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AbstractÐThis paper proposes a deep sigma point processes
(DSPP)-assisted chance-constrained power system transient sta-
bility preventive control method to deal with uncertain renew-
able energy and loads-induced stability risk. The traditional
transient stability-constrained preventive control is reformulated
as a chance-constrained optimization problem. To deal with
the computational bottleneck of the time-domain simulation-
based probabilistic transient stability assessment, the DSPP is
developed. DSPP is a parametric Bayesian approach that allows
us to predict system transient stability with high computational
efficiency while accurately quantifying the confidence intervals
of the predictions that can be used to inform system instability
risk. To this end, with a given preset confidence probability, we
embed DSPP into the primal dual interior point method to help
solve the chance-constrained preventive control problem, where
the corresponding Jacobian and Hessian matrices are derived.
Comparison results with other existing methods show that the
proposed method can significantly speed up preventive control
while maintaining high accuracy and convergence.

Index TermsÐDeep sigma point processes, power system
stability, probabilistic transient stability prediction, chance-
constrained optimization, renewable energy.

I. INTRODUCTION

THE increased penetration of intermittent renewable en-

ergy has caused power system operation challenges. In

particular, the forecasting uncertainties for renewable energy

may yield an underestimate of power system transient stabil-

ity. Therefore, probabilistic transient stability assessment has

started to call attractions [1].

The traditional transient stability prediction is based on

time-domain simulations by solving the nonlinear differential-

algebraic equations, which is time-consuming and subject

to scalability issues for large-scale systems [2]. To address

that, many efficient alternatives have been proposed, including

the transient energy function method [3], extended equal-

area criterion [4], quasi-steady-state analysis [5], etc. These

alternatives are model-based and thus require an accurate

dynamic system model. With the advancement of artificial

intelligence, learning-based methods have been introduced,
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including the decision tree technique [6], support vector ma-

chine [7], artificial neural network [8], deep belief network [9],

stacked denoising autoencoder (SDAE) [10], etc. Compared

with the model-based methods, data-driven methods are much

more computationally efficient [11]. However, these model-

based and data-based methods do not consider the impacts of

renewable energy and load uncertainties, which usually lead to

either underestimated or overestimated transient stability pre-

diction outcomes. To this end, probabilistic transient stability

assessment approaches are proposed, which can be divided

into two categories [12]. Some studies propose to approximate

the true probability of the stability assessment outcome based

on Monte Carlo simulations (MCS) and statistical analysis.

In [10], a large number of possible operation scenarios are

generated by the MCS to calculate the probability of transient

stability and instability. In [13], MCS are used to identify the

critical generators by counting the number of times each gen-

erator becomes unstable. Then, the statistical analysis is im-

plemented to determine the thresholds for protection schemes.

In [14], the historical statistics on the probabilistic states of

load level factor, fault type, fault location, fault clearing, and

automatic reclosing are used in MCS to generate samples

and perform transient stability assessment. Other studies are

based on analytical methods. In [15], the Kalman filter is used

to estimate the system angle, and unscented transformation

is applied to predict the distribution of the system transient

stability margin. In [12], the analytical expression of the

probabilistic transient stability index is derived, and three-

point estimation and Cornish-Fisher expansion are used to

deal with the wind farm uncertainties. However, MCS are

computationally expensive to be used for operational planning,

while the derivation of analytical expressions is challenging,

especially when the accurate dynamical system model is

difficult to obtain in practice [12].

On the other hand, the probabilistic transient stability as-

sessment only provides the system risk but not the mitigation

actions. Preventive control aims to prepare the system before

the occurrence of credible contingencies by generator dispatch,

wind curtailment, and load shedding [16]. Transient stability

constrained optimal power flow (TSC-OPF) is the widely used

method to find the optimal operating point under transient

stability constraint. Because the time-domain simulation is

very time-consuming, it is difficult to be applied in TSC-OPF

for online applications. Several alternatives of time-domain

simulations are combined with TSC-OPF to accelerate the

calculation. In [17], deep learning-based transient stability
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constraint is used in TSC-OPF to speed up transient stability

verification of preventive control strategies. However, [17]

uses a deterministic prediction method, which is difficult to

quantify the risk probability. In [18], probabilistic models of

load injections, wind generations, and fault clearing time are

constructed. Then, these probabilistic models are embedded

into the TSC-OPF framework to construct probabilistic static

inequality and transient stability constraints. The heuristic

optimization approach, i.e., group search optimization is used

that is not guaranteed to achieve optimal solution nor com-

putationally efficient. In [19], a machine learning model is

trained to predict transient stability. After that, the statistical

stability probability of all scenarios is used in TSC-OPF as

a transient stability constraint. The core of [19] is still based

on MCS, which heavily depends on the accuracy of possible

fault scenario generations.

In this paper, a computationally efficient deep sigma point

processes (DSPP)-assisted chance-constrained power system

transient stability preventive control framework is proposed.

The main contributions are as follows:

1) A DSPP-assisted probabilistic transient stability predic-

tion method is proposed that can quantify the predictive

distribution of the transient stability index. DSPP takes

the advantages of both Gaussian processes (GP) in

uncertainty quantification and deep GP with scalability

to yield accurate posterior approximations of stability

index distribution and stability risk quantification.

2) The existing TSC-OPF formulation has been extended

to the chance-constrained problem with the DSPP-

assisted probabilistic transient stability prediction model

informed risk. This allows us to better balance risk

mitigation and system economics. It is worth noting that

embedding the proposed probabilistic transient stability

prediction model addresses the computational challenge

of the traditional time-consuming simulations-based

transient stability verification. Comparison results with

existing approaches demonstrate the great improvements

in the convergence and computing time without loss of

generation dispatch accuracy, i.e, still maintaining good

economics.

The rest of the paper is organized as follows. Section II

presents the traditional TSC-OPF problem and shows the

problem of interest. Section III shows the proposed DSPP-

assisted chance-constrained transient stability preventive con-

trol. Results are presented and analyzed in Section IV and

finally, Section V concludes the paper.

II. PROBLEM STATEMENT

For power system preventive control, TSC-OPF is widely

used to find the optimal operating point under transient stabil-

ity constraints, which is mathematically formulated as follows:

A. Objective Function

The objective function is to minimize the total cost, includ-

ing generation cost, wind curtailment cost, and load shedding

cost.
Minimize

∑

i∈Sg

(

agiP
2
gi,t + bgiPgi,t + cgi

)

+

∑

j∈Sw

cwj∆Pwj,t +
∑

k∈Sd

cdk∆Pdk,t

∆Pw,t = PMPPT
w,t − Pw,t

∆Pd,t = P 0
d,t − Pd,t

(1)

where t denotes time instant; Sg is the synchronous generator

set; agi, bgi, and cgi are fuel cost constants of i-th synchronous

generator; Pgi,t denotes the active power output of i-th syn-

chronous generator; Sw is the wind farm set; cwj is the wind

curtailment cost constant of j-th wind farm; ∆Pwj,t is the

curtailed active power of j-th wind farm; Sd is the load set

; cdk is the load shedding cost constant of k-th load; ∆Pdk,t

denotes the active power shedding of k-th load; PMPPT
w,t is the

maximum active power output of Pw,t according to maximum

power point tracking (MPPT); P 0
d,t denotes the load demand;

Pw,t and Pd,t denote active power of wind farms and loads

according to preventive control strategy. It should be noted

that both ∆Pw,t and ∆Pd,t are greater than 0, that is, they

can only be reduced.

