GOOD: A Graph Out-of-Distribution Benchmark

Shurui Gui; Xiner Li*, Limei Wang, Shuiwang Ji
Texas A&M University
College Station, TX 77843
{shurui.gui,lxe,limei,sji}@tamu.edu

Abstract

Out-of-distribution (OOD) learning deals with scenarios in which training and
test data follow different distributions. Although general OOD problems have
been intensively studied in machine learning, graph OOD is only an emerging
area of research. Currently, there lacks a systematic benchmark tailored to graph
OOD method evaluation. In this work, we aim at developing an OOD benchmark,
known as GOOD, for graphs specifically. We explicitly make distinctions between
covariate and concept shifts and design data splits that accurately reflect different
shifts. We consider both graph and node prediction tasks as there are key differences
in designing shifts. Overall, GOOD contains 11 datasets with 17 domain selections.
When combined with covariate, concept, and no shifts, we obtain 51 different splits.
We provide performance results on 10 commonly used baseline methods with 10
random runs. This results in 510 dataset-model combinations in total. Our results
show significant performance gaps between in-distribution and OOD settings. Our
results also shed light on different performance trends between covariate and
concept shifts by different methods. Our GOOD benchmark is a growing project
and expects to expand in both quantity and variety of resources as the area develops.
The GOOD benchmark can be accessed via https://github.com/divelab/GOOD/.

1 Introduction

In machine learning, training and test data are commonly assumed to be i.i.d.. Models designed
under this assumption may not perform well when the i.i.d. assumption does not hold. The area
of out-of-distribution (OOD) learning deals with scenarios in which training and test data follow
different distributions. Two commonly studied OOD settings are covariate shift and concept shift.
Over the years, multiple OOD methods have been proposed [11, 43, 3, 40, 24]. To facilitate
evaluations, several benchmarks have been curated, including DomainBed [16], OoD-Bench [52],
and WILDS [23]. Although both general OOD problems and graph analysis [22, 12, 45, 51, 29] have
been intensively studied, graph OOD is only an emerging area of research [49, 48, 59, 6]. Some initial
attempts have been made to curate graph OOD benchmarks [20, 9]. However, existing benchmarks
lack in several aspects, as detailed in Section 2.

Covariate shift and concept shift. Distribution shifts can generally be defined as two types; i.e.,
covariate shift and concept shift (drift) [38, 35, 47]. Formally, in supervised learning, a model is
trained to predict an output Y € Y given an input X € X, also known as a covariate variable. The
output Y is categorical in classification and continuous in regression problems. In multi-task learning,
the output Y becomes a vector, and we consider each task separately. Since the joint distribution
P(Y, X) can be written as P(Y|X)P(X), two types of OOD problems are commonly considered,
namely covariate and concept shifts. In covariate shift, the input distributions have been shifted
between training and test data. Formally, P™"(X) # P*'(X) and P"™"(Y|X) = P(Y|X),

*Equal contributions

36th Conference on Neural Information Processing Systems (NeurIPS 2022) Track on Datasets and Benchmarks.

https://github.com/divelab/GOOD/

Dataset GOOD-HIV GOOD-PCBA GOOD-ZINC GOOD-SST2
Input(X) Molecule Molecule Molecule Sentence parser tree
Prediction(Y) HIV replications Bioassays Constrained Solubility Sentiment polarity
Domain selection Scaffold*/Size Scaffold/Size* Scaffold*/Size Length*
domains 19,089/151 113,760/192 129,959/33 55
examples 41,127 437,929 249,455 70,042
Task/Metric BC/ROC-AUC MTBC/AP Reg /MAE BC/Acc.
Shift type Covariate Concept Convariate Concept Covariate Concept Covariate Concept
environments 10/1/1 3/1/1 10/1/1 3/1/1 10/1/1 3/1/1 10/1/1 3/1/1
iy
Train example - Q/\ /‘§) Q‘\‘/\‘f L\/I\J anplen
o VO s
lj’* .
NaH A:Nm.
AW i?-{wgojuﬁ:“)m
Test example / N P!
e
& o L P
Dataset GOOD-CMNIST GOOD-Motif GOOD-Cora GOOD-Arxiv
Input(X) Image-conveted graphs Motif-base graphs Scientific publications arXiv papers
Prediction(Y) Digit numbers Motifs Publication classes Subject areas
Domain selection Color* Base*/Size ‘Word/Degree* Time*/Degree
domains 7 (10) 5(3)/5(3) 218/102 35/547
examples 70,000 30,000 19,793 169,343
Task/Metric MCC/Acc. MCC/Acc. MCC/Acc. MCC/Acc.
Shift type Covariate Concept Covariate Concept Convariate Concept Covariate Concept
environments 5/1/1 5/1/1 3/1/1 3/1/1 10/1/1 3/1/1 10/1/1 3/1/1

Train example

Test example

Dataset GOOD-Twitch GOOD-WebKB GOOD-CBAS *: The domain used in example
figures.

