence Lower Bound (ELBO) objective function, which76

optimizes the parameters of our probabilistic model for automatic model selection. In this way, we replace77

heuristic model selection by comparing a variety of generative models and hyperparameter configurations before78

selecting the optimal parameters with which to infer a final GRN. Our probabilistic approach provides uncertainty79

estimates for each predicted regulatory interaction, serving as a proxy for the model confidence in each predicted80

interaction. Uncertainty estimates can be useful in the situation where there are limited validated interactions81

or a gold standard is incomplete. By using stochastic gradient descent (SGD), we perform GRN inference on82

a GPU, allowing us to easily scale to a large number of observations in a typical single-cell gene expression83

dataset. Unlike many existing methods, PMF-GRN is not limited by pre-defined organism restrictions, making it84

widely applicable for GRN inference.85
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To demonstrate the novelty and advantages of PMF-GRN, we apply our method to two single-cell gene expression86

datasets for the model organism Sacchromyces cerevisiae. We evaluate our model’s performance in a normal87

inference setting, as well as with cross-validation and noisy data. To assess the accuracy of predicted regulatory88

interactions, we evaluate all regulatory predictions using Area Under the Precision Recall Curve (AUPRC)89

against database derived gold standards. Our findings show that the uncertainty estimates are well-calibrated for90

inferred TF-target gene interactions, as the accuracy of predictions increases when the associated uncertainty91

decreases. Here, in comparison to three state-of-the-art regression-based methods for inferring single-cell GRNs,92

namely the Inferelator (31), Scenic (33), and Cell Oracle (34), our method demonstrates an overall improved93

performance in recovering the true underlying GRN. We also include GRNs inferred using two microarray94

datasets for Bacillus subtilis by converting expression values to integers to simulate a single-cell-like experiment,95

demonstrating our method’s performance on a second dataset.96

2 Results97

2.1 The PMF-GRN Model98

The goal of our probabilistic matrix factorization approach is to decompose observed gene expression into latent99

factors, representing TF activity (TFA) and regulatory interactions between TFs and their target genes. These100

latent factors, which represent the underlying GRN, cannot be measured experimentally, unlike gene expression.101

We model an observed gene expression matrix W ∈ RN×M using a TFA matrix U ∈ RN×K
>0 , a TF-target gene102

interaction matrix V ∈ RM×K , observation noise σobs ∈ (0,∞) and sequencing depth d ∈ (0, 1)N , where N103

is the number of cells, M is the number of genes and K is the number of TFs. We rewrite V as the product104

of a matrix A ∈ (0, 1)M×K , representing the degree of existence of an interaction, and a matrix B ∈ RM×K
105

representing the interaction strength and its direction:106

V = A⊙B,

where ⊙ denotes element-wise multiplication. An overview of the graphical model is shown in Figure 1A.107

These latent variables are mutually independent a priori, i.e., p(U,A,B, σobs, d) =108

p(U)p(A)p(B)p(σobs)p(d). For the matrix A, prior hyperparameters represent an initial guess of the109

interaction between each TF and target gene which need to be provided by a user. These can be derived from110

genomic databases or obtained by analyzing other data types, such as the measurement of chromosomal111

accessibility, TF motif databases, and direct measurement of TF-binding along the chromosome, as shown in112

Figure 1B (see Methods section for details).113

The observations W result from a matrix product UV ⊤. We assume noisy observations by defining a distribution114

over the observations with the level of noise σobs, i.e., p(W |U, V = A⊙B, σobs, d).115

Given this generative model, we perform posterior inference over all the unobserved latent variables; U , A, B, d116

and σobs, and use the posterior over A to investigate TF-gene interactions. Exact posterior inference with an117

arbitrary choice of prior and observation probability distributions is, however, intractable. We address this issue118

by using variational inference (37; 38), where we approximate the true posterior distributions with tractable,119

approximate (variational) posterior distributions.120

We minimize the KL-divergence DKL(q∥p) between the two distributions with respect to the parameters of121

the variational distribution q, where p is the true posterior distribution. This allows us to find an approximate122

posterior distribution q that closely resembles p. This is equivalent to maximizing the evidence lower bound123

(ELBO) i.e. a lower bound to the marginal log likelihood of the observations W :124

log p(W ) ≥ EU,A,B,σobs,d∼q(U,A,B,σobs,d)[ log p(W |U, V = A⊙B, σobs, d)

+ log p(U,A,B, σobs, d)

− log q(U,A,B, σobs, d)]

The mean and variance of the approximate posterior over each entry of A from maximizing the ELBO are then125

used as the degree of existence of an interaction between a TF and a target gene and its uncertainty, respectively.126

It is important to note that matrix factorization based GRN inference is only identifiable up to a latent factor127

(column) permutation. In the absence of prior information, the probability that the user assigns TF names to the128

columns of U and V in the same order as the order in which the inference algorithm implicitly assigns TFs to129

these columns is 1
K!

