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Stochastic Power System Dynamic Simulation and

Stability Assessment Considering Dynamics
From Correlated Loads and PVs
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Abstract—The integration of uncertain photovoltaics (PVs) and
flexible loads leads to uncertainties in the power system dynamic
simulation results. Furthermore, geographically close PV farms
are correlated and may exhibit nonlinear correlations. This article
proposes a copula-based sparse polynomial chaos expansion (PCE)
framework for quantifying the impacts of uncertain dynamic PVs
and loads on power system dynamic simulations and stability. The
dynamics include both PV and load stochasticity and those gov-
erned by differential and algebraic equations. The copula statistics
are utilized to accurately characterize the dependence structure of
PVs and further used to develop the copula-PCE for quantifying
the impacts of uncertain PVs and loads. A probabilistic TSI is
also developed to assess the uncertainties from PVs and loads on
the system stability. To address the cases, where both stable and
unstable conditions coexist, a preprocessing step via sample classi-
fication is proposed. The effects of different dependence structures
of PVs and different numbers of uncertain sources are investigated.
Comparison results with other methods on the modified IEEE 39-
and 118-bus systems, including the Monte Carlo method, Latin
hypercube sampling, and traditional PCE without consideration
of uncertain input correlations show that the proposed method is
able to accurately quantify the uncertain dynamic simulations and
transient system stability while being computationally efficient.

Index Terms—Copula statistics, dynamic photovoltaics (PVs),
nonlinear correlations, polynomial chaos expansion, power system
dynamics, uncertainty quantification.
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DERs Distributed energy resources.
LHS Latin hypercube sampling.
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MAPE Mean absolute percentage error.
MC Monte Carlo.

MCS Monte Carlo simulation.

PCE Polynomial chaos expansion.
PDF Probability density function.
PV Photovoltaic.

RT Rosenblatt transformation.

TSI Transient stability index.

Power System Dynamics

I3 Uncertain resources.

u System input.

x Dynamic state variables.
Y Algebraic state variables.

Omax Maximum rotor angle difference between genera-
tors.

M Dynamic model.

t Simulation time.

PCE and Copula

A Regularization parameter.

Lhs Mean value of model response in stable case.

Lhus Mean value of model response in unstable case.

w Quadrature weights.

v PCE basis.

o Variance of model response in stable case.
o Variance of model response in stable case.
a PCE coefficient.
d Input dimension.

Fy. Joint cumulative distribution function of k.
Fk\l,...,kfl this.

n PCE degree.

X Model output.

Z Model input, decoupled uncertain resources.

I. INTRODUCTION

HE uncertainties from dynamic loads and distributed en-
T ergy resources (DERs), such as photovoltaics (PVs) can be
propagated through dynamic models, leading to uncertainties
in power system dynamic responses. These uncertainties, if
not properly quantified, would result in a wrong judgment on
power system stability, and consequently, improper preventive
controls. The PV and load dynamics mean that they are governed
by differential and algebraic equations. This is different from the
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stochasticity from PVs and loads that are affected by changing
weather conditions or load variations. The necessity of quantify-
ing and monitoring such uncertainty motivates the investigation
for appropriate quantitative measures that can provide statistics
information of model responses.

To quantify the uncertainties from dynamic PVs and loads on
the power system dynamic simulations, analytical methods have
been proposed [1]-[3]. They are based on model linearization,
simplification, and abstraction. These approximations may lead
to unexpected errors. A more traditional way of quantifying
the impacts of uncertain sources on power system dynamic
responses is to use the Monte Carlo simulations (MCS) and its
enhanced variants [4]—[7]. However, the high computational cost
of MCS hinders its application on practical large-scale systems
with a large number of uncertain loads and DERs. It is, therefore,
important to develop computationally efficient alternatives. Tak-
ing the Latin hypercube sampling (LHS), for example, it needs
a smaller dataset to obtain a reasonable accuracy as compared
to the MCS but has computational difficulties for larger-scale
systems. Indeed, the consideration of dynamic PVs and loads
significantly increases the complexity of the model, and thus,
LHS is subject to heavy computational burden. Another way is
to perform analysis on the response of interest [8]-[10]. In [8],
the method of moments (MoM) and automatic differentiation
are leveraged to quantify the uncertainty propagation of states
and parameters in dynamic simulations by propagating the first
few moments. But the estimates of MoM may be insufficient
due to moment closure problem and the computational effi-
ciency is limited. As a widely used tool for dynamic system
analysis, the trajectory sensitivity analysis has been applied to
power system dynamic simulation [9] and dynamic security
assessment [10]. Yet, the trajectory sensitivities are calculated
based on partial derivatives, and therefore, it is insufficient
when severe nonlinearity of the system exists. The surrogate
modeling method is also an option as the statistics of the output
of interest can be estimated; for example, the stochastic aver-
aging [11]. Second-order Taylor series and third-order normal
form approximations are developed in [9] and [12]. In [13],
Kalman filter and unscented transformation are employed to
provide an estimation of the distribution of the transient stability
margin. The shortages of unscented transformation include high
computational burden due to Cholesky factorization at every step
and Gaussian noise assumption. Polynomial chaos expansion
(PCE) and the related stochastic collocation methods can yield
the corresponding statistical information from their coefficients
for uncertainty quantification. The existing PCE-based methods
applied in power system dynamics [14], [15] consider only
independent input variables but the power injections from PVs at
geographically close locations are usually correlated [16]. The
correlations between uncertain inputs can significantly affect the
power system dynamic process and have not been considered
in the literature. Furthermore, they are unable to deal with the
cases, where the uncertainties may lead to simultaneous stable
and unstable system responses with different probabilities.

