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AbstractÐSystem instability does not occur often in practice
and thus the historical data for training a machine learning
method has to address the imbalanced and multi-modal prob-
abilistic distribution in the probabilistic transient stability as-
sessment (PTSA). This letter proposes a transient stability index
(TSI) density-based weighting scheme and feature-TSI similarity
regularization to address that, yielding debiased uncertainty
quantification for PTSA in the presence of uncertain wind
generations and loads. Numerical results on the IEEE 39-bus
and Illinois 200-bus power systems demonstrate the significantly
improved performance of the proposed method over other state-
of-the-art machine learning approaches in PTSA.

Index TermsÐProbabilistic transient stability assessment,
power system dynamics, machine learning, uncertainty quantifi-
cation, renewable energy.

I. INTRODUCTION

W ITH the high penetration of inverter-based resources

(IBRs), strong and unpredictable uncertainties are pre-

sented. These uncertainties together with those from loads

result in time-varying operation conditions [1]. Quantifying

the impacts of uncertainties from IBRs and random loads for

transient stability is vital to the secure power system operation.

To this end, probabilistic transient stability assessment (PTSA)

methods have been developed. [2] proposes a decision tree-

based framework to perform the statistical binary transient

stability assessment (TSA) analysis under different faults and

topologies. When integrating with wind farms, [3] utilizes a

stacked denoising autoencoder to predict the transient stability

index (TSI). By using reduced-order surrogate models, [4] and

[5] perform the probabilistic rotor angle trajectory prediction,

which requires fewer samples. However, these studies have

not considered the imbalanced and multi-modal distribution of

TSA. This is because the modern power system usually has

a smaller number of unstable scenarios as compared to stable

ones. This may lead to highly biased uncertainty quantification

of PTSA, especially for unstable scenarios.

This letter proposes a debiased uncertainty quantification

method for PTSA. A TSI density-based weighting scheme is

developed for neural network (NN), leading to more attention

on unstable scenarios. Furthermore, the feature-TSI similarity

regularization is added to the NN to enable a distinction

between stable and unstable scenarios. This allows us to handle

the imbalanced and multi-modal probabilistic distributions for

PTSA, a challenging issue for existing works. Comparison re-

sults demonstrate the significant improvements of the proposed

method over existing ones.
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Fig. 1. Uncertainty propagation from uncertain sources to TSI.

II. PROBLEM STATEMENT

The power system dynamics with IBRs under a disturbance

can be described by the following stochastic differential and

algebraic equation (DAE):
{

ẋ = f(x,y,u, ζ)
0 = g(x,y, ζ)

(1)

where f(·) and g(·) are the differential and algebraic equa-

tions; x and y are the dynamic and algebraic variables; u is

the system input; ζ is a vector denoting all uncertain resources,

i.e., wind generations and loads in this work.

TSI is a commonly-used index to assess power system

transient stability and is usually defined as:

TSI = 100×
360− δmax

360 + δmax
(2)

where δmax is the maximum rotor angle difference between

any two generators during the dynamic simulations. If TSI

is larger than 0, the system is stable while those with neg-

ative values mean system instability. The transient stability

assessment model M(·), i.e., the relationship between TSI

and ζ = [Pw PL QL PG]
T, can be formulated as:

TSI = M(ζ), where Pw, PL, QL and PG are respectively

the active power of wind generations, the active power of

loads and reactive power of loads, and the active power

of synchronous generators. Monte Carlo sampling (MCS) is

the most widely used method in the literature to investigate

the impacts of uncertain sources on PTSA. Specifically, un-

der certain operating conditions, i.e., conditioned on PG, it

samples X = {ζ1, ζ2, ..., ζN} from the probability density

function (PDF) of uncertain sources and performs extensive

transient stability simulations to gather all possible outcomes

Y = {TSI1,TSI2, ...,TSIN}, as shown in Fig. 1, where

N is the number of samples. Consequently, uncertainties

propagated from uncertain sources can be quantified under

model TSI = M(Pw, PL, QL|PG). MCS is accurate if the

number of samples is sufficient and the uncertain resource

PDFs are accurate (challenging to obtain), but it is very

time-consuming and thus not applicable for online decision
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makings. [5] proposes the surrogate model-based approach to

mitigate this issue. However, system instability does not often

occur in practice, leading to the imbalance between stable and

unstable data. On the other hand, if the system has lost its sta-

bility, the rotor angle of the out-of-step generator will increase

quickly and yield a large TSI, while the scenarios around

the stability boundary TSI = 0 are rare. Consequently, TSI

distribution is multi-modal. These cause significant challenges

for existing machine learning approaches.