, which is essentially 0 for any reasonable value of K. Incorporating prior-knowledge of130

TF-target gene interactions into the prior distribution over A is therefore essential to give the inference algorithm131

information about which column corresponds to which TF.132

With this identifiability issue in mind, we design an inference procedure that can be used on any dataset, described133

in Figure 1C. The first step is to randomly hold out prior information for some percentage of the genes in p(A)134
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Figure 1: (A) PMF-GRN graphical model overview. Input single-cell gene expression W is decomposed into
latent factors U and V , representing TF activity and TF-gene interactions respectively. V is further decomposed
into A and B, representing the degree of existence of interaction, and the strength and direction of an interaction,
respectively. Information obtained from chromatin accessibility data or genomics databases is incorporated
into the prior distribution for A. Additional latent variables are included to model observation noise σobs and
sequencing depth d, in order to better model our observed single-cell gene expression input data. (B) Input
experimental data for PMF-GRN includes single-cell RNA-seq gene expression data. ATAC-seq is used to
determine chromatin accessibility through peak calling. Motif enrichment within these accessible regions can be
used to create a prior-known network to better inform the prior distribution. When experimental information is
unavailable, databases can be used instead to construct a known-prior network. (C) Hyperparameter selection
process is performed for model selection. The provided prior-known network is split into a train and validation
dataset. 80% of the prior-known information is used to infer a GRN, while the remaining 20% is used for
validation by computing AUPRC. This process is repeated multiple times, using different hyperparameter
configurations in order to determine the optimal hyperparameters for the GRN inference task at hand. Finally,
using the optimal hyperparameters, as determined by the highest achieved AUPRC, a final network is inferred
using the full prior and evaluated using an independent gold standard.
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(we choose 20%) by leaving the rows corresponding to these genes in A but setting the prior logistic normal135

means for all entries in these rows to be the same low number.136

The second step is to carry out a hyperparameter search using this modified prior-knowledge matrix. The early137

stopping and model selection criteria are both the ‘validation’ AUPRC of the posterior point estimates of A138

corresponding to the held out genes against the entries for these genes in the full prior hyperparameter matrix.139

This step is motivated by the idea that inference using the selected hyperparameter configuration should yield a140

GRN whose columns correspond to the TF names that the user has assigned to these columns.141

The third step is to choose the hyperparameter configuration corresponding to the highest validation AUPRC and142

perform inference using this configuration with the full prior. An importance weighted estimate of the marginal143

log likelihood is used as the early stopping criterion for this step. The resulting approximate posterior provides144

the final posterior estimate of A.145

2.2 Advantages of PMF-GRN146

Existing methods almost always couple the description of the data generating process with the inference147

procedure used to obtain the final estimated GRN (31; 34; 33). Designing a new model thus requires designing a148

new inference procedure specifically for that model, which makes it difficult to compare results across different149

models due to the discrepancies in their associated inference algorithms. Furthermore, this ad hoc nature of150

model building and inference algorithm design often leads to the lack of a coherent objective function that can be151

used for proper hyperparameter search as well as model selection and comparison, as evident in (31). Heuristic152

model selection in available GRN inference methods presents the challenge of determining and selecting the153

optimal model in a given setting.154

The proposed PMF-GRN framework decouples the generative model from the inference procedure. Instead of155

requiring a new inference procedure for each generative model, it enables a single inference procedure through156

(stochastic) gradient descent with the ELBO objective function above, across a diverse set of generative models.157

Inference can easily be performed in the same way for each model. Through this framework, it is possible to158

define the prior and likelihood distributions as desired with the following mild restrictions: we must be able to159

evaluate the joint distribution of the observations and the latent variables, the variational distribution and the160

gradient of the log of the variational distribution.161

The use of stochastic gradient descent in variational inference comes with a significant computational advantage.162

As each step of inference can be done with a small subset of observations, we can run GRN inference on a very163

large dataset without any constraint on the number of observations. This procedure is further sped up by using164

modern hardware, such as GPUs.165

Under this probabilistic framework, we carry out model selection, such as choosing distributions and their166

corresponding hyperparameters, in a principled and unified way. Hyperparameters can be tuned with regard167

to a predefined objective, such as the marginal likelihood of the data or the posterior predictive probability of168

held out parts of the observations. We can further compare and choose the best generative model using the same169

procedure.170

This framework allows us to encode any prior knowledge via the prior distributions of latent variables. For171

instance, we incorporate prior domain knowledge about TF-gene interactions as hyperparameters that govern the172

prior distribution over the matrix A. If prior knowledge about TFA is available, this can be similarly incorporated173

into the model via the hyperparameters of the prior distribution over U .174

Because our approach is probabilistic by construction, inference also estimates uncertainty without any separate175

external mechanism. These uncertainty estimates can be used to assess the reliability of the predictions, i.e.,176

more trust can be placed in interactions that are associated with less uncertainty. We verify this correlation177

between the degree of uncertainty and the accuracy of interactions in the experiments.178

Overall, the proposed approach of probabilistic matrix factorization for GRN inference is scalable, generalizable179

and aware of uncertainty, which makes its use much more advantageous compared to most existing methods.180

2.3 PMF-GRN Recovers True Interactions in Simple Eukaryotes181

To demonstrate PMF-GRNs ability to infer informative and robust GRNs, we use two single-cell RNA-seq182

datasets from the model organism Sacchromyces cerevisiae. S.cerevisiae is a relatively simple and well studied183

eukaryote with an available and reliable gold standard, which allows us to test and evaluate our models184

performance.185

We perform three experiments using two independently collected single-cell RNA-seq S. cerevisiae datasets186

