
FLUCTUATIONS OF THE WINDING NUMBER OF A
DIRECTED POLYMER ON A CYLINDER

YU GU AND TOMASZ KOMOROWSKI

Abstract. We prove a central limit theorem for the winding number
of a directed polymer on a cylinder, which is equivalent with proving
the Gaussian fluctuations of the endpoint of the directed polymer in a
spatial periodic environment.
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1. Introduction

1.1. Main result. We consider the problem of a directed polymer on a
cylinder and study the fluctuations of the winding number, that is, the
algebraic number of turns the polymer path does around the cylinder. The
problem is equivalent to studying the fluctuations of the endpoint of a
directed polymer in a random periodic environment. To state the main
result, we first give an informal description of the model. The reference path
measure is chosen to be the Wiener measure, and the random environment
is modeled by a Gaussian space-time white noise ξ(t, x) on R+ × [0, 1], with
periodic boundary condition, and we periodically extend it to R+ ×R.

For each realization of the random environment, the partition function of
the directed polymer is given by

(1.1) ZT = E exp(β ∫
T

0
ξ(t,wt)dt),

where {wt}t≥0 is a one-dimensional standard Brownian motion starting from
the origin, independent of ξ, and E is the expectation over the realizations
of the Brownian motion w. Here β > 0 is a fixed parameter playing the
role of the inverse temperature. Since ξ is a space-time white noise, the
above expression should be interpreted carefully, see Section 2 below for
more details.

The quenched density of the polymer endpoint wT is then given by

(1.2) ρ(T,x) =
E exp(β ∫

T
0 ξ(t,wt)dt)δ(wT − x)

E exp(β ∫
T

0 ξ(t,wt)dt)
.

Since the random environment ξ is periodic in space, another perspective
is to view the polymer path as lying on a cylinder, in which case it is the
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trajectory of {wt − ⌊wt⌋}t≥0 we are tracking. The winding number of the
polymer path around the cylinder, denoted by WT , then equals to
(1.3) WT = ⌊wT ⌋1wT ≥0 + ⌈wT ⌉1wT <0.

Here ⌊⋅⌋ and ⌈⋅⌉ denote the floor and ceiling functions, respectively. Thus,
to study the large time behavior of wT is equivalent to that of WT . Denote
the quenched probability measure by P̂T and the expectation with respect
to it by ÊT , so for any bounded function f ∶ R → R, we have ÊT f(wT ) =
∫R f(x)ρ(T,x)dx. Let P,E be the probability and expectation with respect
to the noise ξ. Now we can state the main result of the paper, namely, under
the annealed polymer measure P⊗ P̂T , { wT√

T
}T>0, or equivalently, {WT√

T
}T>0,

satisfies a central limit theorem.

Theorem 1.1. There exists σ2
eff ∈ (0,∞), given in (3.27) below, such that

for any θ ∈ R, we have

EÊT exp(iθ wT√
T
)→ exp(−1

2
σ2

effθ
2), as T →∞.

1.2. Context and motivation. Our study of the winding number is moti-
vated by the work of Brunet [2], where the same problem was investigated
by the replica method. What is particularly interesting is the exact formula
he derived for σ2

eff and how it depends on the size of the period, see [2, Eq.
(19)-(20)]. It is not hard to convince oneself that Theorem 1.1 holds for
any spatial period, with the effective diffusion constant depending on the
size of the cell – we chose the length L = 1 only to simplify the notations.
Denote the corresponding variance by σ2

eff(L). It is known that the polymer
path is super-diffusive with the exponent 2/3 when L = ∞, i.e., if there is
no periodic structure, T −2/3wT is of order O(1) for T ≫ 1, see [5, Theorem
1.11] for relevant results on this particular model. To go from the diffusive
to super-diffusive scaling as L→∞, it is natural to expect σ2

eff(L) to blow
up. This was indeed predicted in [2]: as L→∞, σ2

eff(L) ∼
√
L. The blow up

rate is related to the 2/3 super-diffusion exponent, and here is a heuristic
explanation: for cells of size L, the displacement of the endpoint wT is of the
order σeff(L)

√
T , provided that L ∼ O(1) and T ≫ 1. As we keep T ≫ 1 fixed

and slowly increase L, the polymer path would still visit many cells provided
that σeff(L)

√
T ≫ L. In this case we still expect to see a homogenization

phenomenon and the central limit theorem as in Theorem 1.1 holds. So,
it is natural to guess that the critical scale comes from balancing the two
terms, σeff(L)

√
T and L. This leads to L ∼ T 2/3, under the assumption of

σ2
eff(L) ∼

√
L.

It was our hope to prove the above heuristics rigorously, and to confirm
(or disprove) the replica calculations in [2]. Theorem 1.1 can be viewed as
a small step towards this goal, through which we confirmed the diffusive
scaling and the Gaussian fluctuations. The formula derived for σ2

eff , see (3.27)
below, is of Green-Kubo type which involves the integral of some covariance
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function, and is too implicit to perform any asymptotic analysis. This is not
surprising though, since the homogenization constant is usually given by the
solution to some cell problem and precise estimates on it are not easy to
obtain (see a very recent contribution along this line for a different model
of diffusion in random environment [4]). Guided by the same philosophy, a
similar study was carried out for the fluctuations of the free energy logZT ,
which leads to the optimal size of fluctuations in certain regimes where L,T
go to infinity together, see [7].

For the connections between the winding number of the directed polymer
in random environment and other models in statistical physics, such as
vortices in superconductors and strongly correlated fermions, we refer to [2]
and the references cited there.

One can also formulate the problem as a diffusion in a distribution-valued
random environment and study the corresponding SDE with a singular drift,
see e.g. [6, 3, 10] and the references therein. In this framework, making
sense of the singular diffusion is already highly nontrivial, and is intimately
related to the study of singular SPDE [12, 13, 11]. For our specific problem
of directed polymer, one can view it as a passive scalar with the velocity
field given by the solution of a stochastic Burgers equation, see [6, Theorem
31] which gives a rigorous meaning of it. Although the velocity field is
spatial periodic, which is sometimes viewed as the simple case in the study of
homogenization or invariance principle of diffusion in a random environment,
the problem does not fall into any classical framework. It might be possible
to employ the tools developed for singular diffusions and combine with
homogenization type of arguments to study similar problems and to prove
central limit type results. For this particular problem, we make use of the
structure of the Gibbs measure and give a proof using a classical argument
for the central limit theorem for weakly dependent random variables.

1.3. Sketch of proof. Our approach relies heavily on the previous work
of studying the periodic KPZ equation [8], where we showed the endpoint
distribution of the directed polymer on a cylinder mixes exponentially fast.
The proof in [8] was inspired by the classical work of Sinai [16], which was
on the stochastic Burgers equation on the torus. Similar results were also
obtained in [15], using a random version of the Krein-Rutman theorem.
As mentioned previously, one could view the polymer path as lying on the
cylinder by considering the path {wt−⌊wt⌋}t≥0. Assuming that at each integer
time k, the position of the path is xk, i.e., wk − ⌊wk⌋ = xk, our previous result
implies a strong mixing property of {xk}k≥1 under the polymer measure. If
we denote ηk the winding number of the polymer path accumulated during
the interval [k − 1, k], then the total winding number is simply ∑k ηk. It
is not hard to deduce that, given the positions of {xk}k≥1, the sequence of
random variables {ηk}k≥1 are independent, so, the correlation only comes
from the correlation in those xk. Our strategy will be to first consider the
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case when the starting and ending points x0 and xT are both sampled from
the stationary measure so that {ηk}k≥1 is a sequence of stationary random
variables, and we will prove a ρ−mixing (correlation mixing) condition to
apply the general central limit theorem for the sum of stationary random
variables. Then, to finish the proof, we will show that the error induced by
resampling x0 and xT is asymptotically small, again using the strong mixing
property of {xk}k≥1.

The same proof applies verbatim to the high dimensional setting when the
random environment is assumed to be white in time and smooth in space.

Organization of the paper. In Section 2, we formulate the problem
rigorously, define the endpoint distribution through a stochastic heat equation,
and construct a Markov chain which keeps tracking the winding number of
the polymer path as time increases. Sections 3 and 4 are devoted to proving
the main result, by first reducing it to the stationary setting, then proving
the ρ−mixing condition for the stationary sequence {ηk}. In Section 5, we
prove the nondegeneracy of the variance σ2

eff . Some further discussion is left
in Section 6.

Notations. We will sometimes use the shorthand integral notation ∫ when
the domain of integration is clear from the context. If we do not specify the
range of the summation in ∑j , it stands for ∑j∈Z.

