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Abstract
Simulation-free methods for training continuous-
time generative models construct probability
paths that go between noise distributions and
individual data samples. Recent works, such as
Flow Matching, derived paths that are optimal
for each data sample. However, these algorithms
rely on independent data and noise samples, and
do not exploit underlying structure in the data
distribution for constructing probability paths.
We propose Multisample Flow Matching, a more
general framework that uses non-trivial couplings
between data and noise samples while satisfying
the correct marginal constraints. At very small
overhead costs, this generalization allows us to
(i) reduce gradient variance during training, (ii)
obtain straighter flows for the learned vector
field, which allows us to generate high-quality
samples using fewer function evaluations, and
(iii) obtain transport maps with lower cost in
high dimensions, which has applications beyond
generative modeling. Importantly, we do so
in a completely simulation-free manner with a
simple minimization objective. We show that our
proposed methods improve sample consistency
on downsampled ImageNet data sets, and lead
to better low-cost sample generation.

1. Introduction
Deep generative models offer an attractive family of
paradigms that can approximate a data distribution and pro-
duce high quality samples, with impressive results in re-
cent years (Ramesh et al., 2022; Saharia et al., 2022; Gafni
et al., 2022). In particular, these works have made use of
simulation-free training methods for diffusion models (Ho
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Figure 1. Multisample Flow Matching trained with batch optimal
couplings produces more consistent samples across varying NFEs.
Note that both flows on each row start from the same noise sample.

et al., 2020; Song et al., 2021b). A number of works have
also adopted and generalized these simulation-free methods
(Lipman et al., 2023; Albergo & Vanden-Eijnden, 2023;
Liu et al., 2022; Neklyudov et al., 2022) for continuous
normalizing flows (CNF; Chen et al. (2018)), a family of
continuous-time deep generative models that parameterizes
a vector field which flows noise samples into data samples.

Recently, Lipman et al. (2023) proposed Flow Matching
(FM), a method to train CNFs based on constructing explicit
conditional probability paths between the noise distribution
(at time t = 0) and each data sample (at time t = 1). Fur-
thermore, they showed that these conditional probability
paths can be taken to be the optimal transport path when the
noise distribution is a standard Gaussian, a typical assump-
tion in generative modeling. However, this does not imply
that the marginal probability path (marginalized over the
data distribution) is anywhere close to the optimal transport
path between the noise and data distributions.

Most existing works, including diffusion models and Flow
Matching, have only considered conditional sample paths
where the endpoints (a noise sample and a data sample)
are sampled independently. However, this results in non-
zero gradient variances even at convergence, slow training
times, and in particular limits the design of probability paths.
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Multisample Flow Matching

In turn, it becomes difficult to create paths that are fast to
simulate, a desirable property for both likelihood evaluation
and sampling.

Contributions: We present a tractable instance of Flow
Matching with joint distributions, which we call Multi-
sample Flow Matching. Our proposed method generalizes
the construction of probability paths by considering non-
independent couplings of k-sample empirical distributions.

Among other theoretical results, we show that if an appro-
priate optimal transport (OT) inspired coupling is chosen,
then sample paths become straight as the batch size k →∞,
leading to more efficient simulation. In practice, we observe
both improved sample quality on ImageNet using adaptive
ODE solvers and using simple Euler discretizations with a
low budget number of function evaluations. Empirically, we
find that on ImageNet, we can reduce the required sampling
cost by 30% to 60% for achieving a low Fréchet Incep-
tion Distance (FID) compared to a baseline Flow Matching
model, while introducing only 4% more training time. This
improvement in sample efficiency comes at no degradation
in performance, e.g. log-likelihood and sample quality.

Within the deep generative modeling paradigm, this al-
lows us to regularize towards the optimal vector field in
a completely simulation-free manner (unlike e.g. Finlay
et al. (2020b); Liu et al. (2022)), and avoids adversarial
formulations (unlike e.g. Makkuva et al. (2020); Albergo &
Vanden-Eijnden (2023)). In particular, we are the first work
to be able to make use of solutions from optimal solutions on
minibatches while preserving the correct marginal distribu-
tions, whereas prior works would only fit to the barycentric
average (see detailed discussion in Section 5.1). Beyond
generative modeling, we also show how our method can
be seen as a new way to compute approximately optimal
transport maps between arbitrary distributions in settings
where the cost function is completely unknown and only
minibatch optimal transport solutions are provided.

2. Preliminaries
2.1. Continuous Normalizing Flow

Let Rd denote the data space with data points
x = (x1, . . . , xd) ∈ Rd. Two important objects we
use in this paper are: the probability path pt : Rd → R>0,
which is a time dependent (for t ∈ [0, 1]) probability
density function, i.e.,

∫
pt(x)dx = 1, and a time-dependent

vector field, ut : [0, 1] × Rd → Rd. A vector field ut
constructs a time-dependent diffeomorphic map, called
a flow, ψ : [0, 1] × Rd → Rd, defined via the ordinary
differential equation (ODE):

d

dt
ψt(x0) = ut(ψt(x0)) , ψ0(x0) = x0 . (1)

To create a deep generative model, Chen et al. (2018)
suggested modeling the vector field ut with a neural
network, leading to a deep parametric model of the flow
ψt, referred to as a Continuous Normalizing Flow (CNF).
A CNF is often used to transform a density p0 to a different
one, p1, via the push-forward equation

pt(x) = [ψt]♯p0(x) = p0(ψ
−1
t (x))

∣∣∣∣det [∂ψ−1
t

∂x
(x)

]∣∣∣∣ , (2)

where the second equality defines the push-forward (or
change of variables) operator ♯. A vector field ut is said
to generate a probability path pt if its flow ψt satisfies (2).

2.2. Flow Matching

A simple simulation-free method for training CNFs is the
Flow Matching algorithm (Lipman et al., 2023), which re-
gresses onto an (implicitly-defined) target vector field that
generates the desired probability density path pt. Given
two marginal distributions q0(x0) and q1(x1) for which we
would like to learn a CNF to transport between, Flow Match-
ing seeks to optimize the simple regression objective,

Et,pt(x) ∥vt(x; θ)− ut(x)∥
2
, (3)

where vt(x; θ) is the parametric vector field for the CNF,
and ut(x) is a vector field that generates a probability path
pt under the two marginal constraints that pt=0 = q0 and
pt=1 = q1. While Equation (3) is the ideal objective func-
tion to optimize, not knowing (pt, ut) makes this computa-
tionally intractable.

Lipman et al. (2023) proposed a tractable method of opti-
mizing (3), which first defines conditional probability paths
and vector fields, such that when marginalized over q0(x0)
and q1(x1), provide both pt(x) and ut(x). When targeted
towards generative modeling, q0(x0) is a simple noise dis-
tribution and easy to directly enforce, leading to a one-sided
construction:

pt(x) =

∫
pt(x|x1)q1(x1) dx1 (4)

ut(x) =

∫
ut(x|x1)

pt(x|x1)q1(x1)
pt(x)

dx1, (5)

where the conditional probability path is chosen such that

pt=0(x|x1) = q0(x) and pt=1(x|x1) = δ(x− x1), (6)

where δ(x− a) is a Dirac mass centered at a ∈ Rd. By con-
struction, pt(x|x1) now satisfies both marginal constraints.

Lipman et al. (2023) shows that if ut(x|x1) generates
pt(x|x1), then the marginalized ut(x) generates pt(x), and
furthermore, one can train using the much simpler objective
of Conditional Flow Matching (CFM):

Et,q1(x1),pt(x|x1) ∥vt(x; θ)− ut(xt|x1)∥
2
, (7)
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with xt = ψt(x0|x1); see 2.2.1 for more details. Note
that this objective has the same gradient with respect to
the model parameters θ as Eq. (3) (Lipman et al., 2023,
Theorem 2).

2.2.1. CONDITIONAL OT (CONDOT) PATH

One particular choice of conditional path pt(x|x1) is to
use the flow that corresponds to the optimal transport dis-
placement interpolant (McCann, 1997) when q0(x0) is the
standard Gaussian, a common convention in generative mod-
eling. The vector field that corresponds to this is

ut(xt|x1) =
x1 − x
1− t

. (8)

Using this conditional vector field in (1), this gives the
conditional flow

xt = ψt(x0|x1) = (1− t)x0 + tx1 . (9)

Substituting (9) into (8), one can also express the value of
this vector field using a simpler expression,

ut(xt|x1) = x1 − x0 . (10)

It is evident that this results in conditional flows that (i)
tranports all points x0 from t = 0 to x1 at exactly t = 1
and (ii) are straight paths between the samples x0 and x1.
This particular case of straight paths was also studied by
Liu et al. (2022) and Albergo & Vanden-Eijnden (2023),
where the conditional flow (9) is referred to as a stochastic
interpolant. Lipman et al. (2023) additionally showed that
the conditional construction can be applied to a large class
of Gaussian conditional probability paths, namely when
pt(x|x1) = N (x|µt(x1), σt(x1)

2I). This family of proba-
bility paths encompasses most prior diffusion models where
probability paths are induced by simple diffusion processes
with linear drift and constant diffusion (e.g. Ho et al. (2020);
Song et al. (2021b)). However, existing works mostly con-
sider settings where q0(x0) and q1(x1) are sampled inde-
pendently when computing training objectives such as (7).

2.3. Optimal Transport: Static & Dynamic

Optimal transport generally considers methodologies that
define some notion of distance on the space of probabil-
ity measures (Villani, 2008; 2003; Santambrogio, 2015).
Letting P(Rd) be the space of probability measures over
Rd, we define the Wasserstein distance with respect to a
cost function c : Rd × Rd → R+ between two measures
q0, q1 ∈ P(Rd) as (Kantorovitch, 1942)

Wc(q0, q1) := min
q∈Γ(q0,q1)

Eq(x0,x1)[c(x0, x1)] , (11)

where Γ(q0, q1) is the set of joint measures with left
marginal equal to q0 and right marginal equal to q1, called

the set of couplings. The minimizer to Equation (11) is
called the optimal coupling, which we denote by q∗c . In
the case where c(x0, x1) := ∥x0 − x1∥2, the squared-
Euclidean distance, Equation (11) amounts to the (squared)
2-Wasserstein distance W 2

2 (q0, q1), and we simply write the
optimal transport plan as q∗.

