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Abstract—The integration of uncertain photovoltaics (PVs) and
flexible loads leads to uncertainties in the power system dynamic
simulation results. Furthermore, geographically close PV farms
are correlated and may exhibit nonlinear correlations. This article
proposes a copula-based sparse polynomial chaos expansion (PCE)
framework for quantifying the impacts of uncertain dynamic PVs
and loads on power system dynamic simulations and stability. The
dynamics include both PV and load stochasticity and those gov-
erned by differential and algebraic equations. The copula statistics
are utilized to accurately characterize the dependence structure of
PVs and further used to develop the copula-PCE for quantifying
the impacts of uncertain PVs and loads. A probabilistic TSI is
also developed to assess the uncertainties from PVs and loads on
the system stability. To address the cases, where both stable and
unstable conditions coexist, a preprocessing step via sample classi-
fication is proposed. The effects of different dependence structures
of PVs and different numbers of uncertain sources are investigated.
Comparison results with other methods on the modified IEEE 39-
and 118-bus systems, including the Monte Carlo method, Latin
hypercube sampling, and traditional PCE without consideration
of uncertain input correlations show that the proposed method is
able to accurately quantify the uncertain dynamic simulations and
transient system stability while being computationally efficient.

Index Terms—Copula statistics, dynamic photovoltaics (PVs),
nonlinear correlations, polynomial chaos expansion, power system
dynamics, uncertainty quantification.

NOMENCLATURE

Abbreviations

DERs Distributed energy resources.

LHS Latin hypercube sampling.
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MAPE Mean absolute percentage error.

MC Monte Carlo.

MCS Monte Carlo simulation.

PCE Polynomial chaos expansion.

PDF Probability density function.

PV Photovoltaic.

RT Rosenblatt transformation.

TSI Transient stability index.

Power System Dynamics

ξ Uncertain resources.

u System input.

x Dynamic state variables.

y Algebraic state variables.

δmax Maximum rotor angle difference between genera-

tors.

M Dynamic model.

t Simulation time.

PCE and Copula

λ Regularization parameter.

µs Mean value of model response in stable case.

µus Mean value of model response in unstable case.

ω Quadrature weights.

Ψ PCE basis.

σ2
s Variance of model response in stable case.

σ2
us Variance of model response in stable case.

a PCE coefficient.

d Input dimension.

Fk Joint cumulative distribution function of k.
Fk|1,...,k−1 this.

n PCE degree.

X Model output.

Z Model input, decoupled uncertain resources.

I. INTRODUCTION

T
HE uncertainties from dynamic loads and distributed en-

ergy resources (DERs), such as photovoltaics (PVs) can be

propagated through dynamic models, leading to uncertainties

in power system dynamic responses. These uncertainties, if

not properly quantified, would result in a wrong judgment on

power system stability, and consequently, improper preventive

controls. The PV and load dynamics mean that they are governed

by differential and algebraic equations. This is different from the
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stochasticity from PVs and loads that are affected by changing

weather conditions or load variations. The necessity of quantify-

ing and monitoring such uncertainty motivates the investigation

for appropriate quantitative measures that can provide statistics

information of model responses.

