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Abstract

A critical concern in data-driven processes is to
build models whose outcomes do not discriminate
against some protected groups. In learning tasks,
knowledge of the group attributes is essential to en-
sure non-discrimination, but in practice, these at-
tributes may not be available due to legal and eth-
ical requirements. To address this challenge, this
paper studies a model that protects the privacy of
individuals’ sensitive information while also allow-
ing it to learn non-discriminatory predictors. A key
feature of the proposed model is to enable the use of
off-the-shelves and non-private fair models to cre-
ate a privacy-preserving and fair model. The pa-
per analyzes the relation between accuracy, privacy,
and fairness, and assesses the benefits of the pro-
posed models on several prediction tasks. In par-
ticular, this proposal allows both scalable and ac-
curate training of private and fair models for very
large neural networks.

1 Introduction

A number of decision processes with high societal impact,
such as criminal assessment, lending, and hiring procedures,
are increasingly being supported by machine-learning sys-
tems. A critical concern is that the learned models may report
outcomes that are discriminatory against some demographic
group, including gender, ethnicity, or age.

To ensure non-discrimination in learning tasks, knowledge
of the sensitive attributes is essential. At the same time, legal
and ethical requirements often prevent the use of this sensi-
tive data. For example, U.S. law prevents using racial iden-
tifiers in the development of models for consumer lending or
credit scoring, and the GDPR in the E.U. prevents the col-
lection of protected user attributes. In this scenario, an im-
portant tension arise between (1) the demand for models to
be non-discriminatory, (2) the requirement for such model
to use the protected attribute during training, as adopted by
common fairness models, and (3) the restriction on the data
or protected attributes that can be used. There is thus a need
to develop learning models that can both guarantee non-
discriminatory decisions and protect the privacy of the in-
dividuals’ groups attributes.

To this end, this paper introduces a novel differentially
private learning framework that satisfy group fairness while
providing privacy of the protected attributes. The proposed
framework, called Scalable, Fair, and Private Aggregation
of Teacher Ensemble (SF-PATE) is inspired by the suc-
cess of private teachers ensemble learning [Papernot et al.,
2018]. These frameworks transfer the classification knowl-
edge learned from a pretrained ensemble of models (called
teachers) to a target model (called student) via a privacy-
preserving aggregation process. This paper exploits this key
idea, but rather than transferring the classification capabil-
ity of the models, it seeks to answer an important and unan-
swered question: can fairness properties of a model ensemble
be transferred in a privacy-perserving way to a target model?

In addition to providing an affirmative answer to the ques-
tion above, this paper makes four key contributions: (1) It
proposes two flavors of SF-PATE that enforce fairness prop-
erties while protecting the demographic group attributes. (2)
In addition to guaranteeing differential privacy, the paper pro-
vides an analysis on the fairness properties of SF-PATE and
shows that unfairness can be bounded in many practical set-
tings. (3) Importantly, SF-PATE decouples the implementa-
tion of fairness and privacy requirements and it can be sys-
tematically built on top of (non-private) fair models which are
viewed as black-box. This engineering benefit is truly unique:
it simplifies the development of private and fair models, and
facilitates the adoption of new fairness metrics in privacy-
preserving ML, as the paper shows in the evaluation. (4)
Evaluations on both tabular and image datasets show that SF-
PATE not only achieves better accuracy, privacy, and fairness
tradeoffs with respect to the current state of the art, but it is
also significantly faster. This aspect is important because the
added computational cost of considering privacy and fairness
in already computationally heavy models (e.g., large vision or
language models) can make deployment more expensive and
may discourage the release of ethical and trustworthy models.
Supplemental material. [Tran et al., 2022] contains an ex-
tended version of this paper including proofs of all theorems,
and additional experiments. All references to the appendix in
this paper refer to such an extended version.

2 Related Work

The interconnection between privacy and fairness is receiving
increasing attention and the reader is referred to [Fioretto et