III. PROPOSED DEBIASED PTSA METHOD

This letter proposes to handle imbalanced and multi-modal

TSI distribution via the TSI density-based weighting scheme

and ranking similarity regularization.

A. TSI Density-based Weighting Scheme

For the surrogate model-based PTSA, it tends to behave

better in stable scenarios since there is an adequate number

of samples for training the approach, while it is difficult to

quantify the uncertainty of limited unstable scenarios. Thus,

it is intuitive to assign different weights to various scenarios

to build a surrogate model. For example, large weights for

unstable scenarios and small weights for stable ones can be

designed. This is achieved by calculating a weight for each

sample inversely proportional to the probability of the TSI

value’s occurrence.

To weight each sample according to the rarity of the

corresponding TSI value, the weight function is defined as

Ψ(TSI). The TSI PDF is used to quantify the rarity, allowing

distinction between rare and frequent TSI value ranges. The

TSI PDF can be established by a non-parametric inference

method using a kernel density estimator (KDE):

p(TSI) =
1

Nh

N
∑

i=1

Φ

(

TSI− TSIi
h

)

(3)

where h is the bandwidth of the estimator and it is generally

set as 1.06σyN
−0.2 and σy is the sample standard deviation;

Φ is the kernel smoothing function, i.e., standard Gaussian

kernel utilized in the letter. All samples’ density values in the

training set are normalized into a range between 0 and 1 via:

p′ (TSI) =
p (TSI)−min p (TSI)

max p (TSI)−min p (TSI)
(4)

Consequently, the sample in the most densely populated part

of TSI is assigned a value of 1, while that in the most sparsely

populated part of TSI is assigned a value of 0. Based on this

normalized PDF, a basic weighting function can be defined:

Ψ ′ (TSI) = max (1− αp′ (TSI) , ϵ) (5)

where α ∈ [0, 1]. The small, positive, and real-valued constant

ϵ is to make sure the weight of each sample is larger than 0 so

that the information in the dataset won’t be wasted. Finally,

to correct the impacts of different scales of Ψ ′(TSI) values,

Ψ(TSI) can be obtained:

Ψ(TSI) = Ψ ′(TSI)
/

(

1

N

N
∑

i=1

Ψ ′(TSI)

)

(6)

Combined with (6), the loss function of NN is formulated as:

L1 =
1

N

N
∑

i=1

Ψ(TSIi)
∥

∥TSIi − TSIi
∥

∥ (7)

where TSIi is the predicted TSI by the NN. By applying (7),

the minority of the datasets, namely the unstable samples, can

be paid more attention by NN.

B. Ranking Similarity Regularization

Except for the TSI weighting scheme, this letter also im-

proves the uncertainty quantification performance from the

view of the feature similarity. From (1), it can be found that

if ∥ζ1 − ζ2∥ < ε and lim ε = 0, the dynamic trajectories

corresponding to ζ1 and ζ2 may be similar. This indicates that

similar inputs to the power system can lead to similar TSI

outcomes. Inspired by that, we can mitigate the distribution

imbalance issue by matching features with close TSIs. This

is also beneficial for multi-modal distribution. Note that the

features z used here are the outputs of the final full

connection layer in the NN. Let’s denote it as z = ϕ(ζ),
where TSI = ϕ(z).

Firstly, we need to define a ranking function RK(·) for

matching operations:

RK(a)i = 1 +

N
∑

j=1,j ̸=i

sign(aj > ai) (8)

where RK(a)i denotes the i-th element in RK(a) and a

is the input of RK, i.e., TSI or feature similarity. Taking an

example to illustrate RK, if a = [4, 6, 2, 8], RK(a)2 can be

calculated as 2 since 6 is the second-largest number in a.

Let STSI ∈ R
N×N denotes the pairwise similarity matrix

obtained by applying the cosine similarity function η(·, ·)
across all sample TSIs. Thus, (i, j)-th element in STSI is

STSI
i,j = η(TSIi,TSIj). Similarly, Sz ∈ R

N×N is the pairwise

similarity matrix for features, where Sz

i,j = η(zi, zj).
Consequently, ranking similarity regularization loss can be

formulated as:

L2 =

N
∑

i=1

∥

∥

∥
RK(STSI)[i,:] −RK(Sz)[i,:]

∥

∥

∥
(9)

In (9), [i, :] denotes the i-th row in a matrix. For a sample,

(9) encourages the sorted list of its neighbors in TSI space

to match its neighbors in feature space, leading to fewer

misspecifications both in unstable and stable scenarios.

