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Abstract—This paper proposes a deep sigma point processes
(DSPP)-assisted chance-constrained power system transient sta-
bility preventive control method to deal with uncertain renew-
able energy and loads-induced stability risk. The traditional
transient stability-constrained preventive control is reformulated
as a chance-constrained optimization problem. To deal with
the computational bottleneck of the time-domain simulation-
based probabilistic transient stability assessment, the DSPP is
developed. DSPP is a parametric Bayesian approach that allows
us to predict system transient stability with high computational
efficiency while accurately quantifying the confidence intervals
of the predictions that can be used to inform system instability
risk. To this end, with a given preset confidence probability, we
embed DSPP into the primal dual interior point method to help
solve the chance-constrained preventive control problem, where
the corresponding Jacobian and Hessian matrices are derived.
Comparison results with other existing methods show that the
proposed method can significantly speed up preventive control
while maintaining high accuracy and convergence.

Index Terms—Deep sigma point processes, power system
stability, probabilistic transient stability prediction, chance-
constrained optimization, renewable energy.

I. INTRODUCTION

HE increased penetration of intermittent renewable en-

ergy has caused power system operation challenges. In
particular, the forecasting uncertainties for renewable energy
may yield an underestimate of power system transient stabil-
ity. Therefore, probabilistic transient stability assessment has
started to call attractions [1].

The traditional transient stability prediction is based on
time-domain simulations by solving the nonlinear differential-
algebraic equations, which is time-consuming and subject
to scalability issues for large-scale systems [2]. To address
that, many efficient alternatives have been proposed, including
the transient energy function method [3], extended equal-
area criterion [4], quasi-steady-state analysis [5], etc. These
alternatives are model-based and thus require an accurate
dynamic system model. With the advancement of artificial
intelligence, learning-based methods have been introduced,
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including the decision tree technique [6], support vector ma-
chine [7], artificial neural network [8], deep belief network [9],
stacked denoising autoencoder (SDAE) [10], etc. Compared
with the model-based methods, data-driven methods are much
more computationally efficient [11]. However, these model-
based and data-based methods do not consider the impacts of
renewable energy and load uncertainties, which usually lead to
either underestimated or overestimated transient stability pre-
diction outcomes. To this end, probabilistic transient stability
assessment approaches are proposed, which can be divided
into two categories [12]. Some studies propose to approximate
the true probability of the stability assessment outcome based
on Monte Carlo simulations (MCS) and statistical analysis.
In [10], a large number of possible operation scenarios are
generated by the MCS to calculate the probability of transient
stability and instability. In [13], MCS are used to identify the
critical generators by counting the number of times each gen-
erator becomes unstable. Then, the statistical analysis is im-
plemented to determine the thresholds for protection schemes.
In [14], the historical statistics on the probabilistic states of
load level factor, fault type, fault location, fault clearing, and
automatic reclosing are used in MCS to generate samples
and perform transient stability assessment. Other studies are
based on analytical methods. In [15], the Kalman filter is used
to estimate the system angle, and unscented transformation
is applied to predict the distribution of the system transient
stability margin. In [12], the analytical expression of the
probabilistic transient stability index is derived, and three-
point estimation and Cornish-Fisher expansion are used to
deal with the wind farm uncertainties. However, MCS are
computationally expensive to be used for operational planning,
while the derivation of analytical expressions is challenging,
especially when the accurate dynamical system model is
difficult to obtain in practice [12].

On the other hand, the probabilistic transient stability as-
sessment only provides the system risk but not the mitigation
actions. Preventive control aims to prepare the system before
the occurrence of credible contingencies by generator dispatch,
wind curtailment, and load shedding [16]. Transient stability
constrained optimal power flow (TSC-OPF) is the widely used
method to find the optimal operating point under transient
stability constraint. Because the time-domain simulation is
very time-consuming, it is difficult to be applied in TSC-OPF
for online applications. Several alternatives of time-domain
simulations are combined with TSC-OPF to accelerate the
calculation. In [17], deep learning-based transient stability
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constraint is used in TSC-OPF to speed up transient stability
verification of preventive control strategies. However, [17]
uses a deterministic prediction method, which is difficult to
quantify the risk probability. In [18], probabilistic models of
load injections, wind generations, and fault clearing time are
constructed. Then, these probabilistic models are embedded
into the TSC-OPF framework to construct probabilistic static
inequality and transient stability constraints. The heuristic
optimization approach, i.e., group search optimization is used
that is not guaranteed to achieve optimal solution nor com-
putationally efficient. In [19], a machine learning model is
trained to predict transient stability. After that, the statistical
stability probability of all scenarios is used in TSC-OPF as
a transient stability constraint. The core of [19] is still based
on MCS, which heavily depends on the accuracy of possible
fault scenario generations.

In this paper, a computationally efficient deep sigma point
processes (DSPP)-assisted chance-constrained power system
transient stability preventive control framework is proposed.
The main contributions are as follows:

1) A DSPP-assisted probabilistic transient stability predic-
tion method is proposed that can quantify the predictive
distribution of the transient stability index. DSPP takes
the advantages of both Gaussian processes (GP) in
uncertainty quantification and deep GP with scalability
to yield accurate posterior approximations of stability
index distribution and stability risk quantification.

2) The existing TSC-OPF formulation has been extended
to the chance-constrained problem with the DSPP-
assisted probabilistic transient stability prediction model
informed risk. This allows us to better balance risk
mitigation and system economics. It is worth noting that
embedding the proposed probabilistic transient stability
prediction model addresses the computational challenge
of the traditional time-consuming simulations-based
transient stability verification. Comparison results with
existing approaches demonstrate the great improvements
in the convergence and computing time without loss of
generation dispatch accuracy, i.e, still maintaining good
economics.

The rest of the paper is organized as follows. Section II
presents the traditional TSC-OPF problem and shows the
problem of interest. Section III shows the proposed DSPP-
assisted chance-constrained transient stability preventive con-
trol. Results are presented and analyzed in Section IV and
finally, Section V concludes the paper.

II. PROBLEM STATEMENT

For power system preventive control, TSC-OPF is widely
used to find the optimal operating point under transient stabil-
ity constraints, which is mathematically formulated as follows:

A. Objective Function

The objective function is to minimize the total cost, includ-
ing generation cost, wind curtailment cost, and load shedding

cost.
Minimize Z (agiP;i’t +bgi Pyt + ng‘) +
i€ESy

E ijAij,t-FE car AP+
F€Sw keS,

MPPT
A_Pw’t = Pw,t - Pu@t

APy = Pg(l),t — Py

where ¢ denotes time instant; .S, is the synchronous generator
set; ag;, bgi, and cg; are fuel cost constants of i-th synchronous
generator; Py, ; denotes the active power output of i-th syn-
chronous generator; Sy, is the wind farm set; c,,; is the wind
curtailment cost constant of j-th wind farm; AP,;, is the
curtailed active power of j-th wind farm; S; is the load set
; cqk is the load shedding cost constant of k-th load; APy,
denotes the active power shedding of k-th load; Rf}/{tp PT is the
maximum active power output of P, ; according to maximum
power point tracking (MPPT); P?, denotes the load demand;
P, and P;; denote active powér of wind farms and loads
according to preventive control strategy. It should be noted
that both AP, ; and AP, are greater than 0, that is, they
can only be reduced.

