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Abstract—The increasing uncertainties caused by the high-
penetration of stochastic renewable generation resources and flex-
ible loads pose challenges to the power system voltage stability. To
address this issue, this paper proposes a probabilistic transferable
deep kernel emulator (DKE) to extract the hidden relationship
between uncertain sources, i.e., wind generations and loads, and
load margin for probabilistic load margin assessment (PLMA).
This emulator extends the Gaussian process kernel to the deep
neural network (DNN) structure and thus gains the advantages
of DNN in dealing with high-dimension uncertain inputs and
the uncertainty quantification capability of the Gaussian process.
A transfer learning framework is also developed to reduce the
invariant representation space distance between the old topology
and new one. It allows the DKE to be quickly fine tuned with only
a few samples under the new topology. Numerical results carried
out on the modified IEEE 39-bus and 118-bus power systems
demonstrate the strong robustness of the proposed transferable
DKE to uncertain wind and load power as well as topology
changes while maintaining high accuracy.

Index Terms—Voltage stability, uncertain resources, proba-
bilistic load margin assessment, deep kernel emulator, transfer
learning, power system stability.

NOMENCLATURE

A. Load Margin Assessment Model

Fs.i, Qo Active and reactive power injections at gen-
erator bus 1.

B, Qui Active and reactive power injections at load
bus .

0,V Bus voltage angle and magnitude.

UL, OL Mean and standard deviation of load distri-
bution ¢

a,b Scale and shape parameters of Weibull dis-

tribution ¢
Wind speed and power, rated wind power.
Cut-in, rated and cut-out wind speeds.

Vs Py Prated

Veis Vrds Veo

A() Parameterized power flow equations.

Vinins Vinax Minimum and maximum bus voltage mag-
nitudes.

PGmin, Pomax Minimum and maximum active power out-

puts of synchronous generators.
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QGmin, QGmax Minimum and maximum reactive power
outputs of synchronous generators.

Amin The minimum load margin among N, con-
tingencies.

Prax Maximum power transferred in SMLB sys-
tem.

Vo Generator bus voltage in SMLB system.

VL Load bus voltage in SMLB system.

Xe Equivalent reactance in SMLB system.

M) Load margin assessment model.

fC) Surrogate model.
A Admittance matrix.

B. Deep Kernel Emulator

D PLMA dataset.
px, Kx x, H Mean function, covariance function matrix
and quadratic basis function.

Iy, N,-dimensional identity matrix.
L Marginal likelihood of DKE.
I,d,w,c? Hyperparameters in DKE.

n Learning rate.

C. Transfer Learning

D,, D, PLMA dataset in source and target domain.

Gy(") Feature transformer.

G.(") Regressor.

« Invariant representation.

U,, U, Orthonormal base matrix in source and tar-
get domain.

3, Xy Singular value matrix in source and target
domain.

W Unitary matrix.

0 Principal angles.

B;,B; Weight matrix in source and target domain.

Livan Loss function of transfer learning.

Ny The number of labeled samples in source
domain.

Ny The number of unlabeled samples in target
domain.

N/ The number of labeled samples in target
domain.

D. Uncertainty Quantification

9(+) Kernel density estimator.
Ne Sample size for the future generation dis-
patch interval.
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h Bandwidth of kernel density estimator.
B Kernel smoothing function.
Tp Predicted probabilistic distributions with the

surrogate model.
Predicted probabilistic distributions with
MCS.

I. INTRODUCTION

ITH the increased penetrations of stochastic renewable
Wgenerations and flexible loads induced uncertainties,
there is an increased concern for quantifying system stability
under uncertainties. If these uncertainties are not properly
analyzed, inappropriate actions may be taken, leading to power
system instability, e.g., static voltage stability. Static voltage
stability, also known as the load margin, refers to the capability
of maintaining at a stable voltage operating point after a
small disturbance [1]. Once static voltage stability occurs,
power system voltage will collapse. Thus, it is critical to
assess the static voltage stability (or load margin) under the
strong uncertainties from renewable generations and loads, i.e.,
probabilistic load margin assessment (PLMA).

To quantify the uncertainties for load margin assessment,
several model-based and data-driven PLMA approaches have
been proposed. For the model-based methods, the Monte Carlo
sampling (MCS)-based one is widely used [2]-[3]. It obtains
the load margin distribution via a large number of contin-
vation power flow (CPF) evaluations [4]. However, as each
CPF takes a rather long time for large-scale systems, MCS
involves tens of thousands of CPF evaluations, restricting their
practical applications. Although the Latin-hypercube-sampling
[5] has been introduced to reduce the required sample size,
the accuracy of this technique is sacrificed. [6] employs the
Cumulant method to extract the explicit relationship between
loads and load margin by linearizing the power flow equa-
tions, but this may induce large bias under stressed system
operating conditions, which is the case for voltage stability.
Although the two-point estimation approach is utilized in [7]
to approximate the statistical moments of load margin without
model simplification, its performance deteriorates for large-
scale systems. Furthermore, assuming load parameters obey
the Gaussian distribution, [8] derives the analytical expression
of load margin calculation, but it is not scalable to large-scale
systems and the Gaussian assumption is difficult to hold.