Acknowledgement. We thank the anonymous referee for multiple sugges-
tions and comments. Y.G. was partially supported by the NSF through DMS-
2203014. T.K. acknowledges the support of NCN grant 2020/37/B/ST1/00426.

2. Preparations

2.1. Stochastic heat equation and endpoint density on R. As men-
tioned previously, the expression ZT = E exp(∫

T
0 ξ(t,wt)dt) is only formal

since ξ is a space-time white noise, and we actually need to consider the
so-called Wick exponential. In this section, we define the endpoint density
ρ rigorously, through the stochastic heat equation (SHE). For an excellent
introduction to the theory of the stochastic heat equation, we refer to the
monograph [14].

Consider the equation of the form

(2.1)
∂tu(t, x; ν) = 1

2
∆u(t, x; ν) + βξ(t, x)u(t, x; ν), t > 0, x ∈ R,

u(0, dx) = ν(dx),

where β > 0, the product between u and ξ is interpreted in the Ito-Walsh
sense, and ν ∈M1(R) - the set of Borel probability measures on R. Denote
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the propagator of the above equation by Zt,s(x, y), i.e. for each (s, y) ∈ R+×R
fixed, we have

(2.2)
∂tZt,s(x, y) =

1
2

∆xZt,s(x, y) + βξ(t, x)Zt,s(x, y), t > s, x ∈ R,

Zs,s(x, y) = δy(x).

Due to the 1-periodicity of the noise, we obviously have

(2.3) Zt,s(x + j, y + j) = Zt,s(x, y), j ∈ Z, x, y ∈ R, t > s.

Let T = [0,1] be the unit torus with the end points identified in the usual
way. Since ξ is periodic, we can consider the same equation on T with the
periodic boundary condition. Then its propagator is given by

(2.4) Gt,s(x, y) =∑
j

Zt,s(x + j, y) =∑
j

Zt,s(x, y − j), x, y ∈ T.

In other words, Gt,s(x, y) is the periodic solution to (2.2) with the initial
data Gs,s(x, y) = ∑j δy−j(x).

With the above notations, the random density ρ, which is the density of
wT under the quenched polymer measure P̂T and was formally defined in
(1.2), takes the form

(2.5) ρ(T,x; ν) = u(T,x; ν)
∫R u(T,x′; ν)dx′

.

From now on, we choose ν(dx) to be the Dirac measure at the origin. To
simplify the notation, we will omit the dependence on ν when there is no
confusion.

2.2. Endpoint density on the cylinder. Besides studying the polymer
endpoint on the whole line, we also consider its periodic counterpart:

ρper(t, x; ν) = v(t, x; ν)
∫T v(t, x′; ν)dx′

,

where ν ∈M1(T) and v solves the equation

(2.6)
∂tv(t, x; ν) = 1

2
∆v(t, x; ν) + βξ(t, x)v(t, x; ν), t > 0, x ∈ T,

v(0, dx) = ν(dx).

Using the propagator, the solution can be written as

v(t, x; ν) = ∫
T
Gt,0(x, y)ν(dy).

It turns out, see [8, Lemma 2.2], that {ρper(t)}t≥0 = {ρper(t, ⋅; ν)}t≥0,ν∈M1 is a
Markov family. For any t > 0, the random element ρper(t, ⋅; ν) takes values in
Dc(T), which we use to denote the space of continuous probability densities
on T.
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To simplify the notation, for any t > s, we define the forward and backward
polymer densities starting from ν by

(2.7)
ρper(t, x; s, ν) = ∫TGt,s(x, y)ν(dy)

∫T2 Gt,s(x′, y′)ν(dy′)dx′
,

ρ̃per(t, ν; s, x) = ∫TGt,s(y, x)ν(dy)
∫T2 Gt,s(y′, x′)ν(dy′)dx′

.

We have ρper(t, x; ν) = ρper(t, x; 0, ν). By the time reversal of the space-time
white noise, for any t > s and ν fixed, we have

{ρper(t, x; s, ν)}x∈T
law= {ρ̃per(t, ν; s, x)}x∈T

We emphasize that, throughout the paper, the notation ρ(t, ⋅; ν) is the
endpoint density of the polymer on the whole line, while the notations
ρper(t, ⋅; s, ν) and ρ̃per(t, ν; s, ⋅) are reserved for the endpoint density on the
torus.

Now we summarize a few results concerning the properties of the Markov
family {ρper(t)}t≥0, see [8, Theorem 2.3, Eq. (4.17), Lemma 4.1, Proposition
4.6].

Proposition 2.1. There exists a unique invariant measure π∞ for {ρper(t)}t≥0,
supported on Dc(T). For any p ≥ 1, there exists C,λ > 0 such that for all
t > 1,

(2.8) E sup
ν,ν′∈M1(T)

sup
x∈T
∣ρper(t, x; ν) − ρper(t, x; ν′)∣p ≤ Ce−λt,

and

(2.9) E sup
ν∈M1(T)

sup
x∈T
{ρper(t, x; ν)p + ρper(t, x; ν)−p} ≤ C.

2.3. A Markov chain for the winding number. As the random envi-
ronment is periodic in space, to study the displacement of the polymer
endpoint wT , it is equivalent to studying the winding number of the polymer
path when we view it as lying on a cylinder by considering the trajectory
{wt − ⌊wt⌋}t∈[0,T ]. This is the perspective we will take from now on. The
idea is to first sample the trajectory of the polymer path on the cylinder
at integer times, then consider the winding of the path between successive
integer times.

For any N ∈ Z+, consider u(N, jN + xN) where xN ∈ [0, 1) and jN ∈ Z. By
the definition of the propagator, we have

u(N, jN + xN) = ∫
R
ZN,N−1(jN + xN , y)u(N − 1, y)dy

= ∑
jN−1
∫
T
ZN,N−1(jN + xN , jN−1 + xN−1)u(N − 1, jN−1 + xN−1)dxN−1.
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Iterate the above relation, we reach at (recall that u(0, x) = δ(x))
u(N, jN + xN)

= ∑
j1,...,jN−1

∫
TN−1

N

∏
k=1

Zk,k−1(jk + xk, jk−1 + xk−1)dx1,N−1,

where we used the simplified notation dx1,N−1 = dx1 . . . dxN−1 and the conven-
tion j0 = x0 = 0. In other words, in the above integration, we have decomposed
the domain R as R = ∪j[j, j + 1), then integrate in each interval and sum
them up. One should think of the variable jk+xk as representing the location
of the polymer path at time k, with jk the integer part and xk the fractional
part, i.e., jk = ⌊wk⌋ and xk = wk − ⌊wk⌋.

Now we make use of the periodicity and observe that

(2.10)
∑
jk

Zk,k−1(jk + xk, jk−1 + xk−1) =∑
jk

Zk,k−1(jk − jk−1 + xk, xk−1)

=∑
jk

Zk,k−1(jk + xk, xk−1) = Gk,k−1(xk, xk−1),

where G is the periodic propagator defined in (2.4). Then we can write

(2.11)
u(N, jN + xN) = ∫

TN−1

⎛
⎝ ∑
j1,...,jN−1

∏Nk=1Zk,k−1(jk + xk, jk−1 + xk−1)
∏Nk=1Gk,k−1(xk, xk−1)

⎞
⎠

×
N

∏
k=1

Gk,k−1(xk, xk−1)dx1,N−1.

Fix the realization of the random noise and

(2.12) x = (x0, x1, . . . , xN) ∈ TN+1.

We construct an integer-valued, time inhomogeneous Markov chain {Yj}Nj=1,
with

(2.13)

Px[Y1 = j1] =
Z1,0(j1 + x1, x0)
G1,0(x1, x0)

,

Px[Y2 = j2∣Y1 = j1] =
Z2,1(j2 + x2, j1 + x1)

G2,1(x2, x1)
,

. . .

Px[YN = jN ∣YN−1 = jN−1] =
ZN,N−1(jN + xN , jN−1 + xN−1)

GN,N−1(xN , xN−1)
.

With the Markov chain, one can write the summation in (2.11) as

∑
j1,...,jN−1

∏Nk=1Zk,k−1(jk + xk, jk−1 + xk−1)
∏Nk=1Gk,k−1(xk, xk−1)

= Px[YN = jN ],

where, to emphasize the dependence of the Markov chain on x0, x1, . . . , xN ,
we have denoted the probability by Px.
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In this way, (2.11) is rewritten as

(2.14) u(N, jN + xN) = ∫[0,1]N−1
Px[YN = jN ]

N

∏
k=1

Gk,k−1(xk, xk−1)dx1,N−1.