(D

B. Power Balance Constraints

Suppose np, and n, are the numbers of buses and all gener-
ators (synchronous generators and wind farms), respectively.
The power balance constraints are [20]

GP(@7Vm7Pg):PbuS (G)’Vm)+Pd_csPs:0 (2)

GQ (97 Vins Qg) = Qbus (9» Vm) + Qd - Cst =0 (3

where Gp and G denote the active and reactive power
balance equations; P,y and Qs denote the ny, x 1 vectors of
bus active and reactive power injections; © and V,,, denote
the np x 1 vectors of bus voltage angles and bus voltage
magnitudes; P, and @ denote the ng x 1 vectors of generators
and wind farms active and reactive injections; P; and Qg
denote the ny x 1 vectors of loads active and reactive demands;
C; denotes the n;, X ns matrix of generators connection. If
generator or wind farm s is in bus j, C,;; = 1.

C. Branch Flow Constraints

Suppose n; denote the number of the branches. The branch
flow inequality constraints are

S5 (©, V)| = 8™ <0 “)

15:(0, V)| — 87 <0 Q)

where Sy and S; denote the n; x 1 vectors of the apparent
power flows at the start and end of the branches; S™®* is
the n; x 1 vector of max apparent power flow limits of the
branches.

D. Variable Limits

Variable limits include reference bus voltage angle equal-
ity constraint, bus voltage magnitude inequality constraints,
generator active and reactive power output constraints, i.e.,

OFf <0; <O ie ™ (6)
mi ot =1, mp (N

mi

min

Ui

§ Umi S v

Authorized licensed use limited to: to IEEExplore provided by University Libraries | Virginia Tech. Downloaded on August 02,2023 at 19:42:54 UTC from IEEE Xplore. Restrictions apply.
© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.



This article has been accepted for publication in IEEE Transactions on Power Systems. This is the author's version which has not been fully edited and
content may change prior to final publication. Citation information: DOI 10.1109/TPWRS.2023.3270800

IEEE TRANSACTIONS ON POWER SYSTEMS, 2023

min

Ps;

max

< psi < Py; y Mg )

3 Ts €))

72217...

B S g S @i 1
where (™' denotes the reference bus; #; and Hff denote
reference bus voltage angle and its rated value; v,,,; denotes the
1-th bus voltage magnitude; v,;,5* and v};* are upper and lower
limits of v,,;; ps; denotes the i-th synchronous generator or
wind farm active power output; pi;** and pg;™ are upper and
lower limits of pg;; qs; denotes the i-th synchronous generator
or wind farm reactive power output; ¢g-2** and ¢;'" are upper

st st
and lower limits of gg;.

E. Transient Stability Constraint

Power system transient stability is constrained by differen-
tial and algebraic equations (DAEs) [1].
&(t) = f(x(t),y(t), v, p,7)
0=g(z(t),y(t),u,p, )

(10)
(1)

where ¢ denotes the time instant during the transient period;
x(t) and y(t) denote vectors of state and algebraic variables,
respectively; w is the input vector; p denotes the model
parameters; f(-) and g(-) are nonlinear differential equations
and algebraic equations, respectively. They are solved by
time domain simulation, which is time-consuming and subject
to scalability issues for large-scale systems; 7 denotes the
uncertainties that can change the system operating point, such
as the rapid wind power fluctuations by speed change [19].
Due to the presence of DAEs within the TSC-OPF problem,
there is a huge computational challenge for most existing
approaches, especially when the uncertainties from renewable
energy-induced transient stability risk are considered. This
paper focuses on preventive control, where renewable energy
uncertainty-induced transient stability should be accurately
taken into account while yielding optimal control actions.

III. DSPP-ASSISTED CHANCE-CONSTRAINED TRANSIENT
STABILITY PREVENTIVE CONTROL

To address the TSC-OPF computational efficiency issue as
well as mitigate the renewable energy uncertain induced sta-
bility risk, we extend the TSC-OPF to the chance-constrained
formulation and develop the DSPP-assisted probabilistic tran-
sient stability preventive control.

A. Chance-Constrained TSC-OPF

Traditional TSC-OPF is based on the deterministic transient
stability constraint, which cannot quantify the stability risk of
different uncertain power generation and demand scenarios.
Probabilistic optimization or chance-constrained optimization
enables a constraint to be satisfied with a preset probability
[21]. In this paper, the transient stability constraint is reformu-
lated as chance constraint, and the chance-constrained TSC-
OPF is expressed as follows [18], [19]

Minimize (1) (12)
s.t.(2) ~ (9) (13)
Px(x(t),y(t),u,p,7) > @) 2 £ (14)

where x denotes the stability index of interest, which can be
selected according to different studies while this paper focuses
on transient stability; o denotes the threshold of the pre-
defined stability index. P(-) denotes the probability; ¢ is the
confidence probability of the chance constraint. The condition
that the transient stability constraint is satisfied means that the
probability of x > « is not less than .

In this paper, the transient stability index (TSI) is used to
describe the system stability, which reflects the maximum rotor
angle difference of all generators during the transient period
[9]. Formally, we have

360° — Amax
TSIl=——— x1 15
S 3600 _|_Amax x 00 ( )
AT =max (|Aiy — Aje]) Vi, j € Sy (16)

where T is the whole time-domain simulation period; A; ;
and A;; denote the rotor angle of generator ¢ and j at time ¢;
A™2X denotes the maximum rotor angle difference of any two
generators. The increase of TSI means the improvement of
system transient stability. Generally speaking, A™** = 360°,
i.e. TSI = 0, is considered as the boundary between transient
stable and unstable [22]. However, in some conservative tran-
sient stability prediction studies, this boundary is considered
as A™a* = 180°, i.e. TSI = 33.3 [23]. Based on DSPP, the
transient stability chance constraint can be expressed as [24]

P(TSI > TSIg) > ¢ 17)
where TSIp denotes the boundary TSI for distinguishing
transient stable and unstable; (17) denotes the probability of
TSI > TSI must be no less than the pre-defined thresh-
old e, which can be selected according to the engineering
experiences of the operator. It should be noted that if MCS-
based methods are used to approximate probability in (17),
the computational burden will be further increased. To this
end, we propose the DSPP-based probability transient stability
prediction method to speed up the calculation.