Input(X) Gamer network Webpage network A BA-house graph €

Prediction(Y) Content streaming Webpage owner Node roles # domains: Number of domains

Domain selection Language* University* Color* in covariate (concept).

domains 6 3 7(4)

examples 34,120 617 700 # environments: Number of

Task/Metric BC/ROC-AUC MCC/Ace. MCC/Ace. training/validation/test

Shift type Convariate Concept Covariate Concept Covariate Concept environments.

i 10/1/1 1/1 10/1/1 1/1 1/1 1/1 L. . .

environments 0/1/ 3/1/ 0/1/ 3/1/ S/ S/ Abbreviations in task/metric row.
BC: Binary classification;
MCC: Multi-class classification;

Train example MTBC: Multi-target binary
classification;
Reg.: Regression;
AP: Average precision;

p Acc.: Accuracy.
Test example 7

Figure 1: A summary of datasets included in the proposed benchmark. For a covariate shift, the
training and test examples are from different domains. For a concept shift, examples are chosen from
the same domain with different labels to show the different domain-output correlations.

where P™"(.) and P***'(-) denote training and test distributions, respectively. In contrast, in concept
shift, the conditional distribution P(Y'|X) has been shifted as P*™"(Y|X) # P'*'(Y|X) and
pran(X) = Pt(X). In this work, we explicitly make distinctions and consider both shifts.

Differences between graph OOD and general OOD. Traditional OOD methods commonly focus on
simple structure equation models [3, 1, 39, 32] or computer vision tasks [32, 44, 11, 43]. In these tasks,
the inputs are variables or image features, denoted as F'. However, graph data possess the complex

nature of irregularity and connectivity in topology. A graph is commonly represented as an input
pair (F, A), where F are node/edge features, and A is the adjacency matrix. Consequently, graph
OOD problems focus not only on general feature distribution shifts but also on structure distribution
shifts. Graph neural networks are designed based on F" and A to pass messages, demonstrating that
structures and features carry different perspectives of input information of a graph. The uniqueness
of graph data prompts the development of graph-specific OOD methods [49, 48, 6, 59, 10, 26] and
calls for graph OOD benchmarks. 2

Contributions and novelty. In this work, we develop a systematic graph OOD benchmark, known as
GOOD. As design principles, we strive to (1) create non-trivial performance gaps between training
and test data; and (2) provide carefully designed data environments to ensure that the induced
distribution shifts are potentially solvable for models. Specifically, GOOD contains 6 graph-level
datasets and 5 node-level datasets as shown in Fig. 1. For each dataset, we select one or two types of
domains. Given a domain, we generate no-shift, covariate shift, and concept shift splits for ease of
comparison among 10 baselines. We summarize our novel contributions as follows. (1) To the best of
our knowledge, no existing OOD benchmark provides both covariate and concept shifts comparison
for the same domain selection. This is important as it sheds light on the differences between various
shifts with proper variable control. For example, from our experiments, DIR [49] performs favorably
against other methods in concept shift of GOOD-HIV size split while failing in the corresponding
covariate shift. (2) In terms of graph OOD, we are the first benchmark to include not only graph
classification, but also graph regression and node-level datasets, which improves the diversity of
graph OOD tasks. (3) GOOD provides numerous comparisons for 51 different dataset splits and 10
OOD methods, providing solid baselines for future method developments.

2 Related Work

OOD or distribution shift is a longstanding problem in machine learning and artificial intelligence [17,
38, 35, 41]. To address OOD problem substantially, several benchmarks have been curated [16, 52,
18, 23, 57] to evaluate different algorithms [11, 43, 37, 3, 24, 40, 56, 1]. DomainBed [16] is an early
OOD benchmark in computer vision. Following DomainBed, OoD-Bench [52] collects datasets and
categorizes them into diversity and correlation shifts. WILDS [23] collects real-world data from
wild and studies domain generalization and subpopulation shift. Specifically, domain generalization
focuses on disjoint training and test domains, while subpopulation shift considers shifts between
majority and minority groups, which leads to insufficient training for minority data. With the success
of graph neural networks [22, 51, 45, 12, 28, 13, 30, 31], graph OOD problems are gaining growing
attention [49, 48, 6, 59, 10, 26, 27, 8]. GDS [9] collects several datasets to compare the performance
of well-known baselines and data augmentation methods. DrugOOD [20] is a recent benchmark
specifically designed for molecular graph OOD problems. It is curated based on a large-scale bioassay
dataset ChHEMBL [33] and includes an automated pipeline for obtaining more datasets.

Differences with existing (graph) OOD benchmarks. Generalization abilities of OOD algorithms
for covariate shift [42] and concept shift [47, 17, 2, 24] differ fundamentally. However, existing
benchmarks, including but not limited to graph OOD benchmarks, either ignore one of the shifts
or fail to compare the two shifts of the same feature on the same dataset. Firstly, most existing
OOD benchmarks include only one type of shift. For example, DrugOOD [20] focuses on domain
generalization for molecules, exclusively considering covariate shift. WILDS [23] includes domain
generalization and subpopulation shift, which are two cases of covariate shift, while still ignoring
concept shift. Secondly, a few benchmarks [52] involve both shifts but simply categorize each dataset
as one of these two shifts. GDS [9] collects eight datasets but makes no distinctions between the
two shifts; among their datasets, we can categorize ColoredMNIST as concept shift and others as
covariate shift. In contrast, our benchmark proposes novel dataset splitting methods to generate
both shifts for the same domain selection on the same dataset to enable comparison between shifts.
This variable-controlled comparison enables a more thorough analysis of shifts given any specific
domain, leading to a more comprehensive OOD benchmark. Furthermore, we curate more diverse
graph datasets with diverse tasks, including single/multi-task graph classification, graph regression,
and node classification, while neither GDS nor DrugOOD includes graph regression or node-level

?For simplicity, we use X instead of (F, A) to denote inputs of graphs in our benchmark design. Therefore,
a feature in X may refer to not only a node feature but also a specific graph structure.

tasks. In addition, while GDS and DrugOOD do not benchmark any graph-specific OOD methods,
we evaluate 4 graph-specific OOD methods, shedding light on further graph OOD research.

