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Propagating Parameter Uncertainty in Power System Nonlinear Dynamic
Simulations Using a Koopman Operator-Based Surrogate Model
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Abstract—We propose a Koopman operator-based surrogate
model for propagating parameter uncertainties in power system
nonlinear dynamic simulations. First, we augment a priori known
state-space model by reformulating parameters deemed uncertain
as pseudo-state variables. Then, we apply the Koopman opera-
tor theory to the resulting state-space model and obtain a linear
dynamical system model. This transformation allows us to ana-
lyze the evolution of the system dynamics through its Koopman
eigenfunctions, eigenvalues, and modes. Of particular importance
for this letter, the obtained linear dynamical system is a surrogate
that enables the evaluation of parameter uncertainties by simply
perturbing the initial conditions of the Koopman eigenfunctions
associated with the pseudo-state variables. Simulations carried out
on the New England test system reveal the excellent performance
of the proposed method in terms of accuracy and computational
efficiency.

Index Terms—Koopman operator, parameter uncertainty,
statistical dynamic simulation, uncertainty propagation.

1. INTRODUCTION

HE uncertainties associated with electricity demand and

supply. weather forecasting, measurement systems errors,
and modeling accuracy bring grand challenges to the design and
operation of modern power systems. Thus, uncertainty quantifi-
cation (UQ) has driven substantial research within the power
system community. See, e.g., [1]-[3]. In particular, propagating
uncertainties in power system nonlinear dynamic simulations is
an important problem and the focus of this letter.

Monte Carlo (MC) simulation is arguably the prevailing
method for uncertainty propagation. Though straightforward,
MC simulation exhibits a prohibitive computational burden
for practical applications in sizeable electric power systems.
Analytical methods based on a linear approximation [1] of a
nonlinear system model improve the computational efficiency
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of the simulations but at the expense of a significant loss of
accuracy when the simulations involve events that push the
system far from the system stable equilibrium point. Likewise,
second-order approximations [2] improve the accuracy but lose
computational efficiency because they require the numerical
evaluation of higher-order derivatives. Conversely, statistical
methods [3] simplify the approximation procedure while main-
taining high computational efficiency but often lack physical
meaning and interpretability. This letter proposes an alternative
approach to propagate parameter uncertainty in power system
nonlinear dynamic simulations based on the Koopman operator.
Unlike analytical methods that perform first-order or second-
order approximations of the system nonlinear model, the Koop-
man operator-based surrogate model captures the full nonlinear
dynamics and is derivative-free. Unlike statistical methods, the
proposed method retains physical interpretability and therefore
is suitable for applications such as coherency identification [4]
and selective modal analysis [5], among others. Furthermore, a
Koopman operator-based surrogate [6], [7] of a power system
nonlinear dynamic model enables the evaluation of a large set of
parameters with low computational cost and high accuracy while
propagating parameter uncertainties in power system dynamic
simulations.

II. KOOPMAN OPERATOR

Let an autonomous nonlinear dynamical system evolving on
a finite-dimensional manifold M be governed by

i(t) = F(2(t), )

where t e R, x € R™ C M is the state, and f: M — M is
a nonlinear function. Let an observable g(x) be a continuous
function defined in M, g : M — R. The Koopman operator,
K, is a linear, infinite-dimensional operator that acts on g,

K:g=g(S:), )

where Sy : M — M; x(0) — =(¢) = =(0) + fot f(x(7))dris
called the flow. Because the Koopman operator is linear, its
eigenvalues, A;, and eigenfunctions, ¢;, are defined by K;¢; =
e*itg;, 1 =1,...,00. In practice, one estimates a subset of
the Koopman eigenvalues and eigenfunctions. To this end, let
g: M — R"™_ ng > n,. If all n; elements of g lie within the
span of the eigenfunctions ¢;, then

g(@(t) = di@(t) vi =Y di(@(0) vie?, (3)
i=1 =1
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where v; € C, i =1,...,ng, are the Koopman modes. The
interpretation of (2)—(3) is straightforward. Instead of focusing
on the evolution of the state, @, one shifts the focus to the
observables, g(x). The advantage is that the observables evolve
linearly with time, see (3), without neglecting the nonlinear
dynamics of the underlying dynamical system (1). The linear
representation (3) is crucial to the proposed method’s accu-
racy and computational efficiency, irrespective of nonlinearities.
Note that g(x) can be any continuous function of the state, x,
including the state itself. See, e.g., [8] for a principled way
of selecting these observables. Given a set of observables, it
is straightforward to estimate a subset of the Koopman tuples
{Xi, ¢4, v; }. To this end, this work adopts the extended dynamic
mode decomposition (EDMD) method [9]. Following [9], “if
the data provided to the EDMD method are generated by a
Markov process instead of a deterministic dynamical system, the
algorithm approximates the eigenfunctions of the Kolmogorov
backward equation, which could be considered as the stochastic
Koopman operator.”

