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Abstract—System instability does not occur often in practice
and thus the historical data for training a machine learning
method has to address the imbalanced and multi-modal prob-
abilistic distribution in the probabilistic transient stability as-
sessment (PTSA). This letter proposes a transient stability index
(TSI) density-based weighting scheme and feature-TSI similarity
regularization to address that, yielding debiased uncertainty
quantification for PTSA in the presence of uncertain wind
generations and loads. Numerical results on the IEEE 39-bus
and Illinois 200-bus power systems demonstrate the significantly
improved performance of the proposed method over other state-
of-the-art machine learning approaches in PTSA.

Index Terms—Probabilistic transient stability assessment,
power system dynamics, machine learning, uncertainty quantifi-
cation, renewable energy.

I. INTRODUCTION

ITH the high penetration of inverter-based resources

(IBRs), strong and unpredictable uncertainties are pre-
sented. These uncertainties together with those from loads
result in time-varying operation conditions [1]. Quantifying
the impacts of uncertainties from IBRs and random loads for
transient stability is vital to the secure power system operation.
To this end, probabilistic transient stability assessment (PTSA)
methods have been developed. [2] proposes a decision tree-
based framework to perform the statistical binary transient
stability assessment (TSA) analysis under different faults and
topologies. When integrating with wind farms, [3] utilizes a
stacked denoising autoencoder to predict the transient stability
index (TSI). By using reduced-order surrogate models, [4] and
[5] perform the probabilistic rotor angle trajectory prediction,
which requires fewer samples. However, these studies have
not considered the imbalanced and multi-modal distribution of
TSA. This is because the modern power system usually has
a smaller number of unstable scenarios as compared to stable
ones. This may lead to highly biased uncertainty quantification
of PTSA, especially for unstable scenarios.

This letter proposes a debiased uncertainty quantification
method for PTSA. A TSI density-based weighting scheme is
developed for neural network (NN), leading to more attention
on unstable scenarios. Furthermore, the feature-TSI similarity
regularization is added to the NN to enable a distinction
between stable and unstable scenarios. This allows us to handle
the imbalanced and multi-modal probabilistic distributions for
PTSA, a challenging issue for existing works. Comparison re-
sults demonstrate the significant improvements of the proposed
method over existing ones.
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Fig. 1. Uncertainty propagation from uncertain sources to TSI

II. PROBLEM STATEMENT

The power system dynamics with IBRs under a disturbance
can be described by the following stochastic differential and
algebraic equation (DAE):

Cb:f($7yaua<7) (1)
0=g(z,y.¢)
where f(-) and g(-) are the differential and algebraic equa-
tions;  and y are the dynamic and algebraic variables; u is
the system input; ¢ is a vector denoting all uncertain resources,
i.e., wind generations and loads in this work.
TSI is a commonly-used index to assess power system

transient stability and is usually defined as:

360 — Gy
TSI = 100 x oo — Omax 2
" 360 + O @

where d,,, is the maximum rotor angle difference between
any two generators during the dynamic simulations. If TSI
is larger than O, the system is stable while those with neg-
ative values mean system instability. The transient stability
assessment model M(-), i.e., the relationship between TSI
and ¢ = [P, P, Q Pg]", can be formulated as:
TSI = M(¢), where P, Py, Q; and P are respectively
the active power of wind generations, the active power of
loads and reactive power of loads, and the active power
of synchronous generators. Monte Carlo sampling (MCS) is
the most widely used method in the literature to investigate
the impacts of uncertain sources on PTSA. Specifically, un-
der certain operating conditions, i.e., conditioned on Pg, it
samples X = {{;,¢5,...,{y} from the probability density
function (PDF) of uncertain sources and performs extensive
transient stability simulations to gather all possible outcomes
Y = {TSI,, TSI,,..., TSIy}, as shown in Fig. 1, where
N is the number of samples. Consequently, uncertainties
propagated from uncertain sources can be quantified under
model TSI = M(P,,, Pr, Q.|P¢). MCS is accurate if the
number of samples is sufficient and the uncertain resource
PDFs are accurate (challenging to obtain), but it is very
time-consuming and thus not applicable for online decision
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makings. [5] proposes the surrogate model-based approach to
mitigate this issue. However, system instability does not often
occur in practice, leading to the imbalance between stable and
unstable data. On the other hand, if the system has lost its sta-
bility, the rotor angle of the out-of-step generator will increase
quickly and yield a large TSI, while the scenarios around
the stability boundary TSI = 0 are rare. Consequently, TSI
distribution is multi-modal. These cause significant challenges
for existing machine learning approaches.