C. PTSA under Imbalanced and Multi-modal Distribution

The proposed method can be divided into three steps:

1) Dataset construction: To obtain a dataset D =
{ζi,TSIi}

N

i=1 for training the NN, the active power of wind

generations and the real and reactive power of loads in ζ are

sampled from Weibull and Gaussian distributions, respectively.

To reflect the impacts of the active power of synchronous

generators on TSI, it can be varied as:

PG =

[

(

∑

PL −
∑

Pw −
∑

PG,b

)

/

∑

PG,b + 1

]

PG,b

(10)

where PG,b is the base active power of synchronous genera-

tors. The corresponding TSI can be calculated by time domain

simulation under predefined contingency sets.

2) Imbalanced and multi-modal distribution learning:

Taking ζ and TSI as input and output respectively, NN is

trained according to the following loss function:

L = L1 + λL2 (11)
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TABLE I
PERFORMANCE COMPARISON FOR FAULT AT BUS 12.

Methods MCS NN SGPR
MSE 0 307.21 3071.23

Number of samples 10000 5000 5000
Training time ≈ 0.66 h ≈ 0.33 h ≈ 0.40 h

Assessment time ≈ 0.66 h < 1 s < 1 s

Methods PM-D PM-R PM-DR
MSE 232.99 240.00 192.68

Number of samples 5000 5000 5000
Training time ≈ 0.36 h ≈ 0.65 h ≈ 0.71 h

Assessment time < 1 s < 1 s < 1 s

where λ is the regularization coefficient.

3) Online application: Once the NN is trained, the uncer-

tainties from random sources are quantified for PTSA. This

is advantageous, especially when the distribution of random

sources has changed.

IV. NUMERICAL RESULTS

A. Verification on IEEE 39-Bus System

The IEEE 39-bus system is employed to verify the proposed

method (PM). Four DFIG wind farms are connected to Buses

2, 8, 11, and 21 respectively. Their generation capacities of

them are 225 MW, respectively. The random parameter settings

for the uncertainty sources follow [6]. Two three-phase short-

circuit faults applied on Buses 12 and 26 are respectively tested

with a fault duration of 180 ms. The total simulation time is 3

s. By sampling from the PDF of wind speeds and loads, 10000

samples are generated for MCS. Note that, in this letter, 20%

samples of MCS are used for testing.

To verify the effectiveness of the proposed TSI density-

based weighting and the feature-TSI similarity regularization,

the following scenarios are tested:

(a)

Stable/unstable 

probability

0.846/0.154

0.846/0.154
0.852/0.148

0.842/0.158

(b)

(c) (d)

Fig. 2. Results of PTSA under fault at Bus 12. (a) Full PDF; (b) Cumulative
probability; (c) PDF of stable scenarios; (d) PDF of unstable scenarios.

(a)

Stable/unstable 

probability

0.884/0.116

0.899/0.101
0.901/0.099

0.888/0.114

(b)

(c) (d)

Fig. 3. Results of PTSA under fault at Bus 26. (a) Full PDF; (b) Cumulative
probability; (c) PDF of stable scenarios; (d) PDF of unstable scenarios.

TABLE II
PERFORMANCE COMPARISON FOR FAULT AT BUS 26.

Methods MCS NN SGPR
MSE 0 251.31 2669.46

Number of samples 10000 5000 5000
Training time ≈ 0.66 h ≈ 0.33 h ≈ 0.40 h

Assessment time ≈ 0.66 h < 1 s < 1 s

Methods PM-D PM-R PM-DR
MSE 164.28 134.03 122.73

Number of samples 5000 5000 5000
Training time 0.36 ≈ 0.65 h ≈ 0.71 h

Assessment time < 1 s < 1 s < 1 s

• PM-D: NN with the TSI density-based weighting regu-

larization;

• PM-R: NN with the feature-TSI similarity regularization;

• PM-DR: NN with the TSI density-based weighting and

the feature-TSI similarity regularization.