B. DSPP Approach for Chance-Constraints Modeling

Gaussian Processes (GP) is a machine learning model based
on Bayesian theory for regression and classification. GP can
qualify the uncertainty of the predicted target and obtain
its predictive distribution, which is meaningful in security
operation and dispatch [25]. A GP is represented by mean
function p(X and covariance function k (X, X') [27], i.e.,

F(X) ~ GP (u(X),k (X, X)) (18)
where X = {z;}."_, denotes the D x N matrix of the training
inputs (D is the dimension of x;, N is the dimension of input
feature space); f(X) = f = { f,»}i]\i1 is the latent function
values matrix. The joint density of GP is

Py, f1X)=p(y | foms)p(f|X) (19)
where p(y | X) denotes the multivariate Normal distribution;
y = {yL}f\Ll is the target matrix; o, denotes the variance;
p(y | -) is the likelihood function. The marginal likelihood is

w1 X)= [afp(y| £oh)p(f 1 X))
The above form is time-consuming in the presence of large

samples, i.e., large N. The time complexity of GP is O (Ng).
For this reason, the inducing point method-based sparse GP

Authorized licensed use limited to: to IEEExplore provided by University Libraries | Virginia Tech. Downloaded on August 02,2023 at 19:42:54 UTC from IEEE Xplore. Restrictions apply.
© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.



This article has been accepted for publication in IEEE Transactions on Power Systems. This is the author's version which has not been fully edited and
content may change prior to final publication. Citation information: DOI 10.1109/TPWRS.2023.3270800

IEEE TRANSACTIONS ON POWER SYSTEMS, 2023

(SGP) is developed [28]. In particular, the inducing points
Z = {Zi}i]\i1 is introduced as inputs, where M < N, and
the corresponding outputs are u = {Uz}f\i1 The GP prior
varies with u as
p(f | X) = p(f|u, X, Z)p(u| 2) 2D
Using the Jensen’s inequality to reduce the log joint density
of y and wu, yielding

log p(y. u | X, Z) =log / dfp(y | Hp(f | wp(u)

> Ep(fuylogp(y | ) + logp(u)]

N
=3 log N (i | KT K,
i=1
—1/202, . Tr Kyn + log p(u)

(22)
where [E denotes the mean value function; Tr denotes the trace
of the matrix RNN; KNN = Kyy — KNMK];{MK]VINQ
KMJW = k(Z, Z), kl = k(:CZ,Z) KNM = KMN =
k(X,Z). SGP can then be obtained by applying variational
inference to the lower bound of (22). The evidence lower
bound (ELBO) of SGP is

Lscp =Eq(u)[logp(y, v | X, Z)] + H[g(u)]

Sl 1o
i | Hf \Li) 5 Oobs 9 o2

i=1 obs

— KL(q(u) | p(u)) (23)

where KL is the Kullback-Leibler divergence; ¢(u) =
N(m,S) denotes Normal variational distribution; H[q(u)]
denotes the entropy term; sy (z;) = k! K,fHm de-
notes the predictive mean function; oy (z;)” = K, +
kT K/, SK;\ ki is the latent function variance. The com-
plete variational distribution of SGP is

q(f,u) =p(f |, X)q(u) 24)
The marginal distribution is
/ dug(f,w) = N (£ | 15 (X), 54(X))  29)

where ¥ f( = Kyn + KNMKMMSK;;MKMN is the
N x N covarlance matrix. The final optimization objective of
SGP is to maximize Lsap.

Deep Gaussian Processes (DGP) is the multi-layer gener-
alization of GP and forms a hierarchical model [29]. For a
2-layer DGP, the joint likelihood for (y, X) is

p(y. £.G 1 X)=p(y | f.0)p(f | G)p(G| X) (26)
where G = {gi}i]\il denotes the N x W matrix of output
of the first DPs (W is the dimension of g;); p(G | X) =
Hyzl p(gw | X) denotes prior of G.

The analytical form of DGP is difficult to obtain and
therefore, the doubly stochastic variational inference (DSVI)
is developed to achieve approximation. Inducting points and
variational distribution @ (f,uy¢,...,gw, ug.) are used. The
ELBO is

Losvi =Eq [logp (y | f,o5)] =D KL @7
where > KL is the sum of all KL divergences for the inducing
variables {uys,...,gw,ugw}. f at top layer can be analyti-
cally integrated, while G at other layers must be sampled using

the reparameterization trick. The predictive distribution is

B, a(oyle:) [ (y* ICARACN +U§bb)} 28)
where subscrlpt * is the test set; ptf (g ) is the predictive mean;
oy (g*) is the predictive variance. The calculation of (28) is
intractable. In DSPP, a parametric finite mixture method is
developed to simplify this, where a sigma point approximation
method is applied to (28) [26]. Suppose W = 2 for the first
layer of DSPP, the marginal likelihood is

pospp (i | i) =

2
J gl (ui g (9% 07 (90 +02.) T algiw | )
w=1
(29)
Through Gauss-Hermite quadrature, ¢ (g;1 | ;) in (29) can
be approximated by S mixtures of Dirac delta distributions

)= ES: 5 (g1~ (10, () + 6y, (@)
n (30)

where ¢ (g2 | ;) has a similar equation to ¢ (g;1 | =;); w%sl
denotes the weights; § is the Dirac delta function; 5151)
represents the quadrature points. Replace (30) into (29), a

mixture with S? components is obtained
pospp (i | i) = Zfl g2 Wﬁsl)wéﬁ x N (yi |
s (1o @) + €004, (@0 (@) + €20, ()
71 (10 @)+ €70y, (@) s (@) + €70, (@)
(€29)
In (31), the predictive distribution of a 2-layer DSPP has
SW Normal distribution mixtures, which grow exponentially.

To solve this problem, a more flexible alternative is to ’line-up’
the quadrature points across a different g;

w
11 a(giw [ @) =

q(gin | =i

(32
3w 116 (g0 = (o (@) + 670 (21)))
The Ob_]eCtIVC function of DSPP is
Lpspp = ZlOgPDSPP (yi | i) = Breg D KL (33)

i=1
where By > 0z denotes optional regularization constant. The
optimization parameter of Lpspp 1S Tobs , M, S, Z and kernel
hyperparameters for each layer, which can be optimized by
stochastic gradient methods and subsampling.

In this paper, DSPP is used for probabilistic transient
prediction. The input variables are synchronous generator
active power outputs P,, wind farm active power outputs P,
synchronous generator bus voltage magnitudes V;, wind farms
bus voltage magnitude V,,, active power demands of loads P,
and reactive power demands of loads Q4. The input matrix of
DSPPisT = [P,, P, V,, Vy, Py, Qd]T. The output variables
are mean of TSI prsr and standard deviation of TSI orgy.
Because the sum of the probability density of the Normal
distribution is 1, the transient stability chance constraint is
rewritten as

C (prs1, ors1, A) > € (34)

where C is the cumulative probability density of the Normal
distribution in the interval [prsr — Aorsr, st + AoTsi]; A
is a coefficient that depends on e. The calculation of A is
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based on the integral of the probability density function of the
Normal distribution.

1 prsitAoTst T — 2
/ exp <_ (z — prs)

2
V2moTsI HTSI—ACTSI 2O'TSI

For a preset € and corresponding A, the specific expression
of (34) is

)dx =e (35)

prst — Aorst > 0 (36)

The meaning of (36) is that the probability of TSI > 0
is more than e. At the same time, if upsy — Aopgr > 0 is
satisfied, prsr + Aorgr > 0 is true.