ITI. THE PROPOSED METHOD
Let a deterministic power system model be

¢ = f(z,y), 0=h(z,y), (4)

where y € R™ denotes algebraic variables, h : M — R™»
is a nonlinear function, and @ and f are as defined in (1).
Further, let £ be a random vector following a given probability
density function. Now, suppose that m(£), a subset of the
model parameters,' is uncertain. To propagate the parameter
uncertainty through the system model, consider a set of .
samples, drawn from a multivariate probability distribution of
£, {ﬁ(j)};.‘;“f."['hcn, foreach &), j =1, ..., nme, one evaluates
a modified model given by

& = f(z,y,mE)), 0=nh(z,y), Q)

to obtain n,,. trajectories, from which one can quantify the
sample mean and the sample variance of the states. Obviously,
this MC simulation can be computationally costly for real-time
applications in sizeable electric power networks. Now, let us
introduce the propagation of parameter uncertainties using the
Koopman operator.

A. Reformulation of the Dynamic Model

The kernel idea in this letter is to augment (1) with n,,
differential equations [10], as follows:

{:i:(t) = f(x(t),m(t)),

m(t) =0, ©

thereby allowing one to cast the problem of parameter un-
certainty propagation into the Koopman operator framework.
The dimension of the augmented model (6) is 1, + n.,, Where
N,y 18 the number of parameters deemed uncertain. Note that
generator model parameters are time-invariant, constant values

'We consider synchronous generators® instead of transmission lines® model
parameters because the former directly impact the differential equations.
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represented by pseudo-state variables in (6). Now, we are in
the position to act on the parameter space using the Koopman
operator formalism. Note that although the model parameters are
typically considered time-invariant, as they are here, exceptions
do exist, e.g., adaptive control gain in inverter-based resources.
Nonetheless, one can still capture these exceptions in (6) as long
as ordinary differential equations can describe them; in that case,
specifically, ri2(¢) = 0 would be modified accordingly. This
fact demonstrates the flexibility in reformulating the augmented
model, though this specific case goes beyond the scope of this
letter.

B. Simulation-Based Data Collection

We are now in a position to estimate the Koopman operator.
The estimation of the Koopman operator relies exclusively on
data, either numerical or experimental. In this letter, we use
numerical data obtained from simulations. To this end, we first
perturb the initial conditions of the pseudo-states—namely, the
parameters 1m(0) in (6)—at different random values, e, 5=
1,...,n More specifically, we adopt a model

m(&‘)(o) —m4+ 'S(J) (7

to obtain a set {m7)(0)}}~,, where n; denotes the number of
sampled trajectories. Note that the values of /m can be obtained
from the manufacturer data. Then, we repeatedly evaluate

z(t) = f(=(t), m(t)),
m(t) =0,

z(0),

: 8
mJ(U)!j:]-:"':nt: ( )

to obtain n, trajectories of the system states, including the
pseudo-states, as the training data. Note that to ensure the
training efficiency, n; should be designed to be a small num-
ber while maintaining a faster convergence rate than the MC
sampling. Specifically, we generate {&7 -, via the Latin hy-
percube sampling technique for its well-known capability in
experiment design. Using the simulated data obtained with the
augmented model (8), we estimate a subset of the Koopman
tuples, {A;, ¢;, v; }, using the EDMD method [8], [9]. Note that
identifying a Koopman operator-based surrogate model requires
the computation of the Moore-Penrose pseudo-inverse of a data
matrix. The latter might be time-consuming depending on the
matrix dimension and the numerical implementation. Never-
theless, highly efficient implementations of the Moore-Penrose
pseudo-inverse are available.

C. UQ Through Koopman Operator-Based Surrogate Model

For convenience, define ] = [z m']. Let us use (3) to
mimic the system performances described in (6) as a Koopman
operator-based surrogate model. Obviously, (3) is in a much
simpler functional form than (6) to represent a complex dynam-
ical system [6], such as the dynamic power system considered
here. This surrogate allows us to efficiently conduct uncertainty
quantification, i.e., T, & Y 1% di(@a0)vipk, at a large num-
ber of parameter values, {m(7)} 7. Note that ; relates to the
continuous-time Koopman eigenvalues A; = In(u;)/At, where
At is the data sampling time.
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To numerically achieve this realization procedure, we simply
assign each parameter sample, m.J ), as the initial conditions to
the associated pseudo-states while keeping the initial conditions
of the true system states unchanged to get an updated :1:{(30) , whose
randomness can be further reflected in the Koopman eigenfunc-
tions through qb(:x:fj))) R }I,g_;.'(:l.r:fjjJ ). The matrix L stands for the
left eigenvectors of the finite-dimensional approximation to the
Koopman operator; refer to [8] for details. The other part in (3)
remains unchanged, and then we have

nd
28 =Y gi(@a )ik, i=1,sntme. )
i=1

Now, using the set of {Iﬂk(j)}?‘;‘f, we can quantify the
uncertainties—e.g., the mean, the variance, the probability den-
sity function—in the system states at any given time, k.

