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Load Margin Assessment with Topology Changes,
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AbstractÐThe increasing uncertainties caused by the high-
penetration of stochastic renewable generation resources and flex-
ible loads pose challenges to the power system voltage stability. To
address this issue, this paper proposes a probabilistic transferable
deep kernel emulator (DKE) to extract the hidden relationship
between uncertain sources, i.e., wind generations and loads, and
load margin for probabilistic load margin assessment (PLMA).
This emulator extends the Gaussian process kernel to the deep
neural network (DNN) structure and thus gains the advantages
of DNN in dealing with high-dimension uncertain inputs and
the uncertainty quantification capability of the Gaussian process.
A transfer learning framework is also developed to reduce the
invariant representation space distance between the old topology
and new one. It allows the DKE to be quickly fine tuned with only
a few samples under the new topology. Numerical results carried
out on the modified IEEE 39-bus and 118-bus power systems
demonstrate the strong robustness of the proposed transferable
DKE to uncertain wind and load power as well as topology
changes while maintaining high accuracy.

Index TermsÐVoltage stability, uncertain resources, proba-
bilistic load margin assessment, deep kernel emulator, transfer
learning, power system stability.

NOMENCLATURE

A. Load Margin Assessment Model

PG,i, QG,i Active and reactive power injections at gen-

erator bus i.
PL,i, QL,i Active and reactive power injections at load

bus i.
θ,V Bus voltage angle and magnitude.

µL, σL Mean and standard deviation of load distri-

bution φ
a, b Scale and shape parameters of Weibull dis-

tribution ϕ
νw, Pw, Prated Wind speed and power, rated wind power.

νci, νrd, νco Cut-in, rated and cut-out wind speeds.

Λ(·) Parameterized power flow equations.

Vmin, Vmax Minimum and maximum bus voltage mag-

nitudes.

PGmin, PGmax Minimum and maximum active power out-

puts of synchronous generators.
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QGmin, QGmax Minimum and maximum reactive power

outputs of synchronous generators.

λmin The minimum load margin among Nc con-

tingencies.

Pmax Maximum power transferred in SMLB sys-

tem.

VG Generator bus voltage in SMLB system.

VL Load bus voltage in SMLB system.

Xe Equivalent reactance in SMLB system.

M(·) Load margin assessment model.

f(·) Surrogate model.

A Admittance matrix.

B. Deep Kernel Emulator

D PLMA dataset.

µX,KX,X, H Mean function, covariance function matrix

and quadratic basis function.

INs
Ns-dimensional identity matrix.

L Marginal likelihood of DKE.

Γ, δ,ω, σ2 Hyperparameters in DKE.

η Learning rate.

C. Transfer Learning

Ds,Dt PLMA dataset in source and target domain.

Gf (·) Feature transformer.

Gr(·) Regressor.

α Invariant representation.

Us,Ut Orthonormal base matrix in source and tar-

get domain.

Σs,Σt Singular value matrix in source and target

domain.

W Unitary matrix.

ϱ Principal angles.

Bs,Bt Weight matrix in source and target domain.

Ltran Loss function of transfer learning.

Ns The number of labeled samples in source

domain.

Nt The number of unlabeled samples in target

domain.

N ′
t The number of labeled samples in target

domain.

D. Uncertainty Quantification

ϑ(·) Kernel density estimator.

ne Sample size for the future generation dis-

patch interval.
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h Bandwidth of kernel density estimator.

B Kernel smoothing function.

πp Predicted probabilistic distributions with the

surrogate model.

πMCS Predicted probabilistic distributions with

MCS.

I. INTRODUCTION

W ITH the increased penetrations of stochastic renewable

generations and flexible loads induced uncertainties,

there is an increased concern for quantifying system stability

under uncertainties. If these uncertainties are not properly

analyzed, inappropriate actions may be taken, leading to power

system instability, e.g., static voltage stability. Static voltage

stability, also known as the load margin, refers to the capability

of maintaining at a stable voltage operating point after a

small disturbance [1]. Once static voltage stability occurs,

power system voltage will collapse. Thus, it is critical to

assess the static voltage stability (or load margin) under the

strong uncertainties from renewable generations and loads, i.e.,

probabilistic load margin assessment (PLMA).

To quantify the uncertainties for load margin assessment,

several model-based and data-driven PLMA approaches have

been proposed. For the model-based methods, the Monte Carlo

sampling (MCS)-based one is widely used [2]-[3]. It obtains

the load margin distribution via a large number of contin-

uation power flow (CPF) evaluations [4]. However, as each

CPF takes a rather long time for large-scale systems, MCS

involves tens of thousands of CPF evaluations, restricting their

practical applications. Although the Latin-hypercube-sampling

[5] has been introduced to reduce the required sample size,

the accuracy of this technique is sacrificed. [6] employs the

Cumulant method to extract the explicit relationship between

loads and load margin by linearizing the power flow equa-

tions, but this may induce large bias under stressed system

operating conditions, which is the case for voltage stability.

Although the two-point estimation approach is utilized in [7]

to approximate the statistical moments of load margin without

model simplification, its performance deteriorates for large-

scale systems. Furthermore, assuming load parameters obey

the Gaussian distribution, [8] derives the analytical expression

of load margin calculation, but it is not scalable to large-scale

systems and the Gaussian assumption is difficult to hold.

Recently, some data-driven load margin assessment methods

are proposed to estimate the voltage stability/total transfer

capability (TTC) with higher computational efficiency as com-

pared to the model-based solutions. These methods include

regression tree [9], local regression [10], random forest [11],

support vector regressor (SVR) [12] and deep Neural Network

(DNN) [13]. However, the uncertainties from renewable gen-

erations or loads are not considered. By modeling the uncer-

tainties from wind generations, [14] proposes a probabilistic

TTC assessment approach based on the online measurements

but it can’t quantify the uncertainties from wind generations

and loads. For the fast global sensitivity analysis, [15] em-

ploys polynomial chaos expansion (PCE) to be the surrogate

model for load margin calculation but it is subject to the

curse of dimensionality issue. Although the extreme learning

machine (ELM) used in [16] tackles that issue, it requires

much more training samples and is not robust to topology

changes. Combined with uncertainty distribution inference,

[17]-[18] further develop a nonparametric and reduced-order

approximation method, Gaussian process emulator (GPE), for

the nonlinear CPF model. In [19], by merging the discrete

probabilistic variables, i.e., line outages, into sparse polyno-

mial chaos expansion (SPCE), uncertainty propagation through

CPF can be analyzed under disturbances, but the surrogate

model learning will be intractable for larger systems as the

number of predefined line outages is large. On the other hand,

when the system topology changes, how to timely update the

surrogate model for PLMA has not been investigated.