The training samples of DSPP is generated through time-
domain transient stability simulations. According to the pa-
rameters of the test system, we set the variation range of the
variables in Z. Then, the Latin hypercube sampling (LHS) [9]
is applied to generate /N input samples, which correspond to
N operation scenarios. For each scenario, we perform three-
phase short-circuit faults for credible contingencies in the test
system. Suppose there are L credible contingencies in the
test system, L TSIs are generated through L time-domain
simulations. We choose the minimum TSI in L TSIs as the
target, which corresponds to the most severe contingencies in
this scenario. It is worth noting that this paper focuses on
preventive control and thus the credible contingency list is
known to system operators. This list is typically determined
by engineering practice. By performing the above process for
all N scenarios, we get N sample pairs for training DSPP.

C. Chance-Constrained Transient Stability Preventive Control
Framework and Solution

The DSPP approach allows us to achieve a computationally
efficient assessment of the probabilistic transient stability as
compared to Monte Carlo and its variants. It also enables mod-
eling the probabilistic transient stability a chance constraint
that can be effectively used for OPF. To this end, the chance-
constrained transient stability preventive control framework is
established. This is a nonlinear programming problem. The
primal dual interior point method (PDIPM) is one of the most
widely used algorithms for solving such problems [30]. In this
paper, PDIPM can be used to solve this chance-constrained
optimal power flow problem, where the objective function
is (1) with constraints (2)-(9) and (36). In each iteration of
PDIPM, the required prsr and Argp for chance constraint (36)
can be calculated from DSPP.

It is worth noting that for the PDIPM approach, the Ja-
cobian and Hessian matrices associated with the constraints
are required. The Jacobian and Hessian matrices of (1)-(9)
can be easily calculated by following [31]. However, for those
associated with (36), they are derived as follows:

Jce =J (prst — Aorst) = J (prst) — AJ (orst)

_Oprst | dorst
0T 0T
_ [ oprst Aurst 1" 37
07, 0Lk
.\ Oorst dorst 1"
o1, 0Lk

Hce =H (prst — Aorst) = H (prst) — AH (orsr)

_Pprst | PPors
- 9T? oT*
62MTSI 32MTSI
07,0T, 0T10Tk
82;@51 82/LTSI (38)
0Lk 01, 0Lk 0Tk
D*orsr d%ors1
01,01, 01,07k
—A : :
aQJTSI aQUTSI
81[(811 81}(81}(

where Joc and Hcc denote the Jacobian and Hessian ma-
trices of the chance constraint, respectively; K denotes the
dimension of Z. The essence of (37) and (38) is to calculate
the first and second order partial derivatives of prsr and orsy
to each variable in Z.

In this paper, DSPP is implemented in the GPyTorch library
which is based on PyTorch framework [32], [33]. Before
training DSPP, the training samples should be normalized via

A SV S S (39)
(I— IIHIH)
TSI — p(TSI
1] — _ 151 p(TSD) 40)

o (TSI — u(TSI))

where () and o(-) are used to calculate mean and standard
deviation. Then, we train DSPP with normalized samples, and
J (prs1) , J (orsi), H (prst) and H (o7sr) can be calculated
through an automatic differentiation function in PyTorch [34].
For example, J (ursi) and H (orgr) can be calculated by

J (ursy)™ = torch.autograd.functional jacobian
s
S nor (41)
(ZGXP (w(‘)) X prst, L )
s=1
H (ursy)™" = torch.autograd.functional jacobian @)
(J (prs)™™ , )
J (prs)™ x p(TSI)
J = T\ max 43
(prst) 2 (T—Tm)™ (43)
H "% w(TSI) x 4
H (1) = sy X IASD XA

(I _ Imil’l)ma‘x7T ® (I _ Imil’l)

where ® denotes the matrix multiplication. For J (ogr) and
H (ors1), they have the same calculation process as J (prs)
and H (org1). Then, we substitute J and H of purgr and orgy
in (37) and (38) to get Joc and Hee. It should be noted
that in each iteration of PDIPM, Jcc and Hcc need to be
updated, so the use of GPU can greatly speed up the iteration
of PDIPM. The detailed steps of the chance-constrained pre-
ventive control framework proposed in this paper are shown
in Fig. 1, including sample generation, DSPP training and
preventive control. The sample generation and DSPP training
are offline steps, and only PDIPM-based preventive control is
implemented online. The detailed iteration process of DSPP
training and preventive control are shown in Algorithm 1
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Fig. 1. Proposed DSPP assisted chance-constrained power system transient stability preventive control framework.

and Algorithm 2, respectively. The proposed method can be
applied in other stability issues, following the steps similar to
Fig. 1, but beyond the scope of this paper.

Algorithm 1: Data generation and DSPP training

Input: Parameters of systems; PyTorch
Output: Well-trained DSPP
1 Set variation range of Py, P, Vy, V,,, Py and Qq
2 Generate N random discrete samples using LHS,
where Py, P, V,;, V,,, P; and Qg are limited to
their variation range
3fori=1:N do
4 for j = 1 : C(number of credible contingencies) do
Perform time-domain simulation to sample ¢
for contingencies j, and get TSI; ;
end
TSL = min (TSIZ‘J:C)
end
Generate N samples, where Py, P, V,, V,,, P; and
Q) are input, and TSI;.y are output
10 Divide samples into training set and test set
11 Build DSPP in PyTorch
12 Train DSPP using training set
13 Test DSPP using test set

W

e e 9

IV. NUMERICAL RESULTS

The proposed method is tested on the modified IEEE 39-
bus system with two wind farms located on buses 17 and 21,
both of which have a maximum active power output of 500
MW and belong to the type III wind generator, i.e., DFIG. The
variation range of synchronous generator active power outputs
P, and active power demands of loads P, are 80% ~ 120%.
The variation range of wind farm active power outputs P, is
0% ~ 100%. The variation range of generators’ bus voltage
magnitudes V;; and wind farms’ bus voltage magnitudes V;,
are 1.0 ~ 1.05 pu. Reactive power demands of loads Qg
changes with active power demands of loads Py. Based on the
above variation range, 10000 samples are generated by using

Algorithm 2: Iteration process of preventive control
Input: P,, P,, V,, V,,, P;, Q4, and other system
parameters; well-trained DSPP
Output: Optimal control strategy
1 Set variation range of P,, P,, V,, V,,, Py and Qq,
and use the middle value of that range as the initial
iteration value of PDIPM
2 Substitute transient stability constraint with (36)
3 while not converge or not reach the maximum
iteration number do
4 Use DSPP to calculate the value, Jacobian and
Hessian matrices of (36) by calculating psr,
orst, J(prst), J(orst), H(prst) and H(ors1)
according to (37) and (38)

5 The value, Jacobian and Hessian matrices are
applied in PDIPM for iteration [30]
6 Calculate value, Jacobian and Hessian matrices for

cost function and other static stability constraints
7 end

LHS, of which 8000 samples are used as training set and 2000
samples are used as the test set. The corresponding minimum
TSI is obtained by performing time-domain simulations on
credible contingencies. The combination of Z and minimum
TSI represent the generated samples. A 64-Bit computer with
Intel(R) Core(TM) i9-12900KF 3.19GHz CPU, 128GB RAM
and NVIDIA GeForce RTX 3090 24GB GPU is used to
perform numerical results.