To quantify the uncertainties from dynamic PVs and loads on

the power system dynamic simulations, analytical methods have

been proposed [1]–[3]. They are based on model linearization,

simplification, and abstraction. These approximations may lead

to unexpected errors. A more traditional way of quantifying

the impacts of uncertain sources on power system dynamic

responses is to use the Monte Carlo simulations (MCS) and its

enhanced variants [4]–[7]. However, the high computational cost

of MCS hinders its application on practical large-scale systems

with a large number of uncertain loads and DERs. It is, therefore,

important to develop computationally efficient alternatives. Tak-

ing the Latin hypercube sampling (LHS), for example, it needs

a smaller dataset to obtain a reasonable accuracy as compared

to the MCS but has computational difficulties for larger-scale

systems. Indeed, the consideration of dynamic PVs and loads

significantly increases the complexity of the model, and thus,

LHS is subject to heavy computational burden. Another way is

to perform analysis on the response of interest [8]–[10]. In [8],

the method of moments (MoM) and automatic differentiation

are leveraged to quantify the uncertainty propagation of states

and parameters in dynamic simulations by propagating the first

few moments. But the estimates of MoM may be insufficient

due to moment closure problem and the computational effi-

ciency is limited. As a widely used tool for dynamic system

analysis, the trajectory sensitivity analysis has been applied to

power system dynamic simulation [9] and dynamic security

assessment [10]. Yet, the trajectory sensitivities are calculated

based on partial derivatives, and therefore, it is insufficient

when severe nonlinearity of the system exists. The surrogate

modeling method is also an option as the statistics of the output

of interest can be estimated; for example, the stochastic aver-

aging [11]. Second-order Taylor series and third-order normal

form approximations are developed in [9] and [12]. In [13],

Kalman filter and unscented transformation are employed to

provide an estimation of the distribution of the transient stability

margin. The shortages of unscented transformation include high

computational burden due to Cholesky factorization at every step

and Gaussian noise assumption. Polynomial chaos expansion

(PCE) and the related stochastic collocation methods can yield

the corresponding statistical information from their coefficients

for uncertainty quantification. The existing PCE-based methods

applied in power system dynamics [14], [15] consider only

independent input variables but the power injections from PVs at

geographically close locations are usually correlated [16]. The

correlations between uncertain inputs can significantly affect the

power system dynamic process and have not been considered

in the literature. Furthermore, they are unable to deal with the

cases, where the uncertainties may lead to simultaneous stable

and unstable system responses with different probabilities.

This article extends our previous work on using PCE for

probabilistic analysis [17], [18] to power system dynamic

simulations and develops the probabilistic transient stability

index (TSI) to assess the uncertainties from dynamic PVs and

loads on the system stability. The key idea is to leverage the

copula statistics to capture the nonlinear correlations among

uncertain dynamic PVs and loads so that the sparse PCE can be

extended for uncertainty quantification of dynamic simulations.

A preprocessing strategy is also developed for handling the

coexistence of stable and unstable cases in the probabilistic

transient stability assessment. It has the following contributions.

1) It can quantify the uncertainty propagation during power

system dynamic simulations considering different uncer-

tain input distributions and correlations, including both

linear and nonlinear correlations. The copula-PCE for

probabilistic power flow [17] has been extended to deal

with dynamic equations. We transform the dynamic pro-

cess into uncertainty quantification for each time step.

This allows us to take advantage of the static copula-PCE

formula and to calculate the confidence intervals of power

system dynamic responses at each time instant. A sparse

version of copula-PCE is also developed to further in-

crease computational efficiency.

2) As compared to [18], this work can handle stable and

unstable conditions as well as the coexist of stable and

unstable scenarios caused by uncertain inputs. This is

achieved via a preprocessing strategy, where the dynamic

responses are categorized into stable and unstable condi-

tions based on the TSI. Then, PCE models are constructed

for them, respectively, to calculate the statistics of dynamic

model responses. This is very important to accurately cal-

culate the probabilistic TSI and quantify the probabilities

of being stable and unstable, respectively.

3) Existing PCE approaches for power system dynamic sim-

ulations have neglected the dynamics from dynamic loads

and PVs [18]. Our proposed approach is general to deal

with them efficiently.

4) Comparison results with MCS, LHS, and traditional PCE

without consideration of uncertain input correlations show

that the proposed method is able to accurately quantify

the uncertain dynamic simulations and transient system

stability while being much more computationally efficient.

It is also shown that when the dynamics of PVs and

loads are considered, LHS and MCS have significantly

increased computational burden, which is not the case for

our proposed method.

The rest of this article is organized as follows. Section II shows

the problem statement. Section III presents the proposed frame-

work and its implementation. Section IV shows the simulation

results, and finally, Section V concludes this article.

II. PROBLEM STATEMENT

The power system dynamic model with uncertain loads and

PVs can be expressed by the following stochastic differential

and algebraic equations (DAEs) [15]:

{
ẋ = f(x,y,u, ξ)
0 = g(x,y, ξ)

(1)

where f(·) and g(·) are vector-valued functions; x and y,

respectively, denote the dynamic state vector and the algebraic

state vector containing algebraic variables, such as bus voltage
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magnitudes and angles; u is the system input; and ξ is a random

vector that represents all uncertain resources. In this article, the

uncertainties come from power injections of flexible loads and

uncertain PVs, resulting in uncertain power system dynamic

simulations.

This article aims to investigate the impacts of uncertain dy-

namic loads and PVs on power system dynamic simulations and

transient stability. Let the relationship between random vector ξ

and model response

x(t) = M(ξ, t) (2)

where ξ represents uncertainties from loads and PVs; x in-

cludes generator dynamic variables, such as rotor speeds and

angles that are used for transient stability assessment. The target

is to quantify the uncertainty propagation from ξ to x through

the nonlinear model M derived from DAEs. By quantifying

the uncertainty propagation through the power system dynamic

model, the statistics of model responses can indicate how the

variability of uncertain resources affects the system dynamics.

The detailed information, such as upper and lower bounds

of dynamic responses can be used for stability analysis and

control.