Recall that P̂N is the quenched probability of the polymer measure on paths
of length N , and ⌊wN ⌋ is the integer part of the endpoint wN . Then

(2.15)
P̂N [⌊wN ⌋ = jN ] = ∫

T
ρ(N, jN + xN)dxN = ∫T

u(N, jN + xN)dxN
∫R u(N,x′)dx′

= ∫TN Px[YN = jN ]∏Nk=1Gk,k−1(xk, xk−1)dx1,N

∫TN ∏Nk=1Gk,k−1(xk, xk−1)dx1,N
.

In other words, the quenched distribution of ⌊wN ⌋ is a weighted average of
the distribution of YN (the average is over the x variable).

We introduce another notation: suppose that f, g ∈ Dc(T), define

(2.16) µN(x; f, g) ∶=
f(xN)∏Nk=1Gk,k−1(xk, xk−1)g(x0)

GN,0(f, g)
,

with x = (x0, . . . , xN) and the normalization factor

(2.17) GN,0(f, g) ∶= ∫
TN+1

f(xN)
N

∏
k=1

Gk,k−1(xk, xk−1)g(x0)dx0,N ,

where dx0,N ∶= dx0 . . . dxN . For each realization of the random environment,
one should view µN(x; f, g) as the joint density of the polymer on the cylinder,
evaluated at (0, x0), (1, x1), . . . , (N,xN), with the starting and ending points
sampled from the densities g, f respectively. For any ν, ν′ ∈M1(T), we abuse
the notation and write µN(x; ν, ν′) as well, meaning that the starting and
ending points are sampled from ν′, ν. In this case, GN,0(ν, ν′) equals to

GN,0(ν, ν′) ∶= ∫
TN+1

N

∏
k=1

Gk,k−1(xk, xk−1)ν′(dx0)dx1,N−1ν(dxN).

With the above new notation, we can rewrite

(2.18) P̂N [⌊wN ⌋ = jN ] = ∫
TN+1

Px[YN = jN ]µN(x; m, δ0)dx0,N ,

where m is the Lebesgue measure on T (note that in (2.15), the convention
is x0 = 0).

By (2.10) and (2.13), it is clear that YN is a sum of independent random
variables, for each fixed realization of the noise and x. We rewrite it as

(2.19) YN =
N

∑
k=1

ηk, ηk = Yk − Yk−1, Y0 = 0.
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One should interpret ηk as the winding number accumulated during the time
interval [k − 1, k], and we have

(2.20) Px[ηk = j] =
Zk,k−1(xk + j, xk−1)
Gk,k−1(xk, xk−1)

, j ∈ Z.

To prove Theorem 1.1 for the winding number WN , see (1.3), or the
endpoint wN , it is equivalent to proving it for ⌊wN ⌋. From now on, we
will focus on the law of ⌊wN ⌋ and the rest of the analysis starts from the
representation (2.18).

3. Proof of the central limit theorem

The goal is to prove the central limit theorem for wT√
T

under the annealed
polymer measure P⊗ P̂T . For θ ∈ R, define

ϕT (θ) ∶= EÊT eiθwT /
√
T = E∫

R
exp{ iθx√

T
}ρ(T,x)dx,

where ρ was defined in (1.2) with ν chosen to be the Dirac measure at the
origin. In this section, we will consider those T taking integer values, and
the main goal is to show

Theorem 3.1. We have

(3.1) lim
N→∞

ϕN(θ) = exp{−(σeffθ)2

2
} , θ ∈ R,

with σeff given by (3.27) below.

To show the above theorem it suffices to consider the integer part of wN .
Define

ψN(θ) = E∫ exp{ iθ⌊x⌋√
N
}ρ(N,x)dx.(3.2)

We focus on finding the limit of ψN(θ). From the construction of the Markov
chain in Section 2.3 and (2.18), we have

ψN(θ) = E∫
TN

Ex exp{ iθYN√
N
}µN(x; m, δ0)dx0,N

= E∫
TN

Ex exp{
N

∑
k=1

iθηk√
N
}µN(x; m, δ0)dx0,N

= E∫
TN

N

∏
k=1

Ex exp{ iθηk√
N
}µN(x; m, δ0)dx0,N .

Here we used Ex to denote the expectation with respect to Px.
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3.1. Estimates of the moments of increments. For any ν, ν′ ∈M1(T)
and p ≥ 1, define

(3.3) E
(p)
N,k(ν, ν

′) ∶= E∫
TN+1
(Ex∣ηk∣p)µN(x; ν, ν′)dx0,N .

Recall that ηk was defined in (2.19) and its law is given by (2.20). The
following result holds.

Lemma 3.2. For any p > 1, we have

Ep ∶= sup
ν,ν′∈M1(T)

sup
N≥1

sup
k=1,...,N

E
(p)
N,k(ν, ν

′) <∞.(3.4)

Proof. By the definition we have

E
(p)
N,k(ν, ν

′) = E∫
T2
dxkdxk−1∑

j

∣j∣pZk,k−1(xk + j, xk−1)

×
GN,k(ν;xk)Gk−1,0(xk−1; ν′)

∫T2 GN,k(ν; y′)Gk,k−1(y′, y)Gk−1,0(y; ν′)dy′dy
.

Here we used the simplified notation Gt,s(x; ν) = ∫TGt,s(x, y)ν(dy) and
Gt,s(ν;x) = ∫TGt,s(y, x)ν(dy). The above expression is bounded from above
by

E{(inf
z,z′

Gk,k−1(z′, z))
−1
∫
T2
dxkdxk−1∑

j

∣j∣pZk,k−1(xk + j, xk−1)

×
GN,k(ν;xk)Gk−1,0(xk−1; ν′)

∫T2 GN,k(ν; y′)Gk−1,0(y; ν′)dy′dy
}

= ∫
T2

E{Fk(xk, xk−1)ρ̃per(N,ν;k, xk)ρper(k − 1, xk−1; ν′)}dxkdxk−1.

Here

Fk(xk, xk−1) ∶= (inf
z,z′

Gk,k−1(z′, z))
−1 ⎛
⎝∑j
∣j∣pZk,k−1(xk + j, xk−1)

⎞
⎠
.(3.5)

Note that Fk, ρ̃per(N,ν;k, xk) and ρper(k−1, xk−1; ν′) are independent. There-
fore, we have

E
(p)
N,k(ν, ν

′) ≤ ∫
T2

EFk(xk, xk−1)Eρ̃per(N,ν;k, xk)Eρper(k − 1, xk−1; ν′)dxkdxk−1.

For any q > 1, we conclude by the Hölder inequality

EFk(xk, xk−1) =∑
j

∣j∣pE{(inf
z,z′

Gk,k−1(z′, z))
−1
Zk,k−1(xk + j, xk−1)}

≤∑
j

∣j∣p {E(inf
z,z′

Gk,k−1(z′, z))
−q
}

1/q
{EZq

′

k,k−1(xk + j, xk−1)}
1/q′

,
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with 1/q + 1/q′ = 1. There exists a constant Cq > 0 depending only on q and
such that

E(inf
z,z′

Gk,k−1(z′, z))
−q
≤ Cq,

sup
x′,x
{EZq

′

k,k−1(x
′ + j, x)}

1/q′
≤ Cq exp{− j

2

Cq
} ,

see [8, Lemma 4.1] and Lemma 3.3 below. Hence
F ∶= sup

k≥1
sup
x′,x

EFk(x′, x) <∞

and E(p)N,k(ν, ν
′) ≤ F. This completes the proof of the lemma. ◻

The following lemma, concerning the moments estimate of the propagator
of SHE, is quite standard. For completeness sake we present its proof in
Section A.

Lemma 3.3. For any p ≥ 1, there exists Cp > 0 such that

EZt,0(x,0)p ≤
Cp

tp/2
exp{− x

2

Cpt
} , for all t ∈ (0,2], x ∈ R.

3.2. Characteristic function at equilibrium. Recall from Section 2.2
that, there exists a unique probability measure π∞ on the space Dc(T) -
continuous probability densities on T - that is invariant under the dynamics
of the polymer endpoint process.

Suppose that % and %̃ are two independent copies of Dc(T)-valued random
fields, distributed according to π∞. They are also assumed to be independent
of the noise ξ. We will use E%,E%̃ to denote the expectation with respect to
them respectively. From [8, Theorem 2.3] and (2.9), we know that (2.9) also
holds for %, i.e. for any p ≥ 1 we have
(3.6) Rp ∶= E% sup

x
{%(x)p + %(x)−p} < +∞.