This paper proposes a computationally efficient PLMA that

is robust to N-1 contingencies and topology changes. The main

contributions are summarized as follows:

• A probabilistic deep kernel emulator (DKE) that ex-

tends the Gaussian process kernel to the deep neural

network (DNN) structure is developed to extract the

relationship between uncertain sources and load margin.

The DNN structure allows dealing with high-dimension

uncertain inputs and complicated nonlinear mapping re-

lationship while the Gaussian process enables natural

uncertainty quantification capability for PLMA. The pro-

posed DKE requires less numbers of samples as com-

pared to other DNN approaches while achieving similar

accuracy. Thanks to the strong learning capability via

DNN structure, all layers of DNN used in the proposed

DKE serve to distill and learn increasingly complicated

features with the exception of the output layer. Therefore,

DKE has much better performance than the original

Gaussian process method.

• An efficient transfer learning approach is developed to

allow quick adaptation of the proposed DKE for dif-

ferent topology changes. The key idea is to minimize

the invariant representation space distance between old

topology and new one with a few new samples. To

the best knowledge of us, this is the first time the

topology changes for PLMA task have been considered

as compared to existing data-driven approaches.

The remaining of this paper is organized as follows. Section

II shows the problem statement. The DKE and its enhanced

version with transfer learning for solving the CPF is developed

in Section III. Section IV shows and analyzes simulation

results on the modified 39-bus and 118-bus systems and finally

Section V concludes the paper.

II. PROBLEM STATEMENT

Given a power system with Nb buses, the power flow

equations are as follows:
{

PG,i − PL,i − Pi(z) = 0
QG,i −QL,i −Qi(z) = 0

(1)

where i = 1, · · · , Nb and z = [θ V ]T ; θ and V are

respectively the bus voltage magnitudes and angles; PG,i and

QG,i are the active and reactive power injections at generator

bus i; PL,i and QL,i are the active and reactive power injections
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at load bus i. Defining respectively the incremental power

∆PG,i, ∆PL,i and ∆QL,i for generations and loads, the load

margin can be obtained via the CPF approach:

Λ(z, λ) =

[

P̃G,i − P̃L,i − Pi(z)

QG,i − Q̃L,i −Qi(z)

]

= 0 (2)







PG,i + λ∆PG,i = P̃G,i

PL,i + λ∆PL,i = P̃L,i

QL,i + λ∆QL,i = Q̃L,i

(3)

where the load margin is the maximum value of λ without

violating physical constraints, i.e., voltage constraints. Λ(·)
represents the parameterized power flow equations in the

CPF model. By continually increasing the loading level, CPF

involves multiple predictive and corrective directions to obtain

the load margin. Note that only the active power of generators

is parameterized and this should be for the generators that

cannot control reactive power.

A. Uncertainty Modeling

Due to the integration of uncertain renewable energy and

stochastic loads, the CPF results are no longer deterministic

and the PLMA is needed. To this end, the probabilistic

characteristics of uncertain sources, such as wind generations

and loads, are required.

1) Load uncertainty modeling: following existing literature,

the loads are assumed to obey the Gaussian distribution [20],

whose probability density is

φ (PL) =
1√
2πσL

e−(PL−µL)
2/2σ2

L (4)

where µL and σL are respectively the mean and standard

deviations of PL.

2) Wind generation uncertainty modeling: the wind speed

follows the Weibull distribution [21]:

ϕ(νw, a, b) =
b

a

(vw
a

)b−1

e−(vw/a)b (5)

where a and b are respectively the scale and shape parameters;

νw is the wind speed. After that, the output of the wind

generator can be determined by the speed-power curve of wind

turbine [22]:

Pw =















0 (νw < νci, νw > νco)

Prated ·
(

νw−νci

νrd−νci

)

(νci ≤ νw ≤ νrd)

Prated (νrd < νw < νco)

(6)

where Pw is the output of the wind generator; Prated is the

rated active power of the wind generator; νci, νrd and νco are

the cut-in, rated and cut-out wind speeds, respectively. The

wind speed is sampled via probabilistic distribution (5) and

then wind power can be obtained via (6). It should be noted

that only wind generation is considered here, the approach can

also deal with solar generation uncertainty when the proper

probability distribution model for solar energy is used.

Given Operation Conditions

Contingency 1 Contingency 2 Contingency          

CPF CPF CPF 

Fig. 1. Load margin under N-1 contingencies.

B. Probabilistic Load Margin under N-1 Contingencies

Since all loads and wind power are assumed to con-

tain uncertainties, deterministic parameterized power flow

equations Λ(z, λ) needs to be reformulated to be a prob-

abilistic ones, Λ(z,Pw,PL, λ). Assume that there are nw

wind generators connected to the system, we have Pw =
[PG,Nb−nw+1, · · · , PG,Nb

]T. Given Nc predefined contingen-

cies, the objective function of the PLMA model under each

scenario is to maximize the load margin λ(m), i.e., the maxi-

mum power that can be supplied without violating operational

constraints, which can be written as [19]:

max λ(m) (7)

subjected to the following constrains:

Λ(z,Pw,PL, λ
(m)) = 0 (8)

Vmin ≤ V (z,Pw,PL, λ
(m)) ≤ Vmax (9)

PGmin ≤ PG(z,Pw,PL, λ
(m)) ≤ PGmax (10)

QGmin ≤ QG(z,Pw,PL, λ
(m)) ≤ QGmax (11)

where m = 1, 2, · · · , Nc; equations (9)-(11) respectively

denote the voltage, generation active power and reactive power

constraints; Vmin and Vmax are respectively the minimum

and maximum bus voltage magnitudes; PGmin and PGmax are

respectively the minimum and maximum active power outputs

of synchronous generators; QGmin and QGmax are respectively

the minimum and maximum reactive power outputs of syn-

chronous generators.