This article extends our previous work on using PCE for
probabilistic analysis [17], [18] to power system dynamic
simulations and develops the probabilistic transient stability
index (TSI) to assess the uncertainties from dynamic PVs and
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loads on the system stability. The key idea is to leverage the
copula statistics to capture the nonlinear correlations among
uncertain dynamic PVs and loads so that the sparse PCE can be
extended for uncertainty quantification of dynamic simulations.
A preprocessing strategy is also developed for handling the
coexistence of stable and unstable cases in the probabilistic
transient stability assessment. It has the following contributions.

1) It can quantify the uncertainty propagation during power
system dynamic simulations considering different uncer-
tain input distributions and correlations, including both
linear and nonlinear correlations. The copula-PCE for
probabilistic power flow [17] has been extended to deal
with dynamic equations. We transform the dynamic pro-
cess into uncertainty quantification for each time step.
This allows us to take advantage of the static copula-PCE
formula and to calculate the confidence intervals of power
system dynamic responses at each time instant. A sparse
version of copula-PCE is also developed to further in-
crease computational efficiency.

2) As compared to [18], this work can handle stable and
unstable conditions as well as the coexist of stable and
unstable scenarios caused by uncertain inputs. This is
achieved via a preprocessing strategy, where the dynamic
responses are categorized into stable and unstable condi-
tions based on the TSI. Then, PCE models are constructed
for them, respectively, to calculate the statistics of dynamic
model responses. This is very important to accurately cal-
culate the probabilistic TSI and quantify the probabilities
of being stable and unstable, respectively.

3) Existing PCE approaches for power system dynamic sim-
ulations have neglected the dynamics from dynamic loads
and PVs [18]. Our proposed approach is general to deal
with them efficiently.

4) Comparison results with MCS, LHS, and traditional PCE
without consideration of uncertain input correlations show
that the proposed method is able to accurately quantify
the uncertain dynamic simulations and transient system
stability while being much more computationally efficient.
It is also shown that when the dynamics of PVs and
loads are considered, LHS and MCS have significantly
increased computational burden, which is not the case for
our proposed method.

Therest of this article is organized as follows. Section Il shows
the problem statement. Section III presents the proposed frame-
work and its implementation. Section IV shows the simulation
results, and finally, Section V concludes this article.

II. PROBLEM STATEMENT

The power system dynamic model with uncertain loads and
PVs can be expressed by the following stochastic differential
and algebraic equations (DAEs) [15]:

T = f(w,y,u,i)
tomaes ®

where f(-) and g(-) are vector-valued functions; = and y,
respectively, denote the dynamic state vector and the algebraic
state vector containing algebraic variables, such as bus voltage
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magnitudes and angles; w is the system input; and £ is a random
vector that represents all uncertain resources. In this article, the
uncertainties come from power injections of flexible loads and
uncertain PVs, resulting in uncertain power system dynamic
simulations.

This article aims to investigate the impacts of uncertain dy-
namic loads and PVs on power system dynamic simulations and
transient stability. Let the relationship between random vector &
and model response

x(t) = M(&,1) )

where £ represents uncertainties from loads and PVs; x in-
cludes generator dynamic variables, such as rotor speeds and
angles that are used for transient stability assessment. The target
is to quantify the uncertainty propagation from £ to « through
the nonlinear model M derived from DAEs. By quantifying
the uncertainty propagation through the power system dynamic
model, the statistics of model responses can indicate how the
variability of uncertain resources affects the system dynamics.
The detailed information, such as upper and lower bounds
of dynamic responses can be used for stability analysis and
control.

The most widely used method is the MCS, where a large
number of samples are drawn from probability distribution of
&. For each sample, the power system dynamic simulation is
performed to obtain the path of the desired model response.
Based on all sample responses, the statistics, such as mean
and variance are computed. However, MCS is computationally
inefficient for a large-scale system with a large number of
uncertain inputs. Furthermore, geographically close uncertain
PVs are correlated, exhibiting even nonlinear correlations [16].
The existing works do not consider the impacts of nonlinear
correlations on stochastic dynamic simulations. Furthermore,
there is a lack of research in quantifying the probabilities of
losing stability when uncertain sources may lead to both stable
and unstable scenarios. This article proposes a copula-based
sparse PCE framework to deal with these challenges with a high
computational efficiency.