Considering again the squared-Euclidean cost, in the
case where q0 exhibits a density over Rd (e.g. if q0 is the
standard normal distribution), Benamou & Brenier (2000)
states that W 2

2 (q0, q1) can be equivalently expressed as a
dynamic formulation,

W 2
2 (q0, q1) = min

pt,ut

∫ 1

0

∫
Rd

∥ut(x)∥2 pt(x)dx0dt. (12)

where ut generates pt, and pt satisfies boundary conditions
pt=0 = q0 and pt=1 = q1. The optimality condition ensures
that sample paths xt are straight lines, i.e. minimize the
length of the path, and leads to paths that are much easier to
simulate. Some prior approaches have sought to regularize
the model using this optimality objective (e.g. Tong et al.
(2020); Finlay et al. (2020b)). In contrast, instead of directly
minimizing (12), we will discuss an approach based on
using solutions of the optimal coupling q∗ on minibatch
problems, while leaving the marginal constraints intact.

3. Flow Matching with Joint Distributions
While Conditional Flow Matching in (7) leads to an unbi-
ased gradient estimator for the Flow Matching objective,
it was designed with independently sampled x0 and x1 in
mind. We generalize the framework from Subsection 2.2
to a construction that uses arbitrary joint distributions of
q(x0, x1) which satisfy the correct marginal constraints, i.e.∫
q(x0, x1)dx1=q0(x0) ,

∫
q(x0, x1)dx0=q1(x1). (13)

We will show in Subsection 4 that this can potentially lead
to lower gradient variance during training and allow us
to design more optimal marginal vector fields ut(x) with
desirable properties such as improved sample efficiency.

Building on top of Flow Matching, we propose modifying
the conditional probability path construction (6) so that at
t = 0, we define

pt=0(x0|x1) = q(x0|x1). (14)

where q(x0|x1) is the conditional distribution q(x0,x1)
q1(x1)

. Us-
ing this construction, we still satisfy the marginal constraint,

p0(x) =

∫
p0(x|x1)q1(x1)dx1 =

∫
q(x, x1)dx1 = q0(x)

i.e. pt=0(x) =
∫
q(x, x1)dx1 = q0(x) by the assumption

made in (13). Then similar to Chen & Lipman (2023), we

3



Multisample Flow Matching

note that the conditional probability path pt(x|x1) need
not be explicitly formulated for training, and that only an
appropriate conditional vector field ut(x|x1) needs to be
chosen such that all points arrive at x1 at t = 1, which
ensures pt=1(x|x1) = δ(x − x1). As such, we can make
use of the same conditional vector field as prior works, e.g.
the choice in Equations (8) to (10).

We then propose the Joint CFM objective as

LJCFM = Et,q(x0,x1) ∥vt(xt; θ)− ut(xt|x1)∥
2
, (15)

where xt = ψt(x0|x1) is the conditional flow. Training
only involves sampling from q(x0, x1) and does not require
explicitly knowing the densities of q(x0, x1) or pt(x|x1).
Note that Equation (15) reduces to the original CFM objec-
tive (7) when q(x0, x1) = q0(x0)q1(x1).

A quick sanity check shows that this objective can be used
with any choice of joint distribution q(x0, x1).

Lemma 3.1. The optimal vector field vt(·; θ) in (15), which
is the marginal vector field ut, maps between the marginal
distributions q0(x0) and q1(x1).

In the remainder of the section, we highlight some motiva-
tions for using joint distributions q(x0, x1) that are different
from the independent distribution q0(x0)q1(x1).

Variance reduction Choosing a good joint distribution
can be seen as a way to reduce the variance of the gradient
estimate, which improves and speeds up training. We de-
velop the gradient covariance at a fixed x and t, and bound
its total variance:

Lemma 3.2. The total variance (i.e. the trace of the covari-
ance) of the gradient at a fixed x and t is bounded as:

σ2
t,x = Tr

[
Covpt(x1|x)

(
∇θ ∥vt(x; θ)− ut(x|x1)∥2

) ]
(16)

≤ ∥∇θvt(x; θ)∥2 Ept(x1|x)∥ut(x)− ut(x|x1)∥
2

Then Et,pt(x)[σ
2
t,x] is bounded above by:

max
t,x
∥∇θvt(x; θ)∥2 × LJCFM (17)

This proves that Et,pt(x)[σ
2
t,x], which is the average gradient

variance at fixed x and t, is upper bounded in terms of the
Joint CFM objective. That means that minimizing the Joint
CFM objective help in decreasing Et,pt(x)[σ

2
t,x]. Note also

that Et,pt(x)[σ
2
t,x] is not the gradient variance and is always

smaller, as it does not account for variability over x and t,
but it is a good proxy for it. The proof is in App. D.2.

Sampling x0 and x1 independently generally cannot achieve
value zero for Et,pt(x)[σ

2
t,x] even at the optimum, since there

are an infinite number of pairs (x0, x1) whose conditional
path crosses any particular x at a time t. As shown in (17),
having a low optimal value for the Joint CFM objective is a
good proxy for low gradient variance and hence a desirable
property for choosing a joint distribution q(x0, x1). In Sec-
tion 4, we show that certain joint distributions have optimal
Joint CFM values close to zero.

Straight flows Ideally, the flow ψt of the marginal vector
field ut (and of the learned vθ by extension) should be close
to a straight line. The reason is that ODEs with straight
trajectories can be solved with high accuracy using fewer
steps (i.e. function evaluations), which speeds up sample
generation. The quantity

S = Et,q0(x0)

[
∥ut(ψt(x0))∥2 − ∥ψ1(x0)− x0∥2

]
, (18)

which we call the straightness of the flow and was also
studied by Liu (2022), measures how straight the trajectories
are. Namely, we can rewrite it as

S = Et,q0(x0)

[
∥ut(ψt(x0))− Et′ [ut′(ψt′(x0))] ∥2

]
, (19)

which shows that S ≥ 0 and only zero if ut(ψt(x0)) is
constant along t, which is equivalent to ψt(x0) being a
straight line.

When x0 and x1 are sampled independently, the straightness
is in general far from zero. This can be seen in the CondOT
plots in Figure 2 (right); if flows were close to straight lines,
samples generated with one function evaluation (NFE=1)
would be of high quality. In Section 4, we show that for
certain joint distributions, the straightness of the flow is
close to zero.

Near-optimal transport cost By Lemma 3.1, the flow
ψt corresponding to the optimal ut satisfies that ψ0(x0) =
x0 ∼ q0 and ψ1(x0) ∼ q1. Hence, x0 7→ ψ1(x0) is a trans-
port map between q0 and q1 with an associated transport cost

Eq0(x0)∥ψ1(x0)− x0∥2. (20)

There is no reason to believe that when x0 and
x1 are sampled independently, the transport cost
Eq0(x0)∥ψ1(x0)− x0∥2 will be anywhere near the optimal
transport cost W 2

2 (p0, p1). Yet, in Section 4 we show that
for well chosen q, the transport cost for ψ1 does approach
its optimal value. Computing optimal (or near-optimal)
transport maps in high dimensions is a challenging task
(Makkuva et al., 2020; Amos, 2023) that extends beyond
generative modeling and into the field of optimal transport,
and it has applications in computer vision (Feydy et al.,
2017; Solomon et al., 2015; 2016; Liu et al., 2023) and
computational biology (Lübeck et al., 2022; Bunne et al.,
2021; 2022; Schiebinger et al., 2019), for instance. Hence,
Joint CFM may also be viewed as a practical way to obtain
approximately optimal transport maps in this context.

4



Multisample Flow Matching

4. Multisample Flow Matching
Constructing a joint distribution satisfying the marginal
constraints is difficult, especially since at least one of the
marginal distributions is based on empirical data. We thus
discuss a method to construct the joint distribution q(x0, x1)
implictly by designing a suitable sampling procedure that
leaves the marginal distributions invariant. Note that training
with (15) only requires sampling from q(x0, x1).

We use a multisample construction for q(x0, x1) in the
following manner:

1. Sample {x(i)0 }ki=1 ∼ q0(x0) and {x(i)1 }ki=1 ∼ q1(x1).

2. Construct a doubly-stochastic matrix with probabilities
π(i, j) dependent on the samples {x(i)0 }ki=1 and {x(i)1 }ki=1.

3. Sample from the discrete distribution,
qk(x0, x1) =

1
k

∑k
i,j=1 δ(x0 − xi0)δ(x1 − x

j
1)π(i, j).

Marginalizing qk(x0, x1) over samples from Step 1, we
obtain the implicitly defined q(x0, x1). By choosing
different couplings π(i, j), we induce different joint
distributions. In this work, we focus on couplings that
induce joint distributions which approximates, or at least
partially satisfies, the optimal transport joint distribution.
The following result, proven in App. D.3, guarantees that
q has the right marginals.

Lemma 4.1. The joint distribution q(x0, x1) constructed in
Steps [1-3] has marginals q0(x0) and q1(x1).

That is, the marginal constraints (13) are satisfied and con-
sequently we are allowed to use the framework of Section 3.

4.1. CondOT is Uniform Coupling

The aforementioned multisample construction subsumes the
independent joint distribution used by prior works, when
the joint coupling is taken to be uniformly distributed, i.e.
π(i, j) = 1

k . This is precisely the coupling used by (Lipman
et al., 2023) under our introduced notion of Multisample
Flow Matching, and acts as a natural reference point.

4.2. Batch Optimal Transport (BatchOT) Couplings

The natural connections between optimal transport theory
and optimal sampling paths in terms of straight-line interpo-
lations, lead us to the following pseudo-deterministic cou-
pling, which we call Batch Optimal Transport (BatchOT).
While it is difficult to solve (11) at the population level,
it can efficiently solved on the level of samples. Let
{x(i)0 }ki=1 ∼ q0(x0) and {x(i)1 }ki=1 ∼ q1(x1). When de-
fined on batches of samples, the OT problem (11) can be
solved exactly and efficiently using standard solvers, as
in POT (Flamary et al., 2021, Python Optimal Transport).
On a batch of k samples, the runtime complexity is well-

understood via either the Hungarian algorithm or network
simplex algorithm, with an overall complexity of O(k3)
(Peyré & Cuturi, 2019, Chapter 3). The resulting coupling
πk,∗ from the algorithm is a permutation matrix, which is
a type of doubly-stochastic matrix that we can incorporate
into Step 3 of our procedure.

We consider the effect that the sample size k has on the
marginal vector field ut(x). The following theorem shows
that in the limit of k → ∞, BatchOT satisfies the three
criteria that motivate Joint CFM: variance reduction, straight
flows, and near-optimal transport cost.
Theorem 4.2 (Informal). Suppose that Multisample Flow
Matching is run with BatchOT. Then, as k →∞,

(i) The value of the Joint CFM objective (Equation (15))
for the optimal ut converges to 0.

(ii) The straightness S for the optimal marginal vector field
ut (Equation (18)) converges to zero.

(iii) The transport cost Eq0(x0)∥ψ1(x0)− x0∥2 (Equation
(20)) associated to ut converges to the optimal trans-
port cost W 2

2 (p0, p1).