To determine whether the power system is operated under

secure status or not, the minimum load margin among Nc

contingencies is taken as the index:

λmin = min{1, · · · , λ(m), · · · , λ(Nc)} (12)

To better illustrate the impacts of topology change to load

margin, the single machine load bus (SMLB) system is used,

G

Fig. 2. The single machine load bus system.
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Fig. 3. Uncertainty propagation from uncertain sources to load margin.

see Fig. 2, where the maximum power transferred (load

margin) Pmax can be calculated via [23]:

Pmax =
VGVL

Xe
(13)

where VG is the generator bus voltage and VL is the load bus

voltage, and VG and VL are constant. Xe is the equivalent

reactance between VG and VL. In this system, the admittance

matrix A is a two-order matrix calculated based on Xe.

Assume Xe is the equivalent reactance of multiple lines, if

a line is added or tripped, Xe will decrease or increase,

leading to the increase or decrease of load margin. In a large

power system, A plays a similar role as 1/Xe to calculate

load margin. Since topology of power system determines the

admittance matrix A in the CPF calculation, topology changes

can be reflected in A and therefore affect the load margin.

According to (7)-(12), the load margin assessment model,

namely the relationship between load margin and A, uncertain

input x = [Pw PL]
T, can be defined as:

λmin = M(x,A) (14)

Since wind generations and loads are subject to uncertain-

ties, λmin also follows a probability distribution with uncer-

tainty propagated from M(·), see Fig. 3. To describe this

probability distribution Y = {λ(1)
min, λ

(2)
min, . . . , λ

(Ns)
min }, MCS

performs Ns times of CPF calculations with corresponding Ns

random samples of x, namely X = {x(1),x(2), . . . ,x(Ns)}.

Consequently, PLMA model is

Y = M(X,A) (15)

(15) can be equivalently written as Y = M(X), if the

topology is not changed.

To approximate the true distribution of load margin accu-

rately, a large Ns is required, which is time-consuming. To

avoid such heavy computational burden, data-driven PLMA

uses a reduced-order surrogate model f(·), i.e., PCE and

GPE, to substitute M(·) to calculate load margin in a

computationally-cheap manner. However, they are not scalable

to large-scale systems with high dimensional uncertain inputs.

Furthermore, the system is subject to contingencies or topol-

ogy changes and the constructed surrogate model will yield

large PLMA errors. For transmission systems, the topology

change does not occur often and even with topology changes,

only small part of elements in A will be changed (i.e., those

corresponding to the changed topology). Consequently, the

main parts of A before and after topology change are the same.

In other words, the shared features for different topologies

have large similarities. By utilizing these shared features, this

paper develops a transferable DKE to address these issues.

III. PROPOSED TRANSFERABLE DEEP KERNEL EMULATOR

In this section, the DKE will be first developed for PLMA.

Next, DKE will be enhanced via the transfer learning to allow

strong adaptations to contingencies and topology changes.

A. Deep Kernel Emulator for PLMA

Given the PLMA dataset D =
{

x(i), λ
(i)
min

}

, where x(i) ∈
X, λ

(i)
min ∈ Y, i = 1, 2, · · · , Ns, the hidden relationship

between uncertain sources and the load margin, can be ex-

tracted by a surrogate model λmin = f(x). Since PCE

and GPE are subject to curse of dimensionality issue, the

DKE is proposed that extends the GPE kernel into the DNN

structure, resulting in both strong capability of handling high-

dimensional uncertain inputs and uncertainty quantification.

Similar to the Bayesian posterior distribution inference

in Gaussian process, DKE also assumes Ns realizations

{f(x(1)), f(x(2)), · · · , f(x(Ns))} of f(x) follow the joint

multivariate normal distribution N (µX,KX,X), which is re-

garded as the Bayesian prior distribution:

F(X) =
[

f
(

x(1)
)

, . . . , f
(

x(Ns)
)]⊤

∼ N∫ (µX,KX,X)

(16)

where µX =
[

µ
(

x(1)
)

, . . . , µ
(

x(Ns)
)]⊤

is the mean function

and µ(x) = H(x)Γ. To provide the prior information to

approximate the nonlinear CPF model, H(x) is defined as

the quadratic basis function [24]:

H(x) =
[

1, x1, . . . xd, x
2
1, . . . , x

2
d

]

(17)

d is the dimension of x; KX,X is the covariance function

matrix, i.e.,






k
(

g(x(1)), g(x(1))
)

· · · k
(

g(x(1)),x(Ns))
)

...
. . .

...

k
(

g(x(Ns)), g(x(1))
)

· · · k
(

g(x(Ns)), g(x(Ns))
)







(18)

where g(x|ω) denotes a neural network and its parameter

vector ω. This is the key component in the DKE since

g(x|ω) plays a critical role in feature extraction for providing

powerful generalization for DKE. k(·, ·) is the kernel function,

i.e., radial basis function (RBF) kernel k (g(x), g(x′)) =
exp

(

− 1
2 ∥g(x)− g(x′)∥ /ℓ2

)

and ℓ is the corresponding hy-

perparameter. Without loss of generality, the hyperparameters

in the kernel function are represented as δ in this paper.

Let observations Y represent the system output F(X) with

the additive Gaussian noise ϵ ∼ N
(

0, σ2
INs

)

, we have

Y|X ∼ N
(

µ,KX,X + σ2
INs

)

(19)

where σ is the standard deviation and INs
is a Ns-dimensional

identity matrix.