A. DSPP Training and Performance Evaluation

We build a DSPP, whose size of minibatch is 500, the
number of mixtures of the outputs is 8, the width of the hidden
GP layer is 7, the number of epochs of training is 400, the
number of inducing points in each hidden layer is 300; the
optimizer is Adam, the kernel is Matérn kernel, the initial
learning rate is 0.01. In addition, the learning rate piecewise
constant decay method is used to accelerate the convergence
speed and improve the fitting accuracy. Then, we use training
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samples to train DSPP, and verified by test set samples. The
performance of DSPP can be estimated by transient stable and
unstable classification accuracy, mean absolute error (MAE)
between TSI target and prgr, false alarm rate (FA) and miss
detection rate (MD). The equations of classification accuracy,
MAE, FA and MD are

N
AP = NLT Zj; (,UTSI X TSITi > 0) (45)
1
MAE = o ; st — TSIpg)| (46)
1 &
FA = o ; (wrst < 0 and TSIp; > 0) (47)

Nt
1
MD = o ; (prst > 0 and TSIz < 0) (48)

where Ap is the classification accuracy; Ny is the number of
test set samples; TSIy; denotes the TSI target of the test set
samples.

We also compare DSPP with several other probabilistic and
deterministic prediction models. For probabilistic prediction
models, the GP, DGP, and deep kernel learning (DKL) [35]
are compared. For deterministic models, the four-layer stacked
autoencoder (SAE), the three-layer artificial neural network
(ANN), and the four-layer deep belief network (DBN) are
compared. The hyperparameters of the above models are
tuned to have optimal performances. The accuracy comparison
results of above models are shown in Table 1.

TABLE I
COMPARISON OF PERFORMANCE OF DIFFERENT PREDICTION MODELS
FOR 39-BUS SYSTEM

Type Model ~Ap MAE  FA MD

DSPP 97.4% 6.1 1.50% 1.10%

GP 86.4% 35.7 5.95% 7.65%

Probabilistic model SGP 88.1% 332 7.10%  4.80%
DGP 94.1% 22.3 3.55%  2.35%

DKL 94.0% 12.6 2.90% 3.10%

SAE 96.1% 9.2 2.25%  1.65%

Deterministic model ~ ANN  96.3% 12.4 1.40%  2.30%
DBN 97.5% 8.6 1.05%  1.45%

From Table I, we can see that DSPP has the best perfor-
mance compared with other probabilistic prediction models
according to classification accuracy and MAE. By contrast,
in the deterministic prediction models, DBN has the best
performance. The classification accuracy of DSPP is 97.4%,
which is almost the same as DBN, while the MAE of DSPP
is smaller than DBN (6.1 and 8.6 respectively). In addition,
DSPP can give the distribution of the predicted TSI, which is
crucial in transient stability risk assessment. It should be noted
that FA will carry out unnecessary control and increase costs,
while MD will generate potential security risks. In addition,
the accuracy, FA and MD all take TSI = 0 as the boundary
of stability. If ursy increases and moves away from TSI = 0,
prediction reliability will increase because FA and MD mostly
occur close to TSI = 0. The offline training time of DSPP is

337s and the prediction times for all models are less than
0.01s, which meets the requirements of online applications.
In addition, we test the single calculation times of prediction,
Jacobian and Hessian matrices, which are 0.008s, 0.008s, and
0.2s respectively.

In preventive control, different control reliability probabili-
ties correspond to different control costs. In this paper, we set
four confidence probabilities, including 95%, 90%, 80%, and
70%. According to (35), the corresponded A is 1.960, 1.645,
1.282 and 1.036 respectively. We randomly select S0 samples
in the test set and plot confidence intervals of four different
probabilities, as shown in Fig. 2 (The discrete samples are
arranged in ascending order of TSI true labels).
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Fig. 2. The visualization of the prediction performance of DSPP.

It can be seen from Fig. 2 that the prediction mean and four
confidence intervals are accurately distributed along the true
labels. The condition of (36) is satisfied when the lower bound
of the confidence interval of the preset confidence probability
is greater than 0. In addition, transient stability margins vary
with different operating scenarios, which can better increase
the control success rate and reduce the control costs. In the
preventive control later, we set the confidence probability to
95% to ensure the reliability of the control strategy.

B. Chance-Constrained Power System Preventive Control

Based on the DSPP, the preventive control can be imple-
mented according to Fig. 1. In real-time power system oper-
ation, we perform look-ahead transient stability predictions at
every time interval (e.g., 15 minutes) for all credible contin-
gencies. These predictions can be quickly achieved through
DSPP, taking less than 1 second per prediction according to
Table I. If a transient instability risk is detected, the PDIPM-
based preventive control is activated.

In this section, we first show the generator redispatch as the
control method while ignoring the wind curtailment and load
shedding to ensure full generation of renewable energy and
power supply reliability. This curtailment and load shedding
is tested in the later sections. For a scenario with unstable risk,
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TABLE 11
ITERATIVE PROCESS OF FOUR INDICES
Index Iteration
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
objective 41500 41671 42716 43028 43165 43062 42726 41730 41385 41257 41226 41215 41207 41205 41204
step size  10.92 18.56 3.45 2.17 0.93 0.30 0.46 1.92 1.36 0.65 1.11 1.18 1.15 0.27 0.35
fcond 3.1e-3  2.5e-3 3.0e4 13e4 9.5e-6 5S6e-7 88e-7 1.7e-5 9.1le-6 13e6 55e-6 1.le-5 49e-6 1.7e-6 9.3e-7
gcond 1.44 1.57 1.31 1.13 0.99 0.96 0.86 0.66 0.11 3.8¢-2 2.0e2 24e2 69e-3 2.1e3 4.le4
ccond 4835 498 218 122 48.9 4.8 1.2 0.55 7.2e-2 7.6e-3 2.7e-3 1.1e3 35e4 13e4 2.2e-5
ocond 3.6e-2 1.5e-2 2.0e-2 59e-3 2.6e3 193 63e3 19e3 6.7e-3 25e-3 6.1e-4 2.1le4 1.6e-4 3.5¢5 1.8e-5

we perform the preventive control using PDIPM with 15 itera-
tions. According to [30], four indices are defined to judge the
convergence of PDIPM, including fcond (termination tolerance
for feasibility), gcond (termination tolerance for gradient),
ccond (termination tolerance for complementary condition)
and ocond (termination tolerance for cost condition). The
iterative process of the objective function, step size and four
indices are shown in Table II. From Table II, we can see that
the optimization objective, i.e., the fuel cost of generators,
has changed from 41500 to 41204 with a reduction of 296.
The step size of iteration is changed from the initial 10.92 to
0.35 to accelerate convergence in the early stage of iteration
and improve control accuracy in the later stage. In the last
iteration, the four convergences indices are all less than le-3,
which is the tolerance of PDIPM convergence. The generation
redispatch results, cost constants, and total cost are shown in
Table III.