al., 2022] for an overview about the state of the field. Within
this literature, a recent line of work observed that private
models may have a negative impact towards fairness [Bag-
dasaryan et al., 2019; Pujol et al., 2020; Tran et al., 2021c;
Tran et al., 2021a; Tran and Fioretto, 2023]. Building from
these observations, [Ekstrand et al., 2018] raise questions
about the tradeoff between privacy and fairness and, [Jagiel-
ski et al., 2019] and [Mozannar et al., 2020] proposed two
simple, yet effective algorithms that satisfy (✏, �) and ✏-
differential privacy, respectively, for equalized odds. In par-
ticular, state of the art model M, proposed in [Mozannar et
al., 2020], adds calibrated noise to the group attributes us-
ing randomized response prior to use them as input to a fair
classifier. [Xu et al., 2019] proposed a private and fair lo-
gistic regression model making use of the functional mecha-
nism [Chaudhuri et al., 2011]. Finally, [Tran et al., 2021b]
proposed PF-LD, a method to train a private classifier under
differential privacy stochastic gradient descent [Abadi et al.,
2016] while imposing fairness constraints. These constraints
are imposed using a privacy-preserving extension of the Dual
Lagrangian framework of [Fioretto et al., 2020]. Although
this method was shown effective to balance privacy and fair-
ness, it is computationally expensive.

In contrast, this work introduces a semi-supervised frame-
work that relies on transferring privacy and fairness from
a model ensemble to construct high-quality private and fair
classifiers, while also being practical and scalable.

3 Problem Settings and Goals

The paper considers datasets D consisting of n individual
data points (Xi, Ai, Yi), with i 2 [n] drawn i.i.d. from an
unknown distribution ⇧. Therein, Xi 2 X is a non-sensitive
feature vector, Ai 2 A, where A = [m] (for some finite m)
is a demographic group attribute and Yi 2 Y is a class la-
bel. The goal is to learn a classifier M✓ : X ! Y , where ✓

is a vector of real-valued parameters, that ensures a specified
non-discriminatory notion with respect to A while guarantee-
ing the privacy of the group attribute A. The model quality
is measured in terms of a non-negative, and assumed differ-
entiable, loss function L : Y ⇥ Y ! R+, and the problem is
that of minimizing the empirical risk function (ERM):

?

✓= argmin
✓

J(M✓, D) =
1

n

nX

i=1

L(M✓(Xi), Yi). (P)

The paper focuses on learning general classifiers, such as
neural networks, that satisfy group fairness (as defined next)
and protect the disclosure of the group attributes using the
notion of differential privacy. Importantly, the paper assumes
that the attribute A is not part of the model input during infer-
ence. This is crucial in the application of interest to this work
as the protected attributes cannot be disclosed.

Fairness. This work constrains a classifier M to satisfy
a given group fairness notion under a distribution over
(X,A, Y ) for the protected attribute A as defined below.

Definition 1 (↵-fairness). A model M✓ is ↵-fair w.r.t. a joint

distribution (X,A, Y ) and fairness function h(·) iff:

⇠(D,h, ✓) = max
a2[m]

|EX,Y |A=a[h(M✓(X), Y )]

� EX,Y [h(M✓(X), Y )]|  ↵, (1)

wehre ⇠(D,h, ✓) is referred to as fairness violation.
The above compares a property for a group of individuals

with respect to the whole population and quantifies its differ-
ence. Therein, h(M✓(X), Y ) 2 R, referred here as fairness
function, defines a target group fairness notion while param-
eter ↵ 2 R+ represents the fairness violation.

The above capture an example class of group fairness no-
tions, including Demographic parity, Equalized odds, and Ac-
curacy parity. A comprehensive review of these fairness defi-
nitions is provided in Appendix A.
Differential Privacy. Differential Privacy (DP) [Dwork et
al., 2006] is a strong privacy notion used to quantify and
bound the privacy loss of an individual participation to a com-
putation. Similarly to [Jagielski et al., 2019; Tran et al.,
2021b], this work focuses on the instance where the pro-
tection is restricted to the group attributes only. A dataset
D 2 D = (X ⇥A⇥Y) of size n can be described as a pair
(DP , DS) where DP 2 (X ⇥Y)n describes the public at-
tributes and DS 2An the group attributes. The privacy goal
is to ensure that the output of the learning model does not sig-
nificantly change when a single group attribute is changed.

The action of changing a single attribute from a dataset DS ,
resulting in a new dataset D0

S , defines the notion of dataset
adjacency. Two dataset DS and D

0
S 2 An are said adjacent,

denoted DS ⇠ D
0
S , if they differ in at most a single entry

(e.g., in one individual’s group membership).
Definition 2 (Differential Privacy). A randomized mecha-
nism M : D ! R with domain D and range R is (✏, �)-
differentially private w.r.t. attribute A, if, for any dataset
DP 2 (X ⇥ Y)n, any two adjacent inputs DS , D

0
S 2 An,

and any subset of output responses R ✓ R:

Pr (M(DP , DS) 2 R)  exp (✏)·Pr (M(DP , D
0
S) 2 R)+�.