3 The GOOD Benchmark Design

When training and test samples are assumed to be i.i.d., random split is commonly used to split datasets
into training and test sets. In contrast, splits in OOD problems should be carefully designed in order
to accurately assess the generalization ability of algorithms. In GOOD, we consider both covariate
and concept shifts and meticulously design data splits to ensure these shifts are reflected. Formally,
following prior invariant learning work [3, 8, 1, 39, 32], as shown in Fig. 2b, C, 51, S5 € Z are the
latent variables that causes target Y €), is non-causally associated with Y, and is independent
to Y, respectively. — denotes the causal mapping. S is commonly caused by target-irrelevant
environments.? In the input feature space, given input features X € X, we assume the invariant
features Xj,, € X are projected by an injective function from C 4 Therefore, X,y can fully determine
Y. X, denotes input features associated with Y by confounding and anti-causal associations through
C and S;. Xing are input features independent to Y and are only caused by .S5. In practice, it might
be hard to strictly separate Xy, Xass, and Xing. We try to only select and shift part of Xj,q, but
since our shift splits contain significant dataset shifts, the selection of parts of X, won’t affect the
benchmarking performance. Though, we use Xj,q throughout this paper for simplicity.

3.1 Covariate shifts

Domain generalization methods follow the covariate shift assumption [5] and assume that the covariate
distribution P(X) shifts across splits, while the concept distribution P (Y| X') remains the same. This
implies that a shift of P(X) should not cause corresponding shift in P(Y|X). That is, covariate shift
can only happen on input features that are not associated with Y. Therefore, with prior knowledge,
we can manually select and shift one or several of these irrelevant features, Xj,q4, to build covariate
splits. Different Xj,q feature values indicate different domains, and each domain can be viewed as a
split. For instance, in the graph ColoredMNIST dataset in which we distinguish hand-written digits
with colors, the color is irrelevant with labels. Thus, in our covariate splits, digits with different colors
belong to corresponding color domains, and each domain becomes a split.

Formally, possible values of Xj,q are discrete and finite. Therefore, we define each domain by its
unique Xjyq value, forming its unique input distribution P(X). Then, a dataset can be viewed as a
mixture of |D| domains as D = {dy, ..., d|p| }. For a domain d;, we represent its input distribution
as Py, (X). Specifically, Py, (Xiny, Xass) is fixed while Py, (Xing = x;) = 1, where x; is the value of
Xina in domain d;. Since Xjnq is independent to Y, Py, (Y| X) = P(Y|X). The data distribution is

|D |D|
P(Y,X) =) wily (Y, X) = 3 _wiPa,(X)P(Y]X), (1)

i=1
where w; is the mixture weight for domain d;.

Comparison of covariate split design on 3 types of datasets. We perform covariate shift splits
on synthetic, semi-artificial, and real-world datasets. For a synthetic dataset, given the Xj,q feature
values of each domain, we generate graphs according to its domain distributions, respectively. For a
semi-artificial dataset, given a graph, we generate extra variant features to produce modified graphs
that follow the domain distribution. Since we cannot create or modify graphs for real-world datasets,
we use carefully designed data splits. As shown in Fig. 2a, we sort the graphs by their domain
d; € D and then divide the dataset into five domain splits with a specific split ratio, e.g., 20%, for
each domain. Finally, the training, validation, and test sets are obtained based on domains without
intersections. The difference between synthetic/semi-artificial datasets and real-world datasets is that
the domain of graphs in artificial datasets can be defined arbitrarily before feature modifications, but
the domain of graphs in real-world datasets should be defined strictly according to its features.

3We do not explicitly consider unobserved confounders in this paper.
“This assumption is for clearer input distinction, and will not introduce any side effect to further analysis,
since the shift split design focuses on selecting Xinqg instead of distinguishing Xiny and Xyss.

Domain a ds ds ds d

5
- - - I
L J L J [S

.
Train Val Test

(a) Covariate shift split

Concept o ¢ e c cs Injective mapping
_—

- 4 u }lzlya u | y2 Iys u | Y2 | Y3 1| v | Y3 y1|yz | s Causal mapping
3
g dz %8 Y2 l Y3 Y Y2 l Y3 y1l Y2 lyz yllyz I Y3 Y1 Y2 lyx Unobservable: white ca Sa"ma ir; -
a Partally observable: light grey (o ‘“ Ipp 9

ds 11/2| Y3 1| Y2 | Y3 Yy |yz | U3 u |1lz|1/3 1| Y2 |ya Observable: grey o prg‘an;;pmg