Recently, some data-driven load margin assessment methods
are proposed to estimate the voltage stability/total transfer
capability (TTC) with higher computational efficiency as com-
pared to the model-based solutions. These methods include
regression tree [9], local regression [10], random forest [11],
support vector regressor (SVR) [12] and deep Neural Network
(DNN) [13]. However, the uncertainties from renewable gen-
erations or loads are not considered. By modeling the uncer-
tainties from wind generations, [14] proposes a probabilistic
TTC assessment approach based on the online measurements
but it can’t quantify the uncertainties from wind generations
and loads. For the fast global sensitivity analysis, [15] em-
ploys polynomial chaos expansion (PCE) to be the surrogate
model for load margin calculation but it is subject to the

curse of dimensionality issue. Although the extreme learning
machine (ELM) used in [16] tackles that issue, it requires
much more training samples and is not robust to topology
changes. Combined with uncertainty distribution inference,
[17]-[18] further develop a nonparametric and reduced-order
approximation method, Gaussian process emulator (GPE), for
the nonlinear CPF model. In [19], by merging the discrete
probabilistic variables, i.e., line outages, into sparse polyno-
mial chaos expansion (SPCE), uncertainty propagation through
CPF can be analyzed under disturbances, but the surrogate
model learning will be intractable for larger systems as the
number of predefined line outages is large. On the other hand,
when the system topology changes, how to timely update the
surrogate model for PLMA has not been investigated.

This paper proposes a computationally efficient PLMA that
is robust to N-1 contingencies and topology changes. The main
contributions are summarized as follows:

o A probabilistic deep kernel emulator (DKE) that ex-
tends the Gaussian process kernel to the deep neural
network (DNN) structure is developed to extract the
relationship between uncertain sources and load margin.
The DNN structure allows dealing with high-dimension
uncertain inputs and complicated nonlinear mapping re-
lationship while the Gaussian process enables natural
uncertainty quantification capability for PLMA. The pro-
posed DKE requires less numbers of samples as com-
pared to other DNN approaches while achieving similar
accuracy. Thanks to the strong learning capability via
DNN structure, all layers of DNN used in the proposed
DKE serve to distill and learn increasingly complicated
features with the exception of the output layer. Therefore,
DKE has much better performance than the original
Gaussian process method.

o An efficient transfer learning approach is developed to
allow quick adaptation of the proposed DKE for dif-
ferent topology changes. The key idea is to minimize
the invariant representation space distance between old
topology and new one with a few new samples. To
the best knowledge of us, this is the first time the
topology changes for PLMA task have been considered
as compared to existing data-driven approaches.

The remaining of this paper is organized as follows. Section
IT shows the problem statement. The DKE and its enhanced
version with transfer learning for solving the CPF is developed
in Section III. Section IV shows and analyzes simulation
results on the modified 39-bus and 118-bus systems and finally
Section V concludes the paper.

II. PROBLEM STATEMENT
Given a power system with N, buses, the power flow
equations are as follows:
{ PG,,'—PLJ'—P,'(Z) ZO
Qi —QLi —Qi(2) =0
where i = 1,---, Ny and 2 = [0 V]T; @ and V are
respectively the bus voltage magnitudes and angles; Fg ; and

(Jg,; are the active and reactive power injections at generator
bus i; [, ; and (. ; are the active and reactive power injections

(1)

Authorized licensed use limited to: to IEEExplore provided by University Libraries | Virginia Tech. Downloaded on August 02,2023 at 19:47:57 UTC from IEEE Xplore. Restrictions apply.
© 2022 |IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.



This article has been accepted for publication in IEEE Transactions on Power Systems. This is the author's version which has not been fully edited and
content may change prior to final publication. Citation information: DOI 10.1109/TPWRS.2022.3231240

IEEE TRANSACTIONS ON POWER SYSTEMS, 2022

at load bus ¢. Defining respectively the incremental power
APFg i, AP,; and AQy; for generations and loads, the load
margin can be obtained via the CPF approach:

Psi— P — Pi(2)

AlzA) = Qc,i — Qui — Qi(2)

=0 )

Ps;+ AP, = J?G,i
P+ MAP; = ]?L,i 3)
Qri + AAQL; = QL

where the load margin is the maximum value of A without
violating physical constraints, i.e., voltage constraints. A(-)
represents the parameterized power flow equations in the
CPF model. By continually increasing the loading level, CPF
involves multiple predictive and corrective directions to obtain
the load margin. Note that only the active power of generators
is parameterized and this should be for the generators that
cannot control reactive power.

A. Uncertainty Modeling

Due to the integration of uncertain renewable energy and
stochastic loads, the CPF results are no longer deterministic
and the PLMA is needed. To this end, the probabilistic
characteristics of uncertain sources, such as wind generations
and loads, are required.

1) Load uncertainty modeling: following existing literature,
the loads are assumed to obey the Gaussian distribution [20],
whose probability density is

1
V2moy,

where pp and op are respectively the mean and standard
deviations of F;.

2) Wind generation uncertainty modeling: the wind speed
follows the Weibull distribution [21]:

p(R) = e~ (Rmpm)®/20 @)

o) = 2 (2) ol )
a\a
where a and b are respectively the scale and shape parameters;
v, 1s the wind speed. After that, the output of the wind
generator can be determined by the speed-power curve of wind
turbine [22]:

0 (Vw < Vejy Vi > Vco)
Py, = Prated - (ﬁ) (ch' Sy < Vrd) 6)
Prated (Vrd < Uy < Vco)

where P, is the output of the wind generator; Pryeq is the
rated active power of the wind generator; v.;, Vrq and v, are
the cut-in, rated and cut-out wind speeds, respectively. The
wind speed is sampled via probabilistic distribution (5) and
then wind power can be obtained via (6). It should be noted
that only wind generation is considered here, the approach can
also deal with solar generation uncertainty when the proper
probability distribution model for solar energy is used.

| Given Operation Conditions |

v v v

| Contingency 1 || Contingency 2 || Contingency N,
) )

| CPF | CPF

CPF |
‘ AW 2@

\ A

)\min

Fig. 1. Load margin under N-1 contingencies.