When � = 0 the algorithm is said to satisfy ✏-DP. Parame-
ter ✏ > 0 describes the privacy loss of the algorithm, with
values close to 0 denoting strong privacy, while parameter
� 2 [0, 1] captures the probability of failure of the algo-
rithm to satisfy ✏-DP. The global sensitivity �f of a real-
valued function f : D ! Rk is defined as the maximum
amount by which f changes in two adjacent inputs D and D

0:
�f = maxD⇠D0 kf(D) � f(D0)k. In particular, the Gaus-
sian mechanism, defined by M(D) = f(D) +N (0,�2

f �
2),

where N (0,�2
f �

2) is the Gaussian distribution with 0 mean
and standard deviation �f �, satisfies (✏, �)-DP for � >
4
5 exp(�(�✏)2/2) [Dwork et al., 2006].

4 Private & Fair Learning: Challenges

Constructing models enforcing both privacy and fairness
brings with it three fundamental challenges:
• Scalability: When interpreted as constraints of the form

(1), fairness properties can be explicitly imposed to prob-
lem (P). The resulting problem is typically non-convex,



Figure 1: Illustration of the SF-PATE framework. Green (red) colored text and labels depict the SFS (SFT ) version, in which the student
(teachers ensemble) is trained under fairness constraints.

but has been approached using a variety of solutions [Agar-
wal et al., 2018; Du et al., 2021; Kim et al., 2022;
Shui et al., 2022]. Researchers have used adaptations of
the DP-SGD algorithm [Abadi et al., 2016] to make these
methods private. However, the use of sequential clipping
operations and fairness constraints in DP-SGD leads to a
slow training process, especially in large, overparametrized
networks [Subramani et al., 2021]. Even further, the adop-
tion of fairness constraints can also reduce the effectiveness
of frameworks such as [Bradbury et al., 2018] and Opacus
[Yousefpour et al., 2021], which use vectorization to speed
up operations in DP-SGD (see [Tran et al., 2021b], for ex-
ample).

• Privacy analysis: Analyzing the privacy of these methods
is also challenging. Ensuring differential privacy through
the appropriate amount of noise requires specialized solu-
tions to assess the sensitivity of fairness constraints [Tran et
al., 2021b]. These ad-hoc solutions make it difficult to sys-
tematically adopt these methods when new fairness notions
are introduced or when better fair methods are developed.

• Poor accuracy/fairness tradeoffs: Finally, state-of-the-art
methods for enforcing privacy in fair learning often sacri-
fice utility and/or fairness. For example, [Mozannar et al.,
2020] perturbs group attributes in a pre-processing step and
uses a non-private, fair ML model to post-process the pri-
vate data. While this avoids the challenge of analyzing pri-
vacy, it has been shown to introduce a large amount of un-
necessary noise, especially in settings with more than two
groups [Tran et al., 2021b].

The approach proposed in this paper avoids these difficul-
ties by providing a teachers ensemble model that (1) provides
state-of-the-art accuracy, privacy, and fairness tradeoffs, (2)

adds negligible computational cost to standard (non-private)
training, and (3) directly exploits the existence of fair (non-
private) algorithms. This last property significantly simpli-
fies the engineering of fair and private models, facilitates the
adoption of new fairness notions, and avoids the complica-
tions introduced by fairness constraints in the DP analysis.

5 The SF-PATE Framework

This section discusses two algorithms for transferring fair-
ness considerations during the private learning process. Both
algorithms rely on the presence of an ensemble of teacher
models T = {M(i)}Ki=1, with each M(i) trained on a non-
overlapping portion Di of the dataset D. This ensemble is
used to transfer knowledge to a student model M̄✓ : X ! Y .
The student model M̄ is trained using a subset D̄ ✓ DP

whose samples are randomly selected from the original train-
ing dataset but whose protected group attributes are unre-
vealed. As characteristic of ensemble models, the student’s
queries (data entries X 2 D̄) are processed by the teacher
ensemble to predict the associated label Y through a voting
process (which is elaborated below). This process allows the
teachers knowledge to be transferred to the student model.
The framework, and the two variants introduced next, are de-
picted schematically in Figure 1.

5.1 Transfer Learning with Fair Student

The first algorithm presented, called SFS-PATE, trains a stu-
dent model with privacy-preserving group attributes chosen
by an ensemble of teachers. Subscript S in the algorithm’s
name stands for “student” to emphasize that it is the student
that enforces the fairness constraints during training.