B. Power Balance Constraints

Suppose nb and ns are the numbers of buses and all gener-

ators (synchronous generators and wind farms), respectively.

The power balance constraints are [20]

GP (Θ,Vm,Pg) = Pbus (Θ,Vm) + Pd − CsPs = 0 (2)

GQ (Θ,Vm,Qg) = Qbus (Θ,Vm) +Qd − CsQs = 0 (3)

where GP and GQ denote the active and reactive power

balance equations; Pbus and Qbus denote the nb× 1 vectors of

bus active and reactive power injections; Θ and Vm denote

the nb × 1 vectors of bus voltage angles and bus voltage

magnitudes; Ps and Qs denote the ns×1 vectors of generators

and wind farms active and reactive injections; Pd and Qd

denote the nb×1 vectors of loads active and reactive demands;

Cs denotes the nb × ns matrix of generators connection. If

generator or wind farm s is in bus j, Cs,ij = 1.

C. Branch Flow Constraints

Suppose nl denote the number of the branches. The branch

flow inequality constraints are

|Sf (Θ,Vm)| − Smax ≤ 0 (4)

|St (Θ,Vm)| − Smax ≤ 0 (5)

where Sf and St denote the nl × 1 vectors of the apparent

power flows at the start and end of the branches; Smax is

the nl × 1 vector of max apparent power flow limits of the

branches.

D. Variable Limits

Variable limits include reference bus voltage angle equal-

ity constraint, bus voltage magnitude inequality constraints,

generator active and reactive power output constraints, i.e.,

θref
i ≤ θi ≤ θref

i , i ∈ ζ ref (6)

vmin
mi ≤ vmi ≤ vmax

mi , i = 1, · · · , nb (7)
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pmin
si ≤ psi ≤ pmax

si , i = 1, · · · , ns (8)

qmin
si ≤ qsi ≤ qmax

si , i = 1, · · · , ns (9)

where ζ ref denotes the reference bus; θi and θref
i denote

reference bus voltage angle and its rated value; vmi denotes the

i-th bus voltage magnitude; vmax
mi and vmin

mi are upper and lower

limits of vmi; psi denotes the i-th synchronous generator or

wind farm active power output; pmax
si and pmin

si are upper and

lower limits of psi; qsi denotes the i-th synchronous generator

or wind farm reactive power output; qmax
si and qmin

si are upper

and lower limits of qsi.

E. Transient Stability Constraint

Power system transient stability is constrained by differen-

tial and algebraic equations (DAEs) [1].

ẋ(t) = f(x(t),y(t),u,p, τ ) (10)

0 = g(x(t),y(t),u,p, τ ) (11)

where t denotes the time instant during the transient period;

x(t) and y(t) denote vectors of state and algebraic variables,

respectively; u is the input vector; p denotes the model

parameters; f(·) and g(·) are nonlinear differential equations

and algebraic equations, respectively. They are solved by

time domain simulation, which is time-consuming and subject

to scalability issues for large-scale systems; τ denotes the

uncertainties that can change the system operating point, such

as the rapid wind power fluctuations by speed change [19].

Due to the presence of DAEs within the TSC-OPF problem,

there is a huge computational challenge for most existing

approaches, especially when the uncertainties from renewable

energy-induced transient stability risk are considered. This

paper focuses on preventive control, where renewable energy

uncertainty-induced transient stability should be accurately

taken into account while yielding optimal control actions.

III. DSPP-ASSISTED CHANCE-CONSTRAINED TRANSIENT

STABILITY PREVENTIVE CONTROL

To address the TSC-OPF computational efficiency issue as

well as mitigate the renewable energy uncertain induced sta-

bility risk, we extend the TSC-OPF to the chance-constrained

formulation and develop the DSPP-assisted probabilistic tran-

sient stability preventive control.

A. Chance-Constrained TSC-OPF

Traditional TSC-OPF is based on the deterministic transient

stability constraint, which cannot quantify the stability risk of

different uncertain power generation and demand scenarios.

Probabilistic optimization or chance-constrained optimization

enables a constraint to be satisfied with a preset probability

[21]. In this paper, the transient stability constraint is reformu-

lated as chance constraint, and the chance-constrained TSC-

OPF is expressed as follows [18], [19]

Minimize (1) (12)

s.t.(2) ∼ (9) (13)

P(χ(x(t),y(t),u,p, τ ) > α) ≥ ε (14)

where χ denotes the stability index of interest, which can be

selected according to different studies while this paper focuses

on transient stability; α denotes the threshold of the pre-

defined stability index. P(·) denotes the probability; ε is the

confidence probability of the chance constraint. The condition

that the transient stability constraint is satisfied means that the

probability of χ > α is not less than ε.

In this paper, the transient stability index (TSI) is used to

describe the system stability, which reflects the maximum rotor

angle difference of all generators during the transient period

[9]. Formally, we have

TSI =
360◦ −∆max

360◦ +∆max
× 100 (15)

∆max = max
t∈T

(|∆i,t −∆j,t|) , ∀i, j ∈ Sg (16)

where T is the whole time-domain simulation period; ∆i,t

and ∆j,t denote the rotor angle of generator i and j at time t;
∆max denotes the maximum rotor angle difference of any two

generators. The increase of TSI means the improvement of

system transient stability. Generally speaking, ∆max = 360◦,

i.e. TSI = 0, is considered as the boundary between transient

stable and unstable [22]. However, in some conservative tran-

sient stability prediction studies, this boundary is considered

as ∆max = 180◦, i.e. TSI = 33.3 [23]. Based on DSPP, the

transient stability chance constraint can be expressed as [24]

P (TSI ≥ TSIB) ≥ ε (17)

where TSIB denotes the boundary TSI for distinguishing

transient stable and unstable; (17) denotes the probability of

TSI ≥ TSIB must be no less than the pre-defined thresh-

old ε, which can be selected according to the engineering

experiences of the operator. It should be noted that if MCS-

based methods are used to approximate probability in (17),

the computational burden will be further increased. To this

end, we propose the DSPP-based probability transient stability

prediction method to speed up the calculation.

B. DSPP Approach for Chance-Constraints Modeling

Gaussian Processes (GP) is a machine learning model based

on Bayesian theory for regression and classification. GP can

qualify the uncertainty of the predicted target and obtain

its predictive distribution, which is meaningful in security

operation and dispatch [25]. A GP is represented by mean

function µ(X and covariance function k (X,X ′) [27], i.e.,

f(X) ∼ GP (µ(X), k (X,X ′)) (18)

where X = {xi}Ni=1 denotes the D×N matrix of the training

inputs (D is the dimension of xi, N is the dimension of input

feature space); f(X) = f = {fi}Ni=1 is the latent function

values matrix. The joint density of GP is

p(y,f | X) = p
(

y | f , σ2
obs

)

p(f | X) (19)

where p(y | X) denotes the multivariate Normal distribution;

y = {yi}Ni=1 is the target matrix; σ2
obs denotes the variance;

p(y | ·) is the likelihood function. The marginal likelihood is

p(y | X) =

∫

dfp
(

y | f , σ2
obs

)

p(f | X) (20)

The above form is time-consuming in the presence of large

samples, i.e., large N . The time complexity of GP is O
(

N3
)

.