[« . J L J |
Train Val Test (b) Causal graph
(c) Concept shift split

Figure 2: (a) Ilustration of covariate shift split. Five domains are denoted as different colors, where
each domain includes outputs of the same distribution. We sort the dataset according to the domain
d;, then group them into train/validation/test sets. (c) Illustration of concept shift split. Each concept
includes all three domains, and each domain has spurious correlations with a specific output in a
concept. For example, in concept c1, the domain colored in red is highly associated with y1, but this
domain corresponds to y in concept c4. Note that the distributions of concepts in training are similar.
(b) Ilustration of causal graph [36, 37] for dataset generation and observation. (Left) C, S1, S locate
in the latent space and are not observable. (Middle) Xy, Xass, and Xjq are input features that can
be partially observed and selected manually, such as motif shapes or molecule scaffolds. (Right) G
is the graph data input including node features and adjacency matrices. F € £ is the environment
variable that can determine or be determined by Xj,, and Y according to different types of datasets
and shifts. Detailed discussions can be found in Appendix A.

3.2 Concept shifts

In contrast to covariate shift, concept shift considers the scenario in which the concept distribution
P(Y'|X) is shifted across splits. Since Xj,, can fully determine Y, P(Y|Xj,) is invariant. Thus,
shifts of P(Y'|X') can only happen with shifts of P(Y|X,) and P(Y | Xjnq). Since Xjq is irrelevant
with Y, the correlation P(Y|Xj,) between Y and Xj,q in each domain is spurious correlation.
However, the association built between Y and Xj,¢ will also connect Xj,y to Xj,q through Y according
to Fig. 2b, leading to the change of P(Xiny|Xina), so that P(X) will be changed inevitably. Therefore,
we can only build major concept shifts with necessary covariate shifts. We will still call it concept
shift for simplicity and distinction. Therefore, given the selected domain features Xj,q, we can
build concept shift splits by manually creating such spurious correlations of certain rates. For
example, the spurious correlation rate between the domain d; and the output value y; can be set
as P(Y = y;|Xina = x;) = 90%. Specifically, different spurious correlation rates define different
concepts, and each concept can be viewed as a split. We use the graph ColoredMNIST dataset as an
example, as shown in Fig. 2¢. In every concept, each color domain is highly correlated with a label.
Therefore, in our concept splits, different spurious color-label correlation rates determine different
concepts, and each concept becomes a split.

Formally, a dataset can be viewed as a mixture of |C| concepts C = {cy, ..., ¢|¢|} in our concept shift
split. We use P,; 4, (Y") to represent a certain output distribution on value y; given domain d;, defined
as P(Y = y;|Xina = xi) = 1. We first consider the classification case in which Y is categorical.
Given a concept ¢y, we formulate its 2-D conditional distribution P, (Y'|X) by describing multiple
1-D distributions; that is, for each domain d;,

4

F, (Y|Xind = Xi) = Zqzl'c,jpyj,di(y)v (2)
j=1

where qf’ ; 1s the rate of the spurious correlation in concept ¢ between domain d; and output y;. In
the regression case where Y is continuous, the sum becomes integral. In the multi-task case, ¥ and
1; become vectors. The overall dataset distribution can be written as
IC| IC]
P(Y,X) = 3 wiPe, (¥, X) = 3 wnP(X)o, Poy (V]X), @)
k=1 k=1
where wy, is the mixture weight for concept cy.

Comparisons of concept split design on 3 types of datasets. In practice, we create significant
concept shifts between training, validation, and test sets, in which the domain-output correlations
are completely different. Note that mixing different domain-output correlations can weaken the
spuriousness of these correlations. Thus, concepts within the training set are designed to have similar
domain-output correlations to guarantee the concept shift between training and test. Concretely,
we perform concept shift splits on synthetic, semi-artificial, and real-world datasets. For synthetic
datasets, we generate graphs where the domain feature is highly correlated with a specific output
according to the preset correlation in the concept. For semi-artificial datasets, given a graph and a
concept, we generate extra features as domains to build spurious domain-output correlations. For
real-world datasets, we cannot create or modify data. Thus, we propose a screening approach to
scan and select graphs in the dataset. Each graph has a probability to be included in a concept ¢y,
according to the value of ¢¥ .. To conclude, the difference in concept splits between artificial datasets
and real-world datasets is located in whether we can arbitrarily determine the concept of a graph.
We can define the concept of a graph in artificial datasets, but the concept of a graph in real-world
datasets is defined with a probability according to Xj,q and target Y.

3.3 Environments

Many current OOD learning algorithms [40, 24] follow the framework of invariant causal predictor
(ICP) [37] and invariant risk minimization (IRM) [3], assuming that the training data form groups
by distributions, known as environments. This framework assumes the data are similar within an
environment and dissimilar across different environments. Since OOD problems are complicated and
multi-perspective, works under this framework explicitly or implicitly injects environment information
to models to figure out the specific generalization direction for better OOD performances. Specifically,
the shift between training and test data, though more significant, should be similarly reflected among
different training environments, so that OOD models can potentially grasp the shift between training
and test data by learning the shifts among different training environments. Following this strategy, to
enhance the OOD generalization ability of models, we use the distribution shift information provided
by the difference of training environments to convey the types of shifts expected between training
and test data. In covariate shift, environments take the form of domains. During training, models
can learn from Ptrain (Xina), which varies across domains, that Xj,q is not causally related to labels,
thereby preventing the unknown P*'(Xj,4) from misleading predictions during test. In concept
shifts, environments take the form of concepts. By learning from different spurious correlations
across training concepts, models can learn that the domain-output correlations P (Y| X;,q) are
spurious, thereby avoiding being misled by the new spurious correlation P*'(Y | Xj,q) during test.