B. Probabilistic Load Margin under N-1 Contingencies

Since all loads and wind power are assumed to con-
tain uncertainties, deterministic parameterized power flow
equations A(z,\) needs to be reformulated to be a prob-
abilistic ones, A(z, P, Pr,\). Assume that there are 7.,
wind generators connected to the system, we have P, =
[Pa.Ny—ny+1,- > Pa.n,]T. Given N, predefined contingen-
cies, the objective function of the PLMA model under each
scenario is to maximize the load margin A\("), i.e., the maxi-
mum power that can be supplied without violating operational
constraints, which can be written as [19]:

mazx \™) 7
subjected to the following constrains:
A(z, Py, PL,A™) =0 ®)
Vmin S V(Z, PUHPLa )\(m)) S Vmax (9)
Pomin < P6(2, Py, P, A"™) < Poma (10)
QGmin S QG(Z7P’UJ7 PLa )\(m)) S QGmax (11)

where m = 1,2,---,N.; equations (9)-(11) respectively
denote the voltage, generation active power and reactive power
constraints; Vi, and Vi, are respectively the minimum
and maximum bus voltage magnitudes; Pguyin and Pgmax are
respectively the minimum and maximum active power outputs
of synchronous generators; QGmin and Qgmax are respectively
the minimum and maximum reactive power outputs of syn-
chronous generators.

To determine whether the power system is operated under
secure status or not, the minimum load margin among N,

contingencies is taken as the index:
Amin :min{l’... 7)\(’”1)7... 7/\(Nc)} (12)

To better illustrate the impacts of topology change to load
margin, the single machine load bus (SMLB) system is used,

Ve Vi
X,

Fig. 2. The single machine load bus system.
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Fig. 3. Uncertainty propagation from uncertain sources to load margin.

see Fig. 2, where the maximum power transferred (load
margin) Pp.x can be calculated via [23]:

VeV,
Xe

where Vi is the generator bus voltage and V7, is the load bus
voltage, and Vi and Vi, are constant. X, is the equivalent
reactance between Vi and V7. In this system, the admittance
matrix A is a two-order matrix calculated based on X,.
Assume X, is the equivalent reactance of multiple lines, if
a line is added or tripped, X. will decrease or increase,
leading to the increase or decrease of load margin. In a large
power system, A plays a similar role as 1/X, to calculate
load margin. Since topology of power system determines the
admittance matrix A in the CPF calculation, topology changes
can be reflected in A and therefore affect the load margin.
According to (7)-(12), the load margin assessment model,
namely the relationship between load margin and A, uncertain
input z = [P,, P;]T, can be defined as:

Amin = M(x, A)

Pmax = (13)

(14)

Since wind generations and loads are subject to uncertain-
ties, Amin also follows a probability distribution with uncer-
tainty propagated from M(-), see Fig. 3. To describe this
probability distribution Y = {A) A& AN Tyieg

performs N, times of CPF calculations with corresponding N,

random samples of x, namely X = {x() x®) . W)
Consequently, PLMA model is

Y = M(X, A) (15)
(15) can be equivalently written as Y = M(X), if the

topology is not changed.

To approximate the true distribution of load margin accu-
rately, a large N, is required, which is time-consuming. To
avoid such heavy computational burden, data-driven PLMA
uses a reduced-order surrogate model f(-), i.e., PCE and
GPE, to substitute M(-) to calculate load margin in a
computationally-cheap manner. However, they are not scalable
to large-scale systems with high dimensional uncertain inputs.

Furthermore, the system is subject to contingencies or topol-
ogy changes and the constructed surrogate model will yield
large PLMA errors. For transmission systems, the topology
change does not occur often and even with topology changes,
only small part of elements in A will be changed (i.e., those
corresponding to the changed topology). Consequently, the
main parts of A before and after topology change are the same.

In other words, the shared features for different topologies
have large similarities. By utilizing these shared features, this
paper develops a transferable DKE to address these issues.

III. PROPOSED TRANSFERABLE DEEP KERNEL EMULATOR

In this section, the DKE will be first developed for PLMA.
Next, DKE will be enhanced via the transfer learning to allow
strong adaptations to contingencies and topology changes.

A. Deep Kernel Emulator for PLMA

Given the PLMA dataset D = {$(i)

» “'min

X, A\ ¢ v, i = 1,2 N, the hidden relationship
between uncertain sources and the load margin, can be ex-
tracted by a surrogate model Ay, = f(x). Since PCE
and GPE are subject to curse of dimensionality issue, the
DKE is proposed that extends the GPE kernel into the DNN
structure, resulting in both strong capability of handling high-
dimensional uncertain inputs and uncertainty quantification.

Similar to the Bayesian posterior distribution inference
in Gaussian process, DKE also assumes [N, realizations
{Fx®), f(x@),--- | f(xP™))} of f(z) follow the joint
multivariate normal distribution N (ux, K x.x ), which is re-
garded as the Bayesian prior distribution:

F(X) = [f (:c(l)),...,

)\(i) }, where (9 €

-
f (fE(NS))} ~ Ny (nx, Kx,x)

(16)
where pix = [ (M), ..., p (:c(NS))]T is the mean function
and pu(x) = H(x)I'. To provide the prior information to
approximate the nonlinear CPF model, H(x) is defined as
the quadratic basis function [24]:

H(x) = [1,x1,...xd,x§,...,x§] 17)

d is the dimension of x; Kx x is the covariance function
matrix, i.e.,

k(g(x), (1)) k(g(xM), zN)))

E(g(@®)),g@D) - k(g™), g(@™))
(18)

where g(x|w) denotes a neural network and its parameter
vector w. This is the key component in the DKE since
g(x|w) plays a critical role in feature extraction for providing
powerful generalization for DKE. k(-, -) is the kernel function,
i.e., radial basis function (RBF) kernel k (g(x),g(z’)) =
exp (—3 [lg(x) — g(«')|| /¢?) and ¢ is the corresponding hy-
perparameter. Without loss of generality, the hyperparameters
in the kernel function are represented as 4 in this paper.

Let observations Y represent the system output F(X) with
the additive Gaussian noise e ~ N (0,0%Iy, ), we have

Y X ~N (1, Kxx +0°1y,) (19)

where o is the standard deviation and Iy, is a Ns-dimensional
identity matrix.