In case of unseen samples, i.e., during prediction stage, it is

assumed that the predictions and the existing observations fol-

lows the joint multivariate Gaussian distribution. Specifically,
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the prediction distribution Y∗ at M unseen points indexed by

X∗ can be related with Ns existing observations:
[

Y

Y∗ | X∗

]

∼ N
([

µX

µX∗

]

,

[

KX,X KX,X∗

KX∗,X KX∗,X∗

])

(20)

As a result, Y∗ can be formulated as:

Y∗ | {X∗,X,Y, δ,ω, σ2} ∼ N (E [Y∗] , cov (Y∗)) (21)

E [Y∗] = µX∗
+KX∗,X

[

KX,X + σ2
INs

]−1
(Y−µX) (22)

cov (Y∗) = KX∗,X∗
−KX∗,X

[

KX,X + σ2
INs

]−1
KX,X∗

(23)

In this paper, the expectations in (22) are utilized as the

predictions while (23) is employed to quantify the prediction

uncertainties. Note that (20) is formulated based on the Gaus-

sian process, but this doesn’t mean DKE is not suitable for

data sampled from non-Gaussian distribution. According to

[25], a finite number of observations can be covered by the

Gaussian process and thus DKE can be applied to data from

any distribution.

Optimization of Hyperparameters: all the hyperparame-

ters Ψ = {Γ, δ,ω, σ2} for DKE should be tuned properly. We

employ stochastic gradient decreasing algorithm to maximize

the marginal likelihood for target Y:

L = log p(Y | Ψ ,X)

∝ −(Y − µX)⊤
(

KX,X + σ2
INs

)−1
(Y − µX)

− log
∣

∣KX,X + σ2
INs

∣

∣

= −[Y −H(X)Γ]⊤
(

KX,X + σ2
INs

)−1
[Y −H(X)Γ]

− log
∣

∣KX,X + σ2
INs

∣

∣

(24)

In this paper, the hyperparameters in mean function, kernel

function and neural network are jointly learnt according to

the their corresponding gradients, which can be derived by

the following chain rules:

∂L
∂δ

=
∂L

∂KX,X

∂KX,X

∂δ
(25)

∂L
∂ω

=
∂L

∂KX,X

∂KX,X

∂g(x|ω)

∂g(x|ω)

∂ω
(26)

∂L
∂Γ

= −2[Y −H(X)Γ]⊤
(

KX,X + σ2
INs

)−1
H(X) (27)

Neural Network Layer GPE Layer

Fig. 4. Proposed deep kernel emulator for PLMA.

∂L
∂σ2

= trace
(

(

KX,X + σ2
INs

)−1
)

(28)

∂L
∂KX,X

=
1

2

(

K−1
X,XYY

⊤K−1
X,X −K−1

X,X

)

(29)

Thanks to the auto-gradient function in the Pytorch [26],
∂KX,X

∂δ and
∂g(x|ω)

∂ω can be automatically calculated. Conse-

quently, all parameters are updated according to the gradient

descent algorithm:










































δ = δ − η
∂L
∂δ

ω = ω − η
∂L
∂ω

Γ = Γ− η
∂L
∂Γ

σ2 = σ2 − η
∂L
∂σ2

(30)

where η is the learning rate. With the kernel and mean function

learning, the surrogate model f(·), namely DKE, can be

obtained, as shown in Fig. 4. The key idea here is to lever-

age the neural network for extracting the high-dimensional

data features and use them as prior information for GPE.

After feature extractions, the input dimensions for GPE has

been significantly reduced, yielding improved computational

efficiency. Note that for GPE, a proper prior information is

essential to achieve good performance and this is addressed in

the proposed DKE method.

B. Adaptiveness Enhancement of DKE via Transfer Learning

Although the DKE-based surrogate model can achieve sat-

isfactory performance for PLMA, it is vulnerable to topology

changes, i.e., line or generator outages or switching due to

maintenance or dispatching requirement. This is because the

hidden relationship between uncertain sources and load margin

is different from the one before topology changes, yielding

different load margin distributions. Consequently, the surrogate

model needs to be adaptive to new topology. This paper

develops the transfer learning-based approach to deal with that.

1) Domain Adaptation Regression: It is worth pointing out

that the load margin distributions are not completely different

under two topology since the voltage stability involves ex-

tensively the local phenomena. This means that the surrogate

models under two topologies share some common domain

knowledge, a kind of invariant representation. If the shared

domain knowledge can be utilized, the amount of samples to

obtain the new surrogate model can be drastically reduced for

PMLA.

Define the domain knowledge before topology changes as

the source domain Ds =
{

x
(i)
s , λ

(i)
min,s

}

while that after topol-

ogy changes is called the target domain Dt =
{

x
(j)
t , λ

(j)
min,t

}

,

where x
(i)
s ∈ Xs, λ

(i)
min,s ∈ Ys, x

(j)
t ∈ Xt, λ

(j)
min,t ∈ Yt,

i = 1, 2, · · · , Ns and j = 1, 2, · · · , Nt. The subscript ªsº

means the variables in the source domain, and subscript

ªtº means the variables in the target domain. To lower the

generalization error of PLMA in the target source, learning

transferable representations by minimizing the domain shift
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between invariant representations of source and target domains

is the core idea of the transfer learning in this paper. Since

PLMA is essentially a regression task, it can be seen as an

implementation of domain adaptation regression.

Inspired by [27], the invariant representation α for two

domains are extracted by a feature transformer Gf (·), namely

α = Gf (x). Mathematically, the invariant representation is

a transformation of inputs, i.e., the uncertain sources. To

measure the representation space distance between the source

domain and the target domain, one way is to calculate the

similarity of the orthonormal bases from two space globally.

Therefore, the singular value decomposition (SVD) is used

to obtain orthonormal bases that form the two representation

spaces. Formally, we have

Υs = UsΣs (Ws)
⊤
, Υt = UtΣt (Wt)

⊤
(31)

where Υ = [α(1), · · · ,α(Nt)]; U = [u(1), · · · ,u(Nt)] denotes

the orthonormal base matrix; Σ is the singular value matrix;

W is the unitary matrix.

