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Abstract: Discriminating between quark- and gluon-initiated jets has long been a central
focus of jet substructure, leading to the introduction of numerous observables and calcu-
lations to high perturbative accuracy. At the same time, there have been many attempts
to fully exploit the jet radiation pattern using tools from statistics and machine learning.
We propose a new approach that combines a deep analytic understanding of jet substruc-
ture with the optimality promised by machine learning and statistics. After specifying an
approximation to the full emission phase space, we show how to construct the optimal
observable for a given classification task. This procedure is demonstrated for the case of
quark and gluons jets, where we show how to systematically capture sub-eikonal correc-
tions in the splitting functions, and prove that linear combinations of weighted multiplicity
is the optimal observable. In addition to providing a new and powerful framework for
systematically improving jet substructure observables, we demonstrate the performance of
several quark versus gluon jet tagging observables in parton-level Monte Carlo simulations,
and find that they perform at or near the level of a deep neural network classifier. Com-
bined with the rapid recent progress in the development of higher order parton showers, we
believe that our approach provides a basis for systematically exploiting subleading effects
in jet substructure analyses at the Large Hadron Collider (LHC) and beyond.
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1 Introduction

Jets are collimated sprays of particles produced by high energy quarks and gluons. The
radiation pattern within jets — jet substructure — provides a powerful set of tools for
identifying the origin of jets [1–7]. For example, jet substructure has been used to differen-
tiate between jets originating from quarks and those originating from gluons, as well as to
distinguish jets due to highly Lorentz-boosted massive particles (e.g. W/Z/Higgs bosons
or top quarks) and generic quark and gluon-initiated jets.

In most cases, jet classification proceeds by constructing a small set of physically
motivated observables. These observables are often required to have certain properties like
infrared and collinear (IRC) safety (or looser requirements like Sudakov safety [8, 9]) so that
their cross section can be calculated in perturbation theory. Furthermore, these observables
are usually built to isolate different regions of phase space that are predominantly occupied
by one class of jet or another. In some cases, the decision boundaries are defined using
heuristic arguments, while in other applications power counting [10–16] or other theoretical
tools are employed.
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While this program has resulted in many interesting physics results, it is not system-
atically improvable. In particular, a stream of new observables have been proposed over
the last decade with increasingly superior numerical performance on particular physics
problems. There is no guarantee that the latest observable is optimal and so there is no
natural way of knowing when further observable development is no longer necessary. In
parallel to the improvement in observables, there has been significant improvement in the
perturbative accuracy of parton showers [17–26], incorporating increasingly subtle features
into the description of jets that can be exploited for classification tasks. Combined, this
suggests that a more systematic approach to observable construction is required.

In this paper we propose such a systematic approach, that is complementary and
opposite to the philosophy commonly taken in the literature. Instead of first positing an
observable and then calculating it to high precision, we propose to specify a given precision
and then compute the optimal observable. Given a probability density1 for jets originating
from particles i and j, the optimal observable for differentiating these types of jets is the
likelihood ratio [27]. We specifically focus on the universal part of the cross section and
consider higher order approximations to the emission phase space density. While we focus
on quark versus gluon jet tagging, the core idea is applicable to a variety of jet tagging
tasks. Using this approach, we will show that we can systematically incorporate sub-eikonal
corrections to the splitting functions into the observable definition. The resulting observable
itself can be computed to higher orders in perturbation theory, but the observable may no
longer be optimal in the sense defined above.

Although our approach yields calculable and systematically improvable approxima-
tions of the likelihood ratio, its promise of optimality is strictly limited to the perturbative
regime. Any nonperturbative effects — most notably hadronization in the case of jet
physics — are not accounted for in our calculations, and we will show that they signifi-
cantly constrain the classification power of our observables. Devising a set of classifying
observables that are simultaneously interpretable, (approximately) optimal, and robust to
nonperturbative physics is a significant challenge, and falls beyond the scope of this work.

While we find it unlikely that analytic classifiers can completely replace modern ma-
chine learning (ML) techniques, particularly those that exploit information beyond energy
flow, we still believe that further developing an understanding of the nature of physical
information in jets and how it can be exploited for classification tasks is important. First, it
can help to reduce the “black box” nature of ML techniques, enabling one to gain confidence
about the validity of ML techniques in jet physics. Second, it allows one to identify the phys-
ical origin of information exploited by the classification task, so that one can ensure that the
relevant effects are well modelled, or to motivate further work to improve their description.

Our approach is related to a number of other proposals in the literature. Most promi-
nently, likelihood-based methods built on cross section calculations underly the Matrix Ele-
ment Method (MEM) first proposed for top quark mass measurements at the Tevatron [28].
However, the MEM focuses on the hard-scattering part of the cross section and is not read-

1In practice, these are computed at a given order in perturbation theory and could be negative. As long
as these regions are small and isolated, zeroing them is likely sufficient.
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ily extendable to other final states. In the context of jet substructure, an observable similar
to the one proposed in this paper is shower deconstruction (SD) [29–31]. Like our optimal
observables, SD is built as a likelihood ratio from approximations to the parton shower,
however, a key difference is that we are able to translate our result into (an expansion in)
standard jet observables. Other recent work in this direction can be found in [32–38].

This paper is organized as follows. In section 2 we provide a review of the structure
of quark and gluon jets, emphasizing the organization of the 1→ 2 splitting functions into
eikonal and non-eikonal structures. In section 3 we describes our approach to constructing
optimal classifiers using likelihood ratios, and consider the explicit example of quark versus
gluon jet tagging at leading logarithmic (LL) and modified leading logarithmic (MLL)
order. In section 4 we validate our approach using parton shower (PS) Monte Carlo (MC)
simulations, and study the resulting observables. We conclude in section 5.