In case of unseen samples, i.e., during prediction stage, it is
assumed that the predictions and the existing observations fol-
lows the joint multivariate Gaussian distribution. Specifically,
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the prediction distribution Y, at M unseen points indexed by
X, can be related with N, existing observations:

Y N 5% Kxx Kxx.
Y. | X, px- || Kx,x Kx, x.
(20)
As a result, Y, can be formulated as:
Y. [ {X., X,Y,6,w 0’} ~N(E[Y.],cov(Y.)) (1)

—1
E[Y.] = px. +Kx. x [Kxx +°In,] (Y—px) (22)
cov (Y*) = KX*,X* - KX*,X [Kx}x + O'QINS]71

In this paper, the expectations in (22) are utilized as the
predictions while (23) is employed to quantify the prediction
uncertainties. Note that (20) is formulated based on the Gaus-
sian process, but this doesn’t mean DKE is not suitable for
data sampled from non-Gaussian distribution. According to
[25], a finite number of observations can be covered by the
Gaussian process and thus DKE can be applied to data from
any distribution.

Optimization of Hyperparameters: all the hyperparame-
ters ¥ = {I',8,w, 0} for DKE should be tuned properly. We
employ stochastic gradient decreasing algorithm to maximize
the marginal likelihood for target Y:

L=logp(Y |¥,X)
x —(Y —px)" (Kxx + 0211\/5)_1 (Y — px)
—log |Kx,x + 0'211\/5

— —[Y - HX)T]T (Kxx +0%Iy,) " [Y — H(X)T)
—log |Kx,x + JZINS

(24)

In this paper, the hyperparameters in mean function, kernel
function and neural network are jointly learnt according to
the their corresponding gradients, which can be derived by
the following chain rules:

oc oL O0Kxx
96 0Kxx 00 (23)
oL 0L OKxx Og(x|w) 26)
ow  0Kxx 0g(z|w) Ow
oL T 2 —1
op = 2l - HX)T] (Kxx +0°Iy,) H(X) 27)

Neural Network Layer

GPE Layer

Fig. 4. Proposed deep kernel emulator for PLMA.

% = trace ((KX}X + O'QINS)il) (28)
oL 1 _ _ _
T~ 7 FxxYY Kxx ~Kix) @)

Thanks to the auto-gradient function in the Pytorch [26],
81{6,’;" and aggﬁ'“’) can be automatically calculated. Conse-
quently, all parameters are updated according to the gradient
descent algorithm:

oL
0=0"n55
oL
w=w =g,
Por gt o
— T r
oL
ot =05

where 7 is the learning rate. With the kernel and mean function
learning, the surrogate model f(-), namely DKE, can be
obtained, as shown in Fig. 4. The key idea here is to lever-
age the neural network for extracting the high-dimensional
data features and use them as prior information for GPE.
After feature extractions, the input dimensions for GPE has
been significantly reduced, yielding improved computational
efficiency. Note that for GPE, a proper prior information is
essential to achieve good performance and this is addressed in
the proposed DKE method.

B. Adaptiveness Enhancement of DKE via Transfer Learning

Although the DKE-based surrogate model can achieve sat-
isfactory performance for PLMA, it is vulnerable to topology
changes, i.e., line or generator outages or switching due to
maintenance or dispatching requirement. This is because the
hidden relationship between uncertain sources and load margin
is different from the one before topology changes, yielding
different load margin distributions. Consequently, the surrogate
model needs to be adaptive to new topology. This paper
develops the transfer learning-based approach to deal with that.

1) Domain Adaptation Regression: It is worth pointing out
that the load margin distributions are not completely different
under two topology since the voltage stability involves ex-
tensively the local phenomena. This means that the surrogate
models under two topologies share some common domain
knowledge, a kind of invariant representation. If the shared
domain knowledge can be utilized, the amount of samples to
obtain the new surrogate model can be drastically reduced for
PMLA.

Define the domain knowledge before topology changes as
2 @

the source domain D, = { sy Amin.s

} while that after topol-
ogy changes is called the target domain Dy = {m? ) AW },

» “*min,t
where mgi) c X, )\r([fi)ns c Y, ng) c X4, )\[(gilt c Yy,
i =1,2,---,Ng andj = 1,2,---, Ny. The subs’cript “s”
means the variables in the source domain, and subscript
“t” means the variables in the target domain. To lower the
generalization error of PLMA in the target source, learning

transferable representations by minimizing the domain shift
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between invariant representations of source and target domains
is the core idea of the transfer learning in this paper. Since
PLMA is essentially a regression task, it can be seen as an
implementation of domain adaptation regression.

Inspired by [27], the invariant representation o for two
domains are extracted by a feature transformer G 7 (-), namely
a = Gy(x). Mathematically, the invariant representation is
a transformation of inputs, i.e., the uncertain sources. To
measure the representation space distance between the source
domain and the target domain, one way is to calculate the
similarity of the orthonormal bases from two space globally.
Therefore, the singular value decomposition (SVD) is used
to obtain orthonormal bases that form the two representation
spaces. Formally, we have

T,=U3, (W), =03, W)" (@3l

where T = [a®), .- a@™)]; U = [uW, ... ul)] denotes
the orthonormal base matrix; 3 is the singular value matrix;
W is the unitary matrix.