The similarity of orthonormal bases from two space is

measured by the principal angles ϱ = [ϱ(1), · · · , ϱ(Nt)], i.e.,






















































































ϱ(1) = min
u

(1)
s ,u

(1)
t

arccos







(

u
(1)
s

)⊤

u
(1)
t

∥

∥

∥u
(1)
s

∥

∥

∥

∥

∥

∥u
(1)
t

∥

∥

∥







ϱ(2) = min
u

(2)
s ,u
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t
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∥

∥

∥
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∥

∥
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...

ϱ(Nt) = min
u
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∥
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∥

∥







(32)

(32) can be further simplified as:

(Us)
⊤
Ut = Bs (diag (cosϱ)) (Bt)

⊤
(33)

where B is the weight matrix. To minimize the representation

space distance between the source domain and the target

domain, an end-to-end optimization scheme based on neural

network is developed in this paper, see Fig. 5. It consists of two

main parts: the feature transformer Gf (·) and the regressor

Gr(·). Specifically, the loss function is defined as:

Ltran = γL1 + βL2 + L3 (34)

where L1 = || sinϱ||2; L2 = ||Bs ⊙ Bs − Bt ⊙ Bt||2;

L3 = ||Gr(Gf (Xs)) − Ys||2; γ and β are respectively the

coefficients for the corresponding loss terms; L1 is utilized to

reflect the representation space distance between the source

domain and the target domain via principal angles; L2 pushes

the feature transformer to match orthonormal bases in source

domain and target domain with similar weights; L3 denotes

the regression loss in the source domain so that the transferable

representations can be extracted for PLMA.

In this paper, the Adam optimizer [28] is advocated to

minimize Ltran. Note that no labels are required for the

target source and we can transfer the knowledge under old

topology to new one quickly without the time-consuming

labeling process. This also justifies why only a few samples

are needed to quickly update the surrogate model.

2) Algorithm Implementation for PLMA: Since uncertain

sources are wind power and loads, it is necessary to infer their

probabilistic distributions from historical data. In this paper,

the Copula statistics is employed to infer the distributions of

wind speed and loads. This allows generating wind power

and loads data based on the identified Copula structure. More

details about Copula can refer to [29].

Assuming a surrogate model DKE has been trained in the

old topology with datasets Ds = {Xs,Ys} generated from

the identified Copula structure, a three-stage framework is

proposed to perform transfer learning for PLMA.

(1) Stage one: uncertainty modeling Similar to uncertainty

modeling in the old topology, the uncertain inputs Xt can also

be generated based on the identified Copula structure, resulting

in the probabilistic distribution modeling for wind power and

loads under new topology.

(2) Stage two: transfer learning By passing Xt and Xs

through Gf (·), the invariant representations for old topology

and new topology, Υs and Υt, are obtained. According to (31)-

(33), they are further transformed by two SVD operations to

calculate the loss of (34). By minimizing (34), the training of

Gf (·) and Gr(·) can be performed with Ds and Xt. Conse-

quently, the invariant representation space distance under two

topology can be reduced and thus the knowledge on the old

topology is transferred to the new one.

(3) Stage three: fine tuning Once the training in the stage

two is completed, all other layers except the final one in Gr(·)
and Gf (·) can be merged into the GPE framework. As a

result, DKE model for the new topology is developed. Since

the transfer learning in the stage two has provided good priori

information for the DKE model, much less amount of samples

is required as compared to a raw DKE model, which will be

demonstrated in the numerical results section. Therefore, N
′

t

uncertain inputs X̃t (its invariant representation is Υ̃t), can be

sampled from Xt and their corresponding load margin λ̃min,t

can be calculated by CPF. With these small amount of samples

under new topology, the constructed DKE model is fine-tuned

via (24)-(30) and thus quickly updated under new topology

for PLMA.

Based on the fine-tuned DKE model f(·), the predicted

probabilistic distribution of λ̃′
min,t corresponding to Xt can

be established by a non-parametric inference method using a

kernel density estimator [30]:

ϑ(λ̃′
min,t) =

1

neh

ne
∑

i=1

B
(

λ̃′
min,t − λ̃

′(i)
min,t

h

)

(35)

where ne is the sample size for the future generation dispatch

interval; h is the bandwidth of the estimator and it is generally

set as 1.06τn−0.2
e , where τ is the estimated sample standard

deviation; λ̃
′(i)
min,t is the predicted (using the fine-tuned sur-

rogate model) λ̃′
min,t for the i-th sample; B is the kernel

smoothing function, i.e., standard Gaussian kernel in this

paper. Note that, other methods, i.e., MCS and other surrogate
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Fig. 5. The proposed domain knowledge adaptation-based transfer learning method for PLMA.

models, can also utilize this kernel density estimator to obtain

their corresponding probabilistic load margin distributions.
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Fig. 6. The diagram of IEEE 39-bus power system.

IV. NUMERICAL RESULTS

The effectiveness of the proposed method is first demon-

strated on the modified IEEE 39-bus power system, see Fig.

6, where four wind farms are connected to buses 2, 8, 11

and 21 respectively. The generation capacities of these four

wind farms are 350 MW, 150 MW, 400MW and 500 MW,

respectively. The random parameter settings for the uncertainty

sources are as follows [31]:

• The shape parameter and scale parameter of the Weibull

distribution are respectively set as a = 20 and b = 2.

Besides, the cut-in, rated and cut-out wind speeds are

respectively set as νci = 3 m/s, νco = 25 m/s and νrd =
12 m/s.

• The mean µL and standard deviation σL of all loads are

assumed as original load values in IEEE 39-bus system

and σL = 0.1µL p.u. respectively.

As a result, 25-dimension uncertain inputs (4 wind generators

and 21 loads) are constructed. All surrogate models and the

transfer learning framework are built on a Python library,

Pytorch [32], and all calculations are performed on a com-

puter with a 3.2-GHz Intel Core i9-12900KF CPU, NVIDIA

GeForce RTX 3090 GPU and 128 GB RAM. The load margin

under contingencies are calculated via the built-in CPF module

of MATPOWER 7.1 [33].