As k →∞, result (i) implies that the gradient variance both
during training and at convergence is reduced due to Equa-
tion (17); result (ii) implies the optimal model will be easier
to simulate between t=0 and t=1; result (iii) implies that
Multisample Flow Matching can be used as a simulation-
free algorithm for approximating optimal transport maps.

The full version of Thm. 4.2 can be found in App. D, and it
makes use of standard, weak technical assumptions which
are common in the optimal transport literature. While
Thm. 4.2 only analyzes asymptotic properties, we provide
theoretical evidence that the transport cost decreases with k,
as summarized by a monotonicity result in Thm. D.8.

4.3. Batch Entropic OT (BatchEOT) Couplings

For k sufficiently large, the cubic complexity of the BatchOT
approach is not always desirable, and instead one may con-
sider approximate methods that produce couplings suffi-
ciently close to BatchOT at a lower computational cost. A
popular surrogate, pioneered in (Cuturi, 2013), is to incorpo-
rate an entropic penalty parameter on the doubly stochastic
matrix, pulling it closer to the independent coupling:

min
q∈Γ(q0,q1)

E(x0,x1)∼q∥x0 − x1∥2 + εH(q) ,

where H(q) = −
∑

i,j qi,j(log(qi,j) − 1) is the entropy
of the doubly stochastic matrix q, and ε > 0 is some fi-
nite regularization parameter. The optimality conditions of
this strictly convex program leads to Sinkhorn’s algorithm,
which has a runtime of Õ(k2/ε) (Altschuler et al., 2017).

The output of performing Sinkhorn’s algorithm is a doubly-
stochastic matrix. The two limiting regimes of the regular-
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Figure 2. Multisample Flow Matching learn probability paths that are much closer to an optimal transport path than baselines such as
Diffusion and CondOT paths. (Left) Exact marginal probability paths. (Right) Samples from trained models at t = 1 for different numbers
of function evaluations (NFE), using Euler discretization. Furthermore, the final values of the Joint CFM objective (15)—upper bounds on
the variance of ut at convergence—are: CondOT: 10.72; Stable: 1.60, Heuristic: 1.56; BatchEOT: 0.57, BatchOT: 0.24.

ization parameter are well understood (c.f. Peyré & Cuturi
(2019), Proposition 4.1, for instance): as ε→ 0, BatchEOT
recovers the BatchOT permutation matrix from Section 4.2;
as ε → ∞, BatchEOT recovers the independent coupling
on the indices from Section 4.1.

4.4. Stable and Heuristic Couplings

An alternative approach is to consider faster algorithms
that satisfy at least some desirable properties of an optimal
coupling. In particular, an optimal coupling is stable. A per-
mutation coupling is stable if no pair of x(i)0 and x(j)1 favor
each other over their assigned pairs based on the coupling.
Such a problem can be solved using the Gale-Shapeley algo-
rithm (Gale & Shapley, 1962) which has a compute cost of
O(k2) given the cross set ranking of all samples. Starting
from a random assignment, it is an iterative algorithm that
reassigns pairs if they violate the stability property and can
terminate very early in practice. Note that in a cost-based
ranking, one has to sort the coupling costs of each sample
with all samples in the opposing set, resulting in an overall
O(k2 log(k)) compute cost.

The Gale-Shapeley algorithm is agnostic to any particular
costs, however, as stability is only defined in terms of rela-
tive rankings of individual samples. We design a modified
version of this algorithm based on a heuristic for satisfy-
ing the cyclical monotonicity property of optimal transport,
namely that should pairs be reassigned, the reassignment
should not increase the total cost of already matched pairs.
We refer to the output of this modified algorithm as a heuris-
tic coupling and discuss the details in Appendix A.2.

5. Related Work
Generative modeling and optimal transport are inherently
intertwined topics, both often aiming to learn a transport
between two distributions but with very different goals. Op-
timal transport is widely recognized as a powerful tool for
large-scale generative modeling as it can be used to sta-
bilize training (Arjovsky et al., 2017). In the context of
continuous-time generative modeling, optimal transport has
been used to regularize continuous normalizing flows for
easier simulation (Finlay et al., 2020b; Onken et al., 2021),
and increase interpretability (Tong et al., 2020). However,
the existing methods for encouraging optimality in a genera-
tive model generally require either solving a potentially un-
stable min-max optimization problem (e.g. (Arjovsky et al.,
2017; Makkuva et al., 2020; Albergo & Vanden-Eijnden,
2023)) or require simulation of the learned vector field as
part of training (e.g. Finlay et al. (2020b); Liu et al. (2022)).
In contrast, the approach of using batch optimal couplings
can be used to avoid the min-max optimization problem, but
has not been successfully applied to generative modeling
as they do not satisfy marginal constraints—we discuss this
further in the following Section 5.1. On the other hand, neu-
ral optimal transport approaches are mainly centered around
the quadratic cost (Makkuva et al., 2020; Amos, 2023; Fin-
lay et al., 2020a) or rely heavily on knowing the exact cost
function (Fan et al., 2021; Asadulaev et al., 2022). Being
capable of using batch optimal couplings allows us to build
generative models to approximate optimal maps under any
cost function, and even when the cost function is unknown.
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Figure 3. Sample quality (FID) vs compute cost (NFE) using Euler
discretization. CondOT has significantly higher FID at lower NFE
compared to proposed methods.

5.1. Minibatch Couplings for Generative Modeling

Among works that use optimal transport for training genera-
tive models are those that make use of batch optimal solu-
tions and their gradients such as Li et al. (2017); Genevay
et al. (2018); Fatras et al. (2019); Liu et al. (2019). However,
naı̈vely using solutions to batches only produces, at best,
the barycentric map, i.e. the map that fits to average of the
batch couplings (Ferradans et al., 2014; Seguy et al., 2017;
Pooladian & Niles-Weed, 2021), and does not correctly
match the true marginal distribution. This is a well-known
problem and while multiple works (e.g. Fatras et al. (2021);
Nguyen et al. (2022)) have attempted to circumvent the issue
through alternative formulations of optimality, the lack of
marginal preservation has been a major downside of using
batch couplings for generative modeling as they do not have
the ability to match the target distribution for finite batch
sizes. This is due to the use of building models within the
static setting, where the map is parameterized directly with
a neural network. In contrast, we have shown in Lemma 4.1
that in our dynamic setting, where we parameterize the map
as the solution of a neural ODE, it is possible to preserve the
marginal distribution exactly. Furthermore, we have shown
in Proposition D.7 (App. D.5) that our method produces a
map that is no higher cost than the joint distribution induced
from BatchOT couplings.

Concurrently, Tong et al. (2023) motivates the use of
BatchOT solutions within a similar framework as our Joint
CFM, but from the perspective of obtaining accurate solu-
tions to dynamic optimal transport problems. Similarly, Lee
et al. (2023) propose to explicitly learn a joint distribution,
parameterized with a neural network, with the aim of
minimizing trajectory curvature; this is done using through
an auxiliary VAE-style objective function. In contrast, we
propose a family of couplings that all satisfy the marginal
constraints, all of which are easy to implement and have
negligible cost during training. Our construction allow us to
focus on (i) fixing consistency issues within simulation-free
generative models, and (ii) using Joint CFM to obtain more
optimal solutions than the original BatchOT solutions.

ImageNet 32×32 ImageNet 64×64
NFE @ FID = 10 NFE @ FID = 20

Diffusion ≥40 ≥40
FM w/ CondOT 20 29
MultisampleFM w/ Heuristic 18 12
MultisampleFM w/ Stable 14 11
MultisampleFM w/ BatchOT 14 12

Table 1. Derived results shown in Figure 3, we can determine the
approximate NFE required to achieve a certain FID across our
proposed methods. The baseline diffusion-based methods (e.g.
ScoreFlow and DDPM) require more than 40 NFE to achieve these
FID values.

NFE DDPM ScoreSDE BatchOT Stable

Adaptive 5.72 6.84 4.68 5.79
40 19.56 16.96 5.94 7.02
20 63.08 58.02 7.71 8.66
8 232.97 218.66 15.64 14.89
6 275.28 266.76 22.08 19.88
4 362.37 340.17 38.86 33.92

Table 2. FID of model samples on ImageNet 32×32 using varying
number of function evaluations (NFE) using Euler discretization.

6. Experiments
We empirically investigate Multisample Flow Matching on a
suite of experiments. First, we show how different couplings
affect the model on a 2D distribution. We then turn to bench-
mark, high-dimensional datasets, namely ImageNet (Deng
et al., 2009). We use the official face-blurred ImageNet data
and then downsample to 32×32 and 64×64 using the open
source preprocessing scripts from Chrabaszcz et al. (2017).
Finally, we explore the setting of unknown cost functions
while only batch couplings are provided. Full details on
the experimental setting can be found in Appendix E.2.

6.1. Insights from 2D experiments

Figure 2 shows the proposed Multisample Flow Matching
algorithm on fitting to a checkboard pattern distribution in
2D. We show the marginal probability paths induced by
different coupling algorithms, as well as low-NFE samples
of trained models on these probability paths.

The diffusion and CondOT probability paths do not capture
intricate details of the data distribution until it is almost at
the end of the trajectory, whereas Multisample Flow Match-
ing approaches provide a gradual transition to the target
distribution along the flow. We also see that with a fixed
step solver, the BatchOT method is able to produce an ac-
curate target distribution in just one Euler step in this low-
dimensional setting, while the other coupling approaches
also get pretty close. Finally, it is interesting that both Sta-
ble and Heuristic exhibit very similar probability paths to
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ImageNet 32×32 ImageNet 64×64
CondOT BatchOT CondOT BatchOT

Consistency(m=4) 0.141 0.101 0.174 0.157
Consistency(m=6) 0.105 0.071 0.151 0.134
Consistency(m=8) 0.079 0.052 0.132 0.115
Consistency(m=12) 0.046 0.030 0.106 0.085

Table 3. BatchOT produces samples with more similar content
to its true samples at low NFEs (using midpoint discretization).
Visual examples of this consistency are shown in Figure 1.
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Figure 4. Multisample Flow Matching with BatchOT shows faster
convergence due to reduced variance (ImageNet64).

optimal transport despite only satisfying weaker conditions.

6.2. Image Datasets

We find that Multisample Flow Matching retains the perfor-
mance of Flow Matching while improving on sample quality,
compute cost, and variance. In Table 6 of Appendix B.1, we
report sample quality using the standard Fréchet Inception
Distance (FID), negative log-likelihood values using bits
per dimension (BPD), and compute cost using number of
function evaluations (NFE); these are all standard metrics
throughout the literature. Additionally, we report the vari-
ance of ut(x|x0, x1), estimated using the Joint CFM loss
(15) which is an upper bound on the variance. We do not
observe any performance degradations while simulation ef-
ficiency improves significantly, even with small batch sizes.