(8; 39) to test PMF-GRN and compare our performance against three state-of-the-art GRN inference methods,187

the Inferelator (AMuSR, BBSR, StARS) (31), Scenic (33), and CellOracle (34). In the first experiment, we infer188

a GRN for each of the two single-cell datasets and average the posterior means of A to simulate a "multi-task"189
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GRN inference approach for building the final combined network. Using AUPRC, we show that PMF-GRN190

outperforms AMuSR, StARS, and Scenic, while performing competitively with BBSR and CellOracle (Figure191

2A). To provide a baseline for each method in the scenario where data cannot be cleanly separated into tasks, we192

combine the two expression datasets into one observation before inferring a GRN. This baseline demonstrates a193

large performance decrease for BBSR, indicating that the method may only be useful when gene expression194

is organized into tasks. This could present challenges when attempting to infer GRNs in more complicated195

organisms where cell-types or conditions are less easily defined. Here, we show the effectiveness of PMF-GRN196

in recovering the true underlying GRN for both scenarios, as performance remains relatively stable whether a197

network was inferred using the individual or combined data. We also provide an example as to how we can198

use PMF-GRN on a single observation or multiple observation matrices to infer a consensus GRN by simple199

averaging.200

In the second experiment, we implement a 5 fold cross-validation approach to establish a baseline for each201

model. Cross-validation is an essential technique for evaluating the performance of machine learning models like202

PMF-GRN as it allows us to test our method’s ability to generalize to new data. Cross-validation further allows203

us to simulate the process of training and testing PMF-GRN on multiple subsets of the available data, providing204

a more robust and reliable estimate of model accuracy. In the context of GRN inference, cross-validation is205

particularly important because it helps us assess the performance of PMF-GRN in predicting TF-target gene206

interactions based on limited data, which is often the case in experimental settings.207

We first combine the two S. cerevisiae single-cell RNA-seq datasets into one observation matrix for simplicity. To208

perform cross-validation, the gold standard is divided into an 80%−20% split, where a network is inferred using209

80% of the gold standard as "prior-known information", and evaluated using the remaining 20%. We repeat this210

cross-validation process five times using different random splits of the gold standard to obtain meaningful results.211

We observe that PMF-GRN outperforms Scenic and CellOracle, while achieving competitive performance to212

BBSR and StARS (Figure 2B). We note that for this experiment, we are unable to implement the AMuSR213

algorithm as it is a multi-task inference approach that requires more than one task (dataset).214

Finally, in the third experiment, we demonstrate the robustness of each GRN inference method against noisy215

prior information. To do so, we infer GRNs where increasing amounts of noise have been added to the input216

prior-known information. Here, we show that as noise increases, PMF-GRN’s AUPRC decreases similarly to217

CellOracle, while on average, performing better than BBSR, StARS and CellOracle, demonstrating that it is one218

of the most robust approaches to inferring accurate GRNs from noisy priors (Figure 2C).219

From the results of our experiments on the S. cerevisiae data, we have the following observations. The first main220

observation is that on average the proposed PMF-GRN performs better than the Inferelator in recovering the true221

GRN, regardless of whether we pick the mean or median Inferelator algorithm in terms of AUPRC. Specifically,222

we see that PMF-GRN performs markedly better than two Inferelator algorithms (AMuSR and StARS), and223

similarly to the remaining algorithm (BBSR). However, when the expression data is not separated into tasks,224

PMF-GRN outperforms BBSR. In comparison to CellOracle, we observe that PMF-GRN infers competitive225

GRNs during normal inference. However, PMF-GRN greatly outperforms CellOracle when performing cross-226

validation. Finally, we observe that PMF-GRN consistently outperforms Scenic in all experiments considered.227

The second main observation is that our approach eliminates the high variance associated with choosing between228

different inference algorithms. Implementing the Inferelator on the S. cerevisiae datasets in a normal setting229

yields AUPRCs approximately in the range 0.2 to 0.4, without any a priori information on which of these230

algorithms to use. The resulting inferred GRN could be arbitrarily accurate or inaccurate depending on which231

algorithm is chosen. In contrast, our method is reliable as it provides one set of results, chosen using a232

principled objective function, performing competitively with the best performing Inferelator algorithm (BBSR)233

and CellOracle.234

Finally, in order to highlight the identifiability issue and ensure that the prior-known information provided is235

useful, we demonstrate the performance of PMF-GRN where prior information is not used (e.g. all prior logistic236

normal means of A are set to the same low number). We use the same process for all other GRN inference237

algorithms by providing an empty prior. Additionally, we demonstrate PMF-GRN’s performance when we238

randomly shuffle the prior-known TF-target gene interaction hyperparameters before using them to build the239

prior distribution for A. We repeat this process for all other GRN inference algorithms by providing them with240

prior-known information in which the gene names have been shuffled randomly. As anticipated, the resulting241