Based on the above uncertainty settings, database is gen-

erated by using MCS. The number of samples used to

approximate the true load margin distribution depends on

the scale of the power system. To determine this amount,

the variance and mean value of λmin are calculated during

Monte Carlo sampling. From Fig. 7, it can be seen that MCS

converges when the number of samples is about 10,000, which

is consistent with the conclusion in [34]. Although MCS can

approximate the true PLMA, it is very time-consuming and

thus is treated as the benchmark in this paper to verify the

performance of all other methods.

A. Performance Comparisons without Topology Changes

To fully demonstrate the performance of the proposed

method when there is no topology change, several state-of-

the-art methods are compared, including the shadow learning

methods (SVR [35], GPE and PCE) as well as DNN [36]).

SVR is constructed in the scikit-learn [37], which is a powerful

machine learning library in Python. Its regularization param-

eter and base kernel in SVR are respectively chosen as 100

and the radial basis function; PCE is built on the UQ-LAB

platform [38], where 2nd-order truncated PCE functions are

selected; both GPE and DNN are implemented on Pytorch,

while the basis function of the former is RBF and the number

of neural neurons in each layer of DNN is ª25-50-20-1º. In
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Fig. 7. Convergence curve of the MCS method.

(a)

(b)

Fig. 8. Statistical values of load margin versus the number of samples. (a)
KL divergence versus the number of samples; (b) Predicted mean value of
λmin versus the number of samples.

the proposed DKE, the structure of its neural network layer is

set as ª25-50-20º. Hyperparameters in all methods are tuned

with grid searching to show their best performance in terms

of fair comparisons.

To quantify the performance of each method, we employ the

well-known Kullback Leibler (KL) divergence as the index. It

can measure the difference between two probabilistic distri-

butions. In this paper, the difference between the predicted

probabilistic distribution and the probabilistic distribution ob-

TABLE I
PERFORMANCE COMPARISON FOR VARIOUS METHODS WITHOUT

TOPOLOGY CHANGE IN 39-BUS SYSTEM.

Performance index MCS DKE SVR

KL divergence 0 0.0574 2.6752
Number of samples 10000 4300 7000

Simulation time ≈ 33 h < 1s < 1s

Performance index GPE DNN PCE

KL divergence 2.8310 0.1680 13.3639
Number of samples 1200 5000 1500

Simulation time < 1s < 1s < 1s

Fig. 9. Predicted probability density of different methods without topology
changes in the 39-bus system.

tained by MCS is quantified. KL divergence can be formulated

as [39]:

KL (πp∥πMCS) =

∫

πp log
πp

πMCS
(36)

where πp and πMCS are the predicted probabilistic distribu-

tions with the surrogate models and MCS, respectively. The

samples are divided into training dataset and testing dataset

with the ratio of 4:1 and only the testing dataset is utilized

to quantify the KL divergence rather than using all samples

of MCS in [17]. This allows verifying the generalization

capability of the surrogate models.

Figs. 8(a) and (b) show the statistical values versus the

number of samples. It can be seen that the mean of the load

margin converges much faster than the KL divergence since it

is global index while the KL divergence depicts the differences

between two probabilistic distribution comprehensively. The

deep learning based models, i.e., DKE and DNN achieve much

higher prediction accuracy than GPE, SVR and PCE, though

GPE and PCE require much less samples to converge, see

Table I. This demonstrates the strong capability of DKE and

DNN for feature extraction and accurate PLMA. Compared

with DNN, DKE requires less amount of samples without

loss of accuracy. This is because the prior Bayesian inference

in DKE can reduce the number of model parameters to be

optimized.

Fig. 9 shows the predicted probability density of load mar-

gin under different methods when there is no topology change.

Thanks to their powerful feature extraction capabilities, DKE

and DNN achieve accurate assessment of probabilistic load
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KL divergence: 0.0817

(a)

KL divergence: 0.0489

(b)

KL divergence: 0.0880

(c)

Fig. 10. Performance of DKE under various correlations among uncertain sources. (a) Correlation = 0.2; (b) Correlation = 0.4; (c) Correlation = 0.6.

KL divergence: 0.0203

(a)

KL divergence: 0.0436

(b)

KL divergence: 0.004

(c)

Fig. 11. Performance of DKE under various distributions of loads. (a) Gamma distribution; (b) Gumbel distribution; (c) Uniform distribution.

Fig. 12. The trend of invariant representation distance loss during transfer
learning.

margin. However, the shadow learning based methods, i.e.,

GPE, SVR and PCE, have large bias on the prediction at the

tails and summits of the load margin distribution. This may

lead to underestimate of voltage stability, yielding possible

cascading failure.

B. Performance Comparisons under Different Correlations

and Distributions

Due to the locations or environmental factors of loads and

wind farms, there may be correlations among them. In this

section, the correlations of 0.2, 0.4 and 0.6 are tested. Figs.

10(a)-10(c) show that the proposed DKE can perform accurate

PLMA under various correlations. An interesting phenomenon

is that the long tail of large load margin happens when

correlations among uncertain sources increase.

Since loads may not follow Gaussian distribution in prac-

tice, the performance of DKE under different distributions

is also investigated. Specifically, three distributions, namely

Gamma, Gumbel and Uniform distributions, are employed to

depict the probabilistic characteristics of loads respectively

[40]-[41], while the wind speed of each wind farm still obeys

the Weibull distribution. The mean and standard deviation of

them are the same as Gaussian distribution. Without losing

generalization, the correlation between each uncertainty source

is set as 0.4. The proposed DKE also performs well under

different distributions of uncertain sources, as shown in Fig.

11. This is because the finite realizations can be covered by

Gaussian process, which is basic rationale of the proposed

DKE. Consequently, the performance of DKE is not affected

by the specific distribution of inputs.

C. Performance Comparison under Topology Changes

Once the power system topology has changed, DKE has to

be retrained since the CPF model is changed. However, this is

TABLE II
PERFORMANCE COMPARISON UNDER VARIOUS TOPOLOGY CHANGE SCENARIOS FOR 39-BUS SYSTEM.