III. PROPOSED DYNAMIC SIMULATION UNCERTAINTY
QUANTIFICATION FRAMEWORK

The proposed framework contains uncertain source distri-
bution and dependence structure inference, PCE model con-
struction, dynamic simulation uncertainty quantification, and
probabilistic stability index calculation. They are shown as
follows.

A. PCE for Dynamic Simulation Uncertainty Quantification

PCE is a widely used approach for uncertainty quantification
in different domains [19]. By representing random variables
or processes in terms of orthogonal polynomials, PCE is able
to provide analytical calculations of model response statistics.
It should be noted that, unlike the static problem, the model
responses for dynamic systems are time-dependent, and as a
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result, the statistics of model responses evolve as a function of
time.

To this end, a set of orthogonal polynomials are adapted with
respect to the changing statistics. The aforementioned desired
model response shown in (2) can be represented by a polynomial
function of £ by the following expansion [20]:

x(t) = ai(t)¥;(£) 3)
=1

where & € R is uncertain input vector, ¥; and a;(t) denote the
orthogonal basis and its corresponding coefficient with respect
to & The orthogonal basis W; is constructed based on the
distributions of uncertain inputs. In practice, a truncation is often
performed on (3), yielding [20]

NP
i=1
where N, =(d +n)!/(d!n!) —1; d is the number of random
variables; and n is the degree of the truncated polynomial
function. Classical univariate orthonormal polynomials for com-
monlybused distributions include Legendre polynomials for
Uniform distribution, Hermite for Gaussian, Jacobi for Beta,
etc. [19]. For arbitrary distributions, the orthogonal polynomials
are obtained using the Stieltjes procedure [19], which computes
the basis numerically through the recurrence relation between
bases. Based on that, the multivariate polynomials are then
constructed as the tensor product of these univariate compo-
nents. Basis truncation can be further applied to reduce the
computational burden by excluding basis terms that are less im-
portant [21]. Subsequently, the PCE coefficient calculation can
be achieved via the projection method or regression method [21].
The Gaussian quadrature-based projection method computes the
polynomial coefficients following the definition of PCE and the
orthogonality property of polynomial basis [21], i.e.,

ai(t) = [ M(&1)®(€)f(§)dE

Qe

Q

N
> ME () )

n=1

where a set of weights w(™) and quadrature points &™) are
derived from Lagrange polynomial interpolation; f(-) is the
probability distribution of uncertain input; M (£ t) repre-
sents the desired realizations from the power system dynamic
simulation. The numerical evaluation of integrals requires a set
of N collocation points and the corresponding model responses.
Regression method, on the other hand, computes the coefficients
by minimizing the following objective function:

a(t) = argmin E[(z" ¥ (€) — M(£,1))°]. (6)

To deal with high-dimensional input, the sparse techniques can
be used [21]. This article adopts the least angle regression
algorithm by introducing a regularization term

a(t) = argmin B[(z" ¥ (&) — M(&,0))°] +allz]. (D
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As one of the advantages, the statistics of the PCE model outputs
are embedded in its coefficients. In particular, the mean and the
variance of PCE for each timestep can be estimated as

Elz(t)] = ao

Note that E[®?] = I for the orthonormal basis. Such estimation
is much more efficient than calculating them from sampling-
based approaches, such as MCS. Once the PCE model is con-
structed, the statistical information estimates (mean and vari-
ance) can be analytically calculated from PCE coefficients. This
analytical calculation is based on the orthogonality of the PCE
basis, and thus, is very fast.

B. PCE Considering Correlated Uncertain Inputs

The conventional way of constructing PCE basis requires that
the random vector & is independent and its distribution is known.
However, the distributions of uncertain inputs are generally
unknown and it is found that the geographically close PVs
have correlations, even exhibiting nonlinear correlations [16].
Specific modifications are required to maintain the orthogonality
property when constructing the PCE model. To deal with
unknown distributions as well as nonlinear correlations among
uncertain inputs, copula statistics and Rosenblatt transformation
(RT) are integrated. Specifically, copula is employed to infer the
distribution of uncertain inputs and their dependence structure,
while RT is utilized to establish the transformation of dependent
input to independent one. This allows the PCE to preserve
orthogonality condition for analytical estimate calculation.

Copula statistics have the ability to capture the complex
dependence structures among random variables [22]. The repre-
sentation for multivariate distribution is general and flexible by
defining the marginals and the copula types that describe how
the marginals are coupled. According to Sklar’s theorem, for a
d-dimensional continuous random variable &€ = [¢1, .., 4] with
marginals F1, ..., Fjy and joint cumulative distribution function
(CDF), F¢, there exists a copula function C' satistying

Fe(€,-008a) = C(R(&), - -, Fal&a))- ©)

The conditional distribution function is calculated by [23]

IC; iy (F(&51€a1iy), F(&il€avgay))
OF (&il€a\qiy)

Fj4(85164) = (10)

where j€A, i€ D\A; A denotes a subset of indices D=
{1,...,d} and A\{i} denotes excluding ith component; F; 4 is
the CDF of the random variable £; conditioned on £ 4; and C ;4
represents the copula function of the jth component given A.
Canonical vine (C-vine) copula is utilized to tackle input vector
with high dimensions [22].