III. PROPOSED DEBIASED PTSA METHOD

This letter proposes to handle imbalanced and multi-modal
TSI distribution via the TSI density-based weighting scheme
and ranking similarity regularization.

A. TSI Density-based Weighting Scheme

For the surrogate model-based PTSA, it tends to behave
better in stable scenarios since there is an adequate number
of samples for training the approach, while it is difficult to
quantify the uncertainty of limited unstable scenarios. Thus,
it is intuitive to assign different weights to various scenarios
to build a surrogate model. For example, large weights for
unstable scenarios and small weights for stable ones can be
designed. This is achieved by calculating a weight for each
sample inversely proportional to the probability of the TSI
value’s occurrence.

To weight each sample according to the rarity of the
corresponding TSI value, the weight function is defined as
W (TSI). The TSI PDF is used to quantify the rarity, allowing
distinction between rare and frequent TSI value ranges. The
TSI PDF can be established by a non-parametric inference
method using a kernel density estimator (KDE):

1 L /TSI TSI
i=1

where h is the bandwidth of the estimator and it is generally
set as 1.060, N %2 and o, is the sample standard deviation;
® is the kernel smoothing function, i.e., standard Gaussian
kernel utilized in the letter. All samples’ density values in the
training set are normalized into a range between 0 and 1 via:
P! (TSI) = p (TSI) — min p (TSI) @
max p (TSI) — min p (TSI)
Consequently, the sample in the most densely populated part
of TSI is assigned a value of 1, while that in the most sparsely
populated part of TSI is assigned a value of 0. Based on this
normalized PDF, a basic weighting function can be defined:
W' (TSI) = max (1 — ap’ (TSI),¢) 5)
where a € [0, 1]. The small, positive, and real-valued constant
€ is to make sure the weight of each sample is larger than 0 so
that the information in the dataset won’t be wasted. Finally,
to correct the impacts of different scales of ¥/(TSI) values,
Y (TSI) can be obtained:

N
w(TSI) = ¥'(TSI) / <Ji] 3 w'(TSI)) ©6)
i=1

Combined with (6), the loss function of NN is formulated as:

1 _
1= > ¥(TSL) || TSL; — TST| 9

=1

where TSI; is the predicted TSI by the NN. By applying (7),
the minority of the datasets, namely the unstable samples, can
be paid more attention by NN.

B. Ranking Similarity Regularization

Except for the TSI weighting scheme, this letter also im-
proves the uncertainty quantification performance from the
view of the feature similarity. From (1), it can be found that
if ||¢; —¢sll < € and lime = 0, the dynamic trajectories
corresponding to ¢; and ¢, may be similar. This indicates that
similar inputs to the power system can lead to similar TSI
outcomes. Inspired by that, we can mitigate the distribution
imbalance issue by matching features with close TSIs. This
is also beneficial for multi-modal distribution. Note that the
features z used here are the outputs of the final full
connection layer in the NN. Let’s denote it as z = ¢((),
where TSI = ¢(z).

Firstly, we need to define a ranking function RK(-) for

matching operations:
N

RK(a); =1+ Z sign(a; > a;) (8)
=1

where RK (a); denotes the i-th element in RK(a) and a
is the input of RK, i.e., TSI or feature similarity. Taking an
example to illustrate RK, if a = [4,6,2,8], RK(a)s can be
calculated as 2 since 6 is the second-largest number in a.

Let ST ¢ RVXN denotes the pairwise similarity matrix
obtained by applying the cosine similarity function 7(-,-)
across all sample TSIs. Thus, (i,j)-th element in S™5 is
STST = (TSI, TSLy). Similarly, $* € RV*¥ is the pairwise
similarity matrix for features, where ST =n(zi, z5).