The most widely used method is the MCS, where a large

number of samples are drawn from probability distribution of

ξ. For each sample, the power system dynamic simulation is

performed to obtain the path of the desired model response.

Based on all sample responses, the statistics, such as mean

and variance are computed. However, MCS is computationally

inefficient for a large-scale system with a large number of

uncertain inputs. Furthermore, geographically close uncertain

PVs are correlated, exhibiting even nonlinear correlations [16].

The existing works do not consider the impacts of nonlinear

correlations on stochastic dynamic simulations. Furthermore,

there is a lack of research in quantifying the probabilities of

losing stability when uncertain sources may lead to both stable

and unstable scenarios. This article proposes a copula-based

sparse PCE framework to deal with these challenges with a high

computational efficiency.

III. PROPOSED DYNAMIC SIMULATION UNCERTAINTY

QUANTIFICATION FRAMEWORK

The proposed framework contains uncertain source distri-

bution and dependence structure inference, PCE model con-

struction, dynamic simulation uncertainty quantification, and

probabilistic stability index calculation. They are shown as

follows.

A. PCE for Dynamic Simulation Uncertainty Quantification

PCE is a widely used approach for uncertainty quantification

in different domains [19]. By representing random variables

or processes in terms of orthogonal polynomials, PCE is able

to provide analytical calculations of model response statistics.

It should be noted that, unlike the static problem, the model

responses for dynamic systems are time-dependent, and as a

result, the statistics of model responses evolve as a function of

time.

To this end, a set of orthogonal polynomials are adapted with

respect to the changing statistics. The aforementioned desired

model response shown in (2) can be represented by a polynomial

function of ξ by the following expansion [20]:

x(t) =

∞∑

i=1

ai(t)Ψi(ξ) (3)

where ξ∈Rd is uncertain input vector, Ψi and ai(t) denote the

orthogonal basis and its corresponding coefficient with respect

to ξ. The orthogonal basis Ψi is constructed based on the

distributions of uncertain inputs. In practice, a truncation is often

performed on (3), yielding [20]

x ≈

Np∑

i=1

ai(t)Ψi(ξ) (4)

where Np=(d+ n)!/(d!n!)− 1; d is the number of random

variables; and n is the degree of the truncated polynomial

function. Classical univariate orthonormal polynomials for com-

monlybused distributions include Legendre polynomials for

Uniform distribution, Hermite for Gaussian, Jacobi for Beta,

etc. [19]. For arbitrary distributions, the orthogonal polynomials

are obtained using the Stieltjes procedure [19], which computes

the basis numerically through the recurrence relation between

bases. Based on that, the multivariate polynomials are then

constructed as the tensor product of these univariate compo-

nents. Basis truncation can be further applied to reduce the

computational burden by excluding basis terms that are less im-

portant [21]. Subsequently, the PCE coefficient calculation can

be achieved via the projection method or regression method [21].

The Gaussian quadrature-based projection method computes the

polynomial coefficients following the definition of PCE and the

orthogonality property of polynomial basis [21], i.e.,

ai(t) =

∫

Ωξ

M(ξ, t)Ψ(ξ)f(ξ) dξ

≈
N∑

n=1

ω(n)M(ξ(n), t)Ψi(ξ
(n)) (5)

where a set of weights ω(n) and quadrature points ξ(n) are

derived from Lagrange polynomial interpolation; f(·) is the

probability distribution of uncertain input; M(ξ(n), t) repre-

sents the desired realizations from the power system dynamic

simulation. The numerical evaluation of integrals requires a set

of N collocation points and the corresponding model responses.

Regression method, on the other hand, computes the coefficients

by minimizing the following objective function:

â(t) = argminE[(xT
Ψ(ξ)−M(ξ, t))2]. (6)

To deal with high-dimensional input, the sparse techniques can

be used [21]. This article adopts the least angle regression

algorithm by introducing a regularization term

â(t) = argminE[(xT
Ψ(ξ)−M(ξ, t))2] + λ ‖x‖ . (7)
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As one of the advantages, the statistics of the PCE model outputs

are embedded in its coefficients. In particular, the mean and the

variance of PCE for each timestep can be estimated as

E[x(t)] = a0 var[x(t)] =

Np∑

i=1

a2
i (t)E[Ψ2

i ]. (8)

Note that E[Ψ2
i ]= I for the orthonormal basis. Such estimation

is much more efficient than calculating them from sampling-

based approaches, such as MCS. Once the PCE model is con-

structed, the statistical information estimates (mean and vari-

ance) can be analytically calculated from PCE coefficients. This

analytical calculation is based on the orthogonality of the PCE

basis, and thus, is very fast.