Additionally, in Appendix B.5, we include runtime com-
parisons between Flow Matching and Multisample Flow
Matching. On ImageNet32, we only observe a 0.8% relative
increase in runtime compared to Flow Matching, and a 4%
increase on ImageNet64.

Higher sample quality on a compute budget We observe
that with a fixed NFE, models trained using Multisample
Flow Matching generally achieve better sample quality. For
these experiments, we draw x0 ∼ N (0, Id) and simulate
vt(·, θ) up to time t = 1 using a fixed step solver with a
fixed NFE. Figures 3 show that even on high dimensional
data distributions, the sample quality of of multisample
methods improves over the naı̈ve CondOT approach as the
number of function evaluations drops. We compare to the

FID of diffusion baseline methods in Table 2, and provide
additional results in Appendix B.4.

Interestingly, we find that the Stable coupling actually per-
forms on par, and some times better than the BatchOT cou-
pling, despite having a smaller asymptotic compute cost and
only satisfying a weaker condition within each batch.

As FID is computed over a full set of samples, it does not
show how varying NFE affects individual sample paths. We
discuss a notion of consistency next, where we analyze the
similarity between low-NFE and high-NFE samples.

Consistency of individual samples In Figure 1 we show
samples at different NFEs, where it can be qualitatively seen
that BatchOT produces samples that are more consistent
between high- and low-NFE solutions than CondOT, despite
achieving similar FID values.

To evaluate this quantitatively, we define a metric for es-
tablishing the consistency of a model with respect to an
integration scheme: let x(m) be the output of a numerical
solver initialized at x using m function evalutions to reach
t = 1, and let x(∗) be a near-exact sample solved using a
high-cost solver starting from x0 as well. We define

Consistency(m) = 1
DEx∼q0∥F(x(m))−F(x(∗))∥2 (21)

where F(·) outputs the hidden units from a pretrained Incep-
tionNet1, and D is the number of hidden units. These kinds
of perceptual losses have been used before to check the con-
tent alignment between two image samples (e.g. Gatys et al.
(2015); Johnson et al. (2016)). We find that Multisample
Flow Matching has better consistency at all values of NFE,
shown in Table 3.

Training efficiency Figure 4 shows the convergence of
Multisample Flow Matching with BatchOT coupling com-
pared to Flow Matching with CondOT and diffusion-based
methods. We see that by choosing better joint distributions,
we obtain faster training. This is in line with our variance
estimates reported in Table 6 and supports our hypothesis
that gradient variance is reduced by using non-trivial joint
distributions.

6.3. Improved Batch Optimal Couplings

We further explore the usage of Multisample Flow Matching
as an approach to improve upon batch optimal solutions.
Here, we experiment with a different setting, where the
cost is unknown and only samples from a batch optimal
coupling are provided. In the real world, it is often the
case that the preferences of each person are not known
explicitly, but when given a finite number of choices, people
can more easily find their best assignments. This motivates

1We take the same layer as used in standard FID computation.
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2-D Cost 2-D KL 32-D Cost 32-D KL 64-D Cost 64-D KL

Cost Fn. c(x0, x1) B B-ST B-FM B-ST B-FM B B-ST B-FM B-ST B-FM B B-ST B-FM B-ST B-FM

∥x1 − x0∥22 0.90 0.60 0.72 0.07 4E-3 41.08 31.58 38.73 151.47 0.06 92.90 65.57 87.97 335.38 0.14

∥x1 − x0∥1 1.09 0.86 0.98 0.18 4E-3 27.92 24.51 27.26 254.59 0.08 60.27 50.49 58.38 361.16 0.16

1− ⟨x0,x1⟩
∥x0∥∥x1∥ 0.03 2E-4 3E-3 5.91 4E-3 0.62 0.53 0.58 179.48 0.06 0.71 0.60 0.68 337.63 0.12

∥A(x1 − x0)∥22 0.91 0.54 0.65 0.07 4E-3 32.66 24.61 30.13 256.90 0.06 78.70 58.11 78.50 529.09 0.19

Table 4. Matching couplings from an oracle BatchOT solver with unknown costs. Multisample Flow Matching is able to match the
marginal distribution correctly while being at least a optimal as the oracle, but static maps fail to preserve the marginal distribution.

Figure 5. 2D densities on the 8-Gaussians target distribution. (Left)
Ground truth density. (Right) Learned densities with static maps
in the top row and Multisample Flow Matching dynamic maps in
the bottom row. Models within each column were trained using
batch optimal couplings with the corresponding cost function.
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Figure 6. Transport cost vs. batch size (k) for computing couplings
on the 64D synthetic dataset. The number of samples used for
performing gradient steps during training and the resulting KL
divergences were kept the same.

us to consider the case of unknown cost functions, and
information regarding the optimal coupling is only given
by a weak oracle that acts on finite samples, denoted qkOT,c.
We consider two baselines: (i) the BatchOT cost (B) which
corresponds to EqkOT,c(x0,x1) [c(x0, x1)], and (ii) learning a
static map that mimics the BatchOT couplings (B-ST) by
minimizing the following objective:

EqkOT,c(x0,x1) ∥x1 − ψθ(x0)∥2 . (22)

This can be viewed as learning the barycentric projection
(Ferradans et al., 2014; Seguy et al., 2017), i.e. ψ∗(x0) =
EqkOT,c(x1|x0) [x1], a well-studied quantity but is known to
not preserve the marginal distribution (Fatras et al., 2019).

We experiment with 4 different cost functions on three syn-

thetic datasets in dimensions {2, 32, 64} where both q0 and
q1 are chosen to be Gaussian mixture models. In Table 4
we report both the transport cost and the KL divergence
between q1 and the distribution induced by the learned map,
i.e. [ψ1]♯q0. We observe that while B-ST always results
in lower transport costs compared to B-FM, its KL diver-
gence is always very high, meaning that the pushed-forward
distribution by the learned static map poorly approximates
q1. Another interesting observation is that B-FM always re-
duces transport costs compared to B, providing experimental
support to the theory (Theorem D.8).

Flow Matching improves optimality Figure 6 shows
the cost of the learned model as we vary the batch size
for computing couplings, where the models are trained
sufficiently to achieve the same KL values as reported
in Table 4. We see that our approach decreases the cost
compared to the BatchOT oracle for any fixed batch size,
and furthermore, converges to the OT solution faster
than the batchOT oracle. Thus, since Multisample Flow
Matching retains the correct marginal distributions, it can
be used to better approximate optimal transport solutions
than simply relying on a minibatch solution.

7. Conclusion
We propose Multisample Flow Matching, building on top
of recent works on simulation-free training of continuous
normalizing flows. While most prior works make use of
training algorithms where data and noise samples are sam-
pled independently, Multisample Flow Matching allows the
use of more complex joint distribution. This introduces a
new approach to designing probability paths. Our frame-
work increases sample efficiency and sample quality when
using low-cost solvers. Unlike prior works, our training
method does not rely on simulation of the learned vector
field during training, and does not introduce any min-max
formulations. Finally, we note that our method of fitting
to batch optimal couplings is the first to also preserve the
marginal distributions, an important property in both gener-
ative modeling and solving transport problems.
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B. MMD GAN: Towards deeper understanding of mo-
ment matching network. Advances in neural information
processing systems, 30, 2017.

Lipman, Y., Chen, R. T., Ben-Hamu, H., Nickel, M., and Le,
M. Flow matching for generative modeling. International
Conference on Learning Representations, 2023.

Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E. A.,
Nie, W., and Anandkumar, A. I2sb: Image-to-image
Schr\” odinger bridge. International Conference on Ma-
chine Learning, 2023.

Liu, H., Gu, X., and Samaras, D. Wasserstein gan with
quadratic transport cost. In Proceedings of the IEEE/CVF
international conference on computer vision, pp. 4832–
4841, 2019.

Liu, Q. Rectified flow: A marginal preserving approach to
optimal transport, 2022.

Liu, X., Gong, C., and Liu, Q. Flow straight and fast:
Learning to generate and transfer data with rectified flow.
arXiv preprint arXiv:2209.03003, 2022.
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A. Coupling algorithms
Multisample FM makes use of batch coupling algorithms to construct an implicit joint distribution satisfying the marginal
constraints. While BatchOT coupling is motivated by approximating the OT map, we consider other lower complexity
coupling algorithms which produce coupling that satisfy some desired property of optimal couplings. In Table 5 we
summarize the runtime complexities for the different algorithms used in this work. We will now describe in detail the Stable
and Heuristic coupling algorithms.

CondOT BatchOT BatchEOT Stable Heuristic
Runtime Complexity O(1) O(k3) Õ(k2/ε) O(k2 log(k)) O(k2 log(k))

Table 5. Runtime complexities of the different coupling algorithms as a function of the batch size k.

A.1. Stable couplings

(Wolansky, 2020) surveys discrete optimal transport from a stable coupling perspective proving that stability is a necessary
condition for OT couplings. Although stable couplings are not OT, they are cheaper to compute and are therefore an
appealing approach to pursue. For completeness we formulate the Gale Shapely Algorithm in our setting in Algorithm 1.
The rankings R0, R1 hold the preferences of the samples in {x(i)0 }ki=1 and {x(i)1 }ki=1 respectively. Where R0(i, j) is the
rank of x(j)1 in x(i)0 ’s preferences and R1(i, j) is the rank of x(j)0 in x(i)1 ’s preferences.

A.2. Heuristic couplings

The stable coupling is agnostic to the cost of pairing samples and only takes into account the ranks. Therefore, reassignments
during the Gale Shapely algorithms might increase the total cost although the rankings of assigned samples are improved.
We draw inspiration from the cyclic monotonicity of OT couplings (Villani, 2008) and from the marriage with sharing
formulation in (Wolansky, 2020) and modify the reassignment condition in the Gale Shapely algorithm (see Algorithm 2).
The modified condition encourages ”local” monotonicity between the reassigned pairs only, reassigning a pair only if the
potentially newly assigned pairs have a lower cost.