Formally, we consider a dataset with a set of |£| environments £ = {e1, ..., e|g|}, each with distri-
bution P, (Y, X) for e € £ (Fig 2b). In this case, the dataset distribution P(Y, X) = > P.(Y, X).
Specifically, for both covariate and concept shifts, the distributions P'"™" and P are weighted
combinations of environment distributions P (Y, X). With the training and test environments
gtraln’glest C (c:’ we express prrain Zeeg‘m‘" w‘e“““Pe(Y, X) and prest — Zeeg‘est ”LUteeStPe(K X),

train and w* are the weights for each training and test environment, respectively.

where w! g

4 The GOOD Datasets

In this section, we introduce the datasets in GOOD. The benchmark contains 11 datasets, covering
multiple tasks and data sources. For each dataset, we select one or two domain features. Then
we apply covariate and concept shift splits per domain to create diverse distribution shifts between
training, OOD validation, and OOD test sets. Finally, we shuffle the training set and divide it into
final training set, in-domain (ID) validation set, and in-domain (ID) test set. Summary statistics of
datasets are given in Fig. 1. Other details and data processing details are included in Appendix A.

4.1 Graph prediction tasks

GOOD-HLIYV is a small-scale real-world molecular dataset adapted from MoleculeNet [50]. The
inputs are molecular graphs in which nodes are atoms, and edges are chemical bonds. The task
is to predict whether the molecule can inhibit HIV replication. We design splits based on two
domain selections, namely, scaffold and size. The first one is Bemis-Murcko scaffold [4] which

is the two-dimensional structural base of a molecule. The second one is the number of nodes in a
molecular graph, an inevitable structural feature of a graph. Both features should not determine the
label, therefore, both can become major sources of distribution shifts. For each domain selection, the
value space for the feature is very large, therefore we cluster graphs with similar domain values into
one environment, improving the OOD learning procedure and reducing the training time complexity.

GOOD-PCBA is a real-world molecular dataset from Wu et al. [50]. It includes 128 bioassays,
forming 128 binary classification tasks. Due to the extremely unbalanced classes (only 1.4% positive
labels), we use the Average Precision (AP) averaged over the tasks as the evaluation metric. GOOD-
PCBA uses the same domain selections as GOOD-HIV.

GOOD-ZINC is a real-world molecular property regression dataset from ZINC database [15]. The
inputs are molecular graphs with up to 38 heavy atoms, and the task is to predict the constrained
solubility [21, 25] of molecules. GOOD-ZINC uses the same domain selections as GOOD-HIV.

GOOD-SST?2 is a real-world natural language sentimental analysis dataset adapted from Yuan et al.
[54]. Each sentence is transformed into a grammar tree graph, where each node represents a word
with corresponding word embeddings as node features. The dataset forms a binary classification task
to predict the sentiment polarity of a sentence. We select sentence lengths as domains since the length
of a sentence should not affect the sentimental polarity.

GOOD-CMNIST is a semi-artificial dataset designed for node feature shifts. It contains graphs of
hand-written digits transformed from MNIST database using superpixel techniques [34]. Following
Arjovsky et al. [3], we color digits according to their domains and concepts. Specifically, in covariate
shift split, we color digits with 7 different colors, and digits with the first 5 colors, the 6th color, and
the 7th color are categorized into training, validation, and test sets. In concept shift split, we color
digits with 10 colors. Each color is highly correlated with one digit label in the training set, while
colors have weak correlations and no correlation with labels in validation and test sets, respectively.

GOOD-Motif is a synthetic dataset motivated by Spurious-Motif [49] and is designed for structure
shifts. Particularly, GOOD-CMNIST and GOOD-Motif compose an OOD algorithm check for both
feature/structure shifts. Each graph in the dataset is generated by connecting a base graph and a
motif, and the label is determined by the motif solely. Instead of combining the base-label spurious
correlations and size covariate shift together as in Wu et al. [49], we study covariate and concept
shifts separately. Specifically, we generate graphs using five label irrelevant base graphs (wheel,
tree, ladder, star, and path) and three label determining motifs (house, cycle, and crane). To create
covariate and concept splits, we select the base graph type and the size as domain features.

4.2 Node prediction tasks

GOOD-Cora is a citation network adapted from the full Cora dataset [7]. The input is a small-scale
citation network graph, in which nodes represent scientific publications and edges are citation links.
The task is a 70-class classification of publication types. We generate splits based on two domain
selections, namely, word and degree. The first one is the word diversity defined by the selected-word-
count of a publication, purely irrelevant with the label. The second one is node degree in the graph,
implying that the popularity of a paper should not determine the class of a paper.

GOOD-Arxiv is a citation dataset adapted from OGB [19]. The input is a directed graph representing
the citation network among the computer science (CS) arXiv papers. Nodes in the graph represent
arXiv papers, and directed edges represent citations. The task is predicting the subject area of arXiv
CS papers, forming a 40-class classification problem. We generate splits based on two domain
selections; i.e., time (publication year) and node degree.