B. PCE Considering Correlated Uncertain Inputs

The conventional way of constructing PCE basis requires that

the random vector ξ is independent and its distribution is known.

However, the distributions of uncertain inputs are generally

unknown and it is found that the geographically close PVs

have correlations, even exhibiting nonlinear correlations [16].

Specific modifications are required to maintain the orthogonality

property when constructing the PCE model. To deal with

unknown distributions as well as nonlinear correlations among

uncertain inputs, copula statistics and Rosenblatt transformation

(RT) are integrated. Specifically, copula is employed to infer the

distribution of uncertain inputs and their dependence structure,

while RT is utilized to establish the transformation of dependent

input to independent one. This allows the PCE to preserve

orthogonality condition for analytical estimate calculation.

Copula statistics have the ability to capture the complex

dependence structures among random variables [22]. The repre-

sentation for multivariate distribution is general and flexible by

defining the marginals and the copula types that describe how

the marginals are coupled. According to Sklar’s theorem, for a

d-dimensional continuous random variable ξ = [ξ1, .., ξd] with

marginals F1, . . . , Fd and joint cumulative distribution function

(CDF), Fξ, there exists a copula function C satisfying

Fξ(ξ1, . . . , ξd) = C(F1(ξ1), . . . , Fd(ξd)). (9)

The conditional distribution function is calculated by [23]

Fj|A(ξj |ξA) =
∂Cj,i|A\{i}(F (ξj |ξA\{i}), F (ξi|ξA\{i}))

∂F (ξi|ξA\{i})
(10)

where j∈A, i∈D\A; A denotes a subset of indices D=
{1, . . . , d} and A\{i} denotes excluding ith component; Fj|A is

the CDF of the random variable ξj conditioned on ξA; andCj,i|A

represents the copula function of the jth component given A.

Canonical vine (C-vine) copula is utilized to tackle input vector

with high dimensions [22].

Upon the construction of copula structure, RT is established,

where the dependent random vector ξ is first transformed into

independent ones z via

RT : ξ → z =

⎧
⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

F1(ξ1)
. . .
Fk|1,...,k−1(ξk|ξ1, . . . , ξk−1)
. . .
Fd|1,...,d−1(ξd|ξ1, . . . , ξd−1)

(11)

where Fd|1,...,d−1 is the CDF of the conditioned random variable

ξd|ξ1, . . . , ξd−1.

In this way, PCE constructs the model of the relationship

between z and model response X that captures the nonlinear

dependence while maintaining the orthogonality of basis. Simi-

larly, new inputs ξ̂ should be first transformed into ẑ and further

leveraged by PCE for model response prediction and uncertainty

quantification.

C. Handling Coexistence of Stable and Unstable Scenarios

When the system is operated under stressed conditions or

subject to large disturbances, the perturbations on DAE state

initialization caused by uncertainties from dynamic loads and

PVs can lead to stable, unstable, and coexistence of stable and

unstable scenarios with different probabilities. Since the patterns

for absolute stable and unstable scenarios are quite different, it

is not feasible to use one PCE model to capture the coexistence

of stable and unstable scenarios, which will be shown in the

numerical results section.

To address that, a data processing strategy is proposed for

the samples generated from inferred PDFs of uncertain inputs.

In particular, a number of samples obtained by LHS are first

generated. Then, these samples are propagated via the power

system DAEs to get corresponding responses. If the TSI is

beyond a preset value, the corresponding sample will be claimed

as unstable. Detailed explanations are shown in the next subsec-

tion. This means that a simple classification of the samples with

boundary via k-means algorithm or support vector machine can

be used to classify the samples into stable and unstable cases.

Then, two PCE models are constructed separately using stable

and unstable samples for uncertainty quantification. Note that

when the system is absolutely stable or unstable, only one PCE

model is needed.

D. Probabilistic TSI

An immediate application of uncertainty quantification for

power system dynamic simulations is the probabilistic assess-

ment of transient stability. This is critical especially for the case,

where both stable and unstable scenarios exist. By providing

the probability for losing the system stability to the operator,

an enhanced system situational awareness can be achieved. For

example, if the system is found to have a low probability of losing

stability due to uncertain loads and PVs, the system operator may

not want to redispatch the generators with increased costs as the

risk is low. By contrast, if the probability of losing instability

is high (depending on the threshold set by operators), they have

to make preventive control plans via generation redispatch or

load shedding. The probabilistic TSI allows the operator to have
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Fig. 1. Proposed copula-based PCE to quantify the uncertainties of power
system dynamic simulations with correlated uncertain inputs, where µs and σ2

s

are the mean and variance of the generator rotor angles under the stable cases.
While µus and σ2

us
denote the mean and variance of the generator rotor angles

under system instability cases.

enhanced situational awareness and balance the tradeoff between

system risk and costs.