Define

ψ̃N(θ) = E%E%̃E∫
TN+1

Ex exp{
N

∑
k=1

iθηk√
N
}µN(x; %̃, %)dx0,N ,

and recall that

ψN(θ) = E∫
TN+1

Ex exp{
N

∑
k=1

iθηk√
N
}µN(x; m, δ0)dx0,N .

The only difference between ψN and ψ̃N comes from the distributions of the
starting and ending points of the directed polymer on the cylinder: for ψN ,
the starting point is the origin and the ending point is “free” and distributed
according to the Lebesgue measure on T, while for ψ̃N , the starting and
ending points are sampled independently from the stationary distribution.
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The purpose of the present section is to show the following proposition,
which reduces the proof of central limit theorem to the stationary setting.

Proposition 3.4. For any θ ∈ R we have
(3.7) lim

N→∞
[ψ̃N(θ) − ψN(θ)] = 0.

Proof. Consider a sequence {kN}N such that kN →∞ and kN√
N
→ 0. Define

ψN,o(θ) ∶= E∫
TN+1

Ex exp
⎧⎪⎪⎨⎪⎪⎩

N−kN

∑
k=kN

iθηk√
N

⎫⎪⎪⎬⎪⎪⎭
µN(x; m, δ0)dx0,N ,(3.8)

ψ̃N,o(θ) ∶= E%E%̃E∫
TN+1

Ex exp
⎧⎪⎪⎨⎪⎪⎩

N−kN

∑
k=kN

iθηk√
N

⎫⎪⎪⎬⎪⎪⎭
µN(x; %̃, %)dx0,N .

We have

∣ψN,o(θ) − ψN(θ)∣

≤ E∫
TN+1

Ex∣ exp
⎧⎪⎪⎨⎪⎪⎩

N−kN

∑
k=kN

iθηk√
N

⎫⎪⎪⎬⎪⎪⎭
− exp{

N

∑
k=1

iθηk√
N
} ∣µN(x; m, δ0)dx0,N

≤ E∫
TN+1

⎛
⎝

kN−1
∑
k=1
+

N

∑
k=N−kN+1

⎞
⎠
Ex∣

θηk√
N
∣µN(x; m, δ0)dx0,N

≤ 2kN ∣θ∣
√
E2√

N
→ 0,

as N →∞. In the last step, we have applied Lemma 3.2 with E2 defined in
(3.4). By the same proof, we have ∣ψ̃N,o(θ) − ψ̃N(θ)∣→ 0. Thus, to prove the
proposition, it suffices to show that

∣ψ̃N,o(θ) − ψN,o(θ)∣→ 0.(3.9)

Recall that for any t > s and ν ∈M1(T), ρper(t, ⋅; s, ν) and ρ̃per(t, ν; s, ⋅)
were defined in (2.7). We also have ρper(t, ⋅; ν) = ρper(t, ⋅; 0, ν). In µN(x; m, δ0),
we integrate out the variables

x0, . . . , xkN−2, xN−kN+1, . . . , xN

to obtain

∫ µN(x; m, δ0)dx0,kN−2dxN−kN+1,N

=
ρ̃per(N,m;N − kN , xN−kN

) (∏N−kN

k=kN
Gk,k−1(xk, xk−1))ρper(kN − 1, xkN−1; δ0)

GN−kN ,kN
(m, δ0)

,

with
(3.10)
Gm2,m1(ν, ν

′) ∶= ∫ ρ̃per(N,ν;m2, x)Gm2,m1−1(x, y)ρper(m1 − 1, y; ν′)dxdy.
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This leads to the following expression
(3.11)

ψN,o(θ) = E∫ ρ̃per(N,m;N − kN , xN−kN
)
∏N−kN

k=kN
Gk,k−1(xk, xk−1)

GN−kN ,kN
(m, δ0)

× ρper(kN − 1, xkN−1; δ0)Ex exp
⎧⎪⎪⎨⎪⎪⎩

N−kN

∑
k=kN

iθηk√
N

⎫⎪⎪⎬⎪⎪⎭
dxkN−1,N−kN

.

For brevity sake we write dxm,M = dxm . . . dxM for any m ≤ M . With the
above notations, we can also write ψ̃N,o as
(3.12)

ψ̃N,o(θ) = E%E%̃E∫ ρ̃per(N, %̃;N − kN , xN−kN
)
∏N−kN

k=kN
Gk,k−1(xk, xk−1)

GN−kN ,kN
(%̃, %)

× ρper(kN − 1, xkN−1;%)Ex exp
⎧⎪⎪⎨⎪⎪⎩

N−kN

∑
k=kN

iθηk√
N

⎫⎪⎪⎬⎪⎪⎭
dxkN−1,N−kN

.

The idea is that, since kN ≫ 1, we expect ρper(kN−1, ⋅; δ0) and ρ̃per(N,m;N−
kN , ⋅) to be close to the stationary distribution, so that in the expression of
ψN,o, we can first “replace” δ0 by %, then “replace” m by %̃. In this way, we
reach at the expression of ψ̃N,o

We define an intermediate version:
(3.13)

ψ
(1)
N,o(θ) = E%E∫ ρ̃per(N,m;N − kN , xN−kN

)
∏N−kN

k=kN
Gk,k−1(xk, xk−1)

GN−kN ,kN
(m, %)

× ρper(kN − 1, xkN−1;%)Ex exp
⎧⎪⎪⎨⎪⎪⎩

N−kN

∑
k=kN

iθηk√
N

⎫⎪⎪⎬⎪⎪⎭
dxkN−1,N−kN

.

Compare (3.13) with (3.11), the only difference comes from replacing δ0 with
the stationary measure %. Next we write

ψN,o(θ) − ψ(1)N,o(θ) = IN + IIN ,

where
(3.14)

IN = E%E∫ ρ̃per(N,m;N − kN , xN−kN
)
∏N−kN

k=kN
Gk,k−1(xk, xk−1)

GN−kN ,kN
(m, δ0)

× E1(kN − 1, xkN−1; δ0, %)Ex exp
⎧⎪⎪⎨⎪⎪⎩

N−kN

∑
k=kN

iθηk√
N

⎫⎪⎪⎬⎪⎪⎭
dxkN−1,N−kN

,

with

(3.15) E1(kN − 1, ⋅; δ0, %) ∶= ρper(kN − 1, ⋅; δ0) − ρper(kN − 1, ⋅;%),
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and
(3.16)

IIN = E%E∫ ρ̃per(N,m;N − kN , xN−kN
)
⎛
⎝

N−kN

∏
k=kN

Gk,k−1(xk, xk−1)
⎞
⎠
ρper(kN − 1, xkN−1;%)

× E2(kN − 1; δ0, %)Ex exp
⎧⎪⎪⎨⎪⎪⎩

N−kN

∑
k=kN

iθηk√
N

⎫⎪⎪⎬⎪⎪⎭
dxkN−1,N−kN

,

with

E2(kN − 1; δ0, %) ∶= GN−kN ,kN
(m, δ0)−1 − GN−kN ,kN

(m, %)−1.

In the following, we will estimate IN and IIN separately.

Estimates on IN . First we note that the term ∣Ex exp{∑N−kN

k=kN

iθηk√
N
} ∣ ≤ 1.

Secondly, by the definition of G in (3.10), it is straightforward to check that

ρ̃per(N,m;N − kN , xN−kN
)

GN−kN ,kN
(m, δ0)

≤
supx ρ̃per(N,m;N − kN , x)

infx ρ̃per(N,m;N − kN , x) infx ρper(kN − 1, x; δ0)
× 1
GN−kN ,kN−1(m,m)

.

Here we used the simplified notation Gt,s(ν, ν′) = ∫ Gt,s(x, y)ν(dx)ν′(dy).
Thus, we have

∣IN ∣ ≤E%E [
supx ρ̃per(N,m;N − kN , x)

infx ρ̃per(N,m;N − kN , x) infx ρper(kN − 1, x; δ0)
sup
x
∣E1(kN − 1, x; δ0, %)∣]

≤

¿
ÁÁÀE%E(

supx ρ̃per(N,m;N − kN , x)
infx ρ̃per(N,m;N − kN , x) infx ρper(kN − 1, x; δ0)

)
2

×
√

E%E sup
x
∣E1(kN − 1, x; δ0, %)∣2.

According to Proposition 2.1, there exist constants C,λ > 0 such that the
above expression is bounded by

∣IN ∣ ≤ Ce−λkN .