The teachers ensemble T = {M(i)}Ki=1 is comprised of
models M(i) : X ! A. Its goal is to predict the group at-
tributes from a sample features, but not the labels as classi-
cally done in classification tasks. Note that, importantly, the
teacher models are standard classifiers: they are neither pri-
vate nor fair. Their role is to transfer the information of the
group attributes associated with the samples (Xi, Yi) 2 D̄

provided by the student. The student model M̄✓ : X ! Y
solves the following regularized constrained minimization:

min
✓

X

(Xi,Yi)2D̄

L(M✓(Xi), Yi) + �k✓ � ✓
⇤k22 (2a)

s.t. ⇠
�
{Xi, ṽA (T (Xi)) , Yi}(Xi,Yi)2D̄, h, ✓

�
 ↵, (2b)

where ṽA : AK ! A is a private voting scheme returning the



group attribute Ã chosen by the teachers ensemble:

Ã = ṽA(T (X)) = argmax
a2A

{#a(T (X)) +N (0,�2)}, (3)

ṽA perturbs the reported counts #a(T (X)) =���{k 2 [K] | M(k)
✓ (X)=a}

��� associated to group a 2 A
with Gaussian noise of zero mean and standard deviation �.

Problem (2) minimizes the standard empirical risk func-
tion (first component of (2a)), while encouraging the student
model parameters ✓ to be close to the optimal, non-fair, pa-
rameters ✓⇤ (second component of (2a)). Note that ✓⇤ can be
considered as the most accurate model since it solves prob-
lem (P) using all training data D. This model will not leak
any private information w.r.t. the protected attributes A be-
cause it is trained using only features X and labels Y . The
regularization parameter � > 0 controls the trade-off between
accuracy (when � is large, the model is pushed towards ✓

⇤)
and fairness (when � is small, the model prioritizes fairness
violations). The fairness constraints expressed in Equation
(2b) can be enforced through the adoption of off-the-shelf
techniques and this paper relies on the use of the Lagrangian
dual deep learning framework of [Fioretto et al., 2020]. This
choice also allows us to make a fair comparison with state-of-
the-art PF-LD [Tran et al., 2021b] in our experiments.

SFS-PATE achieves (✏, �)-DP by introducing calibrated
noise on the counts of the protected attributes predicted by
the teachers ensemble, as illustrated in Equation (3). The pri-
vacy analysis follows from [Papernot et al., 2018] with a few
additional considerations and is provided in Appendix C.
Fairness analysis. The rest of this section discusses the
fairness guarantees provided by SFS-PATE. The proofs of
all theorems are reported in the Appendix B. Note that SFS-
PATE relies on a (non-private) fair classifier to train the stu-
dent model. The performance of many such fair classifiers
has been established in the literature. The key question how-
ever is to assess the impact of the privacy-preserving voting
scheme on the fairness of the student model. The follow-
ing theorem bounds the fairness violation of the student M̄✓

w.r.t. (X,A, Y )—i.e., the original, non-noisy data—when the
group attribute A and its privacy-preserving counterpart Ã are
close enough to each other statistically, i.e.,

���Pr(Ã = a | x, y)� Pr(A = a | x, y)
���  ⌘A,

for events (X = x, Y = x) and value a. Note that, above,
⌘A characterizes the confidence of the noisy voting process.
Small ⌘A values correspond to ensembles with high predic-
tion agreement (e.g., many teachers predict the same output
Ã). Conversely, large ⌘A values correspond to ensembles
with low agreements, rendering the noisy votes less tolerant
to noise. Additionally, this property specifies that the group
attributes can be inferred from the sample features and labels,
which is also what allows a notion of disparity to arise.
Theorem 1. Let M̄✓ be ↵-fair w.r.t. (X, Ã, Y ) and h(·).
Then, M̄✓ is ↵0-fair w.r.t. (X,A, Y ) and h(·) with:

↵
0 =

2⌘A ·B
min
a2[m]

Pr(A = a) · Pr(Ã = a)
+ ↵ , (4)

where B is the supremum of the fairness function h(·).
Thus, this result help us quantifying the fairness guaran-

tees attained on the original data (X,A, Y ) when only pri-
vate noisy data (X, Ã, Y ) (as used by SFS-PATE) is used.
Quantity Pr(Ã = a), however, may be difficult to compute,
due to the noisy voting process. The next result allows us to
compute ↵

0 as a function of quantity Pr(A= a) only, which
is independent from the noisy process and can be computed
empirically from the data, in non-restrictive settings.