2 The structure of quark and gluon jets

We begin by analyzing the perturbative structure of a jet sourced by a hard parton radiating
massless gauge bosons (the radiation of fermion pairs will be addressed later). Here, we
will restrict ourselves to LL or MLL, where we can use the 1 → 2 splitting functions.
Extensions to higher logarithmic accuracy could be performed by analyzing the 1 → n

splitting functions. We believe that this is particularly interesting in light of progress in
the description of quark and gluon jets with parton shower programs.

While the structure of quark and gluon jets has been extensively discussed in the
jet substructure literature, this has almost entirely been from the perspective of the soft-
collinear limit, where the only distinction between quarks and gluons is their color charge.
However, the 1 → 2 splitting functions, which are the basis of standard parton shower
programs, contain more information. Here we would like to clearly understand the physical
nature of the additional information, how it can be exploited, and why it is small compared
to the CF vs. CA color information.

Although we will ultimately be focused on the physically realized case of QCD, it is
interesting to view the problem more generally. This perspective has also been inspired
by arguments for the simplification of higher order splitting functions in refs. [39–41]. We
therefore consider the splitting function for the radiation of a massless gauge boson

Pi(x) = 4Ci
α

4π

(
x

1− x + (1− x)gi(x)
)
,


gφ(x) = 0
gλ(x) = 1

2
gV (x) = x+ 1

x

. (2.1)

The function gi(x) satisfies the condition that it has a regular Taylor series expansion
about x = 1. Here we see that the splitting probability depends on the parton species
through two factors: the Casimir Ci which describes the color charge of the particle, and
the function gi(x).

In the x → 1 limit, in which the emitted radiation is soft, and which is enhanced by
the soft singularity, the splitting functions exhibit a universal form depending only on the
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color factors Ci. Explicitly, these are

CF = N2 − 1
2N → 4

3 , CA = N → 3 . (2.2)

The result in this limit is simply the classical result for radiation in the eikonal limit2 [42],
which is (as it must be) independent of the spin of the emitting parton. In this limit, the
information in a jet is encoded solely in the quantity (multiplicity) of radiation rather than
the structure of the radiation (we will prove this rigorously in section 3). Standard studies of
quark vs. gluon discrimination have focused solely on this leading eikonal term, resulting in
the standard claim that multiplicity or counting observables are optimal (see e.g. ref. [43]).

One of the motivations for exploring in more detail the structure beyond the strict
eikonal limit, is that there has recently been work on purely collinear jet substructure
observables (the projected energy correlators, see [44–53] for more detailed discussions)
that are sensitive to specific integer moments (the twist-2 spin-J anomalous dimensions)
of the splitting functions. These observables are not correctly described by the leading
eikonal result for the splitting function, and exhibit differences between quarks and gluons
generated from the non-eikonal terms in the splitting function. One would therefore like
to understand how to exploit this information for quark gluon discrimination.

The non-eikonal term, gi(x), depends on the nature (spin) of the emitting parton. Its
contribution to the splitting function is suppressed by two powers of (1−x), which is guar-
anteed by the Low-Burnett-Kroll (LBK) theorem [54–56] describing the soft limits of gauge
theories.3 As expected, gi(x) vanishes for a scalar, which has no structure beyond its color.

Expanding the function gi(x) in powers of (1− x), we have

gφ = 0 , gλ = 1
2 , gV = 1

2 + 1
4(1− x)2 + · · · . (2.3)

This shows that in QCD, the difference between a quark and a gluon is in fact more
suppressed than it needs to be! This makes the difficulty of quark/gluon jet discrimination
abundantly clear: the structure of a jet is dominated by its classical result, with the spin
information being highly suppressed. Nevertheless, this information is there, and we should
be able to design observables to systematically exploit it.

In QCD, there is an additional distinction between quarks and gluons, namely that
gluons can split into a qq̄ pair,

Pg→qq̄(z) = nfTR
2CA

[z2 + (1− z)2]. (2.4)

This splitting does not obey the LBK theorem and is down only by a single power of z.4

3 Quark and gluon jet likelihoods

In this section, we introduce an approach which allows us to prove the optimality of
quark/gluon discriminants. In this approach, we analyze the likelihood function of jet

2This corresponds with the well-known fact that the leading double logarithmic Sudakov is classical.
3In this case, the LBK theorem is applied after taking the collinear limit.
4See refs. [57–61] for a discussion.

– 4 –



J
H
E
P
1
2
(
2
0
2
2
)
0
2
1

radiation at a given accuracy, and apply the Neyman-Pearson Lemma [27] to construct
an optimal discriminant as the likelihood ratio of the two jet classes in question (in our
case, quark and gluon jets). Explicitly constructing likelihood ratios has garnered increas-
ing attention in recent years, as it provides some insight into what physical information
a deep neural network might be using when learning a (presumed optimal) classification
function. Our work is similar in spirit to the approaches in refs. [33, 35], and provides a
complementary perspective for calculating jet likelihoods.

Our technique allows us to work in some approximation (e.g. eikonal, independent
emission, etc.) and then analyze the likelihood using machine learning or information-
theoretic techniques to prove results about the optimal observables. These optimality
results will then apply to any observables that can be computed at a given accuracy from
this likelihood. Since we will always work in some approximation for the likelihood, one
can always come up with observables that can evade the proven results, if they cannot
be correctly computed from this approximation. However, we view this as a virtue, as it
shows how results can be systematically improved with more accurate approximations.