Estimates on IIN . The proof is similar to that of IN . By (3.10) and the
definition of E1 in (3.15), we have

E2(kN − 1; δ0, %)

= −∫ ρ̃per(N,m;N − kN , xN−kN
)

GN−kN ,kN−1(xN−kN
, xkN−1)

GN−kN ,kN
(m, δ0)GN−kN ,kN

(m, %)
× E1(kN − 1, xkN−1; δ0, %)dxN−kN

dxkN−1,
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which implies that
∣E2(kN − 1; δ0, %)∣

≤
supx ρ̃per(N,m;N − kN , x) supx ∣E1(kN − 1, x; δ0, %)∣

(infx ρ̃per(N,m;N − kN , x))2 infx ρper(kN − 1, x; δ0) infx ρper(kN − 1, x;%)

× 1
GN−kN ,kN−1(m,m)

.

This leads to

∣IIN ∣

≤ E%E
(supx ρ̃per(N,m,N − kN , x))2 supx ρper(kN − 1, x;%) supx ∣E1(kN − 1, x; δ0, %)∣
(infx ρ̃per(N,m,N − kN , x))2 infx ρper(kN − 1, x; δ0) infx ρper(kN − 1, x;%)

.

Applying Hölder inequality as before, we also obtain that

∣IIN ∣ ≤ Ce−λkN , N = 1,2, . . . .

Thus, we have
∣ψN,o(θ) − ψ(1)N,o(θ)∣ ≤ Ce

−λkN → 0
as N →∞.

It remains to show that ψ̃N,o(θ) − ψ(1)N,o(θ) → 0 as N → ∞. Comparing
(3.12) and (3.13), the only difference is m being replaced by %̃. By following
the same proof for ψN,o(θ) − ψ(1)N,o(θ) verbatim, we conclude the proof of the
proposition. ◻

3.3. Construction of the path measure. Recall that by the construction
of the Markov chain in Section 2.3, the study of the winding number WN ,
see (1.3), or equivalently ⌊wN ⌋, reduces to that of YN = ∑Nk=1 ηk:

P̂N [⌊wN ⌋ = j] = ∫
TN+1

Px[YN = j]µN(x; m, δ0)dx0,N , for all j ∈ Z.

By the result in Section 3.2, to study the law of ⌊wN ⌋, we can further replace
µN(x; m, δ0) in the above expression by the stationary density µN(x; %̃, %).
In this section, we construct a path measure to realize {ηk}k∈Z as a sequence
of stationary random variables, and the proof of the central limit theorem
for ⌊wN ⌋ reduces to that of ∑Nk=1 ηk.

The space ZZ consists of all functions σ ∶ Z→ Z. For any k ∈ Z, we denote
by ηk ∶ ZZ → Z the k-th coordinate map, i.e. ηk(σ) ∶= σ(k). Recall that for
any f, g ∈ Dc(T), we have defined

µN(x; f, g) =
f(xN)∏Nk=1Gk,k−1(xk, xk−1)g(x0)

∫TN+1 f(x′N)∏
N
k=1Gk,k−1(x′k, x

′
k−1)g(x

′
0)dx′0,N

.

In the following, we construct a probability measure P on ZZ such that
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1) for each N ≥ 1 and j1, . . . , jN ∈ Z, we have

P[η1 = j1, . . . , ηN = jN](3.17)

∶= E%E%̃E∫
TN+1

Px[η1 = j1, . . . , ηN = jN]µN(x; %̃, %)dx0,N

= E%E%̃E∫
TN+1

N

∏
k=1

Zk,k−1(jk + xk, xk−1)
Gk,k−1(xk, xk−1)

µN(x; %̃, %)dx0,N

2) for any ` ∈ Z, we have

P[η1 = j1, . . . , ηN = jN] = P[η`+1 = j1, . . . , η`+N = jN].(3.18)

This is done as follows. First, we define the family of measures (PN)N≥1 on
ZN by (3.17). They induce a finite additive set function P on the algebra C
of cylindrical subsets of ZZ. To show that P extends to the σ-algebra σ(C),
it suffices to prove the following consistency condition: for each N ≥ 1, ` ≥ 1
and j1, . . . , jN ∈ Z,

P[η1 = j1, . . . , ηN = jN]
(3.19)

= E%E%̃E∫ Px[η1 = j1, . . . , ηN = jN]µN(x; %̃, %)dx0,N

= E%E%̃E∫ ∑
jN+1,...,jN+`

Px[η1 = j1, . . . , ηN = jN , ηN+1 = jN+1, . . . , ηN+` = jN+`]

× µN+`(x; %̃, %)dx0,N+`

= ∑
jN+1,...,jN+`

P[η1 = j1, . . . , ηN = jN , ηN+1 = jN+1, . . . , ηN+` = jN+`].

The right hand side of (3.19) equals

E%E%̃E∫ ∑
jN+1,...,jN+`

N+`
∏
k=1

Zk,k−1(jk + xk, xk−1)
Gk,k−1(xk, xk−1)

× ∏N+`k=1 Gk,k−1(xk, xk−1)%(x0)%̃(xN+`)

∫ ∏N+`k=1 Gk,k−1(x′k, x
′
k−1)%(x

′
0)%̃(x′N+`)dx′0,N+`

dx0,N+`

= E%E%̃E∫ dx0,N
N

∏
k=1

Zk,k−1(jk + xk, xk−1)
Gk,k−1(xk, xk−1)

×
ρ̃per(N + `, %̃;N,xN) (∏Nk=1Gk,k−1(xk, xk−1)%(x0))

∫ ∏Nk=1Gk,k−1(x′k, x
′
k−1)%(x

′
0)ρ̃per(N + `, %̃;N,x′N)dx′0,N

.

Here ρ̃per(N +`, %̃;N, ⋅) is the reverse time, polymer endpoint process starting
at stationarity, see the definition of ρ̃per in (2.7). So we know that ρ̃per(N +
`, %̃;N, ⋅) has the same law as %̃ and is independent of % and the random
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environment in the interval [0,N]. We can therefore write that the right
hand side of (3.19) equals

E%E%̃E∫ dx0,N
N

∏
k=1

Zk,k−1(jk + xk, xk−1)
Gk,k−1(xk, xk−1)

× ∏Nk=1Gk,k−1(xk, xk−1)%̃(xN)%(x0)

∫ ∏Nk=1Gk,k−1(x′k, x
′
k−1)%(x

′
0)%̃(x′N)dx′0,N

,

which proves (3.19). The argument for (3.18) is similar (for ` ≥ 1). This way
we construct a stationary measure P on ZN. Its extension to ZZ is standard.

From now on, we use E to denote the expectation with respect to P .

Proposition 3.5. We have
Eηj = 0,(3.20)
Eη2

j <∞, for all j ∈ Z.(3.21)

Proof. First, (3.21) is a direct consequence of Lemma 3.2. Now we prove
(3.20). Define

MN ∶= E∫ Ex
∑Nk=1 ηk
N

µN(x; m, δ0)dx0,N = E∫ Ex
YN
N
µN(x; m, δ0)dx0,N ,

(3.22)

M̃N ∶= E%E%̃E∫ Ex
∑Nk=1 ηk
N

µN(x; %̃, %)dx0,N = Eη1.

By following the proof of Proposition 3.4 and applying Lemma 3.2, we have
MN −M̃N → 0 as N →∞. On the other hand, note thatMN = N−1EÊN ⌊wN ⌋.
By symmetry we have EÊNwN = 0, which implies that MN → 0 as N →∞,
since wN − 1 < ⌊wN ⌋ ≤ wN . This further implies that M̃N = Eη1 = 0. The
proof is complete. ◻

3.4. The correlation mixing. In this section, we will show that the sta-
tionary sequence {ηk}k∈Z constructed in Section 3.3 satisfies a central limit
theorem:

(3.23) ∑Nk=1 ηk√
N
⇒ N(0, σ2

eff), as N →∞.

With (3.23), Proposition 3.4, we conclude the proof of Theorem 3.1.
Consider the probability space space (ZZ, σ(C),P). Let Fj and F j be

the σ-algebras generated by {ηk}k≤j and {ηk}k≥j , respectively. Define the
correlation coefficient between two square integrable random variables X, Y
as

corr[X,Y ] = Cov[X,Y ]
(EX2)1/2(EY 2)1/2

.

We have the following definition of the ρ−mixing coefficient:



18 YU GU AND TOMASZ KOMOROWSKI

Definition 3.6. (ρ-mixing coefficients, see [1, Section 19]) The ρ-mixing
coefficients for the stationary sequence {ηk}k∈Z are defined as

(3.24) r(n) ∶= sup{∣corr[F,G]∣ ∶ F ∈ Fj , G ∈ F j+n} , n = 1,2, . . . .