Upon the construction of copula structure, RT is established,
where the dependent random vector £ is first transformed into
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independent ones z via

Fi(&)

RT: &= z= < Fuppo-1(elér, -5 &) (11

ﬁd.\l,...,d—l(fdmla oo €a)

where Fy; .. 4—1 is the CDF of the conditioned random variable
§d|£1a s 7£d71'

In this way, PCE constructs the model of the relationship
between z and model response X that captures the nonlinear
dependence while maintaining the orthogonality of basis. Simi-
larly, new inputs é should be first transformed into 2 and further
leveraged by PCE for model response prediction and uncertainty
quantification.

C. Handling Coexistence of Stable and Unstable Scenarios

When the system is operated under stressed conditions or
subject to large disturbances, the perturbations on DAE state
initialization caused by uncertainties from dynamic loads and
PVs can lead to stable, unstable, and coexistence of stable and
unstable scenarios with different probabilities. Since the patterns
for absolute stable and unstable scenarios are quite different, it
is not feasible to use one PCE model to capture the coexistence
of stable and unstable scenarios, which will be shown in the
numerical results section.

To address that, a data processing strategy is proposed for
the samples generated from inferred PDFs of uncertain inputs.
In particular, a number of samples obtained by LHS are first
generated. Then, these samples are propagated via the power
system DAEs to get corresponding responses. If the TSI is
beyond a preset value, the corresponding sample will be claimed
as unstable. Detailed explanations are shown in the next subsec-
tion. This means that a simple classification of the samples with
boundary via k-means algorithm or support vector machine can
be used to classify the samples into stable and unstable cases.
Then, two PCE models are constructed separately using stable
and unstable samples for uncertainty quantification. Note that
when the system is absolutely stable or unstable, only one PCE
model is needed.

D. Probabilistic TSI

An immediate application of uncertainty quantification for
power system dynamic simulations is the probabilistic assess-
ment of transient stability. This is critical especially for the case,
where both stable and unstable scenarios exist. By providing
the probability for losing the system stability to the operator,
an enhanced system situational awareness can be achieved. For
example, if the system is found to have a low probability of losing
stability due to uncertain loads and PVs, the system operator may
not want to redispatch the generators with increased costs as the
risk is low. By contrast, if the probability of losing instability
is high (depending on the threshold set by operators), they have
to make preventive control plans via generation redispatch or
load shedding. The probabilistic TSI allows the operator to have
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Fig. 1. Proposed copula-based PCE to quantify the uncertainties of power
system dynamic simulations with correlated uncertain inputs, where ji5 and o2
are the mean and variance of the generator rotor angles under the stable cases.
While 14,5 and oi s denote the mean and variance of the generator rotor angles
under system instability cases.

enhanced situational awareness and balance the tradeoff between
system risk and costs.
A widely used TSI [25] is

360 — Omax

TSI = 100 x 2o — Omax
" 360 + O

(12)
where ¢ is the maximum rotor angle difference between
any two generators. When TSI > 0, the system is transient
stable, while TSI < 0 means system unstable. The boundary is
TSI = 0. Note that the increase of TSI reflects transient stability
enhancement and vice versa. Note that the uncertain PVs and
loads are the inputs to the model, and generator rotor angles are
the model output for stability assessment. The uncertainties of
dynamic PVs and loads will be propagated to generator rotor
angles through DAEs. The stability assessment is based on
the generator rotor angles, and thus, the impacts of uncertain
dynamic PVs and loads are considered.

With the constructed PCE model z(t) = M(&,t), we can
sample & via Latin hypercube sampling approach to obtain a
series of generator rotor angle responses, which are used to
calculate the corresponding d,x and TSI. Then, a nonparametric
inference method based on a kernel density estimator is used to
infer the closed-form univariate PDF of TSI, i.e.,

~ 1 & TSI — TSI,
Jsy =52 K (h)

=1

13)

where m is the number of samples; h is the bandwidth parameter
that can be obtained via 1.06cm %2 [26] and o is the estimated
sample standard deviation; and K is a nonnegative kernel
function, i.e., standard Gaussian kernel here.

E. Algorithm Implementation

The proposed method is shown in Fig. 1 and the main steps
for the proposed method implementations are as follows.
1) Step 1: Inference of the uncertain input distribution
and complicated correlation relationships using copula
statistics.
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2) Step 2: Perform dynamic simulation based on the inputs
sampled from the inferred probability distribution in Step
1 and classify the response samples into two groups, i.e.,
stable and unstable.

3) Step 3: Construct PCE basis with RT (11), and then,
calculate PCE coefficients based on samples from Step
2 using the regression method as shown in (6).

4) Step 4: The analytical form of statistics of model responses
can be directly obtained via (8). The statistical information
of both stable and unstable cases can be obtained from its
coefficients thanks to the orthogonality of the polynomial
basis.

5) Step 5: Probabilistic TSI calculation and PDF estimation.