AUPRC scores are close to 0, implying that our approach, as well as the Inferelator and CellOracle are capable242

of taking into account such prior information well and that the prior information we provided is useful and243

reliable (see Methods section for details). The results for GRNs inferred without prior-known information are244

demonstrated by the black dots, while the gray dots demonstrate GRNs inferred with shuffled prior-known245

information, shown in Figure 2A.246
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Figure 2: GRN inference in Saacharomyces cerevisiae. (A) Consensus network AUPR using gold standard
network. Performance of PMF-GRN (red) is compared to three Inferelator algorithms, AMuSR (yellow), BBSR
(orange), StARS (green), as well as to Scenic (blue), and CellOracle (purple). A baseline for each method
(dashed line), demonstrates performance if the expression data is combined into one task. Two negative controls,
no prior information (black) and shuffled prior information (gray), are inferred to ensure reliable results. (B)
5 fold cross-validation establishes a baseline for each model. Low-opacity dots represent each of the five
cross-validation experiments. The mean AUPR ± standard deviation for each GRN inference method is depicted
by colored dot and line. (C) GRNs inferred with increasing amounts of noise added to the prior. (D) Calibration
results on the S.cerevisiae (GSE144820 (8) only) dataset. Posterior means are cumulatively placed in bins based
on their posterior variances. The x-coordinate x of each point in the plot represents all posterior means that
correspond to the bottom x% of posterior variances. The y-coordinate is the ‘overlap’ AUPRC (see Methods
section for details) calculated on these posterior means against the gold standard.
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2.4 PMF-GRN Recovers True Interactions in Prokaryotes as Evaluated by Cross-Validation247

To demonstrate GRN inference on a second dataset, we carry out experiments using two microarray datasets for248

the prokaryote Bacillus Subtilis (B1 - GSE27219 (40) and B2 - GSE67023 (41)). Although PMF-GRN is not249

primarily designed to learn GRNs from microarray data, we show that it is still possible to learn informative250

GRNs with this data. For our B. subtilis experiments, we have access to prior-knowledge derived from the251

subtiwiki database (42; 43; 44). Here, we implement a 5 fold cross-validation approach by using five random252

splits of the subtiwiki database-derived information, where 80% is used as prior knowledge and 20% is used as253

the gold standard for evaluation.254

The two B. subtilis datasets were previously normalized after data collection as part of standard microarray255

processing. However, each dataset was normalized using different approaches (described in 4). For B1, the256

expression data underwent no further normalization and was simply converted to integers to simulate single-257

cell-like data. For B2, the expression data was re-scaled and then converted to integers, in order to contain258

only positive integers resembling single-cell-like data. The results from our experiments are shown in Figure259

3, and the numbers used to create this figure are given in Supplementary Table 4 and 5. Using five repeats260

of cross-validation, we show the performance of GRNs inferred for the two B. subtilis datasets (B1 and B2).261

We remark that the difference in performance between B1 and B2 is likely a result of the chosen microarray262

processing normalization. To further support this claim, we demonstrate GRN performance after re-scaling the263

data with min-max scaling (Supplemental Figure S1).264

‘No Prior’ and ‘Shuffled’ results are also shown in Figure 3 by black and gray dots respectively. Here, we are265

able to demonstrate that for B1 and B2, each GRN yields a better performance as compared to negative controls.266

Figure 3: Results for GRNs learned in B. subtilis datasets B1 and B2 without data normalization. Light gray
dots represent the results for each of the 5 cross-validation experiments. Colored dots represent the mean of the
cross-validation experiments ± standard deviation. Negative controls are demonstrated by black dots for "No
Prior" and grey dots for "Shuffled Prior".

2.5 PMF-GRN Provides Well-Calibrated Uncertainty Estimates267

Through our inference procedure, we obtain a posterior variance for each element of A, in addition to the268

posterior mean. We interpret each variance as a proxy for the uncertainty associated with the corresponding269

posterior point estimate of the relationship between a TF and a gene. Due to our use of variational inference as270

the inference procedure, our uncertainty estimates are likely to be underestimates. However, these uncertainty271

estimates still provide useful information as to the confidence the model places in its point estimate of each272

interaction. We expect posterior estimates associated with lower variances (uncertainties) to be more reliable273

than those with higher variances.274
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In order to determine whether this holds for our posterior estimates, we cumulatively bin the posterior means of275

A according to their variances, from low to high. We then calculate the AUPRC for each bin as shown for the276

GSE125162 (8) S.cerevisiae dataset in Figure 2 D. It is evident from the figures that the AUPRC decreases as277

the posterior variance increases. Stated differently, inferred interactions associated with lower uncertainty are278

more likely to be accurate than those associated with higher uncertainty. This is in line with our expectations.279

The more certain the model is about the degree of existence of a regulatory interaction, the more accurate it is280

likely to be, showing that our model is well-calibrated.281

3 Conclusion282

In this paper we present a framework for probabilistic matrix factorization, optimized using automatic variational283

inference, for inferring GRNs from single cell gene expression data. In contrast with previous methods, our284

framework decouples the model that defines the data generation process from the inference procedure. Concretely,285

this means that we can modify the latent variables that constitute the model, along with their distributions,286

without altering the inference procedure. This flexibility will allow for different sequencing data and modeling287

assumptions to be readily incorporated into the model. Building new models no longer requires defining a new288

inference procedure, which has previously been the case.289

Additionally, PMF-GRN provides a principled way to carry out model selection and hyperparameter configuration290

by using the same objective function and inference procedure across all models. This feature differs from previous291

GRN methods, where it is often unclear which algorithm or hyperparameters to use for a given dataset. In292

the PMF-GRN framework, we carry out hyperparameter searches across generative models and choose the293

configuration that corresponds to the optimal value of the objective function. This greatly reduces the need for294

heuristic model selection.295

In order to demonstrate successful GRN inference, we infer a consensus GRN for S.cerevisiae using our296

principled model selection method, and compare our results to GRNs inferred by the Inferelator, Scenic and297