TABLE III
GENERATOR REDISPATCH RESULTS FOR 39-BUS SYSTEM

Gen Before After a b c Gen.
contro/MW  control/ MW 9 9 9 cost/$

1 246.3 329.8 0.013 0.32 0.20 1520
2 565.6 561.1 0.012 0.31 0.20 3952
3 510.9 607.5 0.011 030 0.22 4242
4 724.8 588.1 0.011 0.31 0.20 3987
5 447.2 539.2 0.012 0.32 0.20 3661
6 753.4 649.6 0.010 0.30 0.20 4415
7 593.6 645.9 0.010 029 0.20 4360
8 625.5 637.1 0.010 0.30 0.21 4250
9 743.3 707.6 0.009 029 0.20 4711
10 860.2 856.3 0.008 0.28 0.20 6106

The total cost is $41204.

In Table III, the fuel cost constants ag4, b, and c, are
randomly generated according to a reference value in [20],
where ay = 0.01, b, = 0.3 and ¢, = 0.2 for all generators.
For three fuel cost constants, a, is the dominant cost constant,
which accounts for about 93% ~ 96% of the total cost.
Generator 1, which has the highest a4, has the minimum active
power output after control, whereas generators 9 and 10 have
the maximum power output for the lower a,. From Tables II
and III, it can be concluded that the PDIPM-based preventive
control has achieved good generator redispatch. Then, we test
the reliability of PDIPM-based strategy through time-domain
simulations for credible contingencies. For this scenario, three
transmission lines are at risk of transient instability when in the
presence of a three-phase short-circuit fault. The rotor angle
trajectories of the generators before and after the preventive

control are shown in Fig. 3 (the trajectories before the control
are on the left, and the corresponding trajectories after the
control are on the right). From Fig. 3, we can see that before
the preventive control, the trajectory is divergent, meaning
transiently unstable, but after the preventive control, the gen-
erator power angle trajectory fluctuates within a small range,
indicating that the system is transient stable. The running
time of PDIPM is only 8.4s, which is fast enough for online
application.
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Fig. 3. Rotor angle trajectories of three faults, where the trajectories before
the control are on the left, and the corresponding trajectories after the control
are on the right (TSI from -96.6 to 38.5).

Then, we randomly select 50 scenarios with instability risk
to verify (36), as shown in Fig. 4. According to [22], all
scenarios on the purple line in Fig. 4 are greater than O,
which is considered transient stable. In this paper, the chance
constraint is pupsr — Aorst > 0, which is satisfied when
the orange line is greater than 0. The orange line partially
overlaps with the zero line, i.e., upst — Aopst = 0. This
is because for these scenarios, when PDIPM calculates the
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Fig. 4. Visualization of chance constraints in the preventive control.

optimal generator redispatch, the transient stability chance
constraint is the dominant constraint, so it converges to 0
to minimize the cost of power generation. However, other
scenarios are mainly limited by other constraints, such as the
line congestion, so the chance constraint is greater than 0.

C. Preventive Control with Wind Curtailment and Load Shed-
ding

For some severe scenarios, using only generator redispatch
cannot find a preventive control strategy that satisfies all
constraints. At this time, wind curtailment and/or load shed-
ding are required to identify the right control strategy. For
a scenario with instability risk in Fig. 5, when three-phase
short circuit fault occurs on lines 2-25 or 16-21, the generator
redispatch based PDIPM diverges. Therefore, we consider
wind curtailment and load shedding in the preventive control
and re-execute PDIPM. The preventive control strategy with
wind curtailment and load shedding is shown in Fig. 5.

From Fig. 5, we can see that some loads shed part of the
active power demand to make PDIPM converge, i.e., ensuring
system stability, and other loads maintain full power supply,
such as loads 2, 6, 8, 13, and 18. Due to load shedding,
most generators reduce their active power output to maintain
active power balance. It is worth noting that the absolute
values of the Jacobian and Hessian matrices of the wind farms
are small, which means that the wind curtailment has little
effect on transient stability improvement. Therefore, the active
power output of the wind farms remains unchanged. We also
verify the preventive control strategy through time-domain,
simulations. According to simulation results, TSI is changed
from -35.3 to 81.2, indicating the effectiveness of the proposed
method for ensuring system stability.

D. Scalability to Larger-Scale System

To further demonstrate its scalability to larger-scale systems,
the proposed method is tested on the South Carolina 500-
bus system, which serves 21 counties and about 2.6 million
people and built on the PowerWorld [40], [41]. In the 500-bus
system, 200 loads are supplied by 51 synchronous generators
and 9 wind farms (type III wind generator, i.e., DFIG). The
wind farms, with a total capacity of 1372 MW, account for
21.3% of the total system capacity (1372 MW/6456 MW).
The one-line diagram of the 500-bus system is shown in Fig.
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Fig. 5. Preventive control strategy of generators and loads (generators 1 and
2 are wind farms while the others are synchronous generators).

6. The variation range of synchronous generator active power
outputs P, and active power demands of loads Py are 55% ~
105%, respectively. The variation range of wind farm active
power Py, is 0% ~ 100%. Similar to 39-bus system, Q4 varies
with P,. Based on the aforementioned variation range, 20000
samples are generated using LHS, of which 16000 samples are
utilized as the training set and 4000 samples as the test set.
The corresponding minimum TSI is obtained by performing
time-domain simulations for all credible contingencies.

%

Fig. 6. One-line diagram of the South Carolina 500-bus system [40], [41].

Similar to the 39-bus system, DSPP is built in PyTorch, in
which the size of the minibatch is 500, the number of mixtures
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of the outputs is 8, the width of the hidden GP layer is 6, the
number of training epochs is 400, the number of inducing
points in each hidden layer is 300; the optimizer is Adam, the
kernel is Matérn kernel, the initial learning rate is 0.01, the
learning rate piecewise constant decay method is also used.
The performance of the DSPP is compared to that of other
probabilistic and deterministic models in Table IV.