GOOD-Twitch is a gamer network dataset. The nodes represent gamers with games as node features,
and the edge represents the friendship connection of gamers. The binary classification task is to
predict whether a user streams mature content. The domain of GOOD-Twitch splits includes user
language, implying that the prediction target should not be biased by the language a user uses.

GOOD-WebKB is a university webpage network dataset. A node in the network represents a
webpage, with words appearing in the webpage as node features, and edges are hyperlinks between
webpages. Its 5-class prediction task is to predict the classes of webpages. We split GOOD-WebKB
according to the domain university, suggesting that classified webpages are based on word contents
and link connections instead of university features.

Table 1: ID and OOD performance gaps learned with ERM across 51 splits. The metric and domain
selections for each dataset are in Fig. 1. 7 indicates higher values correspond to better performance
while | indicates lower for better. ID test results with ID validations are denoted as IDp, while OOD
test results with ID/OOD validations are written as OODyp and OODggp, respectively. Note that
the no-shift random split only has the ID setting. We report the average values over 10 runs. The
standard deviations are listed in Appendix D.

domain selection 1 domain selection 2
covariate concept no-shift covariate concept no-shift
IDip OOD;p OODoop IDip 00D, OODgop IDip IDip OO0D;p OODgop IDip OOD;p OODoop IDip
GOOD-HIVT 8279 68.86 69.58 8422 6531 7233 80.86 83.72 5841 59.94 88.05 4475 63.26 80.86
GOOD-PCBAT 33.45 16.87 16.89 2595 21.34 21.63 33.77 34.31 17.81 17.86 3254 1483 15.36 33.77
GOOD-ZINC/| 0.1224 0.1825 0.1995 0.1222 0.1328 0.1306 ~ 0.1233 0.1199 02569 0.2427 0.1315 0.1418 0.1403 0.1233
GOOD-SST21 89.82 77.76 81.30 9443 67.26 7243 91.61 - - - - - - -
GOOD-CMNISTT 77.96 26.90 28.60 90.00 40.80 42.87 7730 - - - - - - -
GOOD-Motiff 92.60 69.97 68.66 92.02 80.87 81.44 9209 9228 5128 51.74 9173 69.41 70.75 92.09
GOOD-Corat 7043 64.44 64.86 66.05 6420 64.60 69.41 7227 5576 56.30 68.71 60.38 60.54 69.42
GOOD-Arxiv?t 72.69 70.64 71.08 7476 65.70 67.32 73.02 7747 5853 5891 7527 61.77 62.99 72.99
GOOD-Twitcht 70.66 4773 48.95 80.29 4857 57.32 68.05 - - - - - - -
GOOD-WebKB1 38.25 11.64 14.29 65.00 2477 27.83 47.85 - - - - - - -

GOOD-CBAST 89.29 77.57 76.00 89.79 82.22 82.36 99.43 - - - - - - —

GOOD-CBAS is a synthetic dataset modified from BA-Shapes [53]. The input is a graph created by
attaching 80 house-like motifs to a 300-node Barabasi—Albert base graph, and the task is to predict
the role of nodes, including the top/middle/bottom node of a house-like motif or the node from the
base graph, forming a 4-class classification task. Instead of using constant node features, we generate
colored features as in GOOD-CMNIST so that OOD algorithms need to tackle node color differences
in covariate splits and color-label correlations in concept splits.

5 Experimental Studies

We conduct experiments on 11 datasets with 10 baseline methods. For each dataset, we use the
same GNN backbone for all baseline methods for fair comparisons. Specifically, we use GIN-
Virtual [51, 14] and GCN [22, 55] as GNN backbones for graph and node prediction tasks, respectively.
Note that for GOOD-Motif, we adopt GIN [51] as the GNN backbone since adding virtual nodes does
not improve the performance. For all experiments, we select the best checkpoints for ID and OOD
tests according to results on ID and OOD validation sets, respectively. Experimental details and hyper-
parameter selections are provided in Appendix B. All the datasets, implementation codes, and best
checkpoints to reproduce the results in this paper are available at https://github.com/divelab/GOOD/.

5.1 In-distribution versus out-of-distribution performance gap

As introduced in Sec. 1, one principle for designing GOOD is to create non-trivial distribution shifts
and performance gaps between training and test data. Equivalently, we expect distinct performance
gaps between ID and OOD settings. To verify performance gaps, we run experiments using empirical
risk minimization (ERM) and summarize the results in Table 1. The differences between IDp
and OODp or OODgppfor each domain selection and distribution shift show the substantial and
consistent performance gap between the ID and OOD settings. In addition, for most splits, OODgop
is better than OODyp. This implies that OOD validation sets outperform ID validation sets in selecting
models with better generalization ability.

5.2 Performance of baseline algorithms

In our benchmark, we conduct experiments with 10 baseline methods. Based on the comparison
results, we provide an analysis of the learning strategy of OOD methods.

5.2.1 Baseline methods

We consider empirical risk minimization (ERM) and 9 OOD algorithms as baselines, among which
4 are graph-specific methods. Firstly, we choose two domain adaptation algorithms that target
minimizing feature discrepancies. DANN [11] adversarially trains the regular classifier and a domain
classifier to make features indistinguishable. Deep Coral [43] encourages features in different domains
to be similar by minimizing the deviation of covariant matrices from different domains. Furthermore,

https://github.com/divelab/GOOD/

Table 2: ID;p and OODgop performances of 10 baselines on 11 datasets. All numerical results are
averages across 3 to 10 random runs. Numbers in bold represent the best results. OOM denotes
out of memory. Additional results are in Appendix D. More empirical results and analysis are in
Appendix C.