For this reason, the inducing point method-based sparse GP
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(SGP) is developed [28]. In particular, the inducing points

Z = {zi}Mi=1 is introduced as inputs, where M ≪ N , and

the corresponding outputs are u = {ui}Mi=1. The GP prior

varies with u as

p(f | X) → p(f | u,X,Z)p(u | Z) (21)

Using the Jensen’s inequality to reduce the log joint density

of y and u, yielding

log p(y,u | X,Z) = log

∫

dfp(y | f)p(f | u)p(u)

≥ Ep(f |u)[log p(y | f) + log p(u)]

=
N
∑

i=1

logN
(

yi | kT
i K

−1
MMu, σ2

obs

)

− 1/2σ2
obs Tr K̃NN + log p(u)

(22)

where E denotes the mean value function; Tr denotes the trace

of the matrix K̃NN ; K̃NN = KNN − KNMK−1
MMKMN ;

KMM = k(Z,Z); ki = k (xi,Z); KNM = KT
MN =

k(X,Z). SGP can then be obtained by applying variational

inference to the lower bound of (22). The evidence lower

bound (ELBO) of SGP is
LSGP =Eq(u)[log p(y,u | X,Z)] +H[q(u)]

=

N
∑

i=1

{

logN
(

yi | µf (xi) , σ
2
obs

)

− 1

2

σf (xi)
2

σ2
obs

}

−KL(q(u) | p(u))
(23)

where KL is the Kullback-Leibler divergence; q(u) =
N (m,S) denotes Normal variational distribution; H[q(u)]
denotes the entropy term; µf (xi) = kT

i K
−1
MMm de-

notes the predictive mean function; σf (xi)
2

= K̃ii +
kT
i K

−1
MMSK−1

MMki is the latent function variance. The com-

plete variational distribution of SGP is

q(f ,u) = p(f | u,X)q(u) (24)

The marginal distribution is

q(f) =

∫

duq(f ,u) = N (f | µf (X),Σf (X)) (25)

where Σf (X) = K̃NN + KT
NMK−1

MMSK−1
MMKMN is the

N ×N covariance matrix. The final optimization objective of

SGP is to maximize LSGP.

Deep Gaussian Processes (DGP) is the multi-layer gener-

alization of GP and forms a hierarchical model [29]. For a

2-layer DGP, the joint likelihood for (y,X) is

p(y,f ,G | X) = p
(

y | f , σ2
obs

)

p(f | G)p(G | X) (26)

where G = {gi}Ni=1 denotes the N × W matrix of output

of the first DPs (W is the dimension of gi); p(G | X) =
∏W

w=1 p (gw | X) denotes prior of G.

The analytical form of DGP is difficult to obtain and

therefore, the doubly stochastic variational inference (DSVI)

is developed to achieve approximation. Inducting points and

variational distribution Q (f ,uf , . . . , gW ,ugw) are used. The

ELBO is

LDSVI = EQ

[

log p
(

y | f , σ2
obs

)]

−
∑

KL (27)

where
∑

KL is the sum of all KL divergences for the inducing

variables {uf , . . . , gW ,ugw}. f at top layer can be analyti-

cally integrated, while G at other layers must be sampled using

the reparameterization trick. The predictive distribution is

E∏
W
n=1

q(gzN |xi)

[

N
(

y∗ | µf (g∗) , σf (g∗)
2
+ σ2

obs

)]

(28)

where subscript * is the test set; µf (g∗) is the predictive mean;

σf (g∗)
2

is the predictive variance. The calculation of (28) is

intractable. In DSPP, a parametric finite mixture method is

developed to simplify this, where a sigma point approximation

method is applied to (28) [26]. Suppose W = 2 for the first

layer of DSPP, the marginal likelihood is
pDSPP (yi | xi) =
∫

dgiN
(

yi | µf (gi)
2
, σf (gi)

2
+ σ2

obs

) 2
∏

w=1
q (giw | xi)

(29)
Through Gauss-Hermite quadrature, q (gi1 | xi) in (29) can

be approximated by S mixtures of Dirac delta distributions

q (gi1 | xi) =

S
∑

s1=1

ω
(s1)
1 δ

(

gi1 −
(

µg1 (xi) + ξ
(s1)
1 σg1 (xi)

))

(30)

where q (gi2 | xi) has a similar equation to q (gi1 | xi); ω
(s1)
1

denotes the weights; δ is the Dirac delta function; ξ
(s1)
1

represents the quadrature points. Replace (30) into (29), a

mixture with S2 components is obtained

pDSPP (yi | xi) =
∑S

s1

∑S
g2
ω
(s1)
1 ω

(s2)
2 ×N (yi |

µf

(

µg1 (xi) + ξ
(s1)
1 σg1 (xi) , µg2 (xi) + ξ

(s2)
1 σg2 (xi)

)

,

σf

(

µg1 (xi) + ξ
(s1)
1 σg1 (xi) , µg2 (xi) + ξ

(s2)
1 σg2 (xi)

)

(31)
In (31), the predictive distribution of a 2-layer DSPP has

SW Normal distribution mixtures, which grow exponentially.

To solve this problem, a more flexible alternative is to ’line-up’

the quadrature points across a different gi
W
∏

w=1
q (giw | xi) →

S
∑

s=1
ω(s)

W
∏

w=1
δ
(

giw −
(

µgw (xi) + ξ
(s)
w σgw (xi)

))

(32)

The objective function of DSPP is

LDSPP =

N
∑

i=1

log pDSPP (yi | xi)− βreg

∑

KL (33)

where βreg > 0 denotes optional regularization constant. The

optimization parameter of LDSPP is σobs ,m,S,Z and kernel

hyperparameters for each layer, which can be optimized by

stochastic gradient methods and subsampling.
In this paper, DSPP is used for probabilistic transient

prediction. The input variables are synchronous generator

active power outputs Pg , wind farm active power outputs Pw,

synchronous generator bus voltage magnitudes Vg , wind farms

bus voltage magnitude Vw, active power demands of loads Pd

and reactive power demands of loads Qd. The input matrix of

DSPP is I = [Pg,Pw,Vg,Vw,Pd,Qd]
T

. The output variables

are mean of TSI µTSI and standard deviation of TSI σTSI.

Because the sum of the probability density of the Normal

distribution is 1, the transient stability chance constraint is

rewritten as

C (µTSI, σTSI, λ) ≥ ε (34)

where C is the cumulative probability density of the Normal

distribution in the interval [µTSI − λσTSI, µTSI + λσTSI]; λ
is a coefficient that depends on ε. The calculation of λ is
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based on the integral of the probability density function of the

Normal distribution.

1√
2πσTSI

∫ µTSI+λσTSI

µTSI−λσTSI

exp

(

− (x− µTSI)
2

2σ2
TSI

)

dx = ε (35)

For a preset ε and corresponding λ, the specific expression

of (34) is

µTSI − λσTSI > 0 (36)

The meaning of (36) is that the probability of TSI > 0
is more than ε. At the same time, if µTSI − λσTSI > 0 is

satisfied, µTSI + λσTSI > 0 is true.