Consequently, ranking similarity regularization loss can be
formulated as:

L=y |REC(S™g - RE(S )| ©
i=1

In (9), [i,:] denotes the i-th row in a matrix. For a sample,
(9) encourages the sorted list of its neighbors in TSI space
to match its neighbors in feature space, leading to fewer
misspecifications both in unstable and stable scenarios.

C. PTSA under Imbalanced and Multi-modal Distribution

The proposed method can be divided into three steps:

1) Dataset construction: To obtain a dataset D =
{¢;, TSIi}f\Ll for training the NN, the active power of wind
generations and the real and reactive power of loads in ¢ are
sampled from Weibull and Gaussian distributions, respectively.
To reflect the impacts of the active power of synchronous
generators on TSI, it can be varied as:

Pc = [(ZPL—ZPW—ZPG,b)/ZPQbH

(10)
where Pg;, is the base active power of synchronous genera-
tors. The corresponding TSI can be calculated by time domain
simulation under predefined contingency sets.

2) Imbalanced and multi-modal distribution learning:
Taking ¢ and TSI as input and output respectively, NN is
trained according to the following loss function:

L=L1+ )Mo

Y
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TABLE I
PERFORMANCE COMPARISON FOR FAULT AT BUS 12.

Methods MCS NN SGPR
MSE 0 307.21 3071.23
Number of samples 10000 5000 5000
Training time ~ 0.66 h ~ 033 h ~ 0.40 h
Assessment time =~ 0.66 h <l1ls <ls
Methods PM-D PM-R PM-DR
MSE 232.99 240.00 192.68
Number of samples 5000 5000 5000
Training time ~ 0.36 h ~ 0.65 h ~ 0.71 h
Assessment time <ls <ls <ls

where )\ is the regularization coefficient.

3) Online application: Once the NN is trained, the uncer-
tainties from random sources are quantified for PTSA. This
is advantageous, especially when the distribution of random
sources has changed.

I'V. NUMERICAL RESULTS
A. Verification on IEEE 39-Bus System

The IEEE 39-bus system is employed to verify the proposed
method (PM). Four DFIG wind farms are connected to Buses
2, 8, 11, and 21 respectively. Their generation capacities of
them are 225 MW, respectively. The random parameter settings
for the uncertainty sources follow [6]. Two three-phase short-
circuit faults applied on Buses 12 and 26 are respectively tested
with a fault duration of 180 ms. The total simulation time is 3
s. By sampling from the PDF of wind speeds and loads, 10000
samples are generated for MCS. Note that, in this letter, 20%
samples of MCS are used for testing.

To verify the effectiveness of the proposed TSI density-
based weighting and the feature-TSI similarity regularization,
the following scenarios are tested:
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Fig. 2. Results of PTSA under fault at Bus 12. (a) Full PDF; (b) Cumulative
probability; (c) PDF of stable scenarios; (d) PDF of unstable scenarios.
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Fig. 3. Results of PTSA under fault at Bus 26. (a) Full PDF; (b) Cumulative
probability; (c) PDF of stable scenarios; (d) PDF of unstable scenarios.

TABLE I
PERFORMANCE COMPARISON FOR FAULT AT BUS 26.

Methods MCS NN SGPR
MSE 0 251.31 2669.46
Number of samples 10000 5000 5000
Training time ~ 0.66 h ~ 033 h ~ 040 h
Assessment time ~ 0.66 h <l1s <ls
Methods PM-D PM-R PM-DR
MSE 164.28 134.03 122.73
Number of samples 5000 5000 5000
Training time 0.36 ~ 0.65 h ~ 0.71 h
Assessment time <ls <l1s <ls

o« PM-D: NN with the TSI density-based weighting regu-
larization;

o PM-R: NN with the feature-TSI similarity regularization;

« PM-DR: NN with the TSI density-based weighting and
the feature-TSI similarity regularization.