Corollary 1. When the probability of A belonging to any
class a 2 [m] is at least ⌘A (i.e., Pr (A = a) > ⌘A, 8 a 2
[m]), the fairness bound ↵

0 can then be given by

↵
0 =

2⌘ ·B
min
a2[m]

Pr (A = a) · (Pr (A = a)� ⌘)
+ ↵ .

The appendix in [Tran et al., 2022] also provides a result
(described in Theorem 3) to compare the fairness guarantees
achieved when the protected attributes Ã are computed us-
ing randomized response, which is the core process used by
the baseline and state of the art model M [Mozannar et al.,
2020]. This result shows that, when compared with the base-
line model M, SFS-PATE makes the privacy-preserving group
attributes Ã much closer to their original counterparts A un-
der the same privacy budgets. This aspect is also further dis-
cussed in the experiments (as emphasized in Figure 3).

5.2 Transfer Learning with Fair Teachers

SFS-PATE transfers privacy-preserving group attributes from
an ensemble of teachers to a fair student model. This sec-
tion introduces an SF-PATE variant that transfer (non-private)
fairness through the semi-supervised learning scheme. The
proposed algorithm, called SFT -PATE, trains a student model
from an ensemble of fair teacher models. Subscript T in the
algorithm’s name stands for “teachers” and emphasizes that
the fairness constraints are enforced by the teachers and trans-
ferred to the student during training.

The teachers transfer fairness properties via model predic-
tion to the student. The teachers ensemble T = {M(i)}Ki=1

is composed of pre-trained classifiers M(i) : X ! Y that are
non-private but fair over their training data Di. Each SFT -
PATE teacher solves an empirical risk minimization problem
subject to fairness constraint:

✓i = argmin
✓

X

(X,Y )2Di

L(M✓(Xi), Yi) s.t. ⇠(Di, h, ✓)  ↵.

Similar to SFS-PATE, the implementation uses the La-
grangian dual method [Fioretto et al., 2020] to achieve this
goal. This is again an important aspect of the SF-PATE frame-
work since, by relying on black-box fair (and not private)
algorithms, it decouples the dependency of developing joint
private and fair analysis. The student model M̄✓ : X ! Y
solves a standard empirical risk minimization:

min
✓

X

X2D̄

L (M✓(X), ṽY (T (X)) + �k✓ � ✓
⇤k22, (5)



where ✓
⇤ represents the student model parameters obtained

solving the standard classification task (without fairness con-
siderations) (P) on D̄ and the private voting scheme ṽY :
YK!Y reports the label Ỹ selected by the teachers:

Ỹ = ṽ(T (X)) = argmax
y2Y

{#y(T (X) +N (0,�2)}. (6)

SFT -PATE protects the privacy of the sensitive group infor-
mation A and of the labels Y when �=0. The reason comes
from the fact that when �=0, the student only utilize the pri-
vate class label ṽY (T (X) but not the true label Y , implicitly
encoded in ✓

⇤, to train the model. Thus, SFT -PATE can be
adopted in contexts where both the protected group and the
labels are sensitive information. Finally, note that the voting
scheme above, emulates the GNMAX framework proposed
in [Papernot et al., 2018], but the two have fundamentally
different goals: GNMAX aims at protecting the participation
of individuals into the training data, while SFT -PATE aims
at privately transferring the fairness properties of the teachers
ensemble to a student model.

SFT -PATE achieves (✏, �)-DP by introducing calibrated
noise on the counts of the predicted labels reported by the
teachers ensemble (see Appendix C).
Fairness analysis. The next results considers how well the
fairness properties of the ensemble are transferred to the stu-
dent model. They provides theoretical insights on the poten-
tial fairness violations induced by the voting mechanism ṽY .
For notational convenience, let B := supy2Y,y02Y h(y, y0)
denote the supremum of the fairness function h(·). Let Z be
the random vector (M(1)

✓ (X), . . . ,M(K)
✓ (X), Y ) while Za

the conditional random vector given the group label a 2 [m],
i.e., Za := (M(1)

✓ (X), . . . ,M(K)
✓ (X), Y ) | A = a.

The following theorem bounds the fairness violation of the
voting mechanism ṽY (T ) when the joint distributions of the
teachers ensemble and labels Y are roughly similar across
the different group classes. That is, for each group attribute
a 2 [m], the total variation distance between Z and Za is
bounded from the above by ⌘Y > 0, i.e.,

dTV(Z,Za) := sup
Sj⌦

|Pr (Z 2 S)� Pr (Za 2 S)|  ⌘Y ,

where ⌦ is used to denote the shared probability space.
Theorem 2. The voting mechanism ṽY (T ) is ↵

0 fair w.r.t.
(X,A, Y ) and h(·) with ↵

0 = ⌘Y ·B.