CellOracle with respect to a reliable gold standard. Whereas the Inferelator yields a set of highly varying298

results across the variants, our approach results in a single inferred GRN. This GRN yields an AUPRC that299

is higher than Scenic, as well as than the mean and median AUPRC achieved by the Inferelator’s respective300

algorithms (AMuSR and StARS), and is comparable to the AUPRC achieved by the best performing Inferelator301

algorithm (BBSR), in addition to CellOracle. However, when the expression data is not separated into tasks,302

we demonstrate that BBSR can no longer recover a competitive network. Our model hence yields a reliable303

high-performing set of results without any need for heuristic model selection.304

We further evaluate PMF-GRN by performing cross-validation and find that PMF-GRN, BBSR, and StARS305

yield high performance, indicating that these methods are able to generalize well to new data and do not overfit306

to training data. In contrast, Scenic and CellOracle do not perform well during cross-validation, indicating that307

these methods may not be generalizable.308

Finally, because prior-known networks are inherently noisy due to limited validated regulatory interactions,309

we design an experiment to test each algorithm’s robustness against increasing amounts of noise in the input310

prior-known information. This experiment identifies PMF-GRN and CellOracle as the methods which are311

overall most robust against noisy priors, indicating that inferred GRNs will remain reliable regardless of noisy312

interactions introduced into the prior during inference.313

Using two microarray B. subtilis datasets, we further demonstrate that PMF-GRN is capable of learning314

informative GRNs. To include database information into both the prior knowledge and evaluation, we use an315

approach motivated by cross-validation. Here, we find that scaling allow us to place these datasets on the same316

scale, allowing them to be more comparable during inference. Although PMF-GRN is not primarily designed for317

microarray data, we show that is still possible to learn informative networks by simply converting the expression318

to integers to represent single-cell-like counts.319

In order to determine the effect of incorporating our prior domain knowledge into the model, we compare results320

obtained using shuffled and unshuffled hyperparameters for the matrix A. We observe that for both S. cerevisiae321

and B. subtilis, not using prior information or shuffling the prior information results in very low AUPRCs,322

whereas using the prior information as intended results in significantly better AUPRCs. This result holds for323

PMF-GRN as well as for CellOracle and all Inferelator algorithms. However, for Scenic, we show that it is324

challenging to obtain a GRN that performs better than these negative controls. This shows that prior information325

is essential for addressing the latent factor identifiability issue and obtaining interpretable results from matrix326

factorization, as well as regression based approaches.327

In contrast to previous methods, our model provides well-defined uncertainty estimation in addition to point328

estimates of GRNs. We evaluate these uncertainty estimates as provided by our model, by computing the AUPRC329

for inferred TF-target gene interactions corresponding to different levels of posterior uncertainty. We find that the330

AUPRC increases as the posterior variance decreases, demonstrating that when our model is more certain about331

its estimates, it produces better rankings of TF-target gene interactions compared to when it is uncertain. This332
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indicates that our model is well-calibrated. For downstream experimental validation, biologists could therefore333

place more trust in model estimates that have a lower posterior variance. We also note that the computational334

cost of our model scales linearly with the number of cells in the dataset. This enables application of our method335

to single-cell RNA-seq datasets of any size.336

We envision many possible directions for future work to design a better algorithm for inferring GRNs under337

our framework. This framework could be extended to explicitly model multiple expression matrices and their338

batch effects. We could probabilistically model prior information for A obtained from ATAC-seq and TF motif339

databases, and include this as part of the probabilistic model over which we carry out inference. Evaluating340

the posterior estimates of the direction of transcriptional regulation, provided by the matrix B, could provide341

a useful benchmark for the computational estimation of TF activation and repression. Research could also be342

carried out on improved self-supervised objectives for hyperparameter selection.343

Future work could also focus on how to use results from our framework to guide experimental wet-lab work. For344

example, the uncertainty quantification provided by our model could open up new research directions in active345

learning for GRN inference. Highly ranked, uncertain interactions could be experimentally tested and the results346

fed back into the prior hyperparameter matrix for A. Inference with this updated matrix would ideally yield a347

better posterior GRN estimate. Posterior estimates of TFA provided by our model could be useful to wet lab348

scientists, as this quantity incorporates information on post-transcriptional modifications.349

Most importantly, the study of GRN inference is far from complete. So far, this has required new computational350

models and assumptions in order to keep up with relevant sequencing technologies. It is thus essential to develop351

a model that can be easily adapted to new biological datasets as they become available, without having to352

completely re-build each model. We have therefore proposed PMF-GRN as a modular, principled, probabilistic353

approach that can be easily adapted to both new and different biological data without having to design a new354

GRN inference method.355

4 Methods356

4.1 Model Details357

We index cells, genes and TFs using n ∈ {1, · · · , N}, m ∈ {1, · · · ,M} and k ∈ {1, · · · ,K}, respectively.358

We treat each cell’s expression profile Wn as a random variable, with local latent variables Un and dn, and359

global latent variables (that are shared among all cells) σobs and V = A⊙B. We use the following likelihood360

for each of our observations:361

p(Wn|U, V, σobs, d) = N (dn ∗ UnV
⊤, σ2

obs).