Algorithm 1 Stable Coupling (Gale Shapely)
Result: assignment σ
Data: {x(i)0 }ki=1 ∼ q0(x0), {x

(i)
1 }ki=1 ∼ q1(x1), rank-

ings R0, R1

initialization: σ empty assignment
while ∃ i ∈ [k] s.t. σ(i) is empty do
j ← first sample in R0(i, ·) whom x

(i)
0 has not tried

to match with yet
if ∃ i′ s.t. σ(i′) = j then

if R1(j, i) < R1(j, i
′) then

σ(i′)← empty
σ(i)← j

end
else

σ(i)← j
end

end

Algorithm 2 Heuristic Coupling
Result: assignment σ
Data: {x(i)0 }ki=1 ∼ q0(x0), {x

(i)
1 }ki=1 ∼ q1(x1), rank-

ings R0, R1, cost matrix C
initialization: σ empty assignment
while ∃ i ∈ [k] s.t. σ(i) is empty do
j ← first sample in R0(i, ·) whom x

(i)
0 has not tried

to match with yet
if ∃ i′ s.t. σ(i′) = j then
j′ ← first sample in R0(i

′, ·) whom x
(i′)
0 has not

tried to match with yet
l ← second sample in R0(i, ·) whom x

(i)
0 has

not tried to match with yet
if C(i, j) + C(i′, j′) < C(i, l) + C(i′, j) then
σ(i′)← empty
σ(i)← j

end
else

σ(i)← j
end

end
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B. Additional tables and figures
B.1. Full results on ImageNet data

ImageNet 32×32 ImageNet 64×64

Model NLL FID NFE Var(ut) NLL FID NFE Var(ut)

Ablations†

DDPM (Ho et al., 2020) 3.61 5.72 330 3.27 13.80 323
ScoreSDE (Song et al., 2021b) 3.61 6.84 198 3.30 26.64 365
ScoreFlow (Song et al., 2021a) 3.61 9.53 189 3.34 32.78 554
Flow Matching w/ Diffusion (Lipman et al., 2023) 3.60 6.36 165 3.35 15.11 162
Rectified Flow (Liu et al., 2022) 3.59 5.55 111 3.31 13.02 129
Flow Matching w/ CondOT (Lipman et al., 2023) 3.58 5.04 139 594 3.27 13.93 131 1880

Ours
Multisample Flow Matching w/ StableCoupling 3.59 5.79 148 523 3.27 11.82 132 1782
Multisample Flow Matching w/ HeuristicCoupling 3.58 5.29 133 555 3.26 13.37 110 1816
Multisample Flow Matching w/ BatchEOT 3.58 6.14 132 508 3.26 14.92 141 1736
Multisample Flow Matching w/ BatchOT 3.58 4.68 146 507 3.27 12.37 135 1733

Table 6. Multisample Flow Matching improves on sample quality and sample efficiency while not trading off performance at all compared
to Flow Matching. †Reproduction using the same training hyperparameters (architecture, optimizer, training iterations) as our methods.

B.2. How batch size affects the marginal probability paths on 2D checkerboard data
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Figure 7. Marginal probability paths. (Top) Batch size 64. (Bottom) Batch size 8.
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B.3. FID vs NFE using midpoint discretization scheme
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Figure 8. Sample quality (FID) vs compute cost (NFE); midpoint discretization.

B.4. Comparison of FID vs NFE for baseline methods DDPM and ScoreSDE

ImageNet32 FID (Euler)

NFE DDPM ScoreSDE BatchOT Stable

Adaptive 5.72 6.84 4.68 5.79
40 19.56 16.96 5.94 7.02
20 63.08 58.02 7.71 8.66
12 152.59 140.95 10.72 11.10
8 232.97 218.66 15.64 14.89
6 275.28 266.76 22.08 19.88
4 362.37 340.17 38.86 33.92

ImageNet32 FID (Midpoint)

NFE DDPM ScoreSDE BatchOT Stable

Adaptive 5.72 6.84 4.68 5.79
40 6.68 6.48 5.09 5.94
20 7.80 8.96 5.98 6.57
12 14.87 16.22 7.18 7.84
8 56.41 56.73 8.73 9.99
6 188.08 168.99 10.71 12.98
4 319.41 279.06 17.28 21.82

Table 7. Comparing the FID vs. NFE on ImageNet32 for two baselines and two of our methods.

ImageNet64 FID (Euler)

NFE DDPM ScoreSDE BatchOT Stable

Adaptive 13.80 26.64 12.37 11.82
40 25.83 44.16 14.79 13.39
20 66.42 82.97 17.06 15.15
12 158.46 141.79 20.94 18.81
8 258.49 210.29 27.56 26.38
6 321.04 262.20 36.17 37.14
4 373.08 335.54 56.75 63.25

ImageNet64 FID (Midpoint)

NFE DDPM ScoreSDE BatchOT Stable

Adaptive 13.80 26.64 12.37 11.82
40 15.3 26.67 14.22 12.97
20 15.05 25.73 16.05 14.76
12 18.91 29.99 18.27 17.60
8 53.15 67.83 20.85 21.36
6 179.79 155.91 24.87 27.15
4 330.53 279.00 38.45 46.08

Table 8. Comparing the FID vs. NFE on ImageNet64 for two baselines and two of our methods.
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B.5. Runtime per iteration is not significantly affected by solving for couplings

ImageNet 32×32 ImageNet 64×64
It./s Rel. increase It./s Rel. increase

CondOT (reference) 1.16 — 1.31 —
BatchOT 1.15 0.8% 1.26 3.9%
Stable 1.15 0.8% 1.26 3.9%

Table 9. Absolute and relative runtime comparisons between CondOT, BatchOT and Stable matching. “It./s” denotes the number of
iterations per second, and “Rel. increase” is the relative increase with respect to CondOT. Note that these are on relatively standard batch
sizes (refer to Appendix E for exact batch sizes).

B.6. Convergence improves when using larger coupling sizes
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Figure 9. Larger couplings sizes (k) for defining the multisample coupling results in faster and more stable convergence. This is done on
the 64-D experiments in Section 6.3. The batch size (number of samples) for training is kept thestr same and only k is varied for solving
the couplings.
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C. Generated samples

NFE=400 12 8 6

Flow Matching

NFE=400 12 8 6

Multisample Flow Matching

Figure 10. Multisample Flow Matching trained with batch optimal couplings produces more consistent samples across varying NFEs on
ImageNet32. From left to right, the NFEs used to generate these samples are 200, 12, 8, and 6 using a midpoint discretization. Note that
both flows on each row start from the same noise sample.
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NFE=400 12 8 6

Flow Matching

NFE=400 12 8 6

Multisample Flow Matching

Figure 11. Multisample Flow Matching trained with batch optimal couplings produces more consistent samples across varying NFEs on
ImageNet64. From left to right, the NFEs used to generate these samples are 200, 12, 8, and 6 using a midpoint discretization. Note that
both flows on each row start from the same noise sample.
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Figure 12. Non-curated generated images for ImageNet64 using Multisample Flow Matching with BatchOT coupling.
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D. Theorems and proofs
D.1. Proof of Lemma 3.1

We need only prove that the marginal probability path interpolates between q0 and q1.

p0(x) =

∫
p0(x|x1)q1(x1)dx1 =

∫
q(x|x1)q1(x1)dx1 = q0(x). (23)

Then since ut(x|x1) transports all points x ∈ RD to x1 at time t = 1, we satisfy pt=1(x|x1) = δ(x− x1).

p1(x) =

∫
p1(x|x1)q1(x1)dx =

∫
δ(x− x1)q1(x1)dx1 = q1(x). (24)

Theorems 1 and 2 of Lipman et al. (2023) can then be used to prove that (i) the marginal vector field ut(x) transports
between p0 = q0 and p1 = q1, and (ii) the Joint CFM objective has the same gradient in expectation as the Flow Matching
objective and is uniquely minimized by vt(x; θ) = ut(x).

D.2. Proof of Lemma 3.2

Note that

Covpt(x1|x)

(
∇θ ∥vt(x; θ)− ut(x|x1)∥2

)
= Covpt(x1|x)

(
∇θ ∥vt(x; θ)∥2 − (∇θvt(x; θ))

T
ut(x|x0, x1)

)
= (∇θvt(x; θ))

T Covpt(x1|x) (ut(x|x1)) (∇θvt(x; θ)) ,
(25)

and that

Covpt(x1|x) (ut(x|x1)) = Ept(x1|x) (ut(x|x1)− ut(x)) (ut(x|x1)− ut(x))
⊤
. (26)

Here, we used that ut(x) = Ept(x1|x) [ut(x|x1)] by (5). If we take the trace on both sides of (25), we get

Tr
[
Covpt(x1|x)

(
∇θ ∥vt(x; θ)− ut(x|x1)∥2

) ]
= Tr

[
(∇θvt(x; θ))

T Covpt(x1|x) (ut(x|x1)) (∇θvt(x; θ))
]

= Tr
[
Covpt(x1|x) (ut(x|x1)) (∇θvt(x; θ)) (∇θvt(x; θ))

T ]
= ⟨Covpt(x1|x) (ut(x|x1)) , (∇θvt(x; θ)) (∇θvt(x; θ))

T⟩F
≤ ∥Covpt(x1|x) (ut(x|x1)) ∥F ∥ (∇θvt(x; θ)) (∇θvt(x; θ))

T ∥F
≤ Ept(x1|x)∥ (ut(x|x1)− ut(x)) (ut(x|x1)− ut(x))

⊤ ∥F ∥ (∇θvt(x; θ)) (∇θvt(x; θ))
⊤ ∥F

= ∥∇θvt(x; θ)∥2Ept(x1|x)∥ut(x|x1)− ut(x)∥
2.

(27)

The second equality holds because Tr(AB) = Tr(BA) when both expressions are well defined, and the third equality holds
by the definition of the Frobenius inner product ⟨·, ·⟩F . The first inequality holds by the Cauchy-Schwarz inequality. The
second inequality holds by equation (26) and by the triangle inequality. In the last equality we used that for any vector v,
∥vv⊤∥F = (Tr(vv⊤, vv⊤))1/2 = ∥v∥2. This proves (16).

To prove (17), we write:

Et,pt(x)[σ
2
t,x]

≤ Et,pt(x)[∥∇θvt(x; θ)∥2Ept(x1|x)∥ut(x|x1)− ut(x)∥
2]

≤ max
x,t
∥∇θvt(x; θ)∥2 × Et,pt(x)[Ept(x1|x)∥ut(x|x1)− ut(x)∥

2]

= max
x,t
∥∇θvt(x; θ)∥2 × Et,q(x0,x1)[∥ut(xt|x1)− vt(xt; θ)∥

2] ≤ max
t,x
∥∇θvt(x; θ)∥2 × LJCFM

(28)

Here, the first inequality holds by (16), and the last inequality holds because ut(x) is the minimizer of LJCFM.
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D.3. Proof of Lemma 4.1

For an arbitrary test function f , by the construction of q we write

Eq(x0,x1)f(x0) = E{x(i)
0 }k

i=1∼q0,{x(i)
1 }k

i=1∼q1Eqk(x0,x1)f(x0). (29)

Since qk has marginal 1
k

∑k
i=1 δ(x0 − x

(i)
0 ) because π is a doubly stochastic matrix, we obtain that Eqk(x0,x1)f(x0) =

1
k

∑k
i=1 f(x

(i)
0 ) and then the right-hand side is equal to

E{x(i)
0 }k

i=1∼q0,{x(i)
1 }k

i=1∼q1

1

k

k∑
i=1

f(x
(i)
0 ) = Eq0(x0)f(x0), (30)

which proves that the marginal of q for x0 is q0. The same argument works for the x1 marginal.