TABLE IV
COMPARISON OF PERFORMANCE OF DIFFERENT PREDICTION MODELS
FOR 500-BUS SYSTEM

Type Model Ap MAE  FA MD
DSPP  99.0% 3.4 0.950%  0.050%
GP / / / /
Probabilistic model SGP / / / /
DGP / / / /
DKL 96.8% 7.8 2.750%  0.450%
SAE 97.1% 4.2 2.050%  0.850%
Deterministic model ~ANN  99.2% 2.5 0.075%  0.725%
DBN 99.4% 2.3 0.375%  0.225%

In Table IV, we evaluate a variety of hyperparameters
for GP, SGP, and DGP, but the results do not converge,
demonstrating the limitations of these models for large-scale
systems. DSPP has the highest Ap (99.0%) and minimal MAE
(3.4) in five probabilistic models. This demonstrates that DSPP
is the most accurate probabilistic model for this problem.
Compared with deterministic models, DSPP outperforms SAE,
but is slightly worse than ANN and DBN. However, DSPP’s
accuracy is sufficient and it can generate the predicted TSI
distribution for evaluating the risk of transient stability. Ac-
cording to MD of DSPP, the probability of potential risks is
only 0.050%.The offline training time of DSPP is 659s and the
prediction times for all models are less than 0.03s, which meets
the requirements of online applications. In addition, we test the
single calculation times of prediction, Jacobian and Hessian
matrices, which are 0.02s, 0.009s and 1.5s respectively.

Based on the DSPP, the preventive control is implemented
according to Fig. 1 for a random unstable scenario, where
the control strategy can be found via generator dispatch. The
control strategy is shown in Fig. 7 and the corresponding
cost calculation is shown in Table V. In Table V, the leading
cost coefficient is by, which affects about 60% ~ 90% of
the total cost. Generators 9, 11, 15 and 30, which have the
lower by, all increase the active power output to decrease the
total cost, whereas generators 1, 2 and 42 decrease the power
output for the higher by.According to the PDIPM results,
the DSPP-based TSI is 36.4. To verify this control strategy,
the time-domain simulation-based TSI is calculated, which
equals 42.4 and satisfies the requirement for transient stability.
The corresponding rotor angle trajectories before and after
preventive control are shown in Fig. 8. The running time of
the proposed method is 113s, which meets the requirement of
15 minutes or 1-hour preventive control interval.

E. Comparison with Sensitivity-based Method

In this section, we compare the proposed method with
the sensitivity-based method, where the sensitivity index is
calculated based on the full-system model and time-domain
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Fig. 7. Preventive control strategy of generators of 500-bus system.

TABLE V
TSC-OPF RESULTS AND TOTAL COST FOR 500-BUS SYSTEM

Gen Before After Cq/C: Gen.
* contro/MW  control/MW ag by Ccg cost/$

1 214.0 131.4 0.0015 26 1241 4683
2 416.3 244.5 0.0021 26 306 6787
3 892.6 679.2 0.0022 21 296 15574
9 29.9 52.6 0.0010 15 424 1215
11 4248 629.6 0.0011 16 1046 11555
12 368.6 507.8 0.0022 19 620 10836
13 413 62.8 0.0017 20 808 2070
14 474 329 0.0023 24 1292 2084
15 113.6 216.6 0.0016 17 651 4408
18 98.8 86.9 0.0028 25 239 2432
30 38.1 54.6 0.0017 15 1043 1867
42 50.6 335 0.0016 26 1150 2022
43 56.8 37.5 0.0027 24 755 1658
Others 458.6 5332 / / / 35491

Others denote other synchronous generators; The total cost is $102683.

simulation. We replace the intractable non-convex nonlinear
transient stability constraints with sensitivity-based constraint
[36], [37]. This optimization problem can be expressed as:

Minimize (1) (49)
s.t. (2) ~(9) (50)
TSI>TSIB\J:%,H:0 (1))

where the objective is to minimize the total cost; the tran-
sient stability constraint is the time-domain simulation-based
TSI. According to [23], TSI is set to be 33.3; o denotes
the controllable variable, including P,, P, and Pg; %
denotes the sensitivity of TSI to x; J of PDIPM is updated
every iteration; Since sensitivity-based constraint is a linear
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Fig. 8. Rotor angle trajectories of 500-bus system.
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constraint, H is constant at 0. The main difference between the
sensitivity-based method and the proposed method is that the
sensitivity is calculated based on the time-domain simulation,
and the Hessian matrix of the transient stability constraint is
not considered. For the 39-bus system, we randomly select 10
scenarios with instability risk to compare their performances.
The results are shown in Table VI.

TABLE VI
COMPARISON WITH SENSITIVITY-BASED METHOD FOR 39-BUS SYSTEM

Scenario Control method Total cost/$ Time
A B A B A B(~)

1 G G 37224 37224 12s 15min
2 G S / / 10s 70min
3 G S / / 14s 70min
4 G N / / 11s /

5 G G 36892 36892  13s 55min
6 G S / / 11s  130min
7 G N / / 10s /

8 G N / / 11s /

9 G S / / 9s 170min
10 G S / / 9s 90min

A: proposed method; B: sensitivity-based method; G: generator
redispatch; S: generator redispatch, wind curtailment and load
shedding; N: not converge.

In Table VI, we only compare the total cost of using
the same control method and calculate the iteration time of
PDIPM. It can be found that our proposed method has better
convergence and can find preventive control strategies that sat-
isfy all constraints by generator redispatch in these 10 scenar-
ios, while the sensitivity-based method requires consideration
of wind curtailment and load shedding and may not converge.
Scenarios 1 and 5 have the same control method and the same
total cost because they get the same preventive control strategy,
indicating the DSPP in the proposed method can achieve
the same accuracy as the time-domain simulation. There is
a significant difference in the iteration time between the two
methods. The proposed method can iteratively converge within
15s, while the sensitivity-based method requires time-domain
simulations for all credible contingencies in each iteration,
which is time-consuming and difficult to meet the require-
ments of online applications. In the sensitivity-based method,
when only generator redispatch is used, it is only necessary
to calculate the sensitivities of Py, and the iteration time is
tens of minutes, such as 15min and 55min. When considering
wind curtailment and load shedding, the sensitivities of P,
and P, also need to be calculated, and the iteration time can
reach up to 170min.

For the 500-bus system, we also choose 10 random unstable
scenarios to compare the performances, see Table VII. Similar
to the 39-bus system, only scenarios with the same control
method compare the total cost in Table VII. The sensitivity-
based method can only converge for three of the ten scenarios
(2 G and 1 S), while the proposed method can converge for
all ten (9 G and 1 S). The total cost of the two methods in
scenarios 2 and 3 is the same, but the calculation times differ
by around 50 times. For scenario 9, due to the wind curtail-
ment and load shedding, the dimension of Jacobian matrices
increases from 51 (the number of P,) to 460 (the number

of Py, P,, P; and Qg). As a result, the calculation time
increases 370 times from 97s to 10h. From the comparison
results, it can be concluded that the proposed method has
a great improvement in the convergence and computational
efficiency to meet practical applications.

TABLE VII
COMPARISON WITH SENSITIVITY-BASED METHOD FOR 500-BUS SYSTEM

Scenario Control method Total cost/$ Time
A B A B A B(~r)

1 G N / / 143s /

2 G G 104007 104007  107s  120min
3 G G 103911 103911  112s  100min
4 G N / / 102s /

5 G N / / 97s /

6 G N / / 102s /

7 G N / / 92s /

8 G N / / 107s /

9 G S / / 97s 10h
10 S N / / 159s /

A, B, G, S and N are defined in Table VI.