We assume that U , V , σobs and d are independent i.e. p(U, V, σobs, d) = p(U)p(V )p(σobs)p(d). In addition to362

our iid assumption over the rows of U and d, We also assume that the entries of Un are mutually independent,363

and that all entries of A and B are mutually independent. We choose a lognormal distribution for our prior over364

U and a logistic Normal distribution for our prior over d:365

p(log(Unk)) = N (µu, σ
2
u),

p(logit(dn)) = N (0, 9)

where µu ∈ R and σu ∈ R+.366

We use a logistic Normal distribution for our prior over A, a Normal distribution for our prior over B and a367

logistic Normal distribution for our prior over σobs:368

p(logit(Amk)) = N (logit(clip(Āmk, amax, amin)), σ
2
a),

p(Bmk) = N (0, σ2
b ).

p(log(σobs)) = N (0, 1),

where Āmk ∈ {0, 1}, amax ∈ (0, 1), amin ∈ (0, 1), σa ∈ R>0, clip(Āmk, amax, amin) =369

max(min(Āmk, amax), amin) and σb ∈ R>0. Āmk is given by a pipeline that is used by other methods370

such as the Inferelator. The pipeline leverages ATAC-seq and TF binding motif data to provide binary initial371

guesses of gene-TF interactions. amax and amin are hyperparameters that determine how we clip these binary372

values before transforming them to the logit space.373

For our approximate posterior distribution, we enforce independence as follows:374

q(U,A,B, σobs, d) = q(U)q(A)q(B)q(σobs)q(d).
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We impose the same independence assumptions on each approximate posterior as we do for its corresponding375

prior. Specifically, we use the following distributions:376

q(log(Unk)) = N (Ũnk, σ̃
2
Unk

)

q(logit(dn)) = N (d̃n, σ̃
2
dn)

q(logit(Amk)) = N (Ãmk, σ̃
2
Amk

)

q(Bmk) = N (B̃mk, σ̃
2
Bmk

)

q(log(σobs)) = N (õ, σ̃2
o),

where the parameters on the right hand sides of the equations are called variational parameters; Ũnk, d̃n, Ãmk,377

B̃mk, õ ∈ R and σ̃Unk , σ̃dn , σ̃Amk , σ̃Bmk , σ̃o ∈ R+. To avoid numerical issues during optimization, we place378

constraints on several of these variational parameters.379

4.2 Inference380

We perform inference on our model by optimizing the variational parameters to maximize the ELBo. In doing381

so, we minimise the KL-divergence between the true posterior and the variational posterior. In practice, to help382

with addressing the latent factor identifiability issue, we use a modified version of the ELBo where the prior and383

posterior terms are weighted by a constant β ≥ 1 (45):384

EU,A,B,σobs,d∼q(U,A,B,σobs,d)[ log p(W |U, V = A⊙B, σobs, d)

+ β(log p(U,A,B, σobs, d)− log q(U,A,B, σobs, d))]

Inference is carried out using the Adam optimizer with learning rate 0.1 and beta values of 0.9 and 0.99. We clip385

gradient norms at a value of 0.0001. We set amin = 0.005, amax = 0.995, σ2
b = 1 and µu = 0. We vary σa386

and σu as hyperparameters that control the strengths of the priors over A and U , respectively. We also vary β as387

a hyperparameter.388

We choose a hyperparameter configuration using validation AUPRC as the objective function as well as the389

early stopping metric. We hold out hyperparameters for p(A) for a fraction of the genes. We do this by setting390

Āmk = 0 for m corresponding to these genes for all k. During inference we regularly obtain posterior point391

estimates for these entries and measure the AUPRC against the original values of these entries as given in the392

full prior. This quantity is known as the validation AUPRC.393

Once we have picked the hyperparameter configuration corresponding to the best validation AUPRC, we perform394

inference with this model using the full prior without holding out any information. We use an importance395

weighted estimate of the marginal log likelihood as our early stopping criterion:396

log p(W ) = log

(
EU,A,B,σobs,d∼q(U,A,B,σobs,d)

[
p(W |U,A,B, σobs, d)p(U,A,B, σobs, d)

q(U,A,B, σobs, d)

])
,

where the expectation is computed using simple Monte Carlo and the log-
∑

-exp trick is used to avoid numerical397

issues.398

4.3 Computing Summary Statistics for the Posterior399

After training the model, we use Ã and σ̃A, the variational parameters of q(A), to obtain a mean and a variance400

for each entry of A. Since q(A) is logistic normal, it admits no closed form solution for the mean and variance.401

We therefore use Simple Monte Carlo i.e. we sample each entry of A several times from its posterior distribution402

and then compute the sample mean and sample variance from these samples. We use each mean as a posterior403

point estimate of the probability of interaction between a TF and a gene, and its associated variance as a proxy404

for the uncertainty associated with this estimate.405

4.4 Calculating AUPRC406

The gold standards for the datasets used in this paper do not necessarily perfectly overlap with the genes and407

TFs that make up the rows and columns of A as defined by the prior hyperparameters i.e. there may be genes408

and TFs in the gold standard with a recorded interaction or lack of interaction, that do not appear in our model at409

all because they are not present in the prior. The reverse is also true: the prior may contain genes and TFs that410
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are not in the gold standard. For this reason, we compute the AUPRC using one of two methods: ‘keep all gold411

standard’ or ‘overlap’, which correspond to evaluating only interactions that are present in the gold standard or412

only interactions that are present in both the gold standard and the prior/posterior. We present results with ‘keep413

all gold standard’ AUPRC as the evaluation metric when comparing our model to the Inferelator in Figures 2 and414