IV. SIMULATION RESULTS

Using the proposed method, we test its performance on the
10-machine, 39-bus New England power system with a classic
generator model. The system dynamics are triggered by opening
Line 15-16. We assume that the parameter values of the inertia
for each generator are not well known. We suppose that they
follow a Gaussian distribution with the mean being the original
manufacturer data and the standard deviation being 10% of the
mean value to account for the parameter uncertainties. We use
an MC simulation with 10,000 samples to obtain the benchmark
results for comparison.

For the Koopman method, we set n; = 75, and we select the
quantity of interest as the rotor angle of Generator 2 with respect
to that of Generator 10, denoted as d2_1g, as an example. Note
that the choice of the observables for the Koopman operator is
an open research topic; therefore, we demonstrate two test cases
with different observables. For the first case, we use the second-
order multivariate Hermite polynomials. For the second case,
in addition to the Hermite polynomials, we further introduce a
cosine function and a sine function for each true state variable
separately. The evolution of their means and standard deviations
are depicted in Fig. 1, which shows that, under different observ-
ables, their means are quite accurate. Regarding the variance,
although small differences are obtained during the first 5 s,
these values increase as time evolves. This makes sense because
the errors can accumulate over time [3]. This is precisely what
is observed when executing the polynomial-chaos-expansion
(PCE) method based on the sparse-grid rule [11], whose com-
puting time amounts to 32 seconds. A similar computing time
for the Koopman operator method is recorded. However, while
the Koopman operator method has been applied with some
success to coherency identification, stability assessment and
modal analysis, among others, it still calls for further research.
Indeed, the Koopman surrogate approach can not only serve
as an alternative of the PCE method in UQ, but it can also
help us to better deal with power system uncertainties. Also, as
observed in Fig. 2, which depicts the probability density function
of d2_1¢g at t = 2 s, the Koopman surrogate has the capability
of accurately representing the full probability density of the
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Fig. 1. Sample mean and standard deviation of do_;( obtained with MC

simulation, PCE-based, and Koopman operator-based methods under Gaussian
distribution.
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Fig. 2. Probability density function of d3_1¢ obtained with MC simulation
and the Koopman operator-based methods.

TABLE I
CPU TIME: MC SIMULATION AND KOOPMAN OPERATOR-BASED METHOD

Method
CPU time

MC
1627.28 s

Koopman: Training / Realization / Total
12.4/15.31 / 30.83 s

system state at a given time. Compared with the MC simulations,
which, as indicated in Table 1, take nearly 0.5 h to complete, the
Koopman surrogate using Hermite polynomials takes only 0.5
minute, hence achieving a speedup of more than 50x while
maintaining a good accuracy. Note that parallel computing is
directly applicable to the training and the partial realization of
the Koopman surrogate, resulting in a significant improvement
of the computational efficiency of the method. In addition, these
simulations demonstrate the flexibility of using different observ-
ables in the Koopman approximation. Note that by adequately
tuning the observable functions [8], the Koopman surrogate still
has the potential to be further improved in long-term dynamic
simulations and its commuting efficiency for larger-dimensional
systems.
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Fig. 3. Sample mean, standard deviation, skewness, and kurtosis of d3_19
obtained with MC simulation and the Koopman operator-based method under
Uniform distribution.

The proposed method is also able to deal with non-Gaussian
uncertainties. Indeed, once the Koopman surrogate is trained, it
can be directly evaluated by processing non-Gaussian distributed
samples, {m () J7F, to propagate uncertainties. Considering
power system applications, let us assume that the parameter
values of the inertia for each synchronous generator follows
a uniform probability distribution with 10% errors. The other
settings remain unchanged. From Fig. 3, we can see that the
Koopman method works well in approximating the mean and the
variance under an uniform distribution. However, when it comes
to higher moments, such as the skewness and the kurtosis as
shown in Fig. 3, the Koopman method does not provide accurate
results. Therefore, improving the performance of the Koopman
method in higher-order moments deserves further exploration.
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V. CONCLUSION

In this letter, we propose a Koopman surrogate method for
propagating uncertainties in power system dynamic simulations
that achieve good performance in terms of accuracy and com-
putational efficiency.
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