FE. Comparison with Heuristic Algorithm

Heuristic algorithms are widely employed in engineering
control. NSGA-II and NSGA-III are two advanced multi-
objective heuristic algorithms and applied in transient stability
control of power systems [38], [39]. In this section, the
proposed method is compared with the DBN-based NSGA-II
and NSGA-III, and time-domain simulation-based NSGA-II
and NSGA-III. The comparison results of the two systems are
shown in Table VIII. It should be emphasized that just the
generator redispatch is used, and the total cost of generators
and TSI are objectives to construct a multi-objective optimiza-
tion problem in NSGA-II and NSGA-III. Similar to [38], the
population size and number of iterations are both set to 200.

TABLE VIII
COMPARISON WITH HEURISTIC ALGORITHM

39-bus system 500-bus system
Cost TSI Time Cost TSI Time

TDS-NSGA-II 41624 689 = 105h 100638 51.2 =~ 100h
TDS-NSGA-III 41285 60.2 ~ 105h 100642 50.8 =~ 100h

Method

DBN-NSGA-II 41580 403 145s 100764  51.1 164s
DBN-NSGA-III 41299  66.9 3.5s 100639  50.8 7.0s
PM 41204 385 8.4s 100635 42.4 113s

TDS-NSGA-II/III: time-domain simulation-based NSGA-II/III; DBN-NSGA-
[I/1II: DBN-based NSGA-II/III; PM: proposed method.

From Table VIII, we can see that the proposed method
performs well in terms of cost, while the TSI is lower
than the heuristic algorithms. This is because the cost is
the only optimization objective in the proposed method, and
TSI is the constraint and not maximized. In addition, the
proposed method and DBN-based NSGA-II/III can achieve
preventive control within 200s and meet the requirement of
online application, but time-domain simulation-based NSGA-
II/1I1 is very time-consuming (> 100h). Although the heuristic
algorithm can obtain results close to those of the proposed
method, other static stability constraints, such as bus voltage
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magnitude and branch flow constraints, are not considered
in its iteration process. Therefore, it is necessary to verify
the results because they may not be accurate and reliable.
By contrast, the proposed method fully takes into account
all constraints during the iteration. In addition, the chance-
constrained preventive control is another main advantage of
the proposed method.

G. Computational Complexity Analysis

The computational complexity of DSPP-based preventive
control is shown in Table IX. For each iteration, one prediction
should be performed to obtain ppsr and opsr, two calculations
of Jacobian matrices should be performed to obtain J(prsr)
and J(org1), and two calculation of Hessian matrices should
be performed to obtain H (prsr) and H (org;). For the 39-bus
and 500-bus systems, the total calculation times related to tran-
sient stability constraint for each iteration are 0.424s (0.008s
+ 2%0.008s+2%0.2s) and 3.038s (0.02s + 2*0.009s+2*1.5s),
respectively. Note that these calculation times are appropriate
for both G (generator redispatch) and S (generator redispatch,
wind curtailment and load shedding) in Tables VI and VIIL.
This is because DSPP can generate Jacobian and Hessian
matrices for all Py, P, V,, V,,, P; and Qg  at one time.

TABLE IX
COMPUTATIONAL COMPLEXITY OF DSPP-BASED METHOD

Svst Control Time
ystem method  Prediction Jacobian  Hessian
39-bus system G/S 0.008s 0.008s 0.2s
500-bus system G/S 0.02s 0.009s 1.5s

G and S are defined in Table VI.

TABLE X
COMPUTATIONAL COMPLEXITY OF TIME-DOMAIN SIMULATION-BASED
METHOD FOR EACH ITERATION

Svst Control Time
ystem method  Prediction Jacobian  Hessian
6.5s 38s /
39-bus system S 6.55 2995 /
G 5.8s 280s /
S00-bus system g 5.85 1950s /

G and S are defined in Table VI.

For time-domain simulation-based preventive control, the
computational complexity is shown in Table X. For example,
when the 39-bus system has 7 credible contingencies, each
control iteration requires 7 time-domain simulations for pre-
diction and 70 (7 % 10, for G) and 434 (7 % 62, for S) times
for Jacobian matrices, respectively. Similarly, if the 500-bus
system has 5 credible contingencies, each control iteration
requires 5 time-domain simulations for prediction and 255
(5 * 51, for G) and 2300 (5 * 460, for S) times for Jacobian
matrices, respectively. From the analysis above, it is clear that
as the number of credible contingencies rises, the calculation
time also increases proportionally. The calculations of Hessian
matrices are very time-consuming, so they are not solved in a
sensitivity-based method.

H. Impact and Selection of \

For the 39-bus system, we test the impact of different \ for
an unstable scenario, which is shown in Table XI. In Table XI,
six different \ are set, corresponding to a probability range of
60.0% to 99.7%. With the increase of A and probability, the
increase in gy denotes a rise in control reliability. As a result,
the cost also goes up. prsr —Aorst = 0 means that the control
strategy is always solved on the boundary of transient stability
constraint in this unstable scenario. The choice of )\ is the
balance of cost and reliability. Generally, it is recommended
to choose 2.0 or 3.0, which corresponds to the probability of
95.4% and 99.7%. If we want to decrease FA and MD and
increase the prediction reliability, A should be increased.

TABLE XI
IMPACT OF DIFFERENT A IN PREVENTIVE CONTROL

A Probability  prsy  prst — Aorst Cost/$
0.8416 60.0% 9.3 0 42697
1.0364 70.0% 11.1 0 42698
1.2815 80.0% 13.0 0 42700
1.6448 90.0% 15.7 0 42702

2.0 95.4% 17.9 0 42704
3.0 99.7% 232 0 42710

Note that when PDIPM’s iteration is limited by other con-
straints (e.g., line congestion) as shown in Fig. 4, an increase
in ), i.e., the confidence probability, may not immediately lead
to an increase in ursy. This is because the transient stability
constraint is not the dominant constraint until it surpasses the
line congestion constraint.

V. CONCLUSION

This paper proposes a new chance-constrained power sys-
tem transient stability preventive control framework, which can
limit the transient security risk under a preset confidence prob-
ability. The key idea is to embed the DSPP enabled probabilis-
tic prediction model into the TSC-OPF as a transient stability
chance constraint and accelerate the calculation. DSPP can fit
the transient stability index offline and generate probability
distribution of the predicted value online in less than 0.03s.
DSPP-assisted TSC-OPF uses PDIPM to analytically calculate
the optimal preventive control strategies that satisfy the chance
constraint through the generator redispatch, wind curtailment
and load shedding. Numerical results show that the proposed
method can quickly and reliably generate preventive control
strategies and has a great improvement in convergence and
iteration time compared with the sensitivity-based method. In
our future work, the preventive control framework will be
extended to coordinate different control modes from inverter-
based resources with synchronous generators. We will also
extend the approach to deal with other stability problems with
high penetration of inverter-based resources, such as converter-
driven stability control.
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