A widely used TSI [25] is

TSI = 100 ×
360 − δmax

360 + δmax

(12)

where δmax is the maximum rotor angle difference between

any two generators. When TSI > 0, the system is transient

stable, while TSI < 0 means system unstable. The boundary is

TSI = 0. Note that the increase of TSI reflects transient stability

enhancement and vice versa. Note that the uncertain PVs and

loads are the inputs to the model, and generator rotor angles are

the model output for stability assessment. The uncertainties of

dynamic PVs and loads will be propagated to generator rotor

angles through DAEs. The stability assessment is based on

the generator rotor angles, and thus, the impacts of uncertain

dynamic PVs and loads are considered.

With the constructed PCE model x(t) = M(ξ, t), we can

sample ξ via Latin hypercube sampling approach to obtain a

series of generator rotor angle responses, which are used to

calculate the corresponding δmax and TSI. Then, a nonparametric

inference method based on a kernel density estimator is used to

infer the closed-form univariate PDF of TSI, i.e.,

f̂ (TSI) =
1

mh

m∑

i=1

K

(
TSI − TSIi

h

)
(13)

wherem is the number of samples; h is the bandwidth parameter

that can be obtained via 1.06σm−0.2 [26] and σ is the estimated

sample standard deviation; and K is a nonnegative kernel

function, i.e., standard Gaussian kernel here.

E. Algorithm Implementation

The proposed method is shown in Fig. 1 and the main steps

for the proposed method implementations are as follows.

1) Step 1: Inference of the uncertain input distribution

and complicated correlation relationships using copula

statistics.

2) Step 2: Perform dynamic simulation based on the inputs

sampled from the inferred probability distribution in Step

1 and classify the response samples into two groups, i.e.,

stable and unstable.

3) Step 3: Construct PCE basis with RT (11), and then,

calculate PCE coefficients based on samples from Step

2 using the regression method as shown in (6).

4) Step 4: The analytical form of statistics of model responses

can be directly obtained via (8). The statistical information

of both stable and unstable cases can be obtained from its

coefficients thanks to the orthogonality of the polynomial

basis.

5) Step 5: Probabilistic TSI calculation and PDF estimation.

Remark: The proposed method infers the probabilistic dis-

tribution of uncertain inputs considering nonlinear correlations

and develops the sparse PCE to construct a reduced model of

the complex physical model. This leads to the following two

advantages:

1) reduced number of sampling requirements;

2) speed up the simulation for each sample due to reduced

model.

IV. NUMERICAL RESULTS

Simulations are conducted on both IEEE 39-bus and 118-bus

systems with PVs. Each synchronous generator is assumed to

be the two-axis model equipped with the IEEE-DC1A exciter

and the TGOV1 turbine governor. The DAEs for the genera-

tor mode are shown in the Appendix. The parameters of the

generator model can be found in [24]. For the 39-bus system,

a three-phase fault is applied at bus 16 at 0.5 s and is cleared

after ten cycles by opening line 16–24. The uncertain sources

are flexible loads and PVs, and the rotor angles and speeds are

selected as dynamical model responses. Three approaches are

compared, i.e., LHS, PCE used in [15] without consideration of

input correlations, and the proposed method, termed as CoPCE.

All simulations are performed using MATLAB with 2.60-GHz

Intel Core i7-6700HQ. In the simulations, loads and PVs are

assumed to follow certain distributions with means being the

original values and standard derivations being a certain portion

(uncertainty level) of means. The performance for the uncertain

information estimation is evaluated using the mean absolute

percentage error (MAPE), of which the general formula is

MAPE =
1

T

T∑

i=1

∣∣∣∣∣
θ∗
i − θ̂i

θ∗
i

∣∣∣∣∣× 100% (14)

where θ∗
i and θ̂i represent the true and estimated values at

time step i for all generators, respectively. More specifically,

MAPEs of the mean and variance over the entire simulation

time range are utilized as error indices, denoted as eµ and eσ2 .

The rotor angles have been widely used for transient stability

assessment. As shown in (12), the rotor angle determines the

stability condition. Due to the space limitation, we could not

show all rotor trajectories for all generators and δ2−1 (the rotor

angle of generator 2 with respect to reference generator 1) is

used as an example for illustration purposes. The benchmark is
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TABLE I
DISTRIBUTIONS OF LOADS AND PVS WITH LINEAR CORRELATIONS

FOR SCENARIOS 1 AND 2

Fig. 2. Single line diagram of the IEEE 39-bus system with PVs.

obtained based on MCS with 10 000 samples. The number of

samples for the LHS method is 3000.