3.1 Analysis in the eikonal limit

We begin by considering the optimal quark/gluon discriminant in the eikonal limit. We
define the eikonal limit as independent emissions with the universal part of the splitting
functions

dPi→ig(z, θ) = 2αsCi
π

dz

z

dθ

θ
, (3.1)

where i ∈ {q/g}.
Before proceeding, we would like to clarify a number of issues related to our referring

to this as the eikonal, or classical eikonal limit. Another name which could be used is the
LL limit. We avoid this language, since it is best defined when there is an observable of
interest. While it is of course true that the above will generate the leading logarithms
for Sudakov-type observables, it is straightforward to identify IRC safe observables (even
those that probe only two particle correlations) for which the leading logarithm will not
be produced by the above approximated splitting function.

Since we have shown in section 2 that the splitting function in this limit is identical
for all partons up to the color factor, we should be able to prove that multiplicity is the
optimal observable. To show this, we consider the quark/gluon likelihood ratio Lq/g for
radiating a collection of gluons5 with kinematics {(zn, θn)}Mn=1

lnLLL
q/g =

M∑
n=1

ln
(
dPq→qg(zn, θn)
dPg→gg(zn, θn)

)
= ln CF

CA

M∑
n=1

1 = M ln CF
CA

. (3.2)

HereM is simply the multiplicity, and so by the Neyman-Pearson Lemma6 [27], the optimal
observable at this level of accuracy is the multiplicity. Experimentally the multiplicity is

5Here we use the well known fact that there is a probabilistic interpretation for the twist two splitting
functions. This, however, should not be taken for granted, and indeed such a probabilistic interpretation
fails at higher twist [62].

6Monotonic functions of the likelihood ratio are also optimal since monotone functions do not change
the ordering by the classifier.
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indeed found to perform well as a discriminant [63, 64], and we provide justification for
why this is the case.

Another perspective is that the optimality of counting follows simply from the univer-
sal nature of soft emissions in gauge theory, or in other words, the classical structure of the
jet. This behavior is true for a very wide class of observables, including standard Sudakov
observables, Sudakov observables that have been soft dropped [65], and groomed multi-
plicity [43]. We also note that the above result holds regardless of whether the coupling is
taken to be running or not, since it cancels out of the ratio in eq. (3.2). We therefore state
our first result:

Theorem 1. For an observable whose LL result can be computed using the eikonal split-
ting functions of eq. (3.1) in the independent emission approximation (with or without
running coupling), this LL result can not achieve better quark/gluon discrimination than
multiplicity.

In addition to showing that multiplicity is optimal, we can in fact derive its probability
distribution using Poisson distributions for the multiplicity M7

pLL
i (M) = Pois

[∫
dz

z

∫
dθ

θ

2αsCi
π

Θ(z, θ)
]
. (3.3)

In the eikonal limit, emissions are uniformly distributed in the Lund plane, and we can tes-
sellate some perturbative region of the plane using triangles (see figure 1). The probability
for n emissions in a given triangle with area ∆ is then Poisson distributed according to

Pr(ni = n) = λne−λ

n! , λ = 2αsCi∆
π

. (3.4)

Due to the assumption of independent emissions, we then have that the radiation counts
throughout the emission plane are distributed according to

Pri(n1, n2, · · · , nN ) =
N∏
j=1

λ
nj

i e
−λi

nj !
. (3.5)

The optimal quark/gluon discriminant is then

ln Prq(n1, · · · , nN )
Prg(n1, · · · , nN ) = ln CF

CA

N∑
j=1

nj + const. (3.6)

We can take the ∆ → 0 limit to find again that the optimal quark gluon discriminant is
simply the multiplicity. This version of the proof makes clear that we can apply a cutoff
and only consider the likelihood function in the perturbative regime.

7Poisson observables were emphasized in [43].
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log(1/z)

log(R/✓)

z✓
=
⇤
Q
C
D /p

T

1
2

3
…

…

N
…

…

ni = number of emissions in triangle i.

Pr(ni = n) = �ne��

n!

� = 2↵sCi

⇡

i 2 {q, g}
Cq = CF

Cg = CA

(eikonal soft gluon approximation)

Pri(n1, n2, ..., nN ) =
QN

j=1
�
nj
i e��i

nj !

The optimal quark/gluon classier based only on 
Casimirs is a threshold cut on the full likelihood ratio:

f(n1, ..., nN ) =
Prq(n1,...,nN )
Prg(n1,...,nN ) /

⇣
�q

�g

⌘PN
j=1 nj

PN
j=1 nj is just (perturbative) multiplicity and is finite in the ! 0 limit.

Since (pert.) multiplicity is monotonically related with 
the likelihood ratio classifier, it is also optimal! 

~full probability distribution~

Figure 1. A tiled version of the Lund plane where each of the N triangles has the same area. The
non-perturbative regime is defined by zθ > ΛQCD/pT.