The result above shed light on the (non-restrictive) con-
ditions required for the ensemble votes to transfer fairness
knowledge accurately. The next corollary is a direct conse-
quence of Theorem 2 and provides a sufficient condition for
perfect fairness of the voting mechanism ṽY (T ).
Corollary 2. Suppose that the random vector Z is indepen-
dent of A, i.e., {Za}a2[m] and Z are identically distributed.
Then, the voting mechanism ṽY (T ) is perfectly fair (i.e., fair-
ness violation ↵ = 0) w.r.t. (X,A, Y ) and h(·).
These results are reassuring: informally speaking, they show
that SFT -PATE provides fairness guarantees that are “in-
versely propertional” to the predictive impact of the pro-

tected attributes. The experimental results presented sub-
sequently confirm that SFT -PATE achieves state-of-the-art
tradeoffs among accuracy, privacy, and fairness.

6 Experiments

This section evaluates the performance of the SF-PATE al-
gorithms against the prior approaches of [Tran et al., 2021b]
and [Mozannar et al., 2020], denoted by PF-LD and M, re-
spectively. They represents the state-of-the-art for learning
private and fair classifiers in the context studied in this pa-
per. In addition to assess the competitiveness of the proposed
solutions, the evaluation focuses on two key aspects that set
the proposed framework apart from existing methods. (1) It
shows that SF-PATE can naturally handle new fairness no-
tions, even when no viable privacy analysis exists about these
notions. (2) It shows that SF-PATE has a low computational
overhead compared to classical (non-private, non-fair) clas-
sifiers, rendering it a practical choice for the training of very
large models. These two properties are unique to SF-PATE
and make it to applicable to a broad class of challenging de-
cision tasks.
Datasets and settings. The evaluation is conducted using
four UCI tabular datasets: Bank, Parkinson, Income and
Credit Card [Blake, 1998], and UTKFace [Hwang et al.,
2020], a vision dataset. The latter is used to demonstrate the
scalability of SF-PATE when trained on very large models.
All experiments are repeated using 100 random seeds.
Models and hyperparameters. To ensure a fair compari-
son, the experimental analysis uses the same architectures,
model initialization ✓, and parameters for all models (includ-
ing the baselines models PF-LD and M). For tabular datasets,
the underlying classifier is a feedforward neural network with
two hidden layers and nonlinear ReLU activations. The fair,
non-private, classifiers adopted by the two SF-PATE variants
implement a Lagrangian dual scheme [Fioretto et al., 2020],
which is also the underlying scheme adopted by baseline
models. For vision tasks on the UTK-Face dataset, the evalu-
ation uses a Resnet 50 classifier. A more detailed description
of these approaches, the settings adopted, hyperparameters
optimization, and the datasets is deferred to Appendix D.

6.1 Accuracy, Privacy, and Fairness Trade-off

We now compare the accuracy, fairness, and privacy tradeoffs
of the proposed model variants SFS- and SFT -PATE against
the baseline models PF-LD and M on the tabular datasets.
Figure 2(a) illustrates the accuracy (top subplots) and fair-
ness violations ⇠(✓, h, D̄) (bottom subplots) when varying the
privacy loss ✏ (x-axis). The fairness notion adopted is demo-
graphic parity and additional results on other fairness metrics
and datasets are deferred to the Appendix (in [Tran et al.,
2022]), showing similar trends. The figures clearly illustrate
that both SF-PATE variants achieve better accuracy/fairness
tradeoffs for various privacy parameters. The property of re-
taining high accuracy with low fairness violation is especially
relevant in the tight privacy regime adopted (✏ < 2). Observe
that the figures y-axes have different scales.

First, notice that, consistently with previous work show-
ing that teachers ensemble models can outperform DP-SGD



(a) Demographic parity fairness on Credit
Card dataset

(b) Generalized demographic parity
fairness on Income dataset

(c) Accuracy parity fairness on UTK Face
dataset

Figure 2: Accuracy, privacy and fairness trade-offs for different fairness metrics and on different datasets.

Figure 3: Income data: Private group attributes accuracy.

based models in terms of accuracy [Uniyal et al., 2021],
all SF-PATE models typically outperform the FP-LD model
based on DP-SGD. Remarkably, both SF-PATE variants also
report lower fairness violations, for the fairness notions ana-
lyzed, indicating the strength of this approach.