Remark: The proposed method infers the probabilistic dis-

tribution of uncertain inputs considering nonlinear correlations
and develops the sparse PCE to construct a reduced model of
the complex physical model. This leads to the following two
advantages:

1) reduced number of sampling requirements;

2) speed up the simulation for each sample due to reduced
model.

IV. NUMERICAL RESULTS

Simulations are conducted on both IEEE 39-bus and 118-bus
systems with PVs. Each synchronous generator is assumed to
be the two-axis model equipped with the IEEE-DCIA exciter
and the TGOV1 turbine governor. The DAEs for the genera-
tor mode are shown in the Appendix. The parameters of the
generator model can be found in [24]. For the 39-bus system,
a three-phase fault is applied at bus 16 at 0.5 s and is cleared
after ten cycles by opening line 16-24. The uncertain sources
are flexible loads and PVs, and the rotor angles and speeds are
selected as dynamical model responses. Three approaches are
compared, i.e., LHS, PCE used in [15] without consideration of
input correlations, and the proposed method, termed as CoPCE.
All simulations are performed using MATLAB with 2.60-GHz
Intel Core 17-6700HQ. In the simulations, loads and PVs are
assumed to follow certain distributions with means being the
original values and standard derivations being a certain portion
(uncertainty level) of means. The performance for the uncertain
information estimation is evaluated using the mean absolute
percentage error (MAPE), of which the general formula is

T *

1 0 — 0,
MAPE = — bk B4
72|75

=1

x 100% (14)

where 07 and 6, represent the true and estimated values at
time step ¢ for all generators, respectively. More specifically,
MAPESs of the mean and variance over the entire simulation
time range are utilized as error indices, denoted as e, and e,..
The rotor angles have been widely used for transient stability
assessment. As shown in (12), the rotor angle determines the
stability condition. Due to the space limitation, we could not
show all rotor trajectories for all generators and d,_; (the rotor
angle of generator 2 with respect to reference generator 1) is
used as an example for illustration purposes. The benchmark is
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TABLE I
DISTRIBUTIONS OF LOADS AND PVS WITH LINEAR CORRELATIONS
FOR SCENARIOS 1 AND 2

Scenarios Scenario 1 Scenario 2

PL (MW) N(PL,(0.1PL)?) N(PL,(0.1PL)?)

PV (MW) 100 x Beta (2.06,2.2) 100 x Beta (2.06, 2.2)
Coefficients p [0.4,0.4,0.4] [0.6,0.6,0.6]

2

18 17 l 24

T L
v
3
16 Load O

2 4l f&

[
22
|
l
s | v | B ﬁ- %
] 31 LB

l@l g

Single line diagram of the IEEE 39-bus system with PVs.

G8
o2 37%|25 sl [T I—I|f
©

Fig. 2.

obtained based on MCS with 10000 samples. The number of
samples for the LHS method is 3000.

A. Impacts of Uncertain Inputs With Linear Correlations

This section investigates the impacts of uncertain PVs with
linear correlations on rotor angle responses. Loads are assumed
to be independent because they are geographically far in the
transmission systems. The system is stable in all investigated
scenarios. The detailed information of inputs is listed in Table 1.
For scenarios 1 and 2, uncertain resources include three loads
and three PVs at buses 12, 15, and 16 and 13, 14, and 15,
respectively; see Fig. 2. For the PCE method, the degree of
expansion is set to be n=2 and the coefficients are calculated
using the regression method with N; =100 samples of rotor
angle trajectories. The results of rotor angle d,_; obtained from
MCS are shown in Fig. 3 for illustrations, where upper and lower
bounds are obtained using 3o rule. It can be observed that the
trajectories scatter with different degrees of aggregation and the
uncertainties from inputs can lead to quite different dynamic
responses of the system. The comparisons results for different
methods under scenarios 1 and 2 are displayed in Figs. 4 and
5. It can be found that the presence of different levels of linear
correlation will affect the system responses. In particular, the
variance for the response has been increased for the higher
correlation scenario. Furthermore, the PCE model that ignores
PVs correlations yields much larger errors as compared to other
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Fig. 3. Upper and lower bounds of rotor angle d,_; in Scenario 1.

Variance of 6,

Times (s)

Fig. 4. Estimated variance of §,_ by different methods for Scenario 1.

TABLE I
COMPARISON RESULTS AMONG DIFFERENT METHODS FOR SCENARIOS 1 AND 2

. Accuracy .

Scenario Method e (XT0—2%) ‘ o2 (%) CPU time (s)

MCS - - 220.72

Scenario 1 LHS 5.04 2.63 61.93

PCE 3.20 19.65 14.01

CoPCE 3.79 1.06 14.42

MCS - - 217.28

Scenario 2 LHS 4.96 2.27 62.58

cenario PCE 538 3031 14.20

CoPCE 5.40 0.88 14.68

methods. CoPCE achieves similar performance as the bench-
mark MCS and outperforms LHS by around 1%. According to
Table II, CoPCE has a much higher computational efficiency
than LHS and MCS, i.e., CoPCE obtains 15 times faster than
MCS and two times faster than LHS.