The training samples of DSPP is generated through time-

domain transient stability simulations. According to the pa-

rameters of the test system, we set the variation range of the

variables in I . Then, the Latin hypercube sampling (LHS) [9]

is applied to generate N input samples, which correspond to

N operation scenarios. For each scenario, we perform three-

phase short-circuit faults for credible contingencies in the test

system. Suppose there are L credible contingencies in the

test system, L TSIs are generated through L time-domain

simulations. We choose the minimum TSI in L TSIs as the

target, which corresponds to the most severe contingencies in

this scenario. It is worth noting that this paper focuses on

preventive control and thus the credible contingency list is

known to system operators. This list is typically determined

by engineering practice. By performing the above process for

all N scenarios, we get N sample pairs for training DSPP.

C. Chance-Constrained Transient Stability Preventive Control

Framework and Solution

The DSPP approach allows us to achieve a computationally

efficient assessment of the probabilistic transient stability as

compared to Monte Carlo and its variants. It also enables mod-

eling the probabilistic transient stability a chance constraint

that can be effectively used for OPF. To this end, the chance-

constrained transient stability preventive control framework is

established. This is a nonlinear programming problem. The

primal dual interior point method (PDIPM) is one of the most

widely used algorithms for solving such problems [30]. In this

paper, PDIPM can be used to solve this chance-constrained

optimal power flow problem, where the objective function

is (1) with constraints (2)-(9) and (36). In each iteration of

PDIPM, the required µTSI and λTSI for chance constraint (36)

can be calculated from DSPP.

It is worth noting that for the PDIPM approach, the Ja-

cobian and Hessian matrices associated with the constraints

are required. The Jacobian and Hessian matrices of (1)-(9)

can be easily calculated by following [31]. However, for those

associated with (36), they are derived as follows:
JCC =J (µTSI − λσTSI) = J (µTSI)− λJ (σTSI)

=
∂µTSI

∂I
− λ

∂σTSI

∂I

=

[

∂µTSI

∂I1
· · · ∂µTSI

∂IK

]T

− λ

[

∂σTSI

∂I1
· · · ∂σTSI

∂IK

]T

(37)

HCC =H (µTSI − λσTSI) = H (µTSI)− λH (σTSI)

=
∂2µTSI

∂I2 − λ
∂2σTSI

∂I2

=















∂2µTSI

∂I1∂I1
· · · ∂2µTSI

∂I1∂IK
...

. . .
...

∂2µTSI

∂IK∂I1
· · · ∂2µTSI

∂IK∂IK















− λ















∂2σTSI

∂I1∂I1
· · · ∂2σTSI

∂I1∂IK
...

. . .
...

∂2σTSI

∂IK∂I1
· · · ∂2σTSI

∂IK∂IK















(38)

where JCC and HCC denote the Jacobian and Hessian ma-

trices of the chance constraint, respectively; K denotes the

dimension of I . The essence of (37) and (38) is to calculate

the first and second order partial derivatives of µTSI and σTSI

to each variable in I .

In this paper, DSPP is implemented in the GPyTorch library

which is based on PyTorch framework [32], [33]. Before

training DSPP, the training samples should be normalized via

I
nor = 2× I − I

min

(

I − I
min
)max − 1 (39)

TSI =
TSI − µ(TSI)

σ(TSI − µ(TSI))
(40)

where µ(·) and σ(·) are used to calculate mean and standard

deviation. Then, we train DSPP with normalized samples, and

J (µTSI) ,J (σTSI), H (µTSI) and H (σTSI) can be calculated

through an automatic differentiation function in PyTorch [34].

For example, J (µTSI) and H (σTSI) can be calculated by

J (µTSI)
nor

= torch.autograd.functional.jacobian
(

S
∑

s=1

exp
(

w(s)
)

× µTSI,I
nor

)

(41)

H (µTSI)
nor

= torch.autograd.functional.jacobian

(J (µTSI)
nor

,Inor)
(42)

J (µTSI) =
J (µTSI)

nor × µ(TSI)

2×
(

I − I
min
)max (43)

H (µTSI) =
H (µTSI)

nor × µ(TSI)× 4
(

I − I
min
)max,T ⊗

(

I − I
min
)max

(44)

where ⊗ denotes the matrix multiplication. For J (σTSI) and

H (σTSI), they have the same calculation process as J (µTSI)
and H (σTSI). Then, we substitute J and H of µTSI and σTSI

in (37) and (38) to get JCC and HCC. It should be noted

that in each iteration of PDIPM, JCC and HCC need to be

updated, so the use of GPU can greatly speed up the iteration

of PDIPM. The detailed steps of the chance-constrained pre-

ventive control framework proposed in this paper are shown

in Fig. 1, including sample generation, DSPP training and

preventive control. The sample generation and DSPP training

are offline steps, and only PDIPM-based preventive control is

implemented online. The detailed iteration process of DSPP

training and preventive control are shown in Algorithm 1
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Test system and parameters 

Set the variation range of the 

variables in  

Set the variation range of the 

variables in  

Generate N samples by LHS

Perform time-domain 

simulations for all credible 

contingencies to calculate the 

minimum TSI

N samples for DSPP

Sample Generation (Offline)

Divide the samples into 

training set and test set

Train DSPP using training set 

DSPP Training (Offline)

Test DSPP using test set

Set the optimization objective 

and constraints

Preventive Control (Online)

Embed DSPP-assisted chance 

constraint and calculate J and H 

in each iteration

Preventive control strategy

Build DSPP model

Determine the 

hyperparameters, i.e. number 

of  mixtures, width of hidden 

GPs layer, kernels, etc.

Perform PDIPM and judge 

convergence. If not, consider 

wind curtailment and load 

shedding, and reperform PDIPM

Fig. 1. Proposed DSPP assisted chance-constrained power system transient stability preventive control framework.

and Algorithm 2, respectively. The proposed method can be

applied in other stability issues, following the steps similar to

Fig. 1, but beyond the scope of this paper.

Algorithm 1: Data generation and DSPP training

Input: Parameters of systems; PyTorch

Output: Well-trained DSPP

1 Set variation range of Pg , Pw, Vg , Vw, Pd and Qd

2 Generate N random discrete samples using LHS,

where Pg , Pw, Vg , Vw, Pd and Qd are limited to

their variation range

3 for i = 1 : N do

4 for j = 1 : C(number of credible contingencies) do

5 Perform time-domain simulation to sample i
for contingencies j, and get TSIi,j

6 end

7 TSIi = min (TSIi,1:C)
8 end

9 Generate N samples, where Pg , Pw, Vg , Vw, Pd and

Qd are input, and TSI1:N are output

10 Divide samples into training set and test set

11 Build DSPP in PyTorch

12 Train DSPP using training set

13 Test DSPP using test set

IV. NUMERICAL RESULTS

The proposed method is tested on the modified IEEE 39-

bus system with two wind farms located on buses 17 and 21,

both of which have a maximum active power output of 500

MW and belong to the type III wind generator, i.e., DFIG. The

variation range of synchronous generator active power outputs

Pg and active power demands of loads Pd are 80% ∼ 120%.