Additionally, recall that both SFS-PATE and M generate
privacy-preserving group features and input them to a fair
model. However, in contrast to M, the model ensemble used
in SFS-PATE exploits the relationship between the sample
features X and its associated group information A to de-
rive more accurate private group information Ã. This re-
sults in student models which are often more accurate, and
fairer, than the baseline M. This result is further highlighted
in Figure 3, which reports the expected accuracy of the private
group attributes Pr(Ãi = Ai) produced by SFS-PATE for dif-
ferent sizes K of the ensemble and compares it with that ob-
tained by model M. Note the distinctive ability of the teachers
ensemble to generate high-quality privacy-preserving group
attributes Ã = ṽA(T (X)), especially under tight privacy
regimes. Additionally, increasing the ensemble size also en-
ables the teachers to transfer higher quality private group at-
tributes, which is a fundamental aspect to ensure fairness.

The second SF-PATE variant, SFT -PATE, which operates

by privately transferring the fairness knowledge from a teach-
ers ensemble to a student, is found to always outperform both
M and PF-LD on tabular datasets (see Figure 2(a) and Ap-
pendix D). Finally, the analysis also shows that the average
accuracy of the SF-PATE models is within 2% of their non-
private counterpart and brings up to an order of magnitude
fairness violation gains over existing methods. This is signif-
icant due to the challenging nature of the tasks.

6.2 Handling New Group Fairness Notions

The next results consider the ability of SF-PATE to handle
arbitrary fairness notions, even if a privacy analysis is miss-
ing, as long as a fair model can be derived. This feature stems
from the use of black-box (non-private but fair) models in SF-
PATE. This is in sharp contrast with state-of-the-art model
PF-LD, that requires the development of a privacy analysis
for each fairness property of interest, in order to calibrate the
amount of noise to apply in both primal and dual step. To
demonstrate this benefit, this section introduces a new fair-
ness notion, which generalizes demographic parity.
Definition 3 (Generalized demographic parity). requires the
distribution over the predictions of M to be statistically in-
dependent of the protected group attribute A. That is, 8a 2
A, ⌘ 2 [0, 1], Pr(M(X) � ⌘|A = a) = Pr(M(X) � ⌘).

This generalizes demographic parity, which states that
Pr (M✓(X) � 0.5 | A = a) = Pr (M✓(X) � 0.5). Gen-
eralized demographic parity is useful in settings where the
decision threshold (e.g., 0.5 above) might not be available at
the training time. Matching the distribution of score func-
tions (e.g., credit or income scores) among different groups
attributes guarantees demographic parity fairness regardless
of the decision threshold adopted. Such fairness constraint
can be implemented by equalizing different order statistics of
the score functions between group and population level:

E[M✓(X)h|A = a] = E[M✓(X)h] 8 a 2 [m], h 2 [H].



Dataset SFS-PATE SFT -PATE M PF-LD

Bank 14 13 31 116
Parkinson 8 8 17 31

Income 55 56 129 1234
Credit Card 30 31 76 575

UTK dataset 1669 1662 3248 N/A

Table 1: Runtime (in sec.) to achieve ✏ = 1.0 across different
datasets. Blue and red colors highlight the fastest and second-fastest
runtime, respectively. Ensemble size for SF-PATE models is 300.

The experiments H = 2 and the Lagrangian Dual method
of [Fioretto et al., 2020] to enforce these constraints during
training. Notice that it is highly non-trivial to derive a pri-
vacy analysis for such fairness notion–the PF-LD model only
does so for H = 1, and, thus, not viable in this setting.

Figure 2(b) reports the accuracy and fairness violations ob-
tained by the SF-PATE models and the baseline model M
which adopts, as a post-processing step, a non-private but fair
classifier. Fairness is evaluated in terms of the Wasserstein
distance between the score functions of different groups. The
smaller the distance the lower the fairness violation. The plots
clearly illustrates the advantages of SF-PATE in terms of both
accuracy and fairness when compared to model M. Remark-
ably, the fairness violations reported by SF-PATE are often
significantly lower than those reported by model M for vari-
ous privacy loss parameters ✏.

These results are significant from an engineering stand-
point: the development of private and fair analysis is complex
and SF-PATE immediately lowers the accessibility barrier for
non-privacy experts to develop private and fair ML models.