As demonstrated in Section III-A, the choice of PCE degree
can affect both efficiency and accuracy. If the degree is increased
to n=3, the error e, > will drop off from 1.06% to 0.89%.
However, the CPU time will increase from 14.42 to 20.56 s.
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Fig.5. Estimated variance of d>_ by different methods for Scenario 2.
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Fig. 6. Estimated PDF of TSI by different methods for Scenario 3.

Hence, the degree 2 is chosen for the experiments. For stable
cases on the 39-bus system, Fig. 6 shows the estimated PDF of
TSI. This confirms that all cases are stable and the TSI values
are large, indicating a large stability margin.

B. Impacts of Uncertain Inputs With Nonlinear Correlations

This section investigates the impacts of nonlinear correlations
of PVs on the dynamic responses. The number of inputs and their
corresponding distributions for Scenarios 3 and 4 are the same
as those in Scenarios 1 and 2. In Scenario 5, there are six loads
and six PVslocated atbuses 12, 15, 16, 18,21, and 23 and 13—-17
and 19, respectively. The dependence structures for Scenarios
4-6 are described by C-Vine copula [22] and their types and
parameters are shown in Table III. The parameters for LHS and
PCE models are unchanged. Figs. 7 and 8 show the results
for Scenarios 3 and 4, respectively, where copula is utilized
to describe the nonlinear dependence among PVs. It can be
found that the traditional PCE model is inadequate for handling
nonlinear correlations among uncertain inputs as it yields rather
large estimation errors. When the degree of nonlinear correlation
increases, i.e., scenarios 3 and 4, the variance for the response
also increases. The reason is that with an increased degree of

IEEE TRANSACTIONS ON INDUSTRY APPLICATIONS, VOL. 58, NO. 6, NOVEMBER/DECEMBER 2022

TABLE III
NONLINEAR CORRELATIONS OF PVS FOR SCENARIOS 3-7

Scenarios Pair Copula type Parameter
Scenario 3 [Clayton, Clayton, Clayton] [1.5,1,0.5]
Scenario 4 Clayton, Gumbel, Gumbel] [3,3,1.2]
Clayton, Gumbel, Gumbel, 2,2,1.2
Scenario 5 Frank, Clayton, Clayton, 0.8,0.5,2,
Gumbel, Gumbel, Frank, 2,1.2,0.8,
Clayton, Clayton, Gumbel, 0.5,2,2,
Gumbel, Frank, Clayton] 1.2,0.8,0.5]
Scenario 6 [Clayton, Clayton, Clayton] [1.5,1,0.5]
[Clayton, Clayton, Gumbel, [2.5,2,1.5
Scenario 7 Frank,t, 0.5,[0.5,1.5],
[Clayton, Clayton, Gumbel, [2.5,2,1.5
Frank,t, 0.5,10.5, 1.5],

Variance of 4,

Times (s)

Fig. 7. Estimated variance of §,_; by different methods for Scenario 3.

Variance of 4, ,

Times (s)

Fig. 8. Estimated variance of §,_; by different methods for Scenario 4.

nonlinear correlations, the dynamic interactions among uncer-
tain inputs are increased, leading to a more complicated dynamic
system model response. The proposed CoPCE still achieves very
high accuracy as compared to the benchmark MCS but is much
more computationally efficient; see Table IV. When the number
of uncertain inputs is further increased in Scenario 6, the variance
of model response becomes larger; see Fig. 9. This is expected
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TABLE IV
COMPARISON RESULTS OF SCENARIOS 3-5

. Accuracy .
Scenario Method en(X10-2%) | 2,2(%) CPU time (&)
MCS - - 223.01
Scenario 3 | LHS 741 234 65.48
cenario PCE 724 23.67 15.19
CoPCE 782 1.20 15.56
MCS . - 224.71
Scenario 4 |__LHS 5.03 261 66.20
PCE 121 35.36 15.43
CoPCE 113 0.86 15.70
MCS - - 227.28
Scenario 5 |__LHS 738 227 6852
cenario PCE 12.50 3031 28.46
CoPCE 932 131 29.11

Variance of 4, ,

0 2 4 6 8 10
Times (s)

Fig. 9. Estimated variance of §,_; by different methods for Scenario 5.

since more uncertainties in the inputs, more uncertainties oc-
cur for the model responses. The proposed CoPCE is able to
accurately quantify that with a high computational efficiency.

C. Coexistence of Stable and Unstable Cases

This section aims to show that the proposed method can deal
with the case, where stable and unstable cases coexist due to
the uncertain inputs, i.e., Scenario 6. The parameter settings of
uncertain inputs are the same as Scenario 3 but with different
fault duration. As fault duration increases, the system tends to be
unstable. Specifically, the fault duration is extended to 15 cycles
and the system loading level is increased. The parameters for
LHS and PCE methods are unchanged. The results are shown in
Fig. 10 and it is very interesting to notice that due to uncertain
inputs, both stable and unstable cases occur. In this case, a single
PCE model is insufficient to capture the features of two kinds of
trajectories. This justifies the development of the preprocessing
strategy, where the trajectories are first classified into stable and
unstable cases. One PCE model is constructed for each case. This
is feasible because the statistical information of model response
is inherent in PCE coefficients.