A. Impacts of Uncertain Inputs With Linear Correlations

This section investigates the impacts of uncertain PVs with

linear correlations on rotor angle responses. Loads are assumed

to be independent because they are geographically far in the

transmission systems. The system is stable in all investigated

scenarios. The detailed information of inputs is listed in Table I.

For scenarios 1 and 2, uncertain resources include three loads

and three PVs at buses 12, 15, and 16 and 13, 14, and 15,

respectively; see Fig. 2. For the PCE method, the degree of

expansion is set to be n=2 and the coefficients are calculated

using the regression method with Nt=100 samples of rotor

angle trajectories. The results of rotor angle δ2−1 obtained from

MCS are shown in Fig. 3 for illustrations, where upper and lower

bounds are obtained using 3σ rule. It can be observed that the

trajectories scatter with different degrees of aggregation and the

uncertainties from inputs can lead to quite different dynamic

responses of the system. The comparisons results for different

methods under scenarios 1 and 2 are displayed in Figs. 4 and

5. It can be found that the presence of different levels of linear

correlation will affect the system responses. In particular, the

variance for the response has been increased for the higher

correlation scenario. Furthermore, the PCE model that ignores

PVs correlations yields much larger errors as compared to other

Fig. 3. Upper and lower bounds of rotor angle δ2−1 in Scenario 1.

Fig. 4. Estimated variance of δ2−1 by different methods for Scenario 1.

TABLE II
COMPARISON RESULTS AMONG DIFFERENT METHODS FOR SCENARIOS 1 AND 2

methods. CoPCE achieves similar performance as the bench-

mark MCS and outperforms LHS by around 1%. According to

Table II, CoPCE has a much higher computational efficiency

than LHS and MCS, i.e., CoPCE obtains 15 times faster than

MCS and two times faster than LHS.

As demonstrated in Section III-A, the choice of PCE degree

can affect both efficiency and accuracy. If the degree is increased

to n=3, the error eσ2 will drop off from 1.06% to 0.89%.

However, the CPU time will increase from 14.42 to 20.56 s.
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Fig. 5. Estimated variance of δ2−1 by different methods for Scenario 2.

Fig. 6. Estimated PDF of TSI by different methods for Scenario 3.

Hence, the degree 2 is chosen for the experiments. For stable

cases on the 39-bus system, Fig. 6 shows the estimated PDF of

TSI. This confirms that all cases are stable and the TSI values

are large, indicating a large stability margin.

B. Impacts of Uncertain Inputs With Nonlinear Correlations

This section investigates the impacts of nonlinear correlations

of PVs on the dynamic responses. The number of inputs and their

corresponding distributions for Scenarios 3 and 4 are the same

as those in Scenarios 1 and 2. In Scenario 5, there are six loads

and six PVs located at buses 12, 15, 16, 18, 21, and 23 and 13–17

and 19, respectively. The dependence structures for Scenarios

4–6 are described by C-Vine copula [22] and their types and

parameters are shown in Table III. The parameters for LHS and

PCE models are unchanged. Figs. 7 and 8 show the results

for Scenarios 3 and 4, respectively, where copula is utilized

to describe the nonlinear dependence among PVs. It can be

found that the traditional PCE model is inadequate for handling

nonlinear correlations among uncertain inputs as it yields rather

large estimation errors. When the degree of nonlinear correlation

increases, i.e., scenarios 3 and 4, the variance for the response

also increases. The reason is that with an increased degree of

TABLE III
NONLINEAR CORRELATIONS OF PVS FOR SCENARIOS 3–7

Fig. 7. Estimated variance of δ2−1 by different methods for Scenario 3.

Fig. 8. Estimated variance of δ2−1 by different methods for Scenario 4.

nonlinear correlations, the dynamic interactions among uncer-

tain inputs are increased, leading to a more complicated dynamic

system model response. The proposed CoPCE still achieves very

high accuracy as compared to the benchmark MCS but is much

more computationally efficient; see Table IV. When the number

of uncertain inputs is further increased in Scenario 6, the variance

of model response becomes larger; see Fig. 9. This is expected
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TABLE IV
COMPARISON RESULTS OF SCENARIOS 3–5

Fig. 9. Estimated variance of δ2−1 by different methods for Scenario 5.

since more uncertainties in the inputs, more uncertainties oc-

cur for the model responses. The proposed CoPCE is able to

accurately quantify that with a high computational efficiency.