3.2 Systematic expansion beyond the eikonal limit

The radiation phase space from the previous section can be systematically improved. Ob-
servables computed with modified leading logarithmic accuracy should include the effects
of the running coupling as well as subleading terms in the splitting function. In particular,
the radiation phase space is given by

dPi→ij(z, θ) = 2αs(zθpT )Ci
π

pi→ij(z)dz dθ
θ
, (3.7)

where pij are the QCD splitting functions. In general, at this beyond-Eikonal (BE) order,
there are can be flavor changes between quarks and gluons, since

∫ 1
1/2 dzpq→qg(z) > 0 and

a finite part of the gluon splitting function contains a contribution from g → qq̄. Ignoring
flavor changing,8 the formalism from the previous section still holds, only now the optimal
observable is more complicated than simply multiplicity. In particular:

JLBE’ ≡ lnLBE’
q/g =

M∑
n=1

ln dPq→qg(zn, θn)
dPg→gg(zn, θn) =

M∑
n=1

[
ln CF
CA

+ ln pq→qg(zn)
pg→gg(zn)

]
, (3.8)

where BE’ denotes the beyond Eikonal approximation for the radiation phase space, but
ignoring flavor changing. By inserting the corresponding the following splitting functions9

pq→qg(z) = 1 + (1− z)2

2z , (3.9)

pg→gg(z) = 1− z
z

+ 1
2z(1− z), (3.10)

the optimal observable is

JLBE’ =
M∑
n=1

[
ln CF
CA

+ ln 1 + (1− zn)2

(1− zn)(2 + z2
n)

]
≈M ln CF

CA
+ 1

2

M∑
n=1

z3
n +O(z4

n). (3.11)

8See e.g. ref. [66] for a careful treatment of flavor changing effects.
9The pq→qg still includes the flavor change, but this fact is ignored in the BE’ approximation.
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Equation (3.11) shows that the multiplicity is still nearly optimal when including the
non-flavor changing corrections to the radiation phase space. A full BE calculation requires
a proper accounting of flavor changing, which is omitted here. When summed over final
states, the quark and gluon splitting functions become

Pq(z) = 1 + (1− z)2

2z , (3.12)

Pg(z) = 1− z
z

+ 1
2z(1− z) + nfTR

2CA
[z2 + (1− z)2]. (3.13)

where the z ↔ 1−z symmetry is used put the gluon singularity entirely at z → 0. The split-
ting functions influence the optimal observable via the log likelihood ratio lnPq(z)/Pg(z),
giving

JLMLL =
M∑
n=1

ln CF
CA

+ ln 1 + (1− zn)2

(1− zn)(2 + z2
n) + nfTR

CA
zn(z2

n + (1− zn)2)

 . (3.14)

Expanding in powers of zn, we have

JLMLL =
M∑
n=1

(
ln CF
CA
− nfTR

2CA
zn + nfTR(4CA + nFTR)

8C2
A

z2
n + · · ·

)
(3.15)

= ln CF
CA

n(κ=0) − nfTR
2CA

n(κ=1) + nfTR(4CA + nFTR)
8C2

A

n(κ=2) + · · · , (3.16)

where

n(κ) =
M∑
n=1

zκn. (3.17)

We can therefore extend to our second result:

Theorem 2. For an observable whose LL or MLL result can be computed using splitting
functions in the independent emission approximation, this result can not achieve better
quark/gluon discrimination than a linear combination of weighted multiplicities.

3.3 Perturbative multiplicity and parton showers

Parton showers are numerical tools that generate multi-parton phase-space points on which
observables can be measured. The shower proceeds iteratively, producing its own initial
conditions for subsequent evolution. This procedure requires physically sensible interme-
diate states, i.e. on-shell phase-space points during its ordered evolution. Parton showers
recover leading-logarithmic results for observables that are sufficiently similar to their or-
dering variable, and for which a strong ordering of emissions is guaranteed. The latter
aspect and the desire for physically sensible intermediate states can sometimes lead to
conflicting needs, especially for observables depending/relying on states containing several
partons that cannot be interpreted as “ordered”, and that are sufficiently different from
the ordering variable. In such observables, kinematic recoil effects can no longer be ne-
glected, since different schemes to ensure momentum conservation become distinguishable.
Perturbative multiplicity is such an observable.
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One particularly common scheme to enforce momentum conservation arises from the
leading-color approximation of QCD, in which color-dipoles radiate soft gluons coherently.
This dipole picture suggests to produce physical (n+1)-parton states from n-parton states
by distributing the momenta of two originator partons over three new partons, thus allowing
momentum-conservation and on-shell conditions throughout. The originator pair is, in
most cases, determined by color connections. Quarks and antiquarks will thus contribute
to the evolution of a single dipole, while gluons will participate in two dipoles.

In parton showers, quarks and gluons yield different radiation patterns (and thus per-
turbative multiplicities) because of differing color factors, and because of different phase-
space dependence of hard-collinear contributions. Moreover, the effect of kinematic recoil
is handled differently for both. This is easily seen by comparing the evolution of Z → qq̄ to
h→ g1ḡ2. In the former, the original color connection between q and q̄ is broken after the
first gluon emission, while for the latter, only one of the two original connections is severed
by emitting the first gluon. If momentum is re-distributed locally within color-connected
dipoles (as is commonly the case in parton showers, including the Dire shower [67] em-
ployed below), no subsequent gluon emission from the q will influence the q̄ momenta, while
emissions from g1 can continue to influence the g2 momentum, until the second original
connection is severed. This simple choice of recoil mechanism has the advantage that it
makes the action of the parton shower locally invertible, and allows stopping and restart-
ing the shower at will without consequences. These factors are crucial for matching and
merging methods to improve the overall event generator fidelity. However, such a recoil
scheme clearly complicates the subleading-color behavior of the parton shower, and can
lead to unphysical artifacts in quark-vs-gluon discrimination.