D.4. Proof of Theorem 4.2

Notation We begin by recalling and introducing some additional notation. Let X0 = (xi0)
+∞
i=1 , X1 = (xi1)

+∞
i=1 be

sequences of i.i.d. samples from the distributions q0 and q1, and denote by Xk
0 = (xi0)

k
i=1, Xk

1 = (xi1)
k
i=1 the finite

sequences containing the initial k samples. We denote by qk0 and qk1 the empirical distributions corresponding to Xk
0 and

Xk
1 , i.e. qk0 = 1

k

∑k
i=1 δxi

0
, qk1 = 1

k

∑k
i=1 δxi

1
. Let qk be the distribution over Rd × Rd which is output by the matching

algorithm; qk has marginals that are equal to qk0 and qk1 . Let q∗ be the optimal transport plan between q0 and q1, and let q̃k

be the optimal transport plan between qk and q under the quadratic cost. Using this additional notation, we rewrite some of
the objects that were defined in the main text in a lengthier, more precise way:

(i) The marginal vector field corresponding to sample size k:

ukt (x) = E
Xk

0

iid∼q0,Xk
1

iid∼q1,(x0,x1)∼qk
[x1 − x0|x = tx1 + (1− t)x0], ∀t ∈ [0, 1]. (31)

We made the dependency on k explicit, and we used that ψt(x0|x1) = tx1 + (1− t)x0. Note that equivalently, we can
write ukt as the solution of a simple variational problem.

ukt = argmin
ut

E
Xk

0

iid∼q0,Xk
1

iid∼q1,(x0,x1)∼qk
∥x1 − x0 − ut(tx1 + (1− t)x0)∥2, ∀t ∈ [0, 1]. (32)

(ii) The flow ψk
t (x0) corresponding to ukt , i.e. the solution of dxt

dt = ukt (xt) with initial condition x0. We made the
dependency on k explicit.

(iii) The straightness of the flow ψk
t :

Sk = Et∼U(0,1),x0∼q0

[
∥ukt (ψk

t (x0))∥2 − ∥ψk
1 (x0)− x0∥2

]
. (33)

Assumptions We will use the following three assumptions, which allow us to potentially extend our result beyond
BatchOT:

(A1) The distributions q0 and q1 over Rd have bounded supports, i.e. there exists C > 0 such that for any x ∈
supp(q0) ∪ supp(q1), ∥x∥ ≤ C.

(A2) q0 admits a density and the optimal transport map T between q0 and q1 under the quadratic cost is continuous.
(A3) We assume that almost surely w.r.t. the draw of X0 and X1, qk converges weakly to q as k →∞.

Some comments are in order as to when assumptions (A2), (A3) hold, since they are not directly verifiable. By the Caffarelli
regularity theorem (see Villani (2008), Ch. 12, originally in Caffarelli (1992)), a sufficient condition for (A2) to hold is the
following:

(A2’) q0 and q1 have a common support Ω which is compact and convex, have α-Hölder densities, and they satisfy the
lower bound q0, q1 > γ for some γ > 0.

Assumption (A3) holds when the matching algorithm is BatchOT, that is, when qk is the optimal transport plan between qk0
and qk1 , as shown by the following proposition, which is proven in App. D.4.3.
Proposition D.1. Let qk be the optimal transport plan between qk0 and qk1 under the quadratic cost (i.e. the result of Steps
[1-3] under BatchOT). We have that almost surely w.r.t. the draws of X0 and X1, the sequence (qk)k≥0 converges weakly
to q∗, i.e. assumption (A3) holds.
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Proof structure We split the proof of Theorem 4.2 into two parts: in Subsubsec. D.4.1 we prove that the optimal value of
the Joint CFM objective (15) converges to zero as k →∞. In Subsubsec. D.4.2, we prove that the straightness converges to
zero and the transport cost converges to the optimal transport cost as k →∞.

D.4.1. CONVERGENCE OF THE OPTIMAL VALUE OF THE CFM OBJECTIVE

Theorem D.2. Suppose that assumptions (A1), (A2) and (A3) hold. We have that

lim
k→∞

E
t∼U(0,1),Xk

0

iid∼q0,Xk
1

iid∼q1,(x0,x1)∼qk
∥x1 − x0 − ukt (tx1 + (1− t)x0)∥2 = 0, (34)

where ukt is the marginal vector field as defined in (31).

Proof. The transport plan q∗ satisfies the non-crossing paths property, that is, for each x ∈ Rd and t ∈ [0, 1], there exists at
most one pair (x0, x1) such that x = tx1 + (1− t)x0 (Nurbekyan et al., 2020; Villani, 2003). Consequently, when such a
pair (x′0, x′1) exists, we have that the analogue of the vector field in (31) admits a simple expression:

u∗t (x) := E(x0,x1)∼q∗ [x1 − x0|x = tx1 + (1− t)x0] = x′1 − x′0 (35)

This directly implies that

E(x0,x1)∼q∗∥x1 − x0 − u∗t (tx1 + (1− t)x0)∥2 = 0. (36)

Applying this, we can write

Et∼U(0,1),(x0,x1)∼qk∥x1 − x0 − u∗t (tx1 + (1− t)x0)∥2

= |E(x0,x1)∼qk [Et∼U(0,1)∥x1 − x0 − u∗t (tx1 + (1− t)x0)∥2]
− E(x0,x1)∼q∗ [Et∼U(0,1)∥x1 − x0 − u∗t (tx1 + (1− t)x0)∥2]|.

(37)

Now, define the function f : supp(q0)× supp(q1)→ R as

f(x0, x1) = Et∼U(0,1)∥x1 − x0 − u∗t (tx1 + (1− t)x0)∥2. (38)

By Lemma D.3, which holds under (A1) and (A2), we have that f is bounded and continuous. Assumption (A3) states that
almost surely w.r.t. the draws of X0 and X1, the measure qk converges weakly to q∗. We apply the definition of weak
convergence of measures, which implies that almost surely,

lim
k→∞

E(x0,x1)∼qk [f(x0, x1)] = E(x0,x1)∼q[f(x0, x1)]. (39)

Equivalently, the right-hand side of (37) converges to zero as k tends to infinity. Hence, Et∼U(0,1),(x0,x1)∼qk∥x1 − x0 −
u∗t (tx1 + (1− t)x0)∥2 → 0 almost surely. Almost sure convergence implies convergence in probability, which means that

Pr(Et∼U(0,1),(x0,x1)∼qk∥x1 − x0 − u∗t (tx1 + (1− t)x0)∥2 > ϵ)
k→∞−−−−→ 0, ∀ϵ > 0. (40)

Here, the randomness comes only from drawing the random variables Xk
0 ,X

k
1 . Also, using again that f is bounded, say

by the constant C > 0, we can write Et∼U(0,1),(x0,x1)∼qk∥x1 − x0 − u∗t (tx1 + (1− t)x0)∥2 ≤ C, for all k ≥ 0. A crude
bound yields

Et∼U(0,1),Xk
0 ,X

k
1 ,(x0,x1)∼qk∥x1 − x0 − u∗t (tx1 + (1− t)x0)∥2 (41)

≤ ϵ+ CPr(Et∼U(0,1),(x0,x1)∼qk∥x1 − x0 − u∗t (tx1 + (1− t)x0)∥2 > ϵ). (42)

In this equation and from now, we write Xk
0 ,X

k
1 instead of Xk

0
iid∼ q0,X

k
1

iid∼ q1 for shortness. We can take ϵ arbitrarily
small, and for a given ϵ we can make the second term in the right-hand side arbitrarily small by taking k large enough.
Hence, we obtain that

lim
k→∞

Et∼U(0,1),Xk
0 ,X

k
1 ,(x0,x1)∼qk∥x1 − x0 − u∗t (tx1 + (1− t)x0)∥2 = 0. (43)
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To conclude the proof, we use the variational characterization of ukt given in (32), which implies that

Et∼U(0,1),Xk
0 ,X

k
1 ,(x0,x1)∼qk∥x1 − x0 − ukt (tx1 + (1− t)x0)∥2

≤ Et∼U(0,1),Xk
0 ,X

k
1 ,(x0,x1)∼qk∥x1 − x0 − u∗t (tx1 + (1− t)x0)∥2 → 0.

(44)

Lemma D.3. Let f be the function defined in equation (38). Suppose that assumptions (A1) and (A2) hold. Then, f is
bounded and continuous.

Proof. First, we show that the function u∗t defined in equation (35) is bounded and continuous wherever it is defined. It is
bounded because u∗t (x) = x′1 − x′0 for some x′0 in supp(q0) and x′1 in supp(q1), which are both bounded by assumption.

To show that u∗t is continuous, we use that q0 is absolutely continuous and that consequently a transport map T exists.
Moreover, we have that x′1 = T (x′0). Consider the transport map Tt at time t, defined as Tt(x) = tT (x) + (1− t)x. Thus,
we can write that u∗t (Tt(x0)) = T (x0)− x0. The non-crossing paths property implies that Tt is invertible, which means
that an inverse T−1

t exists. We can write

u∗t (x) = T (T−1
t (x))− T−1

t (x). (45)

By assumption (A2), the transport map T is continuous, and so is Tt. It is well-known fact that if E,E′ are metric spaces,
E is compact, and f : E → E′ a continuous bijective function, then f−1 : E′ → E is continuous. Thus, T−1

t is also
continuous. From equation (45), we conclude that u∗t is continuous.

The rest of the proof is straightforward: (x1, x0) 7→ ∥x1 − x0 − u∗t (tx1 + (1 − t)x0)∥2 is bounded and continuous on
the bounded supports of q0 and q1 for all t ∈ [0, 1], and then f is also continuous and bounded since it is an average of
continuous bounded functions, applying the dominated convergence theorem.

D.4.2. CONVERGENCE OF THE STRAIGHTNESS AND THE TRANSPORT COST

Theorem D.4. Suppose that assumptions (A1) and (A3) hold. Then,

(i) We have that limk→∞ Sk = 0, where Sk is the straightness defined in (33).