The PDF of TSI is shown in Fig. 11 and it can be observed that,
in most cases, the TSI is larger than 0, while in some cases, the
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Fig. 11. Estimated PDF of TSI by different methods for Scenario 6.
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Fig. 12.  Estimated variance of d,_ by different methods for stable cases.

systemis unstable, i.e., TSI value being less than 0. This provides
critical information for enhancing system operators’ awareness
of the system instability risk and its degree. It is worth noting
that the original PCE cannot handle the coexistence of stable
and unstable scenarios if the proposed classification strategy is
not used. Figs. 12 and 13 and Table V demonstrate that the
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TABLE V

COMPARISON RESULTS OF DIFFERENT METHODS UNDER SCENARIO 6

. Accuracy .
Scenario Method en(X10-2%) | ey2(%) CPU time (s)
MCS - - 225.69
Scenario 6 LHS 7.38 2.85 67.93
! PCE 2498 7388 2836
CoPCE 13.12 2.31 30.08

w
[N

Variance of 4

26¢

Fig. 14.

w

N
©

. 6, NOVEMBER/DECEMBER 2022

5 10

Time (s)

TABLE VI

15

20

Estimated variance of dg9_ by different methods for Scenario 7.

COMPARISON RESULTS OF DIFFERENT METHODS UNDER SCENARIO 7

proposed CoPCE method can obtain excellent results for stable
and unstable cases. For stable cases, the trajectories become
rather complicated. After about 3 s, PCE models suffer from
performance degradation. This is because the model that needs to
be approximated becomes more complicated and the approxima-
tion error continuously accumulates as the simulation proceeds.
In addition, for unstable cases, it is even more challenging to
quantify. The main insight from this section is that the proposed
method allows quantifying both stable and unstable cases while
achieving the highest computational efficiency among all other
methods.

D. Scalability to the Larger Scale System

The proposed method is also conducted on the modified IEEE
118-bus system with 30 uncertain inputs to test its scalability.
As Scenario 7, the 30 uncertain sources include 15 loads and 15
PVs located at buses [11, 12, 14, 44, 45, 46, 47, 49, 66, 75, 77,
78, 80, 94, 96] and buses [7, 11, 17, 43, 45, 47, 67, 68, 71, 81,
93, 94, 95, 96, 97], respectively. The rotor angle of generator
at bus 69 is selected for demonstration. The parameters of PCE
methods are the same as those in Section IV except the number
of observations for PCE is increased to N; =300 due to a more
complicated system and increased number of uncertain inputs.
Total five PVs grouped at buses 93-97 are assumed to have
nonlinear correlations and the parameters of the copula function
are listed in Table III, i.e., Scenario 7. The simulation results
are shown in Fig. 14 and Table VI. It can be found from Fig. 14
that the variance of the output gradually converges and CoPCE
outperforms LHS and PCE. Table VI shows that CoPCE has

. Accuracy .
Scenario Method en(XT0-2%) | ey2(%) CPU time (s)
MCS - - 649.01
Scenario 7 LHS 3.23 2.05 185.19
cenario PCE 76l 812 126.19
CoPCE 1.92 1.27 123.24
8 -

~
T

(o2}
T

(&3]
T

Probability density
w N

n
T

-
T

1 1 1 1 1 L

0 b . i
98.15 98.2 98.25 98.3 98.35 98.4 98.45 98.5 98.55 98.6
Transient stability index

Fig. 15. Estimated PDF of TSI by different methods for Scenario 7.

the best performance with the least CPU time. The reason that
CoPCE is faster than PCE might be the difficulties in getting the
regression coefficients during the model construction stage due
to the independent assumption of uncertain inputs. The TSI PDF
is presented in Fig. 15 and it can be concluded that the system
is stable as the proposed method shows the closest outcomes to
MCS.

E. Validations With Dynamic PVs and Loads

In the previous tests, loads are assumed to be constant
impedance, a widely used assumption for transient stability anal-
ysis. Since we are interested in electromechanical oscillations
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Fig. 18.  Estimated PDF of TSI by different methods for Scenario 8.

(rotor angle stability), the fast dynamics of PVs are neglected.
To further validate the effectiveness of the proposed method in
handling dynamic loads and PVs, the composite dynamic load
model and the dynamic PV model in [28] are tested. Specifically,
the systemis based on Section IV-D except that PVs and loads are
modeled with the dynamic model. The dynamic representation
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TABLE VII
COMPARISON RESULTS OF DIFFERENT METHODS UNDER SCENARIO 8

. Accuracy .
Scenario Method e (XT0°2%) | e52(%) CPU time (s)
MCS - - 2419.95
Scenario 8 LHS 5.8T 3.84 679.55
PCE 5.90 16.24 131.61
CoPCE 2.24 1.39 137.40

of the PV model can be found in [28], while the composite
induction motor+ZIP dynamic load 20% induction motor is
used for loads. The dynamic responses of the rotor angle dgo_1
are shown in Fig. 16. As compared to the previous case, due
to the dynamic PV and loads, the system responses are more
complicated. Fig. 17 shows that the proposed method is able
to effectively dynamic PVs. It can be found that the variance
of rotor angle becomes larger, indicating a relatively larger
fluctuation. Fig. 18 displays the probabilistic TSI. It is clear that
the proposed method can still accurately quantify the system
stability. It is interesting to note that with more complicated
models, LHS has significantly reduced computational efficiency
than our proposed method; see Table VII. This signifies the
advantages of the proposed method over other sampling-based
approaches.