Performance index Topology A-I Topology A-II Topology A-III Topology A-IV

KL divergence (transferred DKE) 0.0933 0.0236 0.0477 0.0840
Number of samples (transferred DKE) 400 300 400 700

KL divergence (untransferred DKE) 458.431 166.536 15.475 15.272
KL divergence (Retrained DKE) 6.342 15.286 9.263 2.616

Training time of fine tuning 34.33s 35.44s 35.57s 34.77s
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(a) (b)

(c) (d)

Fig. 13. Load margin probability density prediction after transfer learning under various topology scenarios. (a) Topology A-I; (b) Topology A-II; (c) Topology
A-III; (d) Topology A-IV.

time-consuming as thousands of load margin re-calculations

are needed. Consequently, the transfer learning for DKE is

needed to timely update the surrogate model for quick PLMA.

Since DKE has been demonstrated to be the best approach in

the previous section, we only show the comparison results

among the original DKE (untransferred DKE), the DKE with

transfer learning (transferred DKE) and without transfer learn-

ing (retrained DKE). This allows us to verify the effectiveness

of the proposed transfer learning approach. Four topology

change scenarios have been considered in the modified 39-

bus system:

• Topology A-I: Line 5-6 is removed;

• Topology A-II: Line 24-28 is added;

• Topology A-III: A 100 MW generator is connected to

Bus 4;

• Topology A-IV: Generator 37 is removed.

The dataset generation is same as that in Section IV-A. γ
and β are set as 10−3 and 10−4, respectively. Besides, the

training iterations are set as 1000. The structure of the feature

transformer Gf (·) and the regressor Gr(·) are ª25-10º and

ª10-50-20-10-1º, respectively. Note that the output dimension

of Gf (·) is smaller than its input dimension as we intend to

extract its invariant subspace.

Fig. 12 shows the trend of invariant representation distance

loss between two topology during transfer learning. It can be

seen that the invariant representation distance is significantly

reduced via transfer learning. It also indicates that the larger

the γL1 + βL2 is, more samples are required to fine tune the

DKE. Therefore, γL1 + βL2 can be used as an transferable

index. The performance comparisons for each method and the

probability density function estimation results are shown in

Table II and Fig. 13. In Table II, ªRetrained DKEº means the

reduced data under the new topology to train a new DKE

model, where the amount of the reduced data is same as

that used to perform transfer learning. It can be seen that, in

general, when topology change occurs, the load margin distri-

bution changes. It is interesting to find that the line change has

higher impacts on the load margin distribution changes than

the generator changes. This may be due to the fact that voltage

stability is a local phenomena and line changes may affect

more the reactive power change to support local voltage in

the modified IEEE 39-bus power system. If the original DKE

is directly used for PLMA without considering the topology

changes, significant errors are obtained. By contrast, with the

proposed transfer learning framework, only a few hundred of

samples are required to update DKE model to yield accurate

PLMA under new topology. This is only 10% data of the

original sample size and thus allows the quick adaptation of

the proposed method in PLMA. Besides, the training time for

fine tuning is about around 35 seconds, resulting in feasibility

of online applications, i.e., in a 15 or 30-minute’s dispatch

interval.

Although there is no closed form to formulate the difference

between two domains since CPF model is solved in an iterated

way, we can quantify the difference between two domains

under different topologies via their distribution KL divergence.

This is because their domain space can be depicted by their

corresponding datasets. Specifically, since the proposed surro-

gate model can accurately approximate the CPF model under
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Fig. 14. Explanation for the difference of load margin distribution under different topologies.

(a) (b)
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Fig. 15. Hyperparameter sensitivity analysis under various topology change
scenarios. (a) Topology A-I; (b) Topology A-II; (c) Topology A-III; (d)
Topology A-IV.

certain topology, the untransferred DKE can represent the CPF

model under previous topology. Consequently, under the same

distribution of input, the KL divergence between load margin

distributions obtained by untransferred DKE and MCS can be

utilized to quantify the difference between two domains, see

Fig. 14. Besides, the distribution KL divergence between the

transferred DKE and MCS under new topology can describe

how close we are getting. As shown in Table II, the transferred

DKE always achieves a KL divergence near to zero toward

MCS, demonstrating the effectiveness of the proposed transfer

learning.

D. Hyperparameter Sensitivity Analysis

The hyperparameters can have impacts on the performance

of the transfer learning approach and thus this section shows

the sensitivity analysis. For the four topology change scenarios

in the modified IEEE 39-bus power system, Figs. 15 (a)-(d)

present the trend of KL divergences versus various values of β
and γ. Note that the values of color bars denote values of KL

divergences. It can be observed that the KL divergence of the

proposed transfer learning scheme remains below 0.1 when it

transfers to different topology. This means that the proposed

method is not sensitive to hyperparameters, demonstrating the

robustness of the proposed method.

E. Larger-Scale System Testing Results

To demonstrate the scalability of the proposed method, new

tests are performed on the modified IEEE 118-bus power

system. 11 wind farms with rated power 45 MW, 60 MW,

50 MW, 50 MW, 90 MW, 75 MW, 30 MW, 30 MW, 30 MW,

30 MW, and 90 MW are connected to buses 3, 7, 13, 16,

37, 38, 45, 50, 93, 94, and 114, respectively. Consequently,

110-dimension uncertain inputs (11 wind generators and 99

loads) are constructed. The hyperparameter setting is similar

to Section IV-A. The structure of regressor Gr(·) is ª110-10º.

The following topology change scenarios are investigated:

• Topology B-I: Line 30-38 is removed from the modified

IEEE 118-bus power system;

• Topology B-II: Line 40-117 is added to the modified

IEEE 118-bus power system;
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TABLE III
TEST RESULTS FOR DIFFERENT TOPOLOGY CHANGE SCENARIOS IN THE 118-BUS SYSTEM.