The NN employed by the proposed method contains three-

layer neurons of 50-50-20-1. Parameters are determined by

the grid-searching approach. Specifically, λ and maximum NN

training epochs are set as 0.01 and 500 respectively. Besides,

α can be set as the proportion of the stable samples in all data

since a larger α can lead to smaller weights on the samples

with low density according to (5). As a result, α are respec-

tively 0.85 and 0.88 for fault scenarios of Buses 12 and 26. The

batch training size is set as 16, which is able to improve the

training accuracy for the proposed method. MCS is utilized as

the benchmark, while the NN without imbalanced learning and

the state-of-art Sparse Gaussian Process Regression (SGPR) in

[5] are used for comparisons. For fair comparisons, the same

amount of samples is utilized for training NN, SGPR, and the

proposed method.

Figs. 2 and 3 show the estimated PDFs by (3) for all meth-

ods under different fault scenarios. The proposed method can
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(a)

Stable/unstable 

probability

0.851/0.149

0.849/0.151
0.856/0.144

0.847/0.153

(b)

(c) (d)

Fig. 4. Results for Illinois 200-bus system. (a) Full PDF; (b) Cumulative
probability; (c) PDF of stable scenarios; (d) PDF of unstable scenarios.

quantify the uncertainties from uncertain sources accurately

due to the imbalanced and multi-modal learning capability.

If we separately construct the PDFs of TSI according to the

stable and unstable scenarios, Figs. 2 and 3 also illustrate that

SGPR has poor uncertainty quantification performance in each

scenario since it tends to learn TSI that has a large probability

density. Due to the smoothing effect in (3) for building a full

PDF, the large estimation error of SGPR is masked. The mean

square error (MSE) comparisons in Tables I and II also support

these results. Note that the proposed method outperforms them

in this case as well. These indicate that the full PDF (includ-

ing stable and unstable scenarios simultaneously) is not

enough for uncertainty quantification under imbalanced

and multi-modal TSI distributions. It is also necessary to

build PDFs separately for stable and unstable scenarios to

verify the effectiveness of the model. Although the training

time (including data generation and model training) of the

proposed method is a little bit larger than MCS, see Tables I

and II, it doesn’t have to be retrained when the distributions of

random sources change, leading to fast assessment. However,

time-consuming MCS has to be re-performed .

B. Verification on Illinois 200-Bus Power System

To demonstrate the scalability of the proposed method, new

tests are performed on the modified Illinois 200-bus power

system. Six 150-MW DFIG wind farms are connected to

TABLE III
PERFORMANCE COMPARISON FOR ILLINOIS 200-BUS POWER SYSTEM.

Methods MCS NN SGPR PM-DR
MSE 0 275.80 2431.27 191.39

Number of samples 10000 8000 8000 8000
Training time ≈ 0.94 h ≈ 0.75 h ≈ 1.47 h ≈ 1.19 h

Assessment time ≈ 0.94 h < 1 s < 1 s < 1 s

Buses 8, 10, 16, 30, 41, and 88 respectively. A three-phase

short-circuit fault is applied on Bus 65. The hyperparameter

setting is similar to Section IV-A, while α is 0.85 and the

fault duration is 300 ms. Besides, NN inside the proposed

method contains three-layer neurons of 203-50-20-1. To verify

the generalization ability of the proposed method consid-

ering generation dispatch, the active power of synchronous

generators in the testing data is an instance from Gaussian

distribution, where its mean value is the base active power

while its standard deviation is 10% of that. It can be seen from

Fig. 4 and Table III that the proposed method is scalable to

large power systems and it can achieve accurate PTSA in high-

dimension uncertain resources. Compared with Figs. 2(c) and

(d) (or Figs. 3(c) and (d)), Figs. 4(c) and (d) show that SGPR

has much higher errors in stable and unstable scenarios; on

the other hand, since thousands of SGPRs are built with whole

rotor angle trajectories, it also has a much longer training time

than the proposed method, see Table III. Therefore, compared

with SGPR, the proposed method has the superior performance

both in assessment accuracy and training time for PTSA.

V. CONCLUSIONS

This letter proposes a debiased uncertainty quantification

approach for PTSA. By using TSI density-based weighting

and feature-TSI similarity regularization for NN, the proposed

method can deal with imbalanced and multi-modal distribution

issues. Numerical results demonstrate its excellent PTSA pre-

diction accuracy compared with other approaches.
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