V. CONCLUSION

In this article, a copula-PCE framework is proposed to quan-
tify the uncertainties of power system dynamic results and
stability assessment caused by uncertain loads and PVs. The
impacts of linear and nonlinear correlations among PVs on the
system dynamic behaviors are also investigated. The copula
statistics are utilized to accurately characterize the dependence
structure of PVs and the copula-PCE is employed for uncertainty
quantification. To address the cases, where both stable and
unstable conditions coexist, a preprocessing step via sample
classification is proposed. The probabilistic TSI is developed and
its PDF is estimated via kernel estimator. Extensive comparison
results with MCS, LHS, and traditional PCE carried out on the
modified IEEE 39- and 118-bus systems show that the proposed
method is able to effectively deal with different uncertain input
distributions and correlations, coexistence of stable and unstable
cases, and dynamic PVs and loads while being computationally
efficient.

In our article, the uncertainties come from power injections
of uncertain loads and PVs and they belong to epistemic
uncertainty [29]. Since the proposed framework is general,
uncertainties from other sources can be handled as long as
they are modeled appropriately, which can be done by defining
proper input and output noise, measurement bias, model error,
or random behavior of the system. In our future work, we will
extend it to consider both aleatory and epistemic uncertainties.
Note that more uncertain sources mean a higher dimension
of input and larger computational cost. This may require the
development of better sparse PCE methods.
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APPENDIX A
MATHEMATICAL REPRESENTATION OF THE TWO-AXIS
GENERATOR MODEL

TABLE VIII
GENERATOR PARAMETER DATA [24]

No. H R, x,) xy Tq Zq T Téo x
1 500 0 0.006 0.008 0.02 0.019 7 0.8 0.003
2 30.3 0 0.07 0.17 0.29  0.282 6.6 1.5 0.035
3 35.8 0 0.053 0.088 0.25 0.237 5.7 1.5 0.03
4 28.6 0 0.044 0.166 0.26 0.258 5.7 1.5 0.03
5 26 0 0.132  0.166  0.67 0.62 5.4 0.44  0.054
6 34.8 0 0.05 0.081 0.25 0.241 73 0.4 0.022
7 26.4 0 0.049  0.186 0.3 0.292 5.7 1.5 0.032
8 24.3 0 0.057  0.091 0.29 0.28 6.7 041 0.028
9 34.5 0 0.057 0.059 0.21 0.205 4.8 2 0.03
10 42 0 0.031 0.08 0.1 0.069 10 0 0.013

The differential and algebraic equations of the ninth-order
two-axis generator model with IEEE-DC1A exciter and TGOV 1
turbine-governor are represented as follows.

Differential Equations
! dE(,] / !
Td()?: —Eq—(Xd_Xd)Id+Efd (15)
dE'’
7,50 - gy (x,- X)), 10
do
i w — Ws (17)
2H dw
Ty P —D(w—w, 18
o dl M (w—ws) (18)
dFE
Tp—t" = — (Kp + & (Bf4)) Ega + Va (19)
dVp Kr Kr
Tp =L = Ve + 2LV — 25 (Kp + Sp (Epq) E
P F+TE R TE( 5+ SE (Efd)) Era
(20)
dV;
Ta—rt = ~ Vi + Ka (Ve = Ve = V) 1)
dT’
Ten— = —Tu + Py (22)
dPSV 1 w
T = — P Po—— | ——1 23
SV sv + Pco Rp <ws ) (23)
where T, T,,, Tr, Tr, Ta, Tcw, and Tsy are time constants;

Kpg, Kp, and K 4 are controller gains; Vs and P are known
control inputs; £, Y}, Efa, Vi, Vg, Tpr, and Psy are the g-
and d-axes transient voltages, field voltage, scaled output of the
stabilizing transformer and scaled output of the amplifier, syn-
chronous machine mechanical torque, and steam valve position,
respectively; X4, X (’1, X4, and X (’1 are generator parameters; V'
is the terminal bus voltage magnitude; and I and I, are the d-
and g-axes currents, respectively.
Algebraic equations

Va=Vsin(6—6),V, =Vcos(d—0) 24)
E —V, —F
[P B R At (25)
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P, =Vl + Vqu; Qe = —Vd.[q + Vq.[d (26)

where V;; and V, are the d- and g-axes voltage magnitudes, and
0 is the terminal bus voltage phase angle; and P, and (). are the
active and reactive electrical power outputs, respectively. The
generator parameters are displayed in Table VIIIL.
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