The similarity of orthonormal bases from two space is
measured by the principal angles @ = [p(!),--- | oV)], ie.,

W\ "

u ) e

[COI— . ’ !
o' = min arccos
|
T
w2
0® = min arccos

ul® @ Hu@ H Hu§2) H (32)
T
a0 0
(Ne) ;
1Y = min arccos N (N)
U,(gNt),ugN” Hug t ‘Hut t ‘

(32) can be further simplified as:

(U,)" U, = B, (diag (cos 0)) (By) " (33)

where B is the weight matrix. To minimize the representation
space distance between the source domain and the target
domain, an end-to-end optimization scheme based on neural
network is developed in this paper, see Fig. 5. It consists of two
main parts: the feature transformer G(-) and the regressor
G (+). Specifically, the loss function is defined as:

Etran = '}/El + /BL:Q + £3 (34)

where £, = |[|sing||%; L2 = ||Bs ® By — By © By||%
L3 = ||G-(G¢(Xs)) — Ys||% v and 3 are respectively the
coefficients for the corresponding loss terms; £; is utilized to
reflect the representation space distance between the source
domain and the target domain via principal angles; Lo pushes
the feature transformer to match orthonormal bases in source
domain and target domain with similar weights; £3 denotes
the regression loss in the source domain so that the transferable
representations can be extracted for PLMA.

In this paper, the Adam optimizer [28] is advocated to
minimize L.q,. Note that no labels are required for the
target source and we can transfer the knowledge under old

topology to new one quickly without the time-consuming
labeling process. This also justifies why only a few samples
are needed to quickly update the surrogate model.

2) Algorithm Implementation for PLMA: Since uncertain
sources are wind power and loads, it is necessary to infer their
probabilistic distributions from historical data. In this paper,
the Copula statistics is employed to infer the distributions of
wind speed and loads. This allows generating wind power
and loads data based on the identified Copula structure. More
details about Copula can refer to [29].

Assuming a surrogate model DKE has been trained in the
old topology with datasets D, = {X;, Y} generated from
the identified Copula structure, a three-stage framework is
proposed to perform transfer learning for PLMA.

(1) Stage one: uncertainty modeling Similar to uncertainty
modeling in the old topology, the uncertain inputs X, can also
be generated based on the identified Copula structure, resulting
in the probabilistic distribution modeling for wind power and
loads under new topology.

(2) Stage two: transfer learning By passing X, and X,
through G(-), the invariant representations for old topology
and new topology, T and 13, are obtained. According to (31)-
(33), they are further transformed by two SVD operations to
calculate the loss of (34). By minimizing (34), the training of
Gy(-) and G, (-) can be performed with D, and X;. Conse-
quently, the invariant representation space distance under two
topology can be reduced and thus the knowledge on the old
topology is transferred to the new one.

(3) Stage three: fine tuning Once the training in the stage
two is completed, all other layers except the final one in G,.()
and Gy(-) can be merged into the GPE framework. As a
result, DKE model for the new topology is developed. Since
the transfer learning in the stage two has provided good priori
information for the DKE model, much less amount of samples
is required as compared to a raw DKE model, which will be
demonstrated in the numerical results section. Therefore, N,
uncertain inputs Xt (its invariant representation is Tt), can be
sampled from X; and their corresponding load margin S\mimt
can be calculated by CPF. With these small amount of samples
under new topology, the constructed DKE model is fine-tuned
via (24)-(30) and thus quickly updated under new topology
for PLMA.

Based on the fine-tuned DKE model f(-), the predicted
probabilistic distribution of Xnin’t corresponding to X; can
be established by a non-parametric inference method using a
kernel density estimator [30]:

Ne 3 /(@)
x/ o 1 Ainin,t - )‘min,t
Wine) = [ 2B | T )69

where n. is the sample size for the future generation dispatch
interval; h is the bandwidth of the estimator and it is generally
set as 1.067ng0'2, where 7 is the estimated sample standard
deviation; Z\;ﬁ?m is the predicted (using the fine-tuned sur-
rogate model) S‘Znin,t for the i-th sample; B is the kernel
smoothing function, i.e., standard Gaussian kernel in this

paper. Note that, other methods, i.e., MCS and other surrogate
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models, can also utilize this kernel density estimator to obtain
their corresponding probabilistic load margin distributions.
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Fig. 6. The diagram of IEEE 39-bus power system.

IV. NUMERICAL RESULTS

The effectiveness of the proposed method is first demon-
strated on the modified IEEE 39-bus power system, see Fig.
6, where four wind farms are connected to buses 2, 8, 11
and 21 respectively. The generation capacities of these four
wind farms are 350 MW, 150 MW, 400MW and 500 MW,
respectively. The random parameter settings for the uncertainty
sources are as follows [31]:

o The shape parameter and scale parameter of the Weibull

distribution are respectively set as @ = 20 and b = 2.
Besides, the cut-in, rated and cut-out wind speeds are

Authorized licensed use limited to: to IEEExplore provided by University Libraries | Virginia

method for PLMA.

respectively set as v.; = 3 m/s, Ve, = 25 m/s and v,.q =
12 m/s.

o The mean p;, and standard deviation o, of all loads are
assumed as original load values in IEEE 39-bus system
and or, = 0.1y, p.u. respectively.

As a result, 25-dimension uncertain inputs (4 wind generators
and 21 loads) are constructed. All surrogate models and the
transfer learning framework are built on a Python library,
Pytorch [32], and all calculations are performed on a com-
puter with a 3.2-GHz Intel Core i9-12900KF CPU, NVIDIA
GeForce RTX 3090 GPU and 128 GB RAM. The load margin
under contingencies are calculated via the built-in CPF module
of MATPOWER 7.1 [33].

Based on the above uncertainty settings, database is gen-
erated by using MCS. The number of samples used to
approximate the true load margin distribution depends on
the scale of the power system. To determine this amount,
the variance and mean value of Ay, are calculated during
Monte Carlo sampling. From Fig. 7, it can be seen that MCS
converges when the number of samples is about 10,000, which
is consistent with the conclusion in [34]. Although MCS can
approximate the true PLMA, it is very time-consuming and
thus is treated as the benchmark in this paper to verify the
performance of all other methods.