GOOD-HIVT GOOD-PCBAT GOOD-ZINC| GOOD-CMNISTT
covariate scaffold size scaffold size scaffold size color
IDp OODoop IDp OODgop IDip OODoop IDip 0O0Doop IDp OODoop IDp OODoop IDip OODoop
ERM 82.79 69.58 83.72 59.94 33.45 16.89 34.31 17.86 0.1224 0.1995 0.1199 0.2427 77.96 28.60 oraph
IRM 81.35 67.97 81.33 59.00 33.56 16.90 34.28 18.05 0.1213 02025 0.1222 0.2403 77.92 27.83 &rap
VREx 82.11 70.77 83.47 58.53 33.88 16.98 34.09 1779 0.1211 0.2094 0.1234 0.2384 77.98 28.48
GroupDRO 82.60 70.64 83.79 58.98 33.81 16.98 33.95 17.59 0.1168 0.1934 0.1180 0.2423 77.98 29.07
DANN 81.18 70.63 83.90 58.68 33.63 16.90 34.17 17.86 0.1186 0.2004 0.1188 0.2439 78.00 29.14
Deep Coral ~ 82.53 68.61 84.70 60.11 33.47 16.93 34.49 17.94 0.1185 02036 0.1134 02505 78.64 29.05
Mixup 82.29 68.88 83.16 59.03 30.22 16.59 30.63 17.06 0.1279 02240 0.1255 0.2748 77.40 26.47
DIR 82.54 67.47 80.46 57.11 32.55 14.98 32.89 16.61 0.3799 0.6493 0.1541 0.5482 31.09 20.60
GOOD-Motiff GOOD-SST21 GOOD-MotifT GOOD-SST21
covariate base size length concept base size length
Db OODoop IDip OODoop IDip OODoop Db OODoop IDip OODoop IDip OODoop
ERM 92.60 68.66 92.28 51.74 89.82 81.30 ERM 92.02 81.44 91.73 70.75 94.43 7243 cah
IRM 92.60 70.65 92.18 51.41 89.41 79.91 IRM 92.00 80.71 91.68 69.77 94.10 77.47 grap
VREx 92.60 71.47 9225 52.67 89.51 80.64 VREx 92.05 81.56 91.67 70.24 94.26 73.16
GroupDRO 92.61 68.24 92.29 51.95 89.59 81.35 GroupDRO 92.01 81.43 91.67 69.98 94.41 71.86
DANN 92.60 65.47 92.23 51.46 89.60 79.71 DANN 92.02 81.33 91.81 70.72 94.02 76.03
Deep Coral ~ 92.61 68.88 92.22 50.97 89.68 79.81 Deep Coral ~ 92.01 81.37 91.68 70.49 94.25 72.34
Mixup 92.68 70.08 92.02 51.48 89.78 80.88 Mixup 91.89 77.63 91.45 67.81 94.12 73.34
DIR 87.73 61.50 84.53 50.41 84.30 77.65 DIR 91.60 72.14 73.10 56.28 93.71 68.76
GOOD-HIV?T GOOD-PCBAT GOOD-ZINC| GOOD-CMNISTT
concept scaffold size scaffold size scaffold size color
IDp OODoop IDp OODoop IDip OODoop IDip 0OO0Doop IDp OODoop IDp OODoop IDp OODoop
ERM 84.22 72.33 88.05 63.26 2595 21.63 32.54 15.36 0.1222 0.1306 0.1315 0.1403 90.00 42.87 raph
IRM 82.89 72.59 88.62 59.90 25.89 21.22 32.99 16.07 0.1225 0.1314 0.1278 0.1368 90.02 42.80 grap
VREx 83.84 72.60 88.28 60.23 26.62 22.02 32.49 15.59 0.1186 0.1270 0.1309 0.1419 89.99 4331
GroupDRO 83.40 73.64 88.28 61.37 26.32 21.83 33.03 15.99 0.1207 0.1281 0.1251 0.1369 90.02 43.32
DANN 83.87 71.92 87.28 65.27 26.07 21.64 32.74 15.78 01172 0.1256 0.1253 0.1339 89.94 43.11
Deep Coral ~ 84.65 7297 87.88 62.28 26.38 21.95 32.67 16.20 0.1187 0.1279 0.1287 0.1370 89.94 43.16
Mixup 82.36 72.03 87.64 64.87 23.73 19.78 30.23 13.36 0.1353 0.1475 0.1423 0.1522 89.95 40.96
DIR 83.28 69.05 79.19 72.61 25.85 22.20 30.53 16.86 0.3501 0.3865 0.2348 0.2871 86.76 22.69
GOOD-Corat GOOD-ArxivT GOOD-CBAST GOOD-Twitcht GOOD-WebKBT
covariate . P
word degree time degree color language university
IDp OODoop IDip OODoop IDip OODoop IDip 0OO0Doop IDip 0OO0Doop IDip OODoop IDip 00Doop
ERM 70.43 64.86 72.27 56.30 72.69 71.08 77.47 58.91 89.29 76.00 70.66 48.95 38.25 14.29 node
IRM 70.27 64.77 72.64 56.28 72.66 71.04 71.50 58.98 91.00 76.00 69.75 47.21 39.34 13.49
VREx 70.47 64.80 72.25 56.30 72.66 71.12 77.49 58.99 91.14 77.14 70.66 48.99 39.34 14.29
GroupDRO 70.41 64.72 72.18 56.29 72.68 71.15 77.46 59.08 90.86 76.14 70.84 47.20 39.89 17.20
DANN 70.66 64.77 72.47 56.10 72.74 71.05 71.51 59.00 90.14 71.57 70.67 48.98 39.89 15.08
Deep Coral ~ 70.47 64.72 72.16 56.35 72.66 71.07 71748 58.97 91.14 75.86 70.67 49.64 3825 13.76
Mixup 71.54 65.23 74.57 58.20 72.49 71.34 77.61 57.60 73.57 70.57 71.30 52.27 54.65 17.46
EERM 68.79 61.98 7332 56.88 OOM OOM OOM OOM 67.62 52.86 73.87 51.34 46.99 24.61
SRGNN 70.27 64.66 71.37 54.78 72.50 70.83 75.96 57.52 71.62 74.29 70.58 47.30 39.89 13.23
GOOD-Corat GOOD-ArxivT GOOD-CBAST GOOD-Twitcht GOOD-WebKBT
concept - T -
word degree time degree color language university
IDp OODoop IDip OODoop IDip OODoop IDip 0OODoop IDip OODoop IDip OODoop IDip 00Doon
ERM 66.05 64.60 68.71 60.54 74.76 67.32 75.27 62.99 89.79 82.36 80.29 57.32 65.00 27.83 node
IRM 66.09 64.60 68.58 61.23 74.67 67.41 75.23 62.97 90.71 83.21 77.05 59.17 65.56 27.52
VREx 66.00 64.57 68.45 60.58 74.80 67.37 75.19 63.00 89.50 82.86 80.29 57.37 65.00 27.83
GroupDRO 66.17 64.62 68.37 60.65 74.73 67.45 75.19 62.88 90.36 82.00 81.95 60.27 65.00 28.14
DANN 66.16 64.51 68.08 60.78 74.73 67.28 75.25 62.91 89.93 82.50 80.28 57.46 65.00 26.91
Deep Coral ~ 66.13 64.58 68.38 60.58 74.77 67.42 75.16 62.85 89.36 82.64 80.14 56.97 65.00 28.75
Mixup 69.66 64.44 70.32 63.65 74.92 64.84 72.75 61.28 93.64 64.57 78.89 55.28 67.22 31.19
EERM 65.75 63.09 66.50 58.38 OOM OOM OOM OOM 78.33 64.29 83.91 51.94 61.67 27.83
SRGNN 66.45 64.62 68.34 61.08 74.64 67.17 74.83 62.09 88.57 81.43 80.21 56.05 61.67 27.52