The NN employed by the proposed method contains three-
layer neurons of 50-50-20-1. Parameters are determined by
the grid-searching approach. Specifically, A and maximum NN
training epochs are set as 0.01 and 500 respectively. Besides,
« can be set as the proportion of the stable samples in all data
since a larger o can lead to smaller weights on the samples
with low density according to (5). As a result, o are respec-
tively 0.85 and 0.88 for fault scenarios of Buses 12 and 26. The
batch training size is set as 16, which is able to improve the
training accuracy for the proposed method. MCS is utilized as
the benchmark, while the NN without imbalanced learning and
the state-of-art Sparse Gaussian Process Regression (SGPR) in
[5] are used for comparisons. For fair comparisons, the same
amount of samples is utilized for training NN, SGPR, and the
proposed method.

Figs. 2 and 3 show the estimated PDFs by (3) for all meth-
ods under different fault scenarios. The proposed method can
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Fig. 4. Results for Illinois 200-bus system. (a) Full PDF; (b) Cumulative
probability; (c) PDF of stable scenarios; (d) PDF of unstable scenarios.

quantify the uncertainties from uncertain sources accurately
due to the imbalanced and multi-modal learning capability.
If we separately construct the PDFs of TSI according to the
stable and unstable scenarios, Figs. 2 and 3 also illustrate that
SGPR has poor uncertainty quantification performance in each
scenario since it tends to learn TSI that has a large probability
density. Due to the smoothing effect in (3) for building a full
PDF, the large estimation error of SGPR is masked. The mean
square error (MSE) comparisons in Tables I and II also support
these results. Note that the proposed method outperforms them
in this case as well. These indicate that the full PDF (includ-
ing stable and unstable scenarios simultaneously) is not
enough for uncertainty quantification under imbalanced
and multi-modal TSI distributions. It is also necessary to
build PDFs separately for stable and unstable scenarios to
verify the effectiveness of the model. Although the training
time (including data generation and model training) of the
proposed method is a little bit larger than MCS, see Tables I
and II, it doesn’t have to be retrained when the distributions of
random sources change, leading to fast assessment. However,
time-consuming MCS has to be re-performed .

B. Verification on Illinois 200-Bus Power System

To demonstrate the scalability of the proposed method, new
tests are performed on the modified Illinois 200-bus power
system. Six 150-MW DFIG wind farms are connected to

TABLE III
PERFORMANCE COMPARISON FOR ILLINOIS 200-BUS POWER SYSTEM.

Methods MCS NN SGPR PM-DR
MSE 0 275.80 2431.27 191.39
Number of samples 10000 8000 8000 8000

Training time ~094h ~075h ~147h =1.19h
Assessment time ~ 0.94 h <ls <l1s <ls

Buses 8, 10, 16, 30, 41, and 88 respectively. A three-phase
short-circuit fault is applied on Bus 65. The hyperparameter
setting is similar to Section IV-A, while « is 0.85 and the
fault duration is 300 ms. Besides, NN inside the proposed
method contains three-layer neurons of 203-50-20-1. To verify
the generalization ability of the proposed method consid-
ering generation dispatch, the active power of synchronous
generators in the testing data is an instance from Gaussian
distribution, where its mean value is the base active power
while its standard deviation is 10% of that. It can be seen from
Fig. 4 and Table III that the proposed method is scalable to
large power systems and it can achieve accurate PTSA in high-
dimension uncertain resources. Compared with Figs. 2(c) and
(d) (or Figs. 3(c) and (d)), Figs. 4(c) and (d) show that SGPR
has much higher errors in stable and unstable scenarios; on
the other hand, since thousands of SGPRs are built with whole
rotor angle trajectories, it also has a much longer training time
than the proposed method, see Table III. Therefore, compared
with SGPR, the proposed method has the superior performance
both in assessment accuracy and training time for PTSA.

V. CONCLUSIONS

This letter proposes a debiased uncertainty quantification
approach for PTSA. By using TSI density-based weighting
and feature-TSI similarity regularization for NN, the proposed
method can deal with imbalanced and multi-modal distribution
issues. Numerical results demonstrate its excellent PTSA pre-
diction accuracy compared with other approaches.
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