A. Performance Comparisons without Topology Changes

To fully demonstrate the performance of the proposed
method when there is no topology change, several state-of-
the-art methods are compared, including the shadow learning
methods (SVR [35], GPE and PCE) as well as DNN [36]).
SVR is constructed in the scikit-learn [37], which is a powerful
machine learning library in Python. Its regularization param-
eter and base kernel in SVR are respectively chosen as 100
and the radial basis function; PCE is built on the UQ-LAB
platform [38], where 2nd-order truncated PCE functions are
selected; both GPE and DNN are implemented on Pytorch,
while the basis function of the former is RBF and the number
of neural neurons in each layer of DNN is “25-50-20-1". In
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the proposed DKE, the structure of its neural network layer is
set as “25-50-20”. Hyperparameters in all methods are tuned
with grid searching to show their best performance in terms
of fair comparisons.

To quantify the performance of each method, we employ the
well-known Kullback Leibler (KL) divergence as the index. It
can measure the difference between two probabilistic distri-
butions. In this paper, the difference between the predicted
probabilistic distribution and the probabilistic distribution ob-

8
TABLE I
PERFORMANCE COMPARISON FOR VARIOUS METHODS WITHOUT
TOPOLOGY CHANGE IN 39-BUS SYSTEM.
Performance index MCS DKE SVR
KL divergence 0 0.0574 2.6752
Number of samples 10000 4300 7000
Simulation time ~ 33 h < ls < lIs
Performance index GPE DNN PCE
KL divergence 2.8310 0.1680 13.3639
Number of samples 1200 5000 1500
Simulation time < ls < s < s
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Fig. 9. Predicted probability density of different methods without topology
changes in the 39-bus system.

tained by MCS is quantified. KL divergence can be formulated
as [39]:

T
KL (7TpH7TMCS) z/ﬂplog P (36)

TMCS

where m, and mycg are the predicted probabilistic distribu-
tions with the surrogate models and MCS, respectively. The
samples are divided into training dataset and testing dataset
with the ratio of 4:1 and only the testing dataset is utilized
to quantify the KL divergence rather than using all samples
of MCS in [17]. This allows verifying the generalization
capability of the surrogate models.

Figs. 8(a) and (b) show the statistical values versus the
number of samples. It can be seen that the mean of the load
margin converges much faster than the KL divergence since it
is global index while the KL divergence depicts the differences
between two probabilistic distribution comprehensively. The
deep learning based models, i.e., DKE and DNN achieve much
higher prediction accuracy than GPE, SVR and PCE, though
GPE and PCE require much less samples to converge, see
Table 1. This demonstrates the strong capability of DKE and
DNN for feature extraction and accurate PLMA. Compared
with DNN, DKE requires less amount of samples without
loss of accuracy. This is because the prior Bayesian inference
in DKE can reduce the number of model parameters to be
optimized.

Fig. 9 shows the predicted probability density of load mar-
gin under different methods when there is no topology change.
Thanks to their powerful feature extraction capabilities, DKE
and DNN achieve accurate assessment of probabilistic load
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margin. However, the shadow learning based methods, i.e.,
GPE, SVR and PCE, have large bias on the prediction at the
tails and summits of the load margin distribution. This may
lead to underestimate of voltage stability, yielding possible
cascading failure.

B. Performance Comparisons under Different Correlations
and Distributions

Due to the locations or environmental factors of loads and

Performance of DKE under various distributions of loads. (a) Gamma distribution; (b) Gumbel distribution; (¢) Uniform distribution.

wind farms, there may be correlations among them. In this
section, the correlations of 0.2, 0.4 and 0.6 are tested. Figs.
10(a)-10(c) show that the proposed DKE can perform accurate
PLMA under various correlations. An interesting phenomenon
is that the long tail of large load margin happens when
correlations among uncertain sources increase.

Since loads may not follow Gaussian distribution in prac-
tice, the performance of DKE under different distributions
is also investigated. Specifically, three distributions, namely
Gamma, Gumbel and Uniform distributions, are employed to
depict the probabilistic characteristics of loads respectively
[40]-[41], while the wind speed of each wind farm still obeys
the Weibull distribution. The mean and standard deviation of
them are the same as Gaussian distribution. Without losing
generalization, the correlation between each uncertainty source
is set as 0.4. The proposed DKE also performs well under
different distributions of uncertain sources, as shown in Fig.
11. This is because the finite realizations can be covered by
Gaussian process, which is basic rationale of the proposed
DKE. Consequently, the performance of DKE is not affected
by the specific distribution of inputs.

C. Performance Comparison under Topology Changes

Once the power system topology has changed, DKE has to
be retrained since the CPF model is changed. However, this is

TABLE I
PERFORMANCE COMPARISON UNDER VARIOUS TOPOLOGY CHANGE SCENARIOS FOR 39-BUS SYSTEM.

Performance index

Topology A-I

Topology A-II Topology A-IIT  Topology A-IV

KL divergence (transferred DKE) 0.0933
Number of samples (transferred DKE) 400

KL divergence (untransferred DKE) 458.431
KL divergence (Retrained DKE) 6.342
Training time of fine tuning 34.33s

0.0236 0.0477 0.0840
300 400 700
166.536 15.475 15.272
15.286 9.263 2.616
35.44s 35.57s 34.77s
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time-consuming as thousands of load margin re-calculations
are needed. Consequently, the transfer learning for DKE is
needed to timely update the surrogate model for quick PLMA.
Since DKE has been demonstrated to be the best approach in
the previous section, we only show the comparison results
among the original DKE (untransferred DKE), the DKE with
transfer learning (transferred DKE) and without transfer learn-
ing (retrained DKE). This allows us to verify the effectiveness
of the proposed transfer learning approach. Four topology
change scenarios have been considered in the modified 39-
bus system:

o Topology A-I: Line 5-6 is removed;

o Topology A-II: Line 24-28 is added;

o Topology A-III: A 100 MW generator is connected to
Bus 4;

o Topology A-IV: Generator 37 is removed.