Note that, due to the stationarity, the definition of r(n) in (3.24) does
not depend on j. The main result of this section is the following:

Proposition 3.7. There exist C,λ > 0 such that

(3.25) ∣Cov[F,G]∣ ≤ Ce−λn∥F ∥L2∥G∥L2

for any n ≥ 1 and F,G that are Fj and F j+n measurable respectively. As a
consequence, we have

(3.26) r(n) ≤ Ce−λn.

From (3.26), Proposition 3.5 and [1, Theorem 19.2], we immediately
conclude the proof of (3.23), with

(3.27) σ2
eff =∑

j∈Z
E[η0ηj].

Note that σ2
eff <∞ is a direct consequence of (3.26) and (3.21). We will

show σ2
eff > 0 in Section 5 below.

The rest of the section is devoted to the proof of Proposition 3.7.
Proof. Recall that E denote the expectation with respect to P . Suppose that

F = f(η1, . . . , ηm1), G = g(ηm1+n, . . . , ηm2+n)

for some m1,m2 ∈ N and Borel measurable functions

f ∶ Rm1 → R, g ∶ Rm2−m1+1 → R.

Throughout the proof, to simplify the notation, define

x = (x0, . . . , xN), N =m2 + n.

We have
(3.28)
E[FG] = E%E∫ Ex[f(η1, . . . , ηm1)g(ηm1+n, . . . , ηm2+n)]µN(x;%1, %2)dx0,N ,

where %1, %2 are sampled independently from π∞, also independent from ξ,
and E% is the expectation on them. We recall that

µN(x;%1, %2) ∶= %1(xN)
∏Nk=1Gk,k−1(xk, xk−1)

GN,0(%1, %2)
%2(x0)

is a density function, and

GN,0(%1, %2) = ∫ %1(xN)
N

∏
k=1

Gk,k−1(xk, xk−1)%2(x0)dx0,N .
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The goal is to show that, when N is large, the density µN(x;%1, %2) factorizes
into two independent ones, with an error that is exponentially small in n.
The proof consists of several steps.

Step 1. Rewriting E[FG]. Since Ex[f(η1, . . . , ηm1)g(ηm1+n, . . . , ηm2+n)]
only depends on the variables x0,m1 ,xm1+n−1,N , we will first integrate out
other variables in µN(⋅;%1, %2). We keep a “middle” one for a future purpose:
define

` =m1 + ⌊n/2⌋.
After integrating out the variables xm1+1,`−1,x`+1,m1+n−2, we obtain
(3.29)

∫ µN(x;%1, %2)dxm1+1,`−1dx`+1,m1+n−2

=GN,0(%1, %2)−1%1(xN)
N

∏
k=m1+n

Gk,k−1(xk, xk−1)Gm1+n−1,`(xm1+n−1, x`)

×G`,m1(x`, xm1)
m1

∏
k=1

Gk,k−1(xk, xk−1)%2(x0).

Recall the definition of forward and backward density in (2.7), we rewrite
the two factors in (3.29) that contain x` as

(3.30)
Gm1+n−1,`(⋅, x`) = ρper(m1 + n − 1, ⋅; `, δx`

)∫ Gm1+n−1,`(y, x`)dy,

G`,m1(x`, ⋅) = ρ̃per(`, δx`
;m1, ⋅)∫ G`,m1(x`, y)dy.

Further define the normalization constant
(3.31)

h1(x`) = ∫ %1(xN)
N

∏
k=m1+n

Gk,k−1(xk, xk−1)ρper(m1 + n − 1, xm1+n−1; `, δx`
)dxm1+n−1,N ,

h2(x`) = ∫ ρ̃per(`, δx`
;m1, xm1)

m1

∏
k=1

Gk,k−1(xk, xk−1)%2(x0)dx0,m1 ,

and the densities
(3.32)

p1(xm1+n−1,N , x`) = h1(x`)−1%1(xN)
N

∏
k=m1+n

Gk,k−1(xk, xk−1)

× ρper(m1 + n − 1, xm1+n−1; `, δx`
),

p2(x`,x0,m1) = h2(x`)−1ρ̃per(`, δx`
;m1, xm1)

m1

∏
k=1

Gk,k−1(xk, xk−1)%2(x0).

Using the above notations, one can rewrite (3.29) as

∫ µN(x;%1, %2)dxm1+1,`−1dx`+1,m1+n−2

= p1(xm1+n−1,N , x`)p2(x`,x0,m1)p(x`),
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where p(⋅) is a density that takes the form

p(x`) =GN,0(%1, %2)−1h1(x`)h2(x`)

× (∫ Gm1+n−1,`(y, x`)dy)(∫ G`,m1(x`, y)dy).

It is clear that p is the marginal density of x`, since

∫ µN(x;%1, %2)dx0,`−1dx`+1,N = p(x`).

In this way, the expectation of the product is rewritten as
(3.33)

E[FG] =E%E∫ Ex[f(η1, . . . , ηm1)g(ηm1+n, . . . , ηm2+n)]

× p1(xm1+n−1,N , x`)p2(x`,x0,m1)p(x`)dxm1+n−1,Ndx0,m1dx`.

Step 2. Rewriting E[F ]E[G]. Let %3, %4 be sampled independently from
π∞, which are also independent from %1, %2 and the random environment.
Define
(3.34)
p3(xm1+n−1,N)

=
%1(xN)∏Nk=m1+nGk,k−1(xk, xk−1)ρper(m1 + n − 1, xm1+n−1; `, %3)

∫ %1(x′N)∏
N
k=m1+nGk,k−1(x′k, x

′
k−1)ρper(m1 + n − 1, x′m1+n−1; `, %3)dx′m1+n−1,N

,

p4(x0,m1)

=
ρ̃per(`, %4;m1, xm1)∏

m1
k=1Gk,k−1(xk, xk−1)%2(x0)

∫ ρ̃per(`, %4;m1, x′m1)∏
m1
k=1Gk,k−1(x′k, x

′
k−1)%2(x′0)dx′0,m1

.

In other words, in the expressions of p1, p2, we have replaced δx`
with %3, %4

to obtain p3, p4 respectively. Now it is straightforward to check that
(3.35)
E[F ]E[G] = E%E∫ Ex[f(η1, . . . , ηm1)g(ηm1+n, . . . , ηm2+n)]

× p3(xm1+n−1,N)p4(x0,m1)p(x`)dxm1+n−1,Ndx0,m1dx`.

In the above expression, the term p(x`) actually plays no role since one can
integrate it out and ∫ p(x`)dx` = 1 – we kept it there to compare with the
expression of E[FG].

Combining (3.33) and (3.35), we have
(3.36)
Cov[F,G] = E%E∫ Ex[f(η1, . . . , ηm1)g(ηm1+n, . . . , ηm2+n)]

× [p1(xm1+n−1,N , x`)p2(x`,x0,m1) − p3(xm1+n−1,N)p4(x0,m1)]
× p(x`)dxm1+n−1,Ndx0,m1dx`.
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Step 3. Approximation. Now we decompose Cov[F,G] = Err1(n) +
Err2(n), with

Err1(n) = E%E∫ Ex[f(η1, . . . , ηm1)g(ηm1+n, . . . , ηm2+n)]

× [p1(xm1+n−1,N , x`) − p3(xm1+n−1,N)]p2(x`,x0,m1)p(x`)dxm1+n−1,Ndx0,m1dx`,

and

Err2(n) = E%E∫ Ex[f(η1, . . . , ηm1)g(ηm1+n, . . . , ηm2+n)]

× p3(xm1+n−1,N)[p2(x`,x0,m1) − p4(x0,m1)]p(x`)dxm1+n−1,Ndx0,m1dx`.

It suffices to show that ∣Erri(n)∣ ≤ Ce−λn∥F ∥L2∥G∥L2 for i = 1,2. The two
cases are handled in the same way, so we will only focus on Err1(n).

The rest of the proof is very similar to that of Proposition 3.4. First, from
(3.32) and (3.34) we have

∣p1(xm1+n−1,N , x`) − p3(xm1+n−1,N)∣ ≤ I1 + I2,

with

I1 =
%1(xN)∏Nk=m1+nGk,k−1(xk, xk−1)

∫ %1(x′N)∏
N
k=m1+nGk,k−1(x′k, x

′
k−1)dx′m1+n−1,N ⋅ infy ρper(m1 + n − 1, y; `, δx`

)
× sup

y
∣ρper(m1 + n − 1, y; `, δx`

) − ρper(m1 + n − 1, y; `, %3)∣,

I2 =
%1(xN)∏Nk=m1+nGk,k−1(xk, xk−1)

∫ %1(x′N)∏
N
k=m1+nGk,k−1(x′k, x

′
k−1)dx′m1+n−1,N

×
supy ρper(m1 + n − 1, y; `, %3)

infy ρper(m1 + n − 1, y; `, δx`
) infy ρper(m1 + n − 1, y; `, %3)

× sup
y
∣ρper(m1 + n − 1, y; `, δx`

) − ρper(m1 + n − 1, y; `, %3)∣.