To assess the impact of recoil on perturbative multiplicities, we introduce a simple
extension of the local recoil strategy of Dire, with the aim to obtain an identical recoil
handling for quarks and gluons. For this, we introduce a “backbone” dipole for gluon evolu-
tion, which is never allowed to split. The backbone dipole is defined by the left-over original
color-connection after the first gluon emission in the shower. If the original state consisted
of a qq̄ pair, no backbone is present. The emission rate from the backbone dipole is forced
to vanish. If a parton contributes both to the backbone and to another dipole evolution
(i.e. is a gluon), then the rate of emissions from the parton in the latter dipole is increased
to ensure that the overall g → gg rate is recovered. This guarantees that recoil effects in
Z → qq̄ and h→ g1ḡ2 are treated completely identically, by effectively treating the recoil of
emissions from gluons connected to the backbone identical to emission from (anti)quarks.

3.4 Discussion and extensions

In this section, we introduced a strategy for constructing optimal discriminating observables
using quark/gluon jet likelihoods at fixed perturbative accuracy. In the next section, we
demonstrate this strategy for quark/gluon jet discrimination in parton-level Monte Carlo
events generated at a fixed order. While this technique sheds new light on the quark/gluon
jet classification problem in particular, it need not be restricted to this application. It can
be applied whenever one can compute class likelihoods for an observable, and performance
can be systematically improved to track with advances in theoretical calculations.
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A key advantage of our approach is that it can go systematically beyond the leading
eikonal limit that has been the focus of most studies of quark-versus-gluon discrimination.
We envision that this could be particularly interesting for understanding how information
in higher order splitting functions can be exploited for quark gluon discrimination.

However, we must note that our approach relies on having an understanding of the
underlying process describing the formation of quark and gluon jets. While this is true
in perturbation theory, it is not true for the hadronization process, for which their exists
little analytic understanding. Therefore while we find it exciting that we are able to
systematically derive optimal observables from a given set of splitting functions, we must be
cautious, particularly for subleading information, that it may be washed out or dominated
by hadronization effects. We will study this in section 4.4.

4 Monte Carlo studies

In the previous section, we introduced a systematic method to compute likelihood ratio
observables (LROs) corresponding to (approximately) optimal quark/gluon jet discrimi-
nants at a given perturbative accuracy. In this section, we will study their classification
performance using parton-level Monte Carlo simulations of quark and gluon jets. We alter
the functional form of q → qg emissions in a leading log (LL) shower, producing a simple
class of LROs ln(Pq/Pg), and compare their classification performance to several bench-
marks: jet multiplicity and family of deep neural networks (DNNs). When sufficiently
trained, DNNs are often presumed to classify optimally, and thus provide an approximate
performance ceiling for assessing LROs.

4.1 Configurable parton showers

We generate parton-level Monte Carlo events using Pythia 8.303 [68] with the DIRE par-
ton shower [67]. DIRE features a number of settings (“kernel orders”) for the perturbative
order of the shower, the simplest of which corresponds to a LL shower without g → qq̄

splittings (KernelOrder = -1). Accounting for g → qq̄ splittings significantly complicates
calculating the quark/gluon jet likelihoods, so we use KernelOrder = -1 for all studies pre-
sented here. Pure samples of quark and gluon jets are extracted from e+e− → H → qq̄/gg

events, respectively, generated at
√
s = mH = 250GeV and with all initial-state radiation

turned off. In each event, two sets of jets are clustered using the anti-kT algorithm with
radii R = 0.4 and R = 1.0 [69]. To minimize the chance of including secondary jets from
wide-angle emissions, we only analyze the leading jet from each event.

In addition to fixing the shower order, DIRE allows us to tweak the functional form of
the splitting functions Pq→qg and Pg→gg. In our study, we consider splittings of the form

Pg→gg ∝ CA × funiv(z)
Pq→qg ∝ CF × c0 exp(c1z + c2z

2)× funiv(z),
(4.1)
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where c0, c1, and c2 are tunable parameters and funiv(z) is the universal part of the splitting
function. In this case, the log likelihood ratio takes on a particularly simple form:

ln
(
Pq→qg
Pg→gg

)
= ln

(
c0
CF
CA

)
+ c1z + c2z

2. (4.2)

On the level of jets, this defines a likelihood ratio observable

lnL =
∑
i∈jet

ln
(
c0
CF
CA

)
+ c1zi + c2z

2
i

= ln
(
c0
CF
CA

)
n(0) + c1n

(1) + c2n
(2) ,

(4.3)

where n(i) is defined as in eq. (3.17) with zi = pT,i/pT,jet. In our studies, we vary the three
parameters above, as well as the color factor CF , and track how the LRO performs as a
quark/gluon jet classifier.

4.2 Optimality & particle flow networks

The family of LROs defined in section 4.1 are only approximately optimal, as the calculation
makes the simplifying assumptions that (a) all emissions zi come from the initiating hard
parton, and (b) the momentum fractions zi,jet relative to the jet pT are sufficient proxies
for the fractions zi relative to the emitting partons. In this study we compare LROs to
Particle Flow Networks (PFNs), which use a per-particle latent space embedding to learn
arbitary permutation-invariant jet substructure observables [70–72]. We use the constituent
kinematic features (zi, ηi, φi) as the per-particle inputs,10 where momentum fractions are
defined as zi = pT,i/pT,jet and (ηi, φi) are measured relative to the jet axis.11 The particle
embedding map Φ : R3 → R` and binary classification function F : R` → R2 are trained
simultaneously as fully connected neural networks. Jets are represented in the latent space
by summing their constituent particle representations, and the sum is classified by the
function F .

In addition to the PFN we train an Energy Flow Network (EFN), which learns an
explicitly infrared and collinear (IRC) safe observable of the form F (

∑
i∈jet ziΦ(ηi, φi)).