(ii) We also have that

Et∼U(0,1),x0∼q0∥u
k
t (ψ

k
t (x0))∥2 ≥ Ex0∼q0∥ψk

1 (x0)− x0∥2 ≥W 2
2 (q0, q1), (46)

lim
k→∞

Et∼U(0,1),x0∼q0∥u
k
t (ψ

k
t (x0))∥2 = lim

k→∞
Ex0∼q0∥ψk

1 (x0)− x0∥2 =W 2
2 (q0, q1). (47)

Proof. We begin with the proof of (i). We introduce some additional notation. We define the quantity S∗ in analogy with
Sk:

S∗ = Et∼U(0,1),x0∼q0

[
∥u∗t (ψ∗

t (x0))∥2 − ∥ψ∗
1(x0)− x0∥2

]
, (48)

and ψ∗
t (x0) as the solution of the ODE dxt

dt = u∗t (xt). Since the trajectories for the optimal transport vector field are straight
lines, we deduce from the alternative expression of the straightness (equation (19)) that S∗ = 0. An alternative way to see
this is by the Benamou-Brenier theorem (Benamou & Brenier, 2000), which states that the dynamic optimal transport cost
Et∼U(0,1),x0∼q0∥u∗t (ψ∗

t (x0))∥2 is equal to the static optimal transport cost Et∼U(0,1),x0∼q0∥ψ∗
1(x0)− x0∥2.

We will first prove that Et∼U(0,1),x0∼q0∥ukt (ψk
t (x0))∥2 converges to Et∼U(0,1),x0∼q0∥u∗t (ψ∗

t (x0))∥2 and then that
Et∼U(0,1),x0∼q0∥ψk

1 (x0)− x0∥2 converges to Et∼U(0,1),x0∼q0∥ψ∗
1(x0)− x0∥2.

For given instances of Xk
0 and Xk

1 , let q̃k be the optimal transport plan between the optimal transport plans q and qk. In other
words, q̃k is a measure over the variables x0, x1, x′0, x

′
1, and is such that its marginal w.r.t. x0, x1 is q, while its marginal

w.r.t. x′0, x
′
1 is qk. That is, we will use that for all t ∈ [0, 1], the random variable tx1 + (1 − t)x0, with (x0, x1) ∼ qk,

and qk built randomly from Xk
0

iid∼ q0,X
k
1

iid∼ q1, has the same distribution as the random variable ψk
t (x0), with x0 ∼ q0.

This is a direct consequence of Lemma 3.1, i.e. the marginal vector field ut generates the marginal probability path pt. An
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analogous statement holds for q, i.e. the random variable tx1 + (1− t)x0, with (x0, x1) ∼ q, has the same distribution as
the random variable ψ∗

t (x0), with x0 ∼ q0. However, in this case it can be obtained immediately by the non-crossing paths
property of the optimal transport plan. Hence,

Et∼U(0,1),x0∼q0∥u
∗
t (ψ

∗
t (x0))∥2 = Et∼U(0,1),(x0,x1)∼q∥u∗t (tx1 + (1− t)x0)∥2,

Et∼U(0,1),x0∼q0∥u
k
t (ψ

k
t (x0))∥2 = Et∼U(0,1),Xk

0 ,X
k
1 ,(x0,x1)∼qk∥ukt (tx1 + (1− t)x0)∥2.

(49)

Using this and the definition of q̃k, and applying Jensen’s inequality, the Cauchy-Schwarz inequality and the triangle
inequality, we can write∣∣Et∼U(0,1),x0∼q0∥u

∗
t (ψ

∗
t (x0))∥2 − Et∼U(0,1),x0∼q0∥u

k
t (ψ

k
t (x0))∥2

∣∣
= |Et∼U(0,1),(x0,x1)∼q∥u∗t (tx1 + (1− t)x0)∥2 − Et∼U(0,1),Xk

0 ,X
k
1 ,(x

′
0,x

′
1)∼qk∥ukt (tx′1 + (1− t)x′0)∥2|

=
∣∣Et∼U(0,1),Xk

0 ,X
k
1 ,(x0,x1,x′

0,x
′
1)∼q̃k

[
∥u∗t (tx1 + (1− t)x0)∥2 − ∥ukt (tx′1 + (1− t)x′0)∥2

]∣∣
=

∣∣Et∼U(0,1),Xk
0 ,X

k
1 ,(x0,x1,x′

0,x
′
1)∼q̃k

[
(∥u∗t (tx1 + (1− t)x0)∥ − ∥ukt (tx′1 + (1− t)x′0)∥)

× (∥u∗t (tx1 + (1− t)x0)∥+ ∥ukt (tx′1 + (1− t)x′0)∥)
]∣∣

≤
(
Et∼U(0,1),Xk

0 ,X
k
1 ,(x0,x1,x′

0,x
′
1)∼q̃k

[
(∥u∗t (tx1 + (1− t)x0)∥ − ∥ukt (tx′1 + (1− t)x′0)∥)2

])1/2
×
(
Et∼U(0,1),Xk

0 ,X
k
1 ,(x0,x1,x′

0,x
′
1)∼q̃k

[
(∥u∗t (tx1 + (1− t)x0)∥+ ∥ukt (tx′1 + (1− t)x′0)∥)2

])1/2
≤

(
Et∼U(0,1),Xk

0 ,X
k
1 ,(x0,x1,x′

0,x
′
1)∼q̃k∥u∗t (tx1 + (1− t)x0)− ukt (tx′1 + (1− t)x′0)∥2

)1/2
×
(
Et∼U(0,1),Xk

0 ,X
k
1 ,(x0,x1,x′

0,x
′
1)∼q̃k

[
(∥u∗t (tx1 + (1− t)x0)∥+ ∥ukt (tx′1 + (1− t)x′0)∥)2

])1/2
.

(50)

Remark that the second factor in the right-hand side is bounded because u∗t and ukt are bounded. Using Lemma D.5, we
obtain that the first factor in the right-hand side tends to zero as k grows. Thus,∣∣Et∼U(0,1),x0∼q0∥u

∗
t (ψ

∗
t (x0))∥2 − Et∼U(0,1),x0∼qk0

∥ukt (ψk
t (x0))∥2

∣∣ k→∞−−−−→ 0. (51)

Now, since Ex0∼q0∥ψ∗
1(x0)− x0∥2 is the optimal cost and S∗ = 0, we write∣∣Ex0∼q0∥ψ∗

1(x0)− x0∥2 − Ex0∼q0∥ψk
1 (x0)− x0∥2

∣∣ = Ex0∼q0∥ψk
1 (x0)− x0∥2 − Ex0∼q0∥ψ∗

1(x0)− x0∥2 (52)

= Ex0∼q0∥ψk
1 (x0)− x0∥2 − Et∼U(0,1),x0∼q0∥u

∗
t (ψ

∗
t (x0))∥2. (53)

Since ψk
t is the flow of ukt and by Jensen’s inequality, we have that

Ex0∼q0∥ψk
1 (x0)− x0∥2 = Ex0∼q0

∥∥∥∥ ∫ 1

0

uks(ψ
k
s (x

′
0)) ds

∥∥∥∥2
≤ Ex0∼q0

∫ 1

0

∥uks(ψk
s (x0))∥2 ds = Et∼U(0,1),x0∼q0∥u

k
t (ψ

k
t (x0))∥2.

Plugging this into (52), we get that∣∣Ex0∼q0∥ψ∗
1(x0)− x0∥2 − Ex0∼q0∥ψk

1 (x0)− x0∥2
∣∣ (54)

≤ Et∼U(0,1),x0∼q0∥u
k
t (ψ

k
t (x0))∥2 − Et∼U(0,1),x0∼q0∥u

∗
t (ψ

∗
t (x0))∥2

k→∞−−−−→ 0, (55)

where the limit holds by . Putting together (51) and (D.4.2), we end up with Sk = |S∗ − Sk| k→∞−−−−→ 0, which proves (i).

We prove (ii). The first inequality in (46) holds because Sk ≥ 0 since it can be written in a form analogous to (19). The
second inequality in (46) holds because Ex0∼q0∥ψk

1 (x0) − x0∥2 is the squared transport cost for the map x 7→ ψk
1 (x),

which must be at least as large as the optimal cost. The first equality in (46) is a direct consequence of (i). To prove the
second equality in (46), we remark that W 2

2 (q0, q1) = Ex0∼q0∥ψ∗
1(x0)− x0∥2. Then, equation (D.4.2) readily implies that

|Ex0∼qk0
∥ψk

1 (x0)− x0∥2 −W 2
2 (q0, q1)|

k→∞−−−−→ 0.
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Lemma D.5. Suppose that assumptions (A1) and (A3) hold. Let q̃k be the optimal transport plan between the optimal
transport plans q and qk. We have that

lim
k→∞

E
t∼U(0,1),Xk

0

iid∼q0,Xk
1

iid∼q1,(x0,x1,x′
0,x

′
1)∼q̃k

[
∥u∗t (tx1 + (1− t)x0)− ukt (tx′1 + (1− t)x′0)∥2

]
= 0 (56)

Proof. For given instances of Xk
0 and Xk

1 , we can write

Et∼U(0,1),(x0,x1,x′
0,x

′
1)∼q̃k

[
∥u∗t (tx1 + (1− t)x0)− ukt (tx′1 + (1− t)x′0)∥2

]
= Et∼U(0,1),(x0,x1,x′

0,x
′
1)∼q̃k

[
∥Ex̃0,x̃1∼q[x̃1 − x̃0|tx1 + (1− t)x0 = tx̃1 + (1− t)x̃0]
− Ex̃′

0,x̃
′
1∼qk [x̃

′
1 − x̃′0|tx′1 + (1− t)x′0 = tx̃′1 + (1− t)x̃′0]∥2

]
≤ E(x0,x1,x′

0,x
′
1)∼q̃k

[∥∥x1 − x0 − (x′1 − x′0)
∥∥2] ≤ 2E(x0,x1,x′

0,x
′
1)∼q̃k

[∥∥x1 − x′1∥∥2 + ∥∥x0 − x′0∥∥2]
= 2E(x0,x1,x′

0,x
′
1)∼q̃k

[∥∥(x0, x1)− (x′0, x
′
1)
∥∥2] = 2W 2

2 (q, q
k)

(57)

Assumption (A3) implies that almost surely, qk converges to q weakly. For distributions on a bounded domain, weak
convergence is equivalent to convergence in the Wasserstein distance (Villani, 2008, Thm. 6.8), and this means that
W 2

2 (q, q
k)

k→∞−−−−→ 0 almost surely. Almost sure convergence implies convergence in probability, which means that

Pr(W 2
2 (q, q

k) > ϵ)
k→∞−−−−→ 0, ∀ϵ > 0. (58)

Note thatW 2
2 (q, q

k) is a bounded random variable because q and qk have bounded support as q0, q1, qk0 and qk1 have bounded
support. Suppose that W 2

2 (q, q
k) is bounded by the constant C. Hence, we can write

EXk
0 ,X

k
1
Et∼U(0,1),(x0,x1,x′

0,x
′
1)∼q̃k

[
∥u∗t (tx1 + (1− t)x0)− ukt (tx′1 + (1− t)x′0)∥2

]
(59)

≤ 2EXk
0 ,X

k
1
W 2

2 (q, q
k) ≤ 2

(
ϵ+ CPr(W 2

2 (q, q
k) > ϵ)

)
. (60)

We can take ϵ arbitrarily small, and for a given ϵ we can make the second term in the right-hand side arbitrarily small by
taking k large enough. The final result follows.