C. Coexistence of Stable and Unstable Cases

This section aims to show that the proposed method can deal

with the case, where stable and unstable cases coexist due to

the uncertain inputs, i.e., Scenario 6. The parameter settings of

uncertain inputs are the same as Scenario 3 but with different

fault duration. As fault duration increases, the system tends to be

unstable. Specifically, the fault duration is extended to 15 cycles

and the system loading level is increased. The parameters for

LHS and PCE methods are unchanged. The results are shown in

Fig. 10 and it is very interesting to notice that due to uncertain

inputs, both stable and unstable cases occur. In this case, a single

PCE model is insufficient to capture the features of two kinds of

trajectories. This justifies the development of the preprocessing

strategy, where the trajectories are first classified into stable and

unstable cases. One PCE model is constructed for each case. This

is feasible because the statistical information of model response

is inherent in PCE coefficients.

The PDF of TSI is shown in Fig. 11 and it can be observed that,

in most cases, the TSI is larger than 0, while in some cases, the

Fig. 10. MCS results of δ2−1 where both stable and unstable cases coexist.

Fig. 11. Estimated PDF of TSI by different methods for Scenario 6.

Fig. 12. Estimated variance of δ2−1 by different methods for stable cases.

system is unstable, i.e., TSI value being less than 0. This provides

critical information for enhancing system operators’ awareness

of the system instability risk and its degree. It is worth noting

that the original PCE cannot handle the coexistence of stable

and unstable scenarios if the proposed classification strategy is

not used. Figs. 12 and 13 and Table V demonstrate that the
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Fig. 13. Estimated variance of δ2−1 by different methods for unstable cases.

TABLE V
COMPARISON RESULTS OF DIFFERENT METHODS UNDER SCENARIO 6

proposed CoPCE method can obtain excellent results for stable

and unstable cases. For stable cases, the trajectories become

rather complicated. After about 3 s, PCE models suffer from

performance degradation. This is because the model that needs to

be approximated becomes more complicated and the approxima-

tion error continuously accumulates as the simulation proceeds.

In addition, for unstable cases, it is even more challenging to

quantify. The main insight from this section is that the proposed

method allows quantifying both stable and unstable cases while

achieving the highest computational efficiency among all other

methods.

D. Scalability to the Larger Scale System

The proposed method is also conducted on the modified IEEE

118-bus system with 30 uncertain inputs to test its scalability.

As Scenario 7, the 30 uncertain sources include 15 loads and 15

PVs located at buses [11, 12, 14, 44, 45, 46, 47, 49, 66, 75, 77,

78, 80, 94, 96] and buses [7, 11, 17, 43, 45, 47, 67, 68, 71, 81,

93, 94, 95, 96, 97], respectively. The rotor angle of generator

at bus 69 is selected for demonstration. The parameters of PCE

methods are the same as those in Section IV except the number

of observations for PCE is increased to Nt=300 due to a more

complicated system and increased number of uncertain inputs.

Total five PVs grouped at buses 93–97 are assumed to have

nonlinear correlations and the parameters of the copula function

are listed in Table III, i.e., Scenario 7. The simulation results

are shown in Fig. 14 and Table VI. It can be found from Fig. 14

that the variance of the output gradually converges and CoPCE

outperforms LHS and PCE. Table VI shows that CoPCE has

Fig. 14. Estimated variance of δ69−1 by different methods for Scenario 7.

TABLE VI
COMPARISON RESULTS OF DIFFERENT METHODS UNDER SCENARIO 7

Fig. 15. Estimated PDF of TSI by different methods for Scenario 7.

the best performance with the least CPU time. The reason that

CoPCE is faster than PCE might be the difficulties in getting the

regression coefficients during the model construction stage due

to the independent assumption of uncertain inputs. The TSI PDF

is presented in Fig. 15 and it can be concluded that the system

is stable as the proposed method shows the closest outcomes to

MCS.

E. Validations With Dynamic PVs and Loads

In the previous tests, loads are assumed to be constant

impedance, a widely used assumption for transient stability anal-

ysis. Since we are interested in electromechanical oscillations
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Fig. 16. Upper and lower bounds of rotor angle δ69−1 in Scenario 8.

Fig. 17. Estimated variance of δ69−1 by different methods for Scenario 8.

Fig. 18. Estimated PDF of TSI by different methods for Scenario 8.

(rotor angle stability), the fast dynamics of PVs are neglected.