The dataset generation is same as that in Section IV-A. ~
and A3 are set as 1073 and 10~%, respectively. Besides, the
training iterations are set as 1000. The structure of the feature
transformer G4(-) and the regressor G.(-) are “25-10” and
“10-50-20-10-17, respectively. Note that the output dimension
of G#(-) is smaller than its input dimension as we intend to
extract its invariant subspace.

Fig. 12 shows the trend of invariant representation distance
loss between two topology during transfer learning. It can be
seen that the invariant representation distance is significantly
reduced via transfer learning. It also indicates that the larger
the v£q + 8L is, more samples are required to fine tune the
DKE. Therefore, v£, + 8L2 can be used as an transferable

index. The performance comparisons for each method and the
probability density function estimation results are shown in
Table II and Fig. 13. In Table II, “Retrained DKE” means the
reduced data under the new topology to train a new DKE
model, where the amount of the reduced data is same as
that used to perform transfer learning. It can be seen that, in
general, when topology change occurs, the load margin distri-
bution changes. It is interesting to find that the line change has
higher impacts on the load margin distribution changes than
the generator changes. This may be due to the fact that voltage
stability is a local phenomena and line changes may affect
more the reactive power change to support local voltage in
the modified IEEE 39-bus power system. If the original DKE
is directly used for PLMA without considering the topology
changes, significant errors are obtained. By contrast, with the
proposed transfer learning framework, only a few hundred of
samples are required to update DKE model to yield accurate
PLMA under new topology. This is only 10% data of the
original sample size and thus allows the quick adaptation of
the proposed method in PLMA. Besides, the training time for
fine tuning is about around 35 seconds, resulting in feasibility
of online applications, i.e., in a 15 or 30-minute’s dispatch
interval.

Although there is no closed form to formulate the difference
between two domains since CPF model is solved in an iterated
way, we can quantify the difference between two domains
under different topologies via their distribution KL divergence.
This is because their domain space can be depicted by their
corresponding datasets. Specifically, since the proposed surro-
gate model can accurately approximate the CPF model under

Authorized licensed use limited to: to IEEExplore provided by University Libraries | Virginia Tech. Downloaded on August 02,2023 at 19:47:57 UTC from IEEE Xplore. Restrictions apply.
© 2022 |IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.



This article has been accepted for publication in IEEE Transactions on Power Systems. This is the author's version which has not been fully edited and
content may change prior to final publication. Citation information: DOI 10.1109/TPWRS.2022.3231240

IEEE TRANSACTIONS ON POWER SYSTEMS, 2022

11

Power system
under previous topology

Load margin distribution
predicted by untransferred DKE

Probability

Approximately:
equivalent
density quivater

Untransferred
DKE

I
Load margin distribution :
Probability predicted by MCS !
density Load margin distribution :

1

predicted by transferred DKE

= o = = = == —— a

How similar the
load margin
distribution of new

S NSV

{
1
]

1

A,

Sy eer Ml KL

minj

o divergence and previous
2 topology is.
Probability Probability pology
density density
Power
system
under new » MCS
topology
’ How close the
KL » proposed transfer
divergence learning is getting.
-~
Probability .
density Probability
1
Transferred A :
' DKE 11
11
1
1
A

M 3@ (N.)
Ay Anatns o5 Agaid
— =

Y,

Fig. 14. Explanation for the difference of load margin distribution under different topologies.

(© (d)

Fig. 15. Hyperparameter sensitivity analysis under various topology change
scenarios. (a) Topology A-I; (b) Topology A-II; (c) Topology A-III; (d)
Topology A-IV.

certain topology, the untransferred DKE can represent the CPF
model under previous topology. Consequently, under the same
distribution of input, the KL divergence between load margin
distributions obtained by untransferred DKE and MCS can be
utilized to quantify the difference between two domains, see
Fig. 14. Besides, the distribution KL divergence between the
transferred DKE and MCS under new topology can describe
how close we are getting. As shown in Table II, the transferred
DKE always achieves a KL divergence near to zero toward

MCS, demonstrating the effectiveness of the proposed transfer
learning.

D. Hyperparameter Sensitivity Analysis

The hyperparameters can have impacts on the performance
of the transfer learning approach and thus this section shows
the sensitivity analysis. For the four topology change scenarios
in the modified IEEE 39-bus power system, Figs. 15 (a)-(d)
present the trend of KL divergences versus various values of 3
and ~. Note that the values of color bars denote values of KL
divergences. It can be observed that the KL divergence of the
proposed transfer learning scheme remains below 0.1 when it
transfers to different topology. This means that the proposed
method is not sensitive to hyperparameters, demonstrating the
robustness of the proposed method.

E. Larger-Scale System Testing Results

To demonstrate the scalability of the proposed method, new
tests are performed on the modified IEEE 118-bus power
system. 11 wind farms with rated power 45 MW, 60 MW,
50 MW, 50 MW, 90 MW, 75 MV, 30 MW, 30 MW, 30 MW,
30 MW, and 90 MW are connected to buses 3, 7, 13, 16,
37, 38, 45, 50, 93, 94, and 114, respectively. Consequently,
110-dimension uncertain inputs (11 wind generators and 99
loads) are constructed. The hyperparameter setting is similar
to Section IV-A. The structure of regressor G(-) is “110-10”.
The following topology change scenarios are investigated:

« Topology B-I: Line 30-38 is removed from the modified

IEEE 118-bus power system;
e Topology B-II: Line 40-117 is added to the modified
IEEE 118-bus power system;
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TABLE III
TEST RESULTS FOR DIFFERENT TOPOLOGY CHANGE SCENARIOS IN THE 118-BUS SYSTEM.