The variation range of wind farm active power outputs Pw is

0% ∼ 100%. The variation range of generators’ bus voltage

magnitudes Vg and wind farms’ bus voltage magnitudes Vw

are 1.0 ∼ 1.05 pu. Reactive power demands of loads Qd

changes with active power demands of loads Pd. Based on the

above variation range, 10000 samples are generated by using

Algorithm 2: Iteration process of preventive control

Input: Pg , Pw, Vg , Vw, Pd, Qd, and other system

parameters; well-trained DSPP

Output: Optimal control strategy

1 Set variation range of Pg , Pw, Vg , Vw, Pd and Qd,

and use the middle value of that range as the initial

iteration value of PDIPM

2 Substitute transient stability constraint with (36)

3 while not converge or not reach the maximum

iteration number do

4 Use DSPP to calculate the value, Jacobian and

Hessian matrices of (36) by calculating µTSI,

σTSI, J(µTSI), J(σTSI), H(µTSI) and H(σTSI)
according to (37) and (38)

5 The value, Jacobian and Hessian matrices are

applied in PDIPM for iteration [30]

6 Calculate value, Jacobian and Hessian matrices for

cost function and other static stability constraints
7 end

LHS, of which 8000 samples are used as training set and 2000

samples are used as the test set. The corresponding minimum

TSI is obtained by performing time-domain simulations on

credible contingencies. The combination of I and minimum

TSI represent the generated samples. A 64-Bit computer with

Intel(R) Core(TM) i9-12900KF 3.19GHz CPU, 128GB RAM

and NVIDIA GeForce RTX 3090 24GB GPU is used to

perform numerical results.

A. DSPP Training and Performance Evaluation

We build a DSPP, whose size of minibatch is 500, the

number of mixtures of the outputs is 8, the width of the hidden

GP layer is 7, the number of epochs of training is 400, the

number of inducing points in each hidden layer is 300; the

optimizer is Adam, the kernel is MatÂern kernel, the initial

learning rate is 0.01. In addition, the learning rate piecewise

constant decay method is used to accelerate the convergence

speed and improve the fitting accuracy. Then, we use training
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samples to train DSPP, and verified by test set samples. The

performance of DSPP can be estimated by transient stable and

unstable classification accuracy, mean absolute error (MAE)

between TSI target and µTSI, false alarm rate (FA) and miss

detection rate (MD). The equations of classification accuracy,

MAE, FA and MD are

AP =
1

NT

NT
∑

i=1

(µTSI × TSITi > 0) (45)

MAE =
1

NT

NT
∑

i=1

|µTSIi − TSITi| (46)

FA =
1

NT

NT
∑

i=1

(µTSI < 0 and TSITi > 0) (47)

MD =
1

NT

NT
∑

i=1

(µTSI > 0 and TSITi < 0) (48)

where AP is the classification accuracy; NT is the number of

test set samples; TSITi denotes the TSI target of the test set

samples.

We also compare DSPP with several other probabilistic and

deterministic prediction models. For probabilistic prediction

models, the GP, DGP, and deep kernel learning (DKL) [35]

are compared. For deterministic models, the four-layer stacked

autoencoder (SAE), the three-layer artificial neural network

(ANN), and the four-layer deep belief network (DBN) are

compared. The hyperparameters of the above models are

tuned to have optimal performances. The accuracy comparison

results of above models are shown in Table I.

TABLE I
COMPARISON OF PERFORMANCE OF DIFFERENT PREDICTION MODELS

FOR 39-BUS SYSTEM

Type Model AP MAE FA MD

Probabilistic model

DSPP 97.4% 6.1 1.50% 1.10%
GP 86.4% 35.7 5.95% 7.65%

SGP 88.1% 33.2 7.10% 4.80%
DGP 94.1% 22.3 3.55% 2.35%
DKL 94.0% 12.6 2.90% 3.10%

Deterministic model
SAE 96.1% 9.2 2.25% 1.65%
ANN 96.3% 12.4 1.40% 2.30%
DBN 97.5% 8.6 1.05% 1.45%

From Table I, we can see that DSPP has the best perfor-

mance compared with other probabilistic prediction models

according to classification accuracy and MAE. By contrast,

in the deterministic prediction models, DBN has the best

performance. The classification accuracy of DSPP is 97.4%,

which is almost the same as DBN, while the MAE of DSPP

is smaller than DBN (6.1 and 8.6 respectively). In addition,

DSPP can give the distribution of the predicted TSI, which is

crucial in transient stability risk assessment. It should be noted

that FA will carry out unnecessary control and increase costs,

while MD will generate potential security risks. In addition,

the accuracy, FA and MD all take TSI = 0 as the boundary

of stability. If µTSI increases and moves away from TSI = 0,

prediction reliability will increase because FA and MD mostly

occur close to TSI = 0. The offline training time of DSPP is

337s and the prediction times for all models are less than

0.01s, which meets the requirements of online applications.

In addition, we test the single calculation times of prediction,

Jacobian and Hessian matrices, which are 0.008s, 0.008s, and

0.2s respectively.

In preventive control, different control reliability probabili-

ties correspond to different control costs. In this paper, we set

four confidence probabilities, including 95%, 90%, 80%, and

70%. According to (35), the corresponded λ is 1.960, 1.645,

1.282 and 1.036 respectively. We randomly select 50 samples

in the test set and plot confidence intervals of four different

probabilities, as shown in Fig. 2 (The discrete samples are

arranged in ascending order of TSI true labels).

Fig. 2. The visualization of the prediction performance of DSPP.

It can be seen from Fig. 2 that the prediction mean and four

confidence intervals are accurately distributed along the true

labels. The condition of (36) is satisfied when the lower bound

of the confidence interval of the preset confidence probability

is greater than 0. In addition, transient stability margins vary

with different operating scenarios, which can better increase

the control success rate and reduce the control costs. In the

preventive control later, we set the confidence probability to

95% to ensure the reliability of the control strategy.

B. Chance-Constrained Power System Preventive Control

Based on the DSPP, the preventive control can be imple-

mented according to Fig. 1. In real-time power system oper-

ation, we perform look-ahead transient stability predictions at

every time interval (e.g., 15 minutes) for all credible contin-

gencies. These predictions can be quickly achieved through

DSPP, taking less than 1 second per prediction according to

Table I. If a transient instability risk is detected, the PDIPM-

based preventive control is activated.

In this section, we first show the generator redispatch as the

control method while ignoring the wind curtailment and load

shedding to ensure full generation of renewable energy and

power supply reliability. This curtailment and load shedding

is tested in the later sections. For a scenario with unstable risk,
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TABLE II
ITERATIVE PROCESS OF FOUR INDICES

Index
Iteration

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

objective 41500 41671 42716 43028 43165 43062 42726 41730 41385 41257 41226 41215 41207 41205 41204
step size 10.92 18.56 3.45 2.17 0.93 0.30 0.46 1.92 1.36 0.65 1.11 1.18 1.15 0.27 0.35

fcond 3.1e-3 2.5e-3 3.0e-4 1.3e-4 9.5e-6 5.6e-7 8.8e-7 1.7e-5 9.1e-6 1.3e-6 5.5e-6 1.1e-5 4.9e-6 1.7e-6 9.3e-7
gcond 1.44 1.57 1.31 1.13 0.99 0.96 0.86 0.66 0.11 3.8e-2 2.0e-2 2.4e-2 6.9e-3 2.1e-3 4.1e-4
ccond 4835 498 218 122 48.9 4.8 1.2 0.55 7.2e-2 7.6e-3 2.7e-3 1.1e-3 3.5e-4 1.3e-4 2.2e-5
ocond 3.6e-2 1.5e-2 2.0e-2 5.9e-3 2.6e-3 1.9e-3 6.3e-3 1.9e-3 6.7e-3 2.5e-3 6.1e-4 2.1e-4 1.6e-4 3.5e-5 1.8e-5

we perform the preventive control using PDIPM with 15 itera-

tions. According to [30], four indices are defined to judge the

convergence of PDIPM, including fcond (termination tolerance

for feasibility), gcond (termination tolerance for gradient),

ccond (termination tolerance for complementary condition)

and ocond (termination tolerance for cost condition). The

iterative process of the objective function, step size and four

indices are shown in Table II. From Table II, we can see that

the optimization objective, i.e., the fuel cost of generators,

has changed from 41500 to 41204 with a reduction of 296.