3. For our evaluation of uncertainty calibration (Figure 2 D), we use the overlap AUPRC so that bins containing415

a lower number of posterior means do not have artificially deflated AUPRCs (see the Evaluating Calibration of416

Posterior Uncertainty part of the Methods Section for further information).417

4.5 Evaluating Calibration of Posterior Uncertainty418

We create 10 bins, corresponding to the lowest 10%, 20%, 30% and so on of posterior variances. We place419

the posterior point estimates of TF-gene interactions associated with these variances into these bins and then420

calculate the ‘overlap AUPRC’ for each bin using the corresponding gold standard. The AUPRC for each bin is421

calculated using those interactions that are in the gold standard and also in the bin. We use such a cumulative422

binning scheme because using a non-cumulative scheme could result in some bins having very small numbers of423

posterior interactions that are present in the gold standard, which would lead to noisier estimates of the AUPRC.424

4.6 Inference and Evaluation on Multiple Observations of W425

The Inferelator method applies two scRNA-seq experiments separately on S. cerevisiae, with each resulting in a426

distinct model. These models are used to infer TF-gene interaction matrices, which are then sparsified. The427

final matrix is obtained by taking the intersection of the two matrices and retaining only the entries that are428

non-zero in both matrices. In our approach, we also train a separate model on each expression matrix, and obtain429

a posterior mean matrix for A for each of them. To obtain the final posterior mean matrix for A, we average430

the posterior mean matrices from each model. While this approach works well, future research could focus on431

explicitly modeling separate expression matrices within the model, as discussed in the Conclusion section.432

4.7 Measuring the Impact of Prior Hyperparameters433

We evaluate the utility of each of the prior hyperparameter matrices used in our experiments. In Figures434

2A and 3A, we present with grey dots the AUPRCs achieved when performing inference using shuffled435

prior hyperparameters for A. This corresponds to randomly assigning to each row (gene) of A, the prior436

hyperparameters that correspond to a different row of A. Shuffling the hyperparameters should lead to worse437

performance, as the posterior estimates should then also be shuffled, whereas the row/column labels for the438

posterior will remain unshuffled. For the ‘no prior’ setting, shown with black dots in the figures, we set439

Āmk = 0 ∀m, k. The difference in AUPRC achieved using the unshuffled vs shuffled or no hyperparameters440

measures the usefulness of the provided hyperparameters for the inference task on the dataset in question.441

4.8 Cross-Validation442

For each model organism, S. cerevisiae and B. subtilis, we perform a five-fold cross validation experiment.443

Cross-validation is performed by partitioning the gold standard into an 80% - 20% split, where 80% of the data444

represents prior-known information to be used as a prior for p(A), and the remaining 20% is treated as the gold445

standard for evaluation. This process is repeated five times to generate five random splits of the data in order to446

robustly evaluate GRN inference. It is important to note that PMF-GRN performs hyperparameter search before447

inferring a final GRN within each cross-validation split. For each of the five partitioned cross-validation folds448

the 80%, or prior portion, is further split into 80% train and 20% test for hyperparameter search and evaluation.449

Once the optimal hyperparameters have been determined, the initial 80% split is treated as the training data,450

while the remaining 20%, which was not seen during hyperparameter selection, is used for evaluation.451

4.9 Datasets and Preprocessing452

We inferred each GRN using a single-cell RNA-seq expression matrix, a TF-target gene connectivity matrix, and453

a gold standard for bench-marking purposes. We modeled the single-cell expression matrices based on the raw454

UMI counts obtained from sequencing for the S. cerevisiae datasets, which were therefore not normalized for455

the purpose of this work. For the two B. subtilis datasets used in this work, we demonstrate the effect of different456

normalization and scaling techniques, and convert all data used to integers in order to create a single-cell-like457

dataset. We further obtained binary TF-gene matrices representing prior-known interactions, which served as458

prior hyperparameters over A, and were derived from the YEASTRACT and subtiwiki databases. We acquired a459

gold standard for S. cerevisiae our datasets from independent work which is detailed below.460
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Saccharomyces cerevisiae461

We used two raw UMI count expression matrices for the organism S. cerevisiae obtained from NCBI GEO462

(GSE125162 (8) and GSE144820 (39)). For this well studied organism, we employed the YEASTRACT (46; 47)463

literature derived network of TF-target gene interactions to be used as a prior over A in both S. cerevisiae464

networks. A gold standard for S. cerevisiae was additionally obtained from a previously defined network (48)465

and used for bench-marking our posterior network predictions.We note that the gold standard is roughly a reliable466

subset of the YEASTRACT prior. Additional interactions in the prior can still be considered to be true but have467

less supportive evidence than those in the gold standard.468

Bacillus subtilis469

We used two microarray datasets for B. subtilis, which we label as B1 (GSE27219) and B2 (GSE67023). Both470

B1 and B2 underwent different normalization as part of standard microarray processing, described in detail in471

(40) and (41). For the experiment "No Normalization", B1 was simply converted to integers, while B2 contained472

negative numbers and had to be scaled and then converted to integers so that the data represented positive integers473

similar to single-cell data.474

For this well studied organism, we use the subtiwiki database (42; 43; 44) to obtain a network of prior-known475