The EFN provides complementary information to the PFN, indicating whether IRC-safety
restricts access to useful classification information (multiplicity, for instance, is IRC unsafe
and thus could not be directly learned by an EFN). We also train two variants of a PFN —
PFN[z] and PFN[η, φ] — which use only a subset of the per-particle information, indicated
by the variables in brackets. This split elucidates how much useful information comes from
the angular structure of the jet versus solely the momenta. The LROs depend only on zi,
so comparing their performance against PFN[z] will indicate if they are optimal given the
restricted set of substructure information.

We implement all networks with the tools provided in the EnergyFlow package [71, 72],
based on TensorFlow [73]/Keras [74]/Adam [75], and use architectures that have been shown

10We use pseudo-rapidity η rather than rapidity, as it is a standard observable in collider experiments.
11The jet axis is defined as (η̂, φ̂) =

∑
i∈jet pT,i(ηi, φi)/pT,jet.
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to perform well for quark/gluon jet classification [71]. In particular, the particle embedding
Φ is trained as a fully connected network with layer widths of (100, 100, 128) (where ` = 128
is the latent space dimension). The output mapping has hidden dimensions (100, 100, 100)
and an output dimension 2, with the Euclidean unit vectors ê1, ê2 acting as quark/gluon
jet truth labels. To avoid overfitting, a uniform dropout rate of 20% is applied to all nodes
in F . To train each network, a sample of 1 million quark jets and 1 million gluon jets is
combined, shuffled, and split into training (70%), validation (15%), and testing (15%) sets.
The networks are trained and validated on the corresponding sets over three epochs,12 and
the receiver operating characteristic (ROC) curve and area under the curve (AUC) metrics
are evaluated on the test set. We use these metrics to compare network performance with
the predicted likelihood ratio observable.

4.3 Results: Pythia & DIRE

The central focus of our studies is varying the parameters c1 and c2 of eq. (4.3). We retain
the default setting c0 = 1, as any variation of c0 corresponds to a term proportional to
multiplicity in the likelihood ratio. We instead vary CF between its default value CF = 4/3
and CF = CA = 3. Setting CF = 3 removes the multiplicity term from eq. (4.3), leaving
it sensitive solely to the higher order terms n(1) and n(2). Using CF = 4/3 reintroduces
the n(0) term, making the other two sub-leading effects. Furthermore, we only consider
(c0, c1) ∈ {0, 1}2, since these settings are sufficient to add or remove the corresponding
terms in eq. (4.3).

4.3.1 Parton shower validation

We begin by validating the expected behavior of the DIRE parton shower and PFN training
procedure. Since we are working at KernelOrder = -1, we expect quark jets and gluon
jets to look identical when CF = CA. In figure 2, we show ROC curves and AUC scores
for PFN quark/gluon jet classifiers trained on quark jets generated with a range of CF
values between CF = 0 to CF = 3.13 As expected, the two are indistinguishable when
CF = 3. This confirms two crucial details for our later studies: first, that the q → qg

and g → gg splitting functions can be made identical by tuning CF , and second, that our
PFN architecture and training protocol is not overfitting the limited amount of information
available in the parton-level shower.

4.3.2 Exponential modifications of q → qg

Figure 3 shows classifier performance with an exp(z2) enhancement to the q → qg splitting
and CF = CA. The LRO in this case is simply n(2), and it performs as well as multiplicity
in both the R = 0.4 (left) and R = 1.0 (right) cases. There is no a priori reason for
n(2) to be useful for classification, so these results demonstrate that the LRO does indeed
capture useful classification information. Multiplicity, though not explicitly present in lnL,
retains good performance because an enhancement of q → qg splittings is fundamentally

12Due to the large number of events (∼ 1.4M) in the training set, model training converged very quickly.
13The same set of gluon jets generated with CA = 3 is used in each training.
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Figure 2. ROC curves for PFN quark/gluon jet classification over a range of quark color factors
CF . AUC scores are shown next to each legend entry. At each CF setting, q → qg and g → gg

splitting functions are configured to be identical up to the color factor. As expected, quark and
gluon jets are indistinguishable at CF = CA = 3 and nearly perfectly distinguishable at CF = 0.

an enhancement of quark jet multiplicity. In both the R = 0.4 and R = 1.0 cases, multi-
plicity and n(2) match PFN[z] — the PFN trained on constituent zi. This indicates that
both multiplicity and n(2) capture virtually all of the useful information encoded in the
constituent momenta.

At R = 0.4, we observe a clear performance gap between the computed observables
(n(2), multiplicity) and the DNNs that use angular information (PFN, PFN[η, φ], and
EFN). This largely disappears at R = 1.0, where all classifiers perform within 1-2% of
one another. We speculate that the difference comes from events where the full radiation
pattern is not captured within an R = 0.4 jet (due to a wide-angle emission, for example).
In this case, the computed observables suffer due to incomplete information, while the
DNNs exploit potentially spurious angular information. Alternatively, “behind-the-scenes”
behavior in Pythia — such as momentum conservation — may introduce angular correla-
tions that are unaccounted for in the computed observables. The absence of a performance
gap at R = 1.0 slightly favors the former explanation, and for the remainder of our studies
we use R = 1.0.