The step size of iteration is changed from the initial 10.92 to

0.35 to accelerate convergence in the early stage of iteration

and improve control accuracy in the later stage. In the last

iteration, the four convergences indices are all less than 1e-3,

which is the tolerance of PDIPM convergence. The generation

redispatch results, cost constants, and total cost are shown in

Table III.

TABLE III
GENERATOR REDISPATCH RESULTS FOR 39-BUS SYSTEM

Gen.
Before After

ag bg cg
Gen.

control/MW control/MW cost/$

1 246.3 329.8 0.013 0.32 0.20 1520
2 565.6 561.1 0.012 0.31 0.20 3952
3 510.9 607.5 0.011 0.30 0.22 4242
4 724.8 588.1 0.011 0.31 0.20 3987
5 447.2 539.2 0.012 0.32 0.20 3661
6 753.4 649.6 0.010 0.30 0.20 4415
7 593.6 645.9 0.010 0.29 0.20 4360
8 625.5 637.1 0.010 0.30 0.21 4250
9 743.3 707.6 0.009 0.29 0.20 4711
10 860.2 856.3 0.008 0.28 0.20 6106

The total cost is $41204.

In Table III, the fuel cost constants ag , bg and cg are

randomly generated according to a reference value in [20],

where ag = 0.01, bg = 0.3 and cg = 0.2 for all generators.

For three fuel cost constants, ag is the dominant cost constant,

which accounts for about 93% ∼ 96% of the total cost.

Generator 1, which has the highest ag , has the minimum active

power output after control, whereas generators 9 and 10 have

the maximum power output for the lower ag . From Tables II

and III, it can be concluded that the PDIPM-based preventive

control has achieved good generator redispatch. Then, we test

the reliability of PDIPM-based strategy through time-domain

simulations for credible contingencies. For this scenario, three

transmission lines are at risk of transient instability when in the

presence of a three-phase short-circuit fault. The rotor angle

trajectories of the generators before and after the preventive

control are shown in Fig. 3 (the trajectories before the control

are on the left, and the corresponding trajectories after the

control are on the right). From Fig. 3, we can see that before

the preventive control, the trajectory is divergent, meaning

transiently unstable, but after the preventive control, the gen-

erator power angle trajectory fluctuates within a small range,

indicating that the system is transient stable. The running

time of PDIPM is only 8.4s, which is fast enough for online

application.
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Fig. 3. Rotor angle trajectories of three faults, where the trajectories before
the control are on the left, and the corresponding trajectories after the control
are on the right (TSI from -96.6 to 38.5).

Then, we randomly select 50 scenarios with instability risk

to verify (36), as shown in Fig. 4. According to [22], all

scenarios on the purple line in Fig. 4 are greater than 0,

which is considered transient stable. In this paper, the chance

constraint is µTSI − λσTSI > 0, which is satisfied when

the orange line is greater than 0. The orange line partially

overlaps with the zero line, i.e., µTSI − λσTSI = 0. This

is because for these scenarios, when PDIPM calculates the
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Fig. 4. Visualization of chance constraints in the preventive control.

optimal generator redispatch, the transient stability chance

constraint is the dominant constraint, so it converges to 0

to minimize the cost of power generation. However, other

scenarios are mainly limited by other constraints, such as the

line congestion, so the chance constraint is greater than 0.

C. Preventive Control with Wind Curtailment and Load Shed-

ding

For some severe scenarios, using only generator redispatch

cannot find a preventive control strategy that satisfies all

constraints. At this time, wind curtailment and/or load shed-

ding are required to identify the right control strategy. For

a scenario with instability risk in Fig. 5, when three-phase

short circuit fault occurs on lines 2-25 or 16-21, the generator

redispatch based PDIPM diverges. Therefore, we consider

wind curtailment and load shedding in the preventive control

and re-execute PDIPM. The preventive control strategy with

wind curtailment and load shedding is shown in Fig. 5.

From Fig. 5, we can see that some loads shed part of the

active power demand to make PDIPM converge, i.e., ensuring

system stability, and other loads maintain full power supply,

such as loads 2, 6, 8, 13, and 18. Due to load shedding,

most generators reduce their active power output to maintain

active power balance. It is worth noting that the absolute

values of the Jacobian and Hessian matrices of the wind farms

are small, which means that the wind curtailment has little

effect on transient stability improvement. Therefore, the active

power output of the wind farms remains unchanged. We also

verify the preventive control strategy through time-domain,

simulations. According to simulation results, TSI is changed

from -35.3 to 81.2, indicating the effectiveness of the proposed

method for ensuring system stability.

D. Scalability to Larger-Scale System

To further demonstrate its scalability to larger-scale systems,

the proposed method is tested on the South Carolina 500-

bus system, which serves 21 counties and about 2.6 million

people and built on the PowerWorld [40], [41]. In the 500-bus

system, 200 loads are supplied by 51 synchronous generators

and 9 wind farms (type III wind generator, i.e., DFIG). The

wind farms, with a total capacity of 1372 MW, account for

21.3% of the total system capacity (1372 MW/6456 MW).

The one-line diagram of the 500-bus system is shown in Fig.
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Fig. 5. Preventive control strategy of generators and loads (generators 1 and
2 are wind farms while the others are synchronous generators).

6. The variation range of synchronous generator active power

outputs Pg and active power demands of loads Pd are 55% ∼
105%, respectively. The variation range of wind farm active

power Pw is 0% ∼ 100%. Similar to 39-bus system, Qd varies

with Pd. Based on the aforementioned variation range, 20000

samples are generated using LHS, of which 16000 samples are

utilized as the training set and 4000 samples as the test set.

The corresponding minimum TSI is obtained by performing

time-domain simulations for all credible contingencies.

Fig. 6. One-line diagram of the South Carolina 500-bus system [40], [41].

Similar to the 39-bus system, DSPP is built in PyTorch, in

which the size of the minibatch is 500, the number of mixtures
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of the outputs is 8, the width of the hidden GP layer is 6, the

number of training epochs is 400, the number of inducing

points in each hidden layer is 300; the optimizer is Adam, the

kernel is MatÂern kernel, the initial learning rate is 0.01, the

learning rate piecewise constant decay method is also used.

The performance of the DSPP is compared to that of other

probabilistic and deterministic models in Table IV.

TABLE IV
COMPARISON OF PERFORMANCE OF DIFFERENT PREDICTION MODELS

FOR 500-BUS SYSTEM

Type Model AP MAE FA MD

Probabilistic model

DSPP 99.0% 3.4 0.950% 0.050%
GP / / / /

SGP / / / /
DGP / / / /
DKL 96.8% 7.8 2.750% 0.450%

Deterministic model
SAE 97.1% 4.2 2.050% 0.850%
ANN 99.2% 2.5 0.075% 0.725%
DBN 99.4% 2.3 0.375% 0.225%

In Table IV, we evaluate a variety of hyperparameters

for GP, SGP, and DGP, but the results do not converge,

demonstrating the limitations of these models for large-scale

systems. DSPP has the highest AP (99.0%) and minimal MAE

(3.4) in five probabilistic models. This demonstrates that DSPP

is the most accurate probabilistic model for this problem.

Compared with deterministic models, DSPP outperforms SAE,

but is slightly worse than ANN and DBN. However, DSPP’s

accuracy is sufficient and it can generate the predicted TSI

distribution for evaluating the risk of transient stability. Ac-

cording to MD of DSPP, the probability of potential risks is

only 0.050%.The offline training time of DSPP is 659s and the

prediction times for all models are less than 0.03s, which meets

the requirements of online applications. In addition, we test the

single calculation times of prediction, Jacobian and Hessian

matrices, which are 0.02s, 0.009s and 1.5s respectively.

Based on the DSPP, the preventive control is implemented

according to Fig. 1 for a random unstable scenario, where

the control strategy can be found via generator dispatch. The

control strategy is shown in Fig. 7 and the corresponding

cost calculation is shown in Table V. In Table V, the leading

cost coefficient is bg , which affects about 60% ∼ 90% of

the total cost. Generators 9, 11, 15 and 30, which have the

lower bg , all increase the active power output to decrease the

total cost, whereas generators 1, 2 and 42 decrease the power

output for the higher bg .According to the PDIPM results,

the DSPP-based TSI is 36.4. To verify this control strategy,

the time-domain simulation-based TSI is calculated, which

equals 42.4 and satisfies the requirement for transient stability.

The corresponding rotor angle trajectories before and after

preventive control are shown in Fig. 8. The running time of

the proposed method is 113s, which meets the requirement of

15 minutes or 1-hour preventive control interval.

E. Comparison with Sensitivity-based Method

In this section, we compare the proposed method with

the sensitivity-based method, where the sensitivity index is

calculated based on the full-system model and time-domain
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Fig. 7. Preventive control strategy of generators of 500-bus system.

TABLE V
TSC-OPF RESULTS AND TOTAL COST FOR 500-BUS SYSTEM

Gen.
Before After Cg/Cr Gen.

control/MW control/MW ag bg cg cost/$

1 214.0 131.4 0.0015 26 1241 4683
2 416.3 244.5 0.0021 26 306 6787
3 892.6 679.2 0.0022 21 296 15574
9 29.9 52.6 0.0010 15 424 1215
11 424.8 629.6 0.0011 16 1046 11555
12 368.6 507.8 0.0022 19 620 10836
13 41.3 62.8 0.0017 20 808 2070
14 47.4 32.9 0.0023 24 1292 2084
15 113.6 216.6 0.0016 17 651 4408
18 98.8 86.9 0.0028 25 239 2432
30 38.1 54.6 0.0017 15 1043 1867
42 50.6 33.5 0.0016 26 1150 2022
43 56.8 37.5 0.0027 24 755 1658

Others 458.6 533.2 / / / 35491

Others denote other synchronous generators; The total cost is $102683.

simulation. We replace the intractable non-convex nonlinear

transient stability constraints with sensitivity-based constraint

[36], [37]. This optimization problem can be expressed as:

Minimize (1) (49)

s.t. (2) ∼ (9) (50)

TSI > TSIB | J =
∂TSI

∂x
,H = 0 (51)

where the objective is to minimize the total cost; the tran-

sient stability constraint is the time-domain simulation-based

TSI. According to [23], TSI is set to be 33.3; x denotes

the controllable variable, including Pg , Pw and Pd; ∂TSI
∂x

denotes the sensitivity of TSI to x; J of PDIPM is updated

every iteration; Since sensitivity-based constraint is a linear
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Fig. 8. Rotor angle trajectories of 500-bus system.
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constraint, H is constant at 0. The main difference between the

sensitivity-based method and the proposed method is that the

sensitivity is calculated based on the time-domain simulation,

and the Hessian matrix of the transient stability constraint is

not considered. For the 39-bus system, we randomly select 10

scenarios with instability risk to compare their performances.

The results are shown in Table VI.

TABLE VI
COMPARISON WITH SENSITIVITY-BASED METHOD FOR 39-BUS SYSTEM

Scenario
Control method Total cost/$ Time
A B A B A B(≈)

1 G G 37224 37224 12s 15min
2 G S / / 10s 70min
3 G S / / 14s 70min
4 G N / / 11s /
5 G G 36892 36892 13s 55min
6 G S / / 11s 130min
7 G N / / 10s /
8 G N / / 11s /
9 G S / / 9s 170min

10 G S / / 9s 90min

A: proposed method; B: sensitivity-based method; G: generator
redispatch; S: generator redispatch, wind curtailment and load
shedding; N: not converge.

In Table VI, we only compare the total cost of using

the same control method and calculate the iteration time of

PDIPM. It can be found that our proposed method has better

convergence and can find preventive control strategies that sat-

isfy all constraints by generator redispatch in these 10 scenar-

ios, while the sensitivity-based method requires consideration

of wind curtailment and load shedding and may not converge.

Scenarios 1 and 5 have the same control method and the same

total cost because they get the same preventive control strategy,

indicating the DSPP in the proposed method can achieve

the same accuracy as the time-domain simulation. There is

a significant difference in the iteration time between the two

methods. The proposed method can iteratively converge within

15s, while the sensitivity-based method requires time-domain

simulations for all credible contingencies in each iteration,

which is time-consuming and difficult to meet the require-

ments of online applications. In the sensitivity-based method,

when only generator redispatch is used, it is only necessary

to calculate the sensitivities of Pg , and the iteration time is

tens of minutes, such as 15min and 55min. When considering

wind curtailment and load shedding, the sensitivities of Pw

and Pd also need to be calculated, and the iteration time can

reach up to 170min.

For the 500-bus system, we also choose 10 random unstable

scenarios to compare the performances, see Table VII. Similar

to the 39-bus system, only scenarios with the same control

method compare the total cost in Table VII. The sensitivity-

based method can only converge for three of the ten scenarios

(2 G and 1 S), while the proposed method can converge for

all ten (9 G and 1 S). The total cost of the two methods in

scenarios 2 and 3 is the same, but the calculation times differ

by around 50 times. For scenario 9, due to the wind curtail-

ment and load shedding, the dimension of Jacobian matrices

increases from 51 (the number of Pg) to 460 (the number

of Pg , Pw, Pd and Qd). As a result, the calculation time

increases 370 times from 97s to 10h. From the comparison

results, it can be concluded that the proposed method has

a great improvement in the convergence and computational

efficiency to meet practical applications.

TABLE VII
COMPARISON WITH SENSITIVITY-BASED METHOD FOR 500-BUS SYSTEM

Scenario
Control method Total cost/$ Time
A B A B A B(≈)

1 G N / / 143s /
2 G G 104007 104007 107s 120min
3 G G 103911 103911 112s 100min
4 G N / / 102s /
5 G N / / 97s /
6 G N / / 102s /
7 G N / / 92s /
8 G N / / 107s /
9 G S / / 97s 10h

10 S N / / 159s /

A, B, G, S and N are defined in Table VI.

F. Comparison with Heuristic Algorithm

Heuristic algorithms are widely employed in engineering

control. NSGA-II and NSGA-III are two advanced multi-

objective heuristic algorithms and applied in transient stability

control of power systems [38], [39]. In this section, the

proposed method is compared with the DBN-based NSGA-II

and NSGA-III, and time-domain simulation-based NSGA-II

and NSGA-III. The comparison results of the two systems are

shown in Table VIII. It should be emphasized that just the

generator redispatch is used, and the total cost of generators

and TSI are objectives to construct a multi-objective optimiza-

tion problem in NSGA-II and NSGA-III. Similar to [38], the

population size and number of iterations are both set to 200.

TABLE VIII
COMPARISON WITH HEURISTIC ALGORITHM

Method
39-bus system 500-bus system

Cost TSI Time Cost TSI Time

TDS-NSGA-II 41624 68.9 ≈ 105h 100638 51.2 ≈ 100h
TDS-NSGA-III 41285 60.2 ≈ 105h 100642 50.8 ≈ 100h
DBN-NSGA-II 41580 40.3 145s 100764 51.1 164s
DBN-NSGA-III 41299 66.9 3.5s 100639 50.8 7.0s

PM 41204 38.5 8.4s 100635 42.4 113s

TDS-NSGA-II/III: time-domain simulation-based NSGA-II/III; DBN-NSGA-
II/III: DBN-based NSGA-II/III; PM: proposed method.

From Table VIII, we can see that the proposed method

performs well in terms of cost, while the TSI is lower

than the heuristic algorithms. This is because the cost is

the only optimization objective in the proposed method, and

TSI is the constraint and not maximized. In addition, the

proposed method and DBN-based NSGA-II/III can achieve

preventive control within 200s and meet the requirement of

online application, but time-domain simulation-based NSGA-

II/III is very time-consuming (> 100h). Although the heuristic

algorithm can obtain results close to those of the proposed

method, other static stability constraints, such as bus voltage
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magnitude and branch flow constraints, are not considered

in its iteration process. Therefore, it is necessary to verify

the results because they may not be accurate and reliable.

By contrast, the proposed method fully takes into account

all constraints during the iteration. In addition, the chance-

constrained preventive control is another main advantage of

the proposed method.

G. Computational Complexity Analysis

The computational complexity of DSPP-based preventive

control is shown in Table IX. For each iteration, one prediction

should be performed to obtain µTSI and σTSI, two calculations

of Jacobian matrices should be performed to obtain J(µTSI)
and J(σTSI), and two calculation of Hessian matrices should

be performed to obtain H(µTSI) and H(σTSI). For the 39-bus

and 500-bus systems, the total calculation times related to tran-

sient stability constraint for each iteration are 0.424s (0.008s

+ 2*0.008s+2*0.2s) and 3.038s (0.02s + 2*0.009s+2*1.5s),

respectively. Note that these calculation times are appropriate

for both G (generator redispatch) and S (generator redispatch,

wind curtailment and load shedding) in Tables VI and VII.

This is because DSPP can generate Jacobian and Hessian

matrices for all Pg , Pw, Vg , Vw, Pd and Qd at one time.

TABLE IX
COMPUTATIONAL COMPLEXITY OF DSPP-BASED METHOD

System
Control Time
method Prediction Jacobian Hessian

39-bus system G/S 0.008s 0.008s 0.2s
500-bus system G/S 0.02s 0.009s 1.5s

G and S are defined in Table VI.

TABLE X
COMPUTATIONAL COMPLEXITY OF TIME-DOMAIN SIMULATION-BASED

METHOD FOR EACH ITERATION

System
Control Time
method Prediction Jacobian Hessian

39-bus system
G 6.5s 38s /
S 6.5s 222s /

500-bus system
G 5.8s 280s /
S 5.8s 1950s /

G and S are defined in Table VI.

For time-domain simulation-based preventive control, the

computational complexity is shown in Table X. For example,

when the 39-bus system has 7 credible contingencies, each

control iteration requires 7 time-domain simulations for pre-

diction and 70 (7 ∗ 10, for G) and 434 (7 ∗ 62, for S) times

for Jacobian matrices, respectively. Similarly, if the 500-bus

system has 5 credible contingencies, each control iteration

requires 5 time-domain simulations for prediction and 255

(5 ∗ 51, for G) and 2300 (5 ∗ 460, for S) times for Jacobian

matrices, respectively. From the analysis above, it is clear that

as the number of credible contingencies rises, the calculation

time also increases proportionally. The calculations of Hessian

matrices are very time-consuming, so they are not solved in a

sensitivity-based method.

H. Impact and Selection of λ

For the 39-bus system, we test the impact of different λ for

an unstable scenario, which is shown in Table XI. In Table XI,

six different λ are set, corresponding to a probability range of

60.0% to 99.7%. With the increase of λ and probability, the

increase in µTSI denotes a rise in control reliability. As a result,

the cost also goes up. µTSI−λσTSI = 0 means that the control

strategy is always solved on the boundary of transient stability

constraint in this unstable scenario. The choice of λ is the

balance of cost and reliability. Generally, it is recommended

to choose 2.0 or 3.0, which corresponds to the probability of

95.4% and 99.7%. If we want to decrease FA and MD and

increase the prediction reliability, λ should be increased.

TABLE XI
IMPACT OF DIFFERENT λ IN PREVENTIVE CONTROL

λ Probability µTSI µTSI − λσTSI Cost/$

0.8416 60.0% 9.3 0 42697
1.0364 70.0% 11.1 0 42698
1.2815 80.0% 13.0 0 42700
1.6448 90.0% 15.7 0 42702

2.0 95.4% 17.9 0 42704
3.0 99.7% 23.2 0 42710

Note that when PDIPM’s iteration is limited by other con-

straints (e.g., line congestion) as shown in Fig. 4, an increase

in λ, i.e., the confidence probability, may not immediately lead

to an increase in µTSI. This is because the transient stability

constraint is not the dominant constraint until it surpasses the

line congestion constraint.

V. CONCLUSION

This paper proposes a new chance-constrained power sys-

tem transient stability preventive control framework, which can

limit the transient security risk under a preset confidence prob-

ability. The key idea is to embed the DSPP enabled probabilis-

tic prediction model into the TSC-OPF as a transient stability

chance constraint and accelerate the calculation. DSPP can fit

the transient stability index offline and generate probability

distribution of the predicted value online in less than 0.03s.

DSPP-assisted TSC-OPF uses PDIPM to analytically calculate

the optimal preventive control strategies that satisfy the chance

constraint through the generator redispatch, wind curtailment

and load shedding. Numerical results show that the proposed

method can quickly and reliably generate preventive control

strategies and has a great improvement in convergence and

iteration time compared with the sensitivity-based method. In

our future work, the preventive control framework will be

extended to coordinate different control modes from inverter-

based resources with synchronous generators. We will also

extend the approach to deal with other stability problems with

high penetration of inverter-based resources, such as converter-

driven stability control.
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