Performance index Topology B-I Topology B-II Topology B-III Topology B-IV

KL divergence (transferred DKE) 0.0674 0.0868 0.0716 0.0359
Number of samples (transferred DKE) 500 600 400 500

KL divergence (untransferred DKE) 208.390 59.641 11.893 57.436
KL divergence (Retrained DKE) 6.381 8.148 17.518 3.293

Training time of fine tuning 38.24s 37.32s 37.87s 37.75s

TABLE IV
PERFORMANCE COMPARISON BETWEEN MCS AND

PROPOSED METHOD FOR THE 118-BUS SYSTEM WITHOUT

DIFFERENT TOPOLOGY CHANGE SCENARIOS.

Performance index MCS DKE

KL divergence 0 0.0783
Number of samples 10000 4100

Simulation time ≈ 80 h < 1s

• Topology B-III: A 100 MW generator is connected to

Bus 17;

• Topology B-IV: Generator 25 is removed from the mod-

ified IEEE 118-bus power system.

The test results for different topology change scenarios in

the modified 118-bus system are shown in Tables III and IV.

It can be observed that in the high-dimension uncertain input

scenarios, the proposed DKE still needs much less samples

as compared to MCS and the KL divergence remains at a

very low level. The load margin probability density prediction

after transfer learning under various topology change scenarios

is displayed in Fig. 16. It can be found that the proposed

transfer learning scheme achieves high accuracy and only

requires around 10% data under the new topology to update

the original surrogate model for PLMA. It is also noticed that

the line changes have lager impacts than the generators, which

is consistent with the conclusion in the 39-bus system.

F. Performance under N-k Topology Changes

The above results are for N−1 topology changes. To verify

the performance of the proposed method under N−k topology

changes, up to four lines are removed/added simultaneously in

the IEEE 118-bus system. Nine N − k topology change sce-

narios are considered, as shown in Table V, where ªTopology

C-II-2º means two lines are changed under Topology C-II,

for example. Other simulation settings are same as those in

Section IV-E.

Table VI and Fig. 17 show the performance of the proposed

method under N − k topology changes. From Figs. 17(a)-

17(c), it can be observed that, with more lines tripped, the

load margin becomes smaller, resulting in a larger probability

(a) (b)

(c) (d)

Fig. 16. Load margin probability density prediction after transfer learning under various topology change scenarios. (a) Topology B-I; (b) Topology B-II; (c)
Topology B-III; (d) Topology B-IV.
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TABLE V
N-K TOPOLOGY CHANGE SCENARIOS IN THE 118-BUS SYSTEM.

Number of changes Topology C-I Topology C-II Topology C-III

2
Line 30-38 removed
Line 69-75 removed

Line 30-38 removed
Line 40-117 added

Line 40-117 added
Line 18-72 added

3
Line 30-38 removed
Line 69-75 removed
Line 19-34 removed

Line 30-38 removed
Line 69-75 removed
Line 40-117 added

Line 40-117 added
Line 18-72 added
Line 20-24 added

4

Line 30-38 removed
Line 69-75 removed
Line 19-34 removed
Line 33-37 removed

Line 30-38 removed
Line 69-75 removed
Line 40-117 added
Line 18-72 added

Line 40-117 added
Line 18-72 added
Line 20-24 added
Line 21-24 added

TABLE VI
TEST RESULTS FOR N-K TOPOLOGY CHANGE SCENARIOS IN THE 118-BUS SYSTEM.

Performance index Topology C-I-2 Topology C-I-3 Topology C-I-4 Topology C-II-2 Topology C-II-3

KL divergence (transferred DKE) 0.0269 0.0259 0.0230 0.086 0.085
Number of samples (transferred DKE) 500 500 500 600 500

KL divergence (untransferred DKE) 136.913 326.859 2936.4 47.612 66.156
KL divergence (retrained DKE) 4.044 5.889 7.380 1.392 4.120

Training time of fine tuning 40.49s 39.91s 38.17s 41.56s 40.46s

Performance index Topology C-II-4 Topology C-III-2 Topology C-III-3 Topology C-III-4

KL divergence (transferred DKE) 0.0695 0.0528 0.0516 0.0897
Number of samples (transferred DKE) 500 500 500 500

KL divergence (untransferred DKE) 18.084 84.669 86.536 86.000
KL divergence (retrained DKE) 3.435 5.257 4.405 4.824

Training time of fine tuning 39.90s 38.23s 38.30s 38.51s

of voltage instability. Besides, comparing Figs. 17(a)-17(c)

with Figs. 17(g)-17(i), it can be seen that the removal of lines

may lead to more violent distribution changes of load margin

than adding of lines. It is not easy to accurately quantify how

much distribution changes the proposed method can tolerate,

since there is no closed mathematical form between topology

changes and load margin distribution. However, the proposed

method can perform accurate PLMA with only 500 samples

to adapt to new topology even if there are not much common

parts between the load margin distributions after topology

changes, as illustrated in Fig. 17(c). This indicates that the

proposed method is adequate for the practical application.

V. CONCLUSIONS

This paper proposes a transferable PLMA framework con-

sidering topology changes and uncertain wind generations

and loads. A probabilistic DKE that extends the Gaussian

process kernel to the DNN structure is developed to extract the

relationship between uncertain sources and load margin. This

allows us to gain the advantages of DNN in dealing with high-

dimension uncertain inputs and the uncertainty quantification

capability of the Gaussian process for PLMA. A new transfer

learning approach that minimizes the invariant representation

space distance between old topology and new one is proposed

to quickly update the DKE model with only a few samples.

Numerical results in the modified IEEE 39-bus and 118-bus

power systems demonstrate that the proposed method can

1) efficiently capture the probabilistic distribution of load

margin and obtain accurate PLMA, 2) can quickly update

the DKE model accurately under new topology with only a

few samples and 3) achieve a better performance as compared

to other approaches under various scenarios. Although the

proposed method can be accurately and efficiently transferred

to new topology, it lacks the analytical interpretations that

how uncertain sources affect the load margin, which is still

an open problem in PLMA field. Future work would explore

this approach in other operational planning practice and their

physical interpretation.
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