we adopt two invariant learning baselines following the invariant prediction assumption [37]. IRM [3]
searches for data representations that perform well across all environments by penalizing feature
distributions that have different optimal linear classifiers for each environment. VREX [24] targets
both covariate robustness and the invariant prediction. It specifically reduces the variance of risks
in test environments by minimizing the risk variances of training environments. By applying fair
optimization, GroupDRO [40] tackles the problem that the distribution minority lacks sufficient
training. This method, known as risk interpolation [24], is achieved by explicitly minimizing the loss
in the worst training environment. To evaluate the performance of current OOD methods specifically
designed for graphs, we include the following 4 graph OOD methods. We incorporate the data
augmentation method Mixup [56] following the implementation of Mixup-For-GraphWang et al. [46]
designed for graph data, which improves model generalization abilities. DIR [49] selects a subset of
graph representations as causal rationales and conducts interventional data augmentation to create

multiple distributions. EERM [48] tries to generate environments by a REINFORCE algorithm to
maximize loss variance between environments, while its main loss minimization requires adversarially
minimizing loss variance. SRGNN [59] aims at converting the biased training data to the given
unbiased distribution, performed through a central moment discrepancy regularizer and the kernel
mean matching technique by solving a quadratic problem.

5.2.2 Quantitative comparison and analysis

Table 2 shows the OODgop and IDyp results of 10 baselines for all splits. Most OOD algorithms have
comparable performances with ERM, while many OOD algorithms outperform ERM with certain
patterns. Specifically, we observe that the risk interpolation (GroupDRO) and extrapolation (VREX)
perform favorably against other methods on multiple datasets and shift splits. VREx outperforms
other methods on 7 out of 34 OOD splits, evidencing its learning invariance and robustness, especially
for covariate shifts in graph prediction tasks. GroupDRO outperforms 8 out of 34 OOD splits,
showing its advantage in fair optimization. The two feature discrepancy minimization methods,
DANN and Deep Coral, do not perform well enough. DANN outperforms on 4 splits, and it is
especially suitable for graph concept shift splits. Deep Coral outperforms on 1 OOD split but usually
has advantages on ID tests. Finally, IRM performs similarly to ERM and outperforms on 3 of the
OOD results, showing the difficulty of achieving invariant prediction in non-linear settings.

Graph OOD methods make extra effort to interpolate the irregularity and connectivity of