To further validate the effectiveness of the proposed method in

handling dynamic loads and PVs, the composite dynamic load

model and the dynamic PV model in [28] are tested. Specifically,

the system is based on Section IV-D except that PVs and loads are

modeled with the dynamic model. The dynamic representation

TABLE VII
COMPARISON RESULTS OF DIFFERENT METHODS UNDER SCENARIO 8

of the PV model can be found in [28], while the composite

induction motor+ZIP dynamic load 20% induction motor is

used for loads. The dynamic responses of the rotor angle δ69−1

are shown in Fig. 16. As compared to the previous case, due

to the dynamic PV and loads, the system responses are more

complicated. Fig. 17 shows that the proposed method is able

to effectively dynamic PVs. It can be found that the variance

of rotor angle becomes larger, indicating a relatively larger

fluctuation. Fig. 18 displays the probabilistic TSI. It is clear that

the proposed method can still accurately quantify the system

stability. It is interesting to note that with more complicated

models, LHS has significantly reduced computational efficiency

than our proposed method; see Table VII. This signifies the

advantages of the proposed method over other sampling-based

approaches.

V. CONCLUSION

In this article, a copula-PCE framework is proposed to quan-

tify the uncertainties of power system dynamic results and

stability assessment caused by uncertain loads and PVs. The

impacts of linear and nonlinear correlations among PVs on the

system dynamic behaviors are also investigated. The copula

statistics are utilized to accurately characterize the dependence

structure of PVs and the copula-PCE is employed for uncertainty

quantification. To address the cases, where both stable and

unstable conditions coexist, a preprocessing step via sample

classification is proposed. The probabilistic TSI is developed and

its PDF is estimated via kernel estimator. Extensive comparison

results with MCS, LHS, and traditional PCE carried out on the

modified IEEE 39- and 118-bus systems show that the proposed

method is able to effectively deal with different uncertain input

distributions and correlations, coexistence of stable and unstable

cases, and dynamic PVs and loads while being computationally

efficient.

In our article, the uncertainties come from power injections

of uncertain loads and PVs and they belong to epistemic

uncertainty [29]. Since the proposed framework is general,

uncertainties from other sources can be handled as long as

they are modeled appropriately, which can be done by defining

proper input and output noise, measurement bias, model error,

or random behavior of the system. In our future work, we will

extend it to consider both aleatory and epistemic uncertainties.

Note that more uncertain sources mean a higher dimension

of input and larger computational cost. This may require the

development of better sparse PCE methods.
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APPENDIX A

MATHEMATICAL REPRESENTATION OF THE TWO-AXIS

GENERATOR MODEL

TABLE VIII
GENERATOR PARAMETER DATA [24]

The differential and algebraic equations of the ninth-order

two-axis generator model with IEEE-DC1A exciter and TGOV1

turbine-governor are represented as follows.

Differential Equations

T ′
do

dE ′
q

dt
= − E ′

q − (Xd −X ′
d) Id + Efd (15)

T ′
qo

dE ′
d

dt
= − E ′

d −
(
Xq −X ′

q

)
Iq (16)

dδ

dt
= ω − ωs (17)

2H

ωs

dω

dt
= TM − Pe −D (ω − ωs) (18)

TE

dEfd

dt
= − (KE + SE (Efd))Efd + VR (19)

TF
dVF

dt
= − VF +

KF

TE

VR −
KF

TE

(KE + SE (Efd))Efd

(20)

TA

dVR

dt
= − VR +KA (Vref − VF − V ) (21)

TCH

dTM

dt
= − TM + PSV (22)

TSV

dPSV

dt
= − PSV + PC −

1

RD

(
ω

ωs

− 1

)
(23)

where T ′
do, T ′

qo, TE , TF , TA, TCH , and TSV are time constants;

KE , KF , and KA are controller gains; Vref and PC are known

control inputs; E′
q , E ′

d, Efd, VF , VR, TM , and PSV are the q-

and d-axes transient voltages, field voltage, scaled output of the

stabilizing transformer and scaled output of the amplifier, syn-

chronous machine mechanical torque, and steam valve position,

respectively; Xd, X ′
d, Xq , and X ′

q are generator parameters; V
is the terminal bus voltage magnitude; and Id and Iq are the d-

and q-axes currents, respectively.

Algebraic equations

Vd = V sin (δ − θ) , Vq = V cos (δ − θ) (24)

Id =
E ′

q − Vq

X ′
d

, Iq =
Vd − E ′

d

X ′
q

(25)

Pe = VdId + VqIq, Qe = −VdIq + VqId (26)

where Vd and Vq are the d- and q-axes voltage magnitudes, and

θ is the terminal bus voltage phase angle; and Pe and Qe are the

active and reactive electrical power outputs, respectively. The

generator parameters are displayed in Table VIII.
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