Performance index

Topology B-I

Topology B-II Topology B-III  Topology B-IV

KL divergence (transferred DKE) 0.0674
Number of samples (transferred DKE) 500

KL divergence (untransferred DKE) 208.390
KL divergence (Retrained DKE) 6.381

Training time of fine tuning 38.24s

0.0868 0.0716 0.0359
600 400 500
59.641 11.893 57.436
8.148 17.518 3.293
37.32s 37.87s 37.75s

TABLE IV
PERFORMANCE COMPARISON BETWEEN MCS AND
PROPOSED METHOD FOR THE 118-BUS SYSTEM WITHOUT
DIFFERENT TOPOLOGY CHANGE SCENARIOS.

Performance index MCS DKE
KL divergence 0 0.0783
Number of samples 10000 4100
Simulation time ~ 80 h <ls

o Topology B-III: A 100 MW generator is connected to
Bus 17;

« Topology B-IV: Generator 25 is removed from the mod-
ified IEEE 118-bus power system.

The test results for different topology change scenarios in
the modified 118-bus system are shown in Tables III and IV.
It can be observed that in the high-dimension uncertain input
scenarios, the proposed DKE still needs much less samples
as compared to MCS and the KL divergence remains at a
very low level. The load margin probability density prediction

after transfer learning under various topology change scenarios
is displayed in Fig. 16. It can be found that the proposed
transfer learning scheme achieves high accuracy and only
requires around 10% data under the new topology to update
the original surrogate model for PLMA. It is also noticed that
the line changes have lager impacts than the generators, which
is consistent with the conclusion in the 39-bus system.

F. Performance under N-k Topology Changes

The above results are for N —1 topology changes. To verify
the performance of the proposed method under N —k topology
changes, up to four lines are removed/added simultaneously in
the IEEE 118-bus system. Nine N — k topology change sce-
narios are considered, as shown in Table V, where “Topology
C-II-2” means two lines are changed under Topology C-II,
for example. Other simulation settings are same as those in
Section IV-E.

Table VI and Fig. 17 show the performance of the proposed
method under N — k topology changes. From Figs. 17(a)-
17(c), it can be observed that, with more lines tripped, the
load margin becomes smaller, resulting in a larger probability
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Fig. 16. Load margin probability density prediction after transfer learning under various topology change scenarios. (a) Topology B-I; (b) Topology B-II; (c)

Topology B-III; (d) Topology B-IV.
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TABLE V
N-K TOPOLOGY CHANGE SCENARIOS IN THE 118-BUS SYSTEM.

Number of changes Topology C-I

Topology C-II

Topology C-III

Line 30-38 removed

2 Line 69-75 removed

Line 30-38 removed
Line 40-117 added

Line 40-117 added
Line 18-72 added

Line 30-38 removed
3 Line 69-75 removed
Line 19-34 removed

Line 30-38 removed
Line 69-75 removed
Line 40-117 added

Line 40-117 added
Line 18-72 added
Line 20-24 added

Line 30-38 removed
Line 69-75 removed
Line 19-34 removed
Line 33-37 removed

Line 30-38 removed

Line 69-75 removed
Line 40-117 added
Line 18-72 added

Line 40-117 added
Line 18-72 added
Line 20-24 added
Line 21-24 added

TABLE VI
TEST RESULTS FOR N-K TOPOLOGY CHANGE SCENARIOS IN THE 118-BUS SYSTEM.

Performance index Topology C-1-2 Topology C-1-3 Topology C-1-4 Topology C-1I-2 Topology C-II-3

KL divergence (transferred DKE) 0.0269 0.0259 0.0230 0.086 0.085
Number of samples (transferred DKE) 500 500 500 600 500

KL divergence (untransferred DKE) 136.913 326.859 2936.4 47.612 66.156
KL divergence (retrained DKE) 4.044 5.889 7.380 1.392 4.120
Training time of fine tuning 40.49s 39.91s 38.17s 41.56s 40.46s
Performance index Topology C-II-4 Topology C-III-2  Topology C-III-3  Topology C-III-4
KL divergence (transferred DKE) 0.0695 0.0528 0.0516 0.0897

Number of samples (transferred DKE) 500 500 500 500

KL divergence (untransferred DKE) 18.084 84.669 86.536 86.000
KL divergence (retrained DKE) 3.435 5.257 4.405 4.824
Training time of fine tuning 39.90s 38.23s 38.30s 38.51s

of voltage instability. Besides, comparing Figs. 17(a)-17(c)
with Figs. 17(g)-17(i), it can be seen that the removal of lines
may lead to more violent distribution changes of load margin
than adding of lines. It is not easy to accurately quantify how
much distribution changes the proposed method can tolerate,
since there is no closed mathematical form between topology
changes and load margin distribution. However, the proposed
method can perform accurate PLMA with only 500 samples
to adapt to new topology even if there are not much common
parts between the load margin distributions after topology
changes, as illustrated in Fig. 17(c). This indicates that the
proposed method is adequate for the practical application.
V. CONCLUSIONS

This paper proposes a transferable PLMA framework con-
sidering topology changes and uncertain wind generations
and loads. A probabilistic DKE that extends the Gaussian
process kernel to the DNN structure is developed to extract the
relationship between uncertain sources and load margin. This
allows us to gain the advantages of DNN in dealing with high-
dimension uncertain inputs and the uncertainty quantification
capability of the Gaussian process for PLMA. A new transfer
learning approach that minimizes the invariant representation
space distance between old topology and new one is proposed
to quickly update the DKE model with only a few samples.
Numerical results in the modified IEEE 39-bus and 118-bus
power systems demonstrate that the proposed method can
1) efficiently capture the probabilistic distribution of load
margin and obtain accurate PLMA, 2) can quickly update
the DKE model accurately under new topology with only a

few samples and 3) achieve a better performance as compared
to other approaches under various scenarios. Although the
proposed method can be accurately and efficiently transferred
to new topology, it lacks the analytical interpretations that
how uncertain sources affect the load margin, which is still
an open problem in PLMA field. Future work would explore
this approach in other operational planning practice and their
physical interpretation.
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