Thus, Err1(n) can be bounded from above by

Err1(n) ≤ E%E∫ Ex[∣f(η1, . . . , ηm1)g(ηm1+n, . . . , ηm2+n)∣]

× [I1 + I2]p2(x`,x0,m1)p(x`)dxm1+n−1,Ndx0,m1dx` =∶ J1 + J2.

Consider the term J1. We first bound I1 by

I1 ≤
%1(xN)∏Nk=m1+nGk,k−1(xk, xk−1)

∫ %1(x′N)∏
N
k=m1+nGk,k−1(x′k, x

′
k−1)dx′m1+n−1,N

×
supy,x ∣ρper(m1 + n − 1, y; `, δx) − ρper(m1 + n − 1, y; `, %3)∣

infy,x ρper(m1 + n − 1, y; `, δx)
.

Using (3.32), we bound p2(x`,x0,m1) by

p2(x`,x0,m1) ≤
∏m1
k=1Gk,k−1(xk, xk−1)%2(x0)

∫ ∏m1
k=1Gk,k−1(x′k, x

′
k−1)%2(x′0)dx′0,m1

×
supx,y ρ̃per(`, δx;m1, y)
infx,y ρ̃per(`, δx;m1, y)

.
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In this way we got rid of the dependence on x` in all other terms except
for p(x`) which can be integrated out. By the independence of the random
environment in separate time intervals, we obtain J1 ≤∏4

i=1Ki, with

K1 ∶= E%E∫ Ex∣f(η1, . . . , ηm1)∣
∏m1
k=1Gk,k−1(xk, xk−1)%2(x0)

∫ ∏m1
k=1Gk,k−1(x′k, x

′
k−1)%2(x′0)dx′0,m1

dx0,m1 ,

K2 ∶= E%E∫ Ex∣g(ηm1+n, . . . , ηm2+n)∣

×
%1(xN)∏Nk=m1+nGk,k−1(xk, xk−1)

∫ %1(x′N)∏
N
k=m1+nGk,k−1(x′k, x

′
k−1)dx′m1+n−1,N

dxm1+n−1,N ,

K3 ∶= E%E
supy,x ∣ρper(m1 + n − 1, y; `, δx) − ρper(m1 + n − 1, y; `, %3)∣

infy,x ρper(m1 + n − 1, y; `, δx)
,

K4 ∶= E%E
supx,y ρ̃per(`, δx;m1, y)
infx,y ρ̃per(`, δx;m1, y)

.

Applying Proposition 2.1, we have K3 ≤ Ce−λn and K4 ≤ C. For K1, we can
bound it from above by

K1 ≤ E%E∫ Ex∣f(η1, . . . , ηm1)∣

×
%4(xm1)∏

m1
k=1Gk,k−1(xk, xk−1)%2(x0)

∫ %4(x′m1)∏
m1
k=1Gk,k−1(x′k, x

′
k−1)%2(x′0)dx′0,m1

dx0,m1 ×
supy %4(y)
infy %4(y)

.

Applying the Cauchy-Schwarz inequality, we have

K2
1 ≤ CE%E(∫ Ex∣f(η1, . . . , ηm1)∣

×
%4(xm1)∏

m1
k=1Gk,k−1(xk, xk−1)%2(x0)

∫ %4(x′m1)∏
m1
k=1Gk,k−1(x′k, x

′
k−1)%2(x′0)dx′0,m1

dx0,m1)
2
.

The r.h.s. can be further bounded from above by

CE%E∫ Ex∣f(η1, . . . , ηm1)∣
2

×
%4(xm1)∏

m1
k=1Gk,k−1(xk, xk−1)%2(x0)

∫ %4(x′m1)∏
m1
k=1Gk,k−1(x′k, x

′
k−1)%2(x′0)dx′0,m1

dx0,m1 = C∥F ∥
2
L2 .

The same proof shows that K2 ≤ C∥G∥L2 . So we have J1 ≤ Ce−λn∥F ∥L2∥G∥L2 .
The term J2 is dealt with in the same way, and this combines to show that
Err1(n) ≤ Ce−λn∥F ∥L2∥G∥L2 . Since Err2(n) is proved in exactly the same
way, we complete the proof of the proposition. ◻

4. Proof of Theorem 1.1

Recall the goal was to show that, as T →∞, wT√
T

converges to a nondegen-
erate Gaussian distribution under the measure P⊗ P̂T . As we have already
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observed in Section 3.4 the laws of wN√
N

under the measure P⊗ P̂N weakly
converge to N(0, σ2

eff), as N → ∞. In this section we show how to extend
the conclusion to the laws of wT√

T
, under the measure P⊗ P̂T , when T →∞

(not necessarily taking integer values).
For a general T > 0, define N ∶= ⌊T ⌋. Let X1(T ) and X2(T ) be random

variables with the same laws as wN under P ⊗ P̂N and wT under P ⊗ P̂T ,
respectively. We have the following lemma, which is the last piece that is
needed to complete the proof of Theorem 1.1.

Lemma 4.1. There exists C > 0 such that for any T ≥ 1 one can find a
coupling (X1(T ),X2(T )) such that

(4.1) E∣X2(T ) −X1(T )∣
2 ≤ C.

Proof. To lighten the notation we write X1 and X2, instead of X1(T ) and
X2(T ). Recall that ρ(T, ⋅) is the density of wT under P̂T , and we have the
relation

(4.2) ρ(T,x) = ∫ ZT,N(x, y)ρ(N,y)dy
∫ ZT,N(x′, y′)ρ(N,y′)dx′dy′

.

From (4.2), we know that, given the value of X1, if we sample X2 from the
density ZT,N (⋅,X1)

∫ ZT,N (x′,X1)dx′ , then X2 has the same law as wT under P⊗ P̂T . By
the construction of X1,X2, we have for any y ∈ R that

E[∣X2 −X1∣2∣X1 = y] = E∫
(x − y)2ZT,N(x, y)dx
∫ ZT,N(x′, y)dx′

.

By the Cauchy-Schwarz inequality, we have

E[∣X2 −X1∣2∣X1 = y]

≤ ∫ (x − y)2
√

EZT,N(x, y)2dx
√

E(∫ ZT,N(x′, y)dx′)−2.

For the first term on the r.h.s., we apply Lemma 3.3 to derive (note that
T −N < 1)

∫ (x − y)2
√

EZT,N(x, y)2dx ≤ C.

For the second term, we have for each fixed y that

∫ ZT,N(x′, y)dx′
law= v1(T −N,0),

with v1 solving the SHE (2.6), with the initial data v1(0, x) ≡ 1. Thus,
applying [8, Lemma B.7], we have E(∫ ZT,N(x′, y)dx′)−2 ≤ C. The proof is
complete. ◻
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5. Nondegeneracy of the diffusion constant

The goal of this section is to show that σ2
eff ≠ 0, which is a nontrivial fact.

In general, it needs not be true that ∑j∈Z r(j) > 0 when r(⋅) is the covariance
function of a stationary sequence. We will need to make use of some specific
structure of our model.

We first show a stability result on the approximation of the diffusion
constant. Define

(5.1) σ2
N ∶=

1
N

E∫ Ex(
N

∑
k=1

ηk)
2
µN(x; m, δ0)dx0,N =

1
N

EÊN ⌊wN ⌋2,

and

(5.2) σ̃2
N ∶=

1
N

E%E%̃E∫ Ex(
N

∑
k=1

ηk)
2
µN(x; %̃, %)dx0,N =

1
N
E(

N

∑
k=1

ηk)2.

We have

Proposition 5.1. σ2
N − σ̃2

N → 0 as N →∞.

Proof. The proof is similar to that of Propositions 3.4 and 3.7, so we only
sketch the argument here.

First, for some kN →∞, yet to be determined, we decompose σ2
N = ∑

4
`=1 I`

and σ̃2
N = ∑

4
`=1 J`, with

I` =
1
N

∑
(i,j)∈A`

E∫
TN+1

(Exηiηj)µN(x; m, δ0)dx0,N ,

J` =
1
N

∑
(i,j)∈A`

E%E%̃E∫
TN+1

(Exηiηj)µN(x; %̃, %)dx0,N ,

with
A1 = B1 ×B1, A2 = B2 ×B2,

A3 = B1 ×B2, A4 = B2 ×B1,

and B1 = [kN ,N −kN ] and B2 = [1, kN −1]∪[N −kN +1,N]. In the following,
we will show that I` − J` → 0, for each ` = 1, . . . , 4.