Next, we consider the exp(z) enhancement, which corresponds to the LRO n(1). Unfor-
tunately, n(1) is a nearly the constant unity for all jets and thus useless for discrimination,
as shown by the purple curve in figure 4 (left). To circumvent this, we expand the sum∑
i∈jet z

κ
i about κ = 1, as in ref. [76]. To leading order, this yields:∑

i∈jet
zκi = 1 +

∑
i∈jet

(1− κ)zi ln zi + · · · , (4.4)

which justifies replacing n(1) with the observable
∑
i∈jet zi ln zi. Due to its similarity to

Shannon entropy, we denote this observable n(1)
S . Figure 4 (left) includes the ROC and
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Figure 3. ROC curves and AUC scores (listed in the legend) for the likelihood ratio observable
n(2), multiplicity, and the four benchmark DNNs with settings CF = CA = 3 and Pq→qg ∝ exp(z2).
In the R = 0.4 case (left), classifiers that use angular information appear to outperform those using
only momenta. This effect mostly vanishes at R = 1.0, where all perform approximately equally.
In both cases, n(2) performs as well as multiplicity.
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Figure 4. ROC curves and AUCs for the settings Pq→qg ∝ exp(z) (left) and Pq→qg ∝ exp(z + z2)
(right). In each case the likelihood ratio contains the trivial term n(1), and ROCs using alternative
formulation n(1)

S of eq. (4.4) are shown in an additional curve.
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AUC for n(1)
S , which clearly improves upon n(1) and matches the performance of multiplicity

and the DNNs, as in the exp(z2) case. This again indicates that the LRO captures nearly
the same information as the DNNs, while having the clear advantage of interpretability,
algebraic simplicity, and ease of computation.

Concluding our studies with CF = CA = 3, we show results from with Pq→qg ∝
exp(z + z2) in figure 4 (right). We again include a ROC curve for the corrected LRO
n

(1)
S + n(2), which boosts performance relative to variant using n(1). In this case, however,

there is less parity between the computed observables and the DNNs. The PFN, PFN[η, φ],
and EFN perform approximately 2% better than multiplicity and n(1)

S +n(2), implying that
the angular structure is helpful for classification (though this may be an artifact of the
event generator). The LRO is only 1% behind PFN[z], indicating that it is still a powerful
classifier using only the constituent momenta.

4.3.3 Restoring CF = 4/3

To conclude our studies in Pythia, we restore the physical quark color factor CF = 4/3,
which introduces an explicit multiplicity term ln(CF /CA)n(0) in the LRO (taking c0 = 1
as mentioned above). Figure 5 (top), shows results for Pq→qg ∝ exp(z) (left) and Pq→qg ∝
exp(z2) (right). The LRO remains very close to the other benchmarks, again indicating that
it performs nearly optimally. Notably, the EFN performs worse than the other classifiers,
reflecting its insensitivity to jet multiplicity (the leading order effect in the LRO).

Since the LRO explicitly contains multiplicity, we are better poised to understand the
relative impact of the higher order terms n(1)

S and n(2). In figure 5 (bottom), we scan over
the coefficients (c0, c1) for the observable c0n

(0) +c1n
(1)
S (left) and (c0, c2) for c0n

(0) +c2n
(2)

(right).14 We consider points c0 ∈ [−2, 2] and c1, c2 ∈ [0, 2], where negative values of ci>0
are omitted because the observable (c0,−|ci|) is equivalent to (−c0, |ci|) up to an overall
sign. At each point, we compute an AUC score for the corresponding LRO and color the
points accordingly. The red stars correspond to the default working points c0 = ln(CF /CA)
and c1 = c2 = 1. The predominant effect appears to be the relative signs of c0 and ci>0,
with points in the left half (same relative sign as the predicted observable) performing
about 1% better than those on the right half (opposite relative sign). This difference is
small, but the performance is very consistent within each half.

The other notable feature is the behavior near the lines c0 = 0 (middle vertical line)
and ci>0 = 0 (bottom horizontal line). The points with ci>0 = 0 — which lack a contribu-
tion from the higher order terms n(1)

S or n(2) — slightly underperform relative to the points
in the upper left half, though the difference is only around 0.5% in each case. Interestingly,
the points that contain only higher order terms (c0 = 0) perform the best overall. The dif-
ferences are again quite small (0.5-1%) relative to the default point, but slightly more signif-
icant (1-1.5%) relative to the ci>0 = 0 points. It is curious that the higher order terms alone
perform so well, but this is not entirely unexpected as they are somewhat correlated with
jet multiplicity. For example, large-multiplicity jets will have many particles with smaller
zi, which pushes down the average value of n(2) (a similar trend also holds for n(1)

S ). Lastly,

14For simplicity, have converted the term ln(c0CF /CA)n(0) into a single prefactor c0n
(0).
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Figure 5. Top: ROC curves and AUC scores for Pq→qg ∝ exp(z) (left) and Pq→qg ∝ exp(z2) (right),
generated with the true quark color factor CF = 4/3. Bottom: AUC scores for a scan over the coeffi-
cients c0 and c1/c2 in the observables c0n

(0)+c1n
(1)
S (left) and c0n

(0)+c1n
(2) (right). Color indicates

the AUC score, and the grid point represents the (c0, ci) setting. In each plot, the red star repre-
sents the default working point c0 = ln(CF /CA), ci = 1 defined by the computed likelihood ratio.

each plot features a line of poorly performing points emanating from the origin into the right
half. These correspond a family of linearly related observables (rc′0, rc′i>0) (r ∈ R) for which
quark and gluon jets are identically distributed. On either side of this line (i.e. the left and
right halves of the grid), the distributions differ and enable better discrimination power.

As in section 4.3.2, these trends suggest that the LROs are a good approximation of the
true likelihood ratio. The higher order terms clearly encode useful classification information
beyond jet multiplicity, and the importance of the relative sign between n(0) and n

(1)
S or

n(2) reflects the algebraic form of the LROs. Furthermore, the LROs perform within 1% of
the best performing DNN classifiers, indicating that they have captured nearly all of the
useful classification information in a simple, computationally tractable expression.