D.4.3. PROOF OF PROPOSITION D.1

We have that almost surely, the empirical distributions qk0 , resp. qk1 , converge weakly to q0, resp. q1 (Varadarajan, 1958).
Hence, we can apply Theorem D.6. Since convergence in distribution of random variables is equivalent to weak convergence
of their laws, and the law of an optimal coupling is the optimal transport plan, we conclude that (qk)k≥0 converges weakly
to q∗.

Theorem D.6 ((Cuesta-Albertos et al., 1997), Theorem 3.2). Let (Pn)n, (Qn)n, P , Q be probability measures in P2 (the
space of Borel probability measures with bounded second order moment) such that P ≪ λp (P is absolutely continuous with
respect to the Lebesgue measure) and Pn

w−→ P , Qn
w−→ Q, where w−→ denotes weak convergence of probability measures.

Let (Xn, Yn) be an optimal coupling between Pn and Qn, n ∈ N, and (X,Y ) an optimal coupling between P and Q. Then,

(Xn, Yn)
L−→ (X,Y ), where L−→ denotes convergence of random variables in distribution.

D.5. Bounds on the transport cost and monotone convergence results

The following result shows that for an arbitrary joint distribution q(x0, x1), we can upper-bound the transport cost associated
to the marginal vector field ut to a quantity that depends only q(x0, x1).

Proposition D.7. For an arbitrary joint distribution q(x0, x1) with marginals q0(x0) and q1(x1), let ψt be the flow
corresponding to the marginal vector field ut. We have that

Eq0(x0)∥ψ1(x0)− x0∥2 ≤ Eq(x0,x1)∥x1 − x0∥
2, (61)

Proof. We make use of the notation introduced in App. D.4. We will rely on the fact that for all t ∈ [0, 1], the random
variable tx1 + (1− t)x0, with (x0, x1) ∼ q has the same distribution as the random variable ψt(x0), with x0 ∼ q0. This is
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a direct consequence of Lemma 3.1. Using that ψt is the flow for ut and Jensen’s inequality twice, we have that

Ex0∼q0∥ψ1(x0)− x0∥2

= Ex0∼q0

∥∥∥∥ ∫ 1

0

us(ψs(x0)) ds

∥∥∥∥2 ≤ Et∼U(0,1),x0∼q0∥ut(ψt(x0))∥2

= Et∼U(0,1),(x0,x1)∼q∥ut(tx1 + (1− t)x0)∥2

= Et∼U(0,1),(x0,x1)∼q∥E(x′
0,x

′
1)∼q [ut(tx1 + (1− t)x0|x′0, x′1)|tx1 + (1− t)x0 = tx′1 + (1− t)x′0] ∥2

≤ Et∼U(0,1),(x0,x1)∼qE(x′
0,x

′
1)∼q

[
∥ut(tx1 + (1− t)x0|x′0, x′1)∥2|tx1 + (1− t)x0 = tx′1 + (1− t)x′0

]
= Et∼U(0,1),(x0,x1)∼qE(x′

0,x
′
1)∼q

[
∥x′1 − x′0∥2|tx1 + (1− t)x0 = tx′1 + (1− t)x′0

]
= Et∼U(0,1),(x0,x1)∼q∥x1 − x0∥2

(62)

as needed.

Note that that the statement and proof of this proposition is equivalent to Theorem 3.5 of (Liu et al., 2022), although the
language and notation that we use is different, which is why we though convenient to include it.

For the case of BatchOT, the following theorem shows that the quantity in the upper bound of (61) is monotonically
decreasing in k. The combination of Proposition D.7 and Theorem D.8 provides a weak guarantee that for BatchOT, the
transport cost should not get much higher when k increases.

Theorem D.8. Suppose that Multisample Flow Matching is run with BatchOT. For clarity, we make the dependency on the
sample size k explicit and let2 q(k)(x0, x1) := q(x0, x1), and ψk

t (x0) := ψt(x0). Then, for any k ≥ 1, we have that

Eq0(x0)∥ψ
k
1 (x0)− x0∥2 ≤ Eq(k)(x0,x1)∥x1 − x0∥

2,

Eq(k+1)(x0,x1)∥x1 − x0∥
2 ≤ Eq(k)(x0,x1)∥x1 − x0∥

2.
(63)

Proof. We write

Et∼U(0,1),Xk+1
0 ,Xk+1

1
E(x0,x1)∼qk+1∥x1 − x0∥2 =

1

k
Et∼U(0,1),Xk+1

0 ,Xk+1
1

[ k∑
i=1

∥x(i)1 − x
(σk+1(i))
0 ∥2

]

=
1

k

1

k + 1
Et∼U(0,1),Xk+1

0 ,Xk+1
1

[ k+1∑
j=1

∑
i∈[k+1]\{j}

∥x(i)1 − x
(σk+1(i))
0 ∥2

]

≤ 1

k

1

k + 1
Et∼U(0,1),Xk+1

0 ,Xk+1
1

[ k+1∑
j=1

∑
i∈[k+1]\{j}

∥x(i)1 − x
(σ−j

k (i))
0 ∥2

]

= Et∼U(0,1),Xk
0 ,X

k
1

[
1

k

k∑
j=1

∥x(i)1 − x
(σk(i))
0 ∥2

]
= Et∼U(0,1),Xk

0 ,X
k
1
E(x0,x1)∼qk∥x1 − x0∥2.

(64)

In the first equality, we used that the optimal transport map between the empirical distributions qk0 and qk1 can be encoded as a
permutation, which we denote by σk+1. In the inequality, we introduced the notation σ−j

k to denote the optimal permutation
within {x(i)0 }i∈[k+1]\{j}. The inequality holds because using the optimality of σk+1:

k+1∑
j=1

∑
i∈[k+1]\{j}

∥x(i)1 − x
(σk+1(i))
0 ∥2 ≤

k+1∑
j=1

∑
i∈[k+1]

∥x(i)1 − x
(σk+1(i))
0 ∥2

≤
k+1∑
j=1

( ∑
i∈[k+1]\{j}

∥x(i)1 − x
(σ−j

k (i))
0 ∥2 + ∥x(j)1 − x

(j)
0 ∥2

)
≤

k+1∑
j=1

∑
i∈[k+1]\{j}

∥x(i)1 − x
(σ−j

k (i))
0 ∥2.

(65)

2Note that here q(k) := q is a marginalized distribution and is different from qk defined in Step 3.
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E. Experimental & evaluation details

ImageNet-32 ImageNet-64

Channels 256 192
Depth 3 3
Channels multiple 1,2,2,2 1,2,3,4
Heads 4 4
Heads Channels 64 64
Attention resolution 4 8
Dropout 0.0 0.1
Batch size / GPU 256 50
GPUs 4 16
Effective Batch size 1024 800
Epochs 350 575
Effective Iterations 438k 957k
Learning Rate 1e-4 1e-4
Learning Rate Scheduler Polynomial Decay Constant
Warmup Steps 20k -

Table 10. Hyper-parameters used for training each model.

E.1. Image datasets

We report the hyper-parameters used in Table 10. We use the architecture from Dhariwal & Nichol (2021) but with much
lower attention resolution. We use full 32 bit-precision for training ImageNet-32 and 16-bit mixed precision for training
ImageNet-64. All models are trained using the Adam optimizer with the following parameters: β1 = 0.9, β2 = 0.999,
weight decay = 0.0, and ϵ = 1e−8. All methods we trained using identical architectures, with the same parameters for the
the same number of epochs (see Table 10 for details), with the exception of Rectified Flow, which we trained for much
longer starting from the fully trained CondOT model. We use either a constant learning rate schedule or a polynomial decay
schedule (see Table 10). The polynomial decay learning rate schedule includes a warm-up phase for a specified number of
training steps. In the warm-up phase, the learning rate is linearly increased from 1e−8 to the peak learning rate (specified in
Table 10). Once the peak learning rate is achieved, it linearly decays the learning rate down to 1e−8 until the final training
step.

When reporting negative log-likelihood, we dequantize using the standard uniform dequantization (Dinh et al., 2016). We
report an importance-weighted estimate using

BPD(K) = − 1

D
log2

1

K

K∑
k=1

pt(x+ uk), where uk ∼ [U(0, 1)]D, (66)

with x is in {0, . . . , 255}D. We solve for pt at exactly t = 1 with an adaptive step size solver dopri5 with
atol=rtol=1e-5 using the torchdiffeq (Chen, 2018) library. We used K=15 for ImageNet32 and K=10 for
ImageNet64.

When computing FID, we use the TensorFlow-GAN library https://github.com/tensorflow/gan.

We run coupling algorithms only within each GPU. We also ran coupling algorithms across all GPUs (using the “Effective
Batch Size”) in preliminary experiments, but did not see noticeable gains in sample efficiency while obtaining slightly worse
performance and sample quality, so we stuck to the smaller batch sizes for running our coupling algorithms.

For Rectified Flow, we use the finalized FM-CondOT model, generate 50000 noise and sample pairs, then train using the
same FM-CondOT algorithm and hyperparameters on these sampled pairs. This is equivalent to their 2-Rectified Flow
approach (Liu et al., 2022). For the rectification process, we train for 300 epochs.
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E.2. Improved batch optimal couplings

Datasets. We experimented with 3 datasets in dimensions {2, 32, 64} consisting of 50K samples. Both q0 and q1 were
Gaussian mixtures with number of centers described in Table 11.

Neural Networks Architectures. For B-ST we used stacked blocks of Convex Potential Flows (Huang et al., 2020) as an
invertible neural network parametrizing the map, which also allowed us to estimate KL divergence:

KL(q1|| (ψ1)♯ q0) = Ex∼q1 [log q1(x)− log ((ψ1)♯q0) (x)] . (67)

For B-FM we used a simple MLP with Swish activation. For each dataset we built architectures with roughly the same
number of parameters.

Hyperparameter Search. For each dataset and each cost we swept over learning rates {0.005, 0.001, 0.0005} and chose
the best setting.

2-D 32-D 64-D
q0 #centers 1 50 100
q1 #centers 8 50 100
#params 50K 800K 800K
batch size 128 1024 1024
epochs 100 1000 1000

Table 11. Hyperparameters for experiments on synthetic datasets.
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