TF-target gene interactions to be used as a prior over A as well as a gold standard for benchmarking posterior476

predictions.477

5 Data Availability478

The datasets used in this work are publicly available. They are referenced in the Methods section and are479

available through https://github.com/nyu-dl/pmf-grn.480

6 Code Availability481

Code, inferred GRNs, and inference and evaluation scripts can be found at https://github.com/nyu-dl/482
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Supplementary Information: Probabilistic Matrix607

Factorization for Gene Regulatory Network Inference608

A Supplementary Tables609

Method Prior Information
Regular None Shuffled

PMF-GRN 0.375 0.014 0.023
AmUSR 0.223 0.024 0.019
BBSR 0.402 0.022 0.018
StARS 0.186 0.028 0.017
Scenic 0.014 0.014 0.014

CellOracle 0.383 N/A 0.013
Supplementary Table 1: AUPRCs achieved by PMF-GRN, the Inferelator algorithms (AMuSR, BBSR, and
StARS), Scenic and CellOracle on S. cerevisiae datasets.

Method Cross Validation Split
Split 1 Split 2 Split 3 Split 4 Split 5

PMF-GRN 0.114 0.096 0.086 0.1342 0.118
BBSR 0.112 0.128 0.161 0.171 0.139
StARS 0.109 0.137 0.154 0.195 0.151
Scenic 0.020 0.021 0.018 0.025 0.021

CellOracle 0.034 0.042 0.034 0.043 0.034
Supplementary Table 2: AUPRCs achieved by PMF-GRN, the Inferelator algorithms (AMuSR, BBSR, and
StARS), Scenic and CellOracle on S. cerevisiae datasets using the gold standard for 5-fold cross validation.

Method Noise Added
No Noise 100% Noise 250% Noise 500% Noise

PMF-GRN 0.343 0.280 0.198 0.149
BBSR 0.264 0.208 0.186 0.174
StARS 0.136 0.125 0.114 0.118
Scenic 0.075 0.068 0.059 0.055

CellOracle 0.417 0.306 0.226 0.175
Supplementary Table 3: AUPRCs achieved by PMF-GRN, the Inferelator algorithms (AMuSR, BBSR, and
StARS), Scenic and CellOracle on S. cerevisiae datasets using increasing amounts of noise added to the prior-
knowledge data.

B Supplementary Methods610

B.1 TF Target Gene Connectivity Matrix Generation611

B.1.1 Saccharomyces cerevisiae612

Datasets were obtained from (31) without further modification.613

B.1.2 Bacillus subtilis614

A prior-known TF-target gene interactions matrix was obtained from the Subtiwiki database (49) from "regula-615

tions" (downloaded 07/21/22). Using the columns "regulator locus" and "gene locus" a cross-tab integer matrix616

was created, where 1 represents the existence of an interaction and 0 represents no interaction. This matrix617

was randomly split 5 times in 80%-20% proportions along the gene axis to generate independent prior-known618

information and gold standard matrices.619

To demonstrate the importance of scaling microarray data to place independently collected datasets on the same620

scale, we demonstrate how Min-Max Scaling improves inference in both B. subtilis datasets. For "Min-Max621

Scaling", both B1 and the positive scaled B2 dataset were subsequently normalized using the following logic.622
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Using the observation axis, values were linearly transformed so that the minimum value was mapped to 0 and the623

maximum value was mapped to 1. Each value was then multiplied by 100 and converted to integers to produce624

the resulting expression matrix of scaled single-cell-like integers.625

Supplemental Figure S1: Results for GRNs learned in B. subtilis datasets B1 and B2 comparing "No Normaliza-
tion" to "Min-Max Scaling". Light gray dots represent the results for each of the 5 cross-validation experiments.
Colored dots represent the mean of the cross-validation experiments ± standard deviation. Negative controls are
demonstrated by black dots for "No Prior" and grey dots for "Shuffled Prior".

Method B. subtilis Cross-Validation Dataset B1
Regular No Prior Shuffled

No Normalization 0.0509± 0.0273 0.0048± 0.0003 0.0050± 0.0028
Min-Max Scaling 0.1931± 0.0171 0.0042± 0.0003 0.0042± 0.0018

Supplementary Table 4: AUPRCs achieved by PMF-GRN on B. subtilis B1 dataset. Results are reported as the
mean AUPRC across five ‘cross-validation’ splits ± standard deviation

Method B. subtilis Cross-Validation Dataset B2
Regular No Prior Shuffled

No Normalization 0.2508± 0.0232 0.0062± 0.0006 0.0052± 0.0004
Min-Max Scaling 0.2886± 0.0312 0.0048± 0.0008 0.0038± 0.0005

Supplementary Table 5: AUPRCs achieved by PMF-GRN on B. subtilis B2 dataset. Results are reported as the
mean AUPRC across five ‘cross-validation’ splits ± standard deviation

B.2 Inferelator, Scenic, and CellOracle Networks626

B.2.1 Saccharomyces cerevisiae627

Networks were inferred using the "multitask" workflow setting of the Inferelator for the same single-cell628

S.cerevisiae datasets described in (31). For each algorithm, BBSR, StARS, and AMuSR, the following parameters629

were used: gold_standard_filter_method="keep_all_gold_standard", num_bootstraps=5. Aggregated multi-task630

networks were used for benchmarking, while single-task networks were disregarded for the purpose of this work.631

To make these networks directly comparable to PMF, we did not make use of normalization, count minimum, or632

meta-data options available within the Inferelator workflow.633

Networks inferred with Scenic and CellOracle used the same input files, with no additional parameters specified.634
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