The case of ` = 1. By following closely the proof of Proposition 3.4 and
with the help of Lemma 3.2, we derive that, for each (i, j) ∈ A1,

∣E∫ (Exηiηj)µN(x; m, δ0)dx0,N −E%E%̃E∫ (Exηiηj)µN(x; %̃, %)dx0,N ∣

≤ Ce−λkN ,

which implies that
∣I1 − J1∣ ≤ CN−1N2e−λkN = CNe−λkN .

The case of ` = 2. In this case, we directly apply Lemma 3.2 to derive that
∣I2 − J2∣ ≤ CN−1k2

N .
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The case of ` = 3 and 4. By symmetry, we only need to consider ` = 3.
First, for J3, we have

J3 =
1
N

∑
(i,j)∈A3

E(ηiηj)

By Proposition 3.7, we know that ∣E(ηiηj)∣ ≤ Ce−λ∣i−j∣, and this implies that

∣J3∣ ≤ CN−1 ∑
i∈B1,j∈B2

e−λ∣i−j∣ ≤ CN−1kN .

It remains to study I3, which we rewrite as

I3 =
1
N

∑
(i,j)∈A3

⎛
⎝

E∫ (Exηiηj)µN(x; m, δ0)dx0,N − ∏
k=i,j

E∫ (Exηk)µN(x; m, δ0)dx0,N
⎞
⎠

+ 1
N

∑
(i,j)∈A3

∏
k=i,j

E∫ (Exηk)µN(x; m, δ0)dx0,N =∶ I31 + I32.

For the term I31, by following the proof for Proposition 3.7, one can show
that

∣I31∣ ≤ CN−1 ∑
(i,j)∈A3

e−λ∣i−j∣ ≤ CN−1kN .

For the other term, since (i, j) ∈ A3, we have i ∈ [kN ,N − kN ]. By following
the proof for Proposition 3.4, one can show that

∣E∫ (Exηi)µN(x; m, δ0)dx0,N −E∫ (Exηi)µN(x; %̃, %)dx0,N ∣ ≤ Ce−λkN .

We have
E∫ (Exηi)µN(x; %̃, %)dx0,N = Eηi = 0.

We can apply Lemma 3.2 again and conclude

∣I32∣ ≤ CN−1 ∑
(i,j)∈A3

e−λkN ≤ CkNe−λkN .

To summarize, we have

∣σ2
N − σ̃2

N ∣ ≤
4
∑
`=1
∣I` − J`∣ ≤ C(Ne−λkN +N−1k2

N +N−1kN + kNe−λkN ).

Choosing kN = Nα for any α ∈ (0,1/2), the proof is complete. ◻

Since

σ̃2
N =

1
N
E(

N

∑
k=1

ηk)2 → σ2
eff , as N →∞,

applying Proposition 5.1, we derive that, as N →∞,

σ2
N → σ2

eff .

The following proposition completes the proof of the nondegeneracy of σ2
eff :
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Proposition 5.2. We have
lim inf
N→∞

σ2
N ≥ 1.

As a result, σ2
eff ≥ 1.

Proof. By definition, we have

σ2
N =

1
N

EÊN ⌊wN ⌋2.

Since ∣wN ∣ ≤ ∣⌊wN ⌋∣ + 1, we have via a triangle inequality that
√

1
N

EÊNw2
N ≤
√

1
N

EÊN ⌊wN ⌋2 +
√

1
N
.

Sending N →∞ and applying Lemma 5.3 below, the proof is complete. ◻

Lemma 5.3. For any N ∈ Z+, we have
(5.3) EÊNw2

N ≥ N.

Proof. Recall that ρ(N, ⋅) is the density of wN under the quenched polymer
measure P̂N , we have

EÊNw2
N = E∫ x2ρ(N,x)dx

≥ E[∫ x2ρ(N,x)dx − (∫ xρ(N,x)dx)2].

Note that the last expression is just the average of the quenched variance. It
remains to show
(5.4) E[∫ x2ρ(N,x)dx − (∫ xρ(N,x)dx)2] = N,

which is a standard folklore for the directed polymer when the random
environment is statistically invariant under shear transformations. We sketch
the argument below.

For any θ ∈ R, consider the solution to SHE

(5.5)
∂tZθ(t, x) =

1
2

∆Zθ(t, x) + βξ(t, x)Zθ(t, x), t > 0,

Zθ(0, x) = eθx,
then we know that, for fixed N ,

∫ x2ρ(N,x)dx − (∫ xρ(N,x)dx)2 law= ∂2
θ logZθ(N, 0)∣θ=0.

For a proof of this fact, we refer to e.g. [9, Eq. (2.15)]. Since ξ is a Gaussian
process that is white in time and stationary in space, we have

(5.6) {ξ(t, x)}t,x
law= {ξ(t, x + θt)}t,x,

and this implies

(5.7) {Zθ(t, x)}t,x
law= {Z0(t, x + θt)eθx+

1
2 θ

2t}t,x,
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which comes from the fact that Z0(t, x+θt)eθx+
1
2 θ

2t solves (5.5) with {ξ(t, x)}
replaced by {ξ(t, x + θt)}. Therefore, we have

E logZθ(N, 0) =
1
2
θ2N +E logZ0(N,θN)

= 1
2
θ2N +E logZ0(N, 0),

where the last step comes from the fact that Z0(N, ⋅) is a stationary random
field. Therefore, we have

E∂2
θ logZθ(N, 0)∣θ=0 = N.

The proof is complete. ◻

6. Further discussion

We list two problems here.

Quenched behavior. Theorem 1.1 concerns the behavior of wT under the
annealed measure P⊗ P̂T , and our approach does not give information on
the quenched behavior. For the problem on the whole line with no periodic
structure, the annealed and quenched behaviors are quite different, due to
the localization phenomenon. It would be interesting to study the quenched
asymptotics of wT in our setting.

Relation between two diffusion constants. Recall that ZT is the partition
function formally defined in (1.1). It was shown in [8], under the same
assumption as here, that the free energy logZT satisfies a central limit
theorem: there exists γ,Σ > 0 such that under P,

logZT + γT√
T

⇒ N(0,Σ), as T →∞.

Different expressions of Σ were derived, see [8, Eq. (5.58)] which involves
the solution to an abstract cell problem and [7, Eq. (2.10)] which takes the
form of an average of a Brownian bridge functional. A surprising relation
between Σ and σ2

eff was derived by Brunet through the replica method, see
[2, Eq. (20)]. It is unclear at all why they should be related, and we believe
it is an important problem to unravel the connection here.

Appendix A. Proof of Lemma 3.3

We start with the following.

Lemma A.1. For each t > s and y ∈ R, the process {Zt,s(x, y)/qt−s(x−y)}x∈R
is stationary.
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Proof. The argument is rather standard, so we only sketch the proof. We
consider first the case when ξR(t, x) is a 1-periodic Gaussian noise that is
white in time and colored in space, with the covariance function R(⋅) ∈ C∞(T).
Recall that qt(x) = (2πt)−1/2 exp(−x2

2t ) denotes the standard heat kernel. The
propagator of equation (2.1), corresponding to this noise, shall be denoted
by Z(R)t,s (x, y) and is given by the formula

Z
(R)
t,s (x, y) = qt−s(x − y)E [exp{β ∫

t

s
ξR(σ,By,x

s,t (σ))dσ −
1
2
β2R(0)(t − s)}] ,

where (By,x
s,t (σ))s≤σ≤t is the Brownian bridge between (s, y) and (t, x). It is

clear from the above formula that {Z(R)t,s (x, y)/qt−s(x − y)}x∈R is stationary,
using the fact that ξR also satisfies the relation (5.6). The conclusion can be
extended to the case of the Gaussian space-time white noise by approximation
of δ(x − y) by a sequence of Rn(⋅) ∈ C∞(T) as n→∞. �

The end of the proof of Lemma 3.3. Using Lemma A.1 and the definition
of the propagator of the SHE on a torus, see (2.4), we can write

EZt,0(x,0)p = (
qt(x)
qt(0)

)pEZt,0(0,0)p ≤ (
qt(x)
qt(0)

)pEGt,0(0,0)p.

Applying [8, Lemma B.1], we complete the proof.
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