6.3 Computational Time and Scalability

The last results demonstrate another key benefits of SF-PATE:
its ability to scale to large data and perform well on very deep
networks. These experiments use a ResNet 50 (> 23M pa-
rameters) and PF-LD was unable to train even a single epoch
(in 1h) due to its use of computational expensive per-sample
gradient clipping performed during training. This renders
such model unusable for many realistic settings. The com-
parison thus focuses on SF-PATE and M.

Figure 2(c) shows the accuracy and fairness trade-off for
different privacy values ✏. The models enforce accuracy par-
ity and the figure shows that both versions of SF-PATE sig-
nificantly improve accuracy compared to model M, while also
maintaining similar or even reducing fairness violations. For
additional results see Appendix D.

Table 1 shows the training time required for the algorithms
to create a private model (with ✏ = 1.0) on the benchmarks
set. Notice the significant training time differences across the
models with SFS-PATE being up to three times faster than M
and up to two orders of magnitude faster than PF-LD.

These results show that SF-PATE can become a practical
tool for private and fair ML especially for large, overparam-
etetrized models and under stringent privacy regimes.

6.4 Discussion and Limitations

While the previous section highlighted the advantages of the
proposed framework over existing models, this section sheds

light on key elements and usage guidelines for SFS- and
SFT -PATE. While both SF-PATE variants rely on the same
framework, they diverge in the fairness enforcing mechanism.
SFS-PATE delegates this to its student while SFT -PATE to
its teachers. Notice that, by training an ensemble of fair
teachers, SFT -PATE is able to transfer fairness knowledge di-
rectly which, as observed in the experiments, often results in
smaller fairness violations than those attained by SFS-PATE.
This is notable, especially in the case of “complex” fairness
constraints; i.e., when multiple concurrent constraints are to
be enforced, as in the case of generalized demographic par-
ity which imposes multiple order moments matching. Being
treated as soft penalty functions, these constraints are added
to the original empirical loss function (see Problem (2)). SFS-
PATE adds noise to each constraint terms (e.g., those rep-
resented by the constrains in (2b)) since the private voting
scheme affects the accuracy of the constraints. In contrast,
SFT -PATE adds noise only to the original loss term (e.g., the
first term of (2a)) because the voting scheme acts on the labels
Y and not the protected groups A and fairness is enforced by
the teachers.

A shortcoming of the SFT -PATE algorithm, however, is
that it has to enforce fairness in each teacher model. Thus,
one has to ensure that enough data (with large enough repre-
sentation from all the protected groups) is assigned to each
teacher. On the other hand, by training a single fair model
(the student) SFS-PATE avoids such potential issue.

It is also worth noting that a limitation of all ensemble
models, including those proposed in this work, is the need
to store a model for each of the K teachers. This, however,
also represents an opportunity for future research to develop
effective model storage and pruning techniques that minimize
the loss in accuracy and fairness while retaining privacy.

7 Conclusions

This paper proposed a framework to train deep learning mod-
els that satisfy several notions of group fairness while ensur-
ing that the model satisfies differential privacy for the pro-
tected attributes. The proposed framework, called Scalable,
Fair, and Private Aggregation of Teacher Enseble (SF-PATE)
transfer fairness knowledge learned from a pretrained ensem-
ble of models to a target model via a privacy-preserving vot-
ing process. The paper analyzes the fairness properties of
SF-PATE and shows that unfairness can be bounded in many
practical settings. An important property of SF-PATE is to al-
low the adoption of black-box (non-private) fair models dur-
ing the knowledge transfer process, which may simplify the
development and boosts the adoption of new fairness metrics
in privacy-preserving ML.

Finally, evaluation on both tabular and image datasets
shows not only that SF-PATE achieves better accuracy, pri-
vacy, and fairness tradeoffs with respect to the current state-
of-the-art, but it is also significantly faster. These properties
render SF-PATE amenable to train large, overparameterized,
models, that ensure privacy, accuracy, and fairness simul-
taneously, showing that it may become a practical tool for
privacy-preserving and fair decision making.
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This research aims to address the ethical concern of building
models that do not discriminate against certain demographic
groups by studying a model that protects the privacy of indi-
viduals’ sensitive information while also allowing it to learn
non-discriminatory predictors. The proposed model allows
the use of existing fair models to create a privacy-preserving
and fair model, and it is designed to be scalable and accu-
rate for very large neural networks. The paper analyze the
relationship between accuracy, privacy, and fairness and eval-
uate the benefits of the proposed model on various prediction
tasks. Overall, this research aims to promote ethical and fair
practices in data-driven processes by finding ways to balance
privacy and fairness concerns.
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