4.4 Further investigation: toy showers and hadronization

As a final test of the LROs, we examine their performance in classifying jets generated at
two opposite extremes: precise adherence to user-specified splitting functions in a simpli-
fied parton shower generator, and Pythia/DIRE at hadron-level. In the former case, we
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Figure 6. ROC curves comparing predicted classifier performance to neural networks for two
additional event generation paradigms: a dedicated jet generator with explicitly tunable splitting
functions (left), and Pythia at hadron-level (right). We observe near-perfect agreement between
the DNNs and the likelihood ratio observable in the former case. In the latter case, generator-level
hadronization effects severely diminish the performance of the calculated observables.

expect strong agreement between LROs and DNNs. The simplified generator15 computes
splitting probabilities directly from hand-coded likelihood functions Pq→qg and Pg→gg, mak-
ing the correspondence to eq. (4.1) explicit and the likelihood ratio formulated in eq. (4.3)
nearly exact. In the latter case, the Pythia hadronization routine significantly compli-
cates the correspondence between a parton shower and a final-state jet, and the likelihood
ratio formulae we derive no longer apply. We thus expect the LRO performance to drop
substantially.

Figure 6 shows the results in each scenario. In the simplified scenario (left), there is vir-
tually no difference in performance (less than 0.5%) between the LRO and the DNNs. The
parton shower routine used for these results is essentially a “jet generator”, and without
any of the additional physics features of Pythia/DIRE it allows an even more direct probe
of the LROs than the parton-level studies in the previous section. While this result is un-
surprising, it is strong evidence that the LROs — where they apply nearly exactly — do in
fact capture the same information as a DNN. In the case with full hadronization (right), the
LRO loses nearly all of its discrimination power, performing worse than multiplicity and all
of the DNNs. The performance drop is expected, but the magnitude is exceptionally large
and underscores the limitations of working at parton-level when constructing the LROs.

4.5 Discussion

In each result shown in sections 4.3.2 and 4.3.3, our predicted LROs track closely with
jet multiplicity and PFN[z], and in most cases perform within 1 to 2% of the full PFN.

15We thank Duff Neill for sharing his parton shower code.
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Assuming that PFN[z] learns the optimal classifier given the constituent momenta, this
implies that the LROs are near optimal and roughly equivalent to the true likelihood ratio.
The overall parity with multiplicity suggests that while LROs may not confer an explicit
advantage, they capture the same information and can be systematically computed to
one’s desired accuracy. In the CF 6= CA case — where multiplicity is explicitly included
in the LRO — the higher order terms do appear to confer a small advantage. In the
hyper-simplified case addressed in section 4.4, we see very clear evidence that the LRO
— when it reflects the true “physics” in the event generator — does classify optimally.
Broadly speaking, it is encouraging that the LROs perform so well relative to multiplicity
and DNNs on Pythia jets, given that they are (a) calculated using several simplifying
assumptions, and (b) insensitive to any angular substructure created by the generator.
These results demonstrate the value of an approximate likelihood ratio when the true
ratio is intractable, and motivate further study of physics-motivated observables that can
approach DNN performance in more realistic scenarios.

5 Conclusions

In this paper we have presented a new approach to understanding jet substructure observ-
ables, by analyzing their likelihood function at a fixed accuracy and explicitly constructing
likelihood ratios. In the case of quark/gluon jet discrimination, we have proven that multi-
plicity is optimal at leading order, and that going to higher perturbative order introduces
sub-leading contributions in the form of weighted multiplicities. Furthermore, we have
shown that for observables that can be computed using eikonal splitting functions, their
LL result cannot beat multiplicity. Beyond its application in quark/gluon jet classifica-
tion, our technique reveals a general strategy for computing and systematically improving
approximations of the likelihood ratio for a wide range of observables.

We demonstrate our approach using Monte Carlo simulations of parton-level jets, and
directly compare the analytic classifier to a collection of deep neural networks. Using
jets clustered from fixed-order parton showers, we find that the analytic classifiers nearly
match the performance of Particle Flow Networks. This indicates that the networks in-
deed “discover” the underlying structure of the shower and extract relevant classification
information. In some cases, the networks retain a clear advantage which may be attributed
to artifacts of the jet clustering scheme, quirks of the event generator, or constraints that
are unaccounted for in our calculations (e.g. momentum conservation).16 In a toy parton
shower where splitting functions are hand-coded and the full shower final state is recorded,
the analytic and PFN classifiers perform identically.

In summary, this work demonstrates the possibility of a first-principles physical expla-
nation for the performance of ML classifiers. This signals a new way for theory and ML
to work together, wherein ideas from statistics and deep learning (e.g. the optimality of
likelihood ratios) motivate theoretical calculations that can at least partially explain the
performance of a deep neural network. While it is unlikely that analytic classifiers can com-
pletely replace DNNs, especially in the noisy and high-dimensional space of collider data,

16A detailed analysis that explicitly considers jet clustering can be found in ref. [35].
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they can illuminate some corners of the “black box”. Furthermore, they can enable an
understanding of which physical features of parton shower simulations are being exploited
by classifiers, to ensure that they are well described.

We look forward to continued progress in this vein, and believe that our approach is
general enough to apply beyond quark/gluon discrimination. In future work, it would be
interesting to modify the technique to become more robust against unconstrained behaviors
of Monte Carlo generators, or apply it to other classification problems such as boosted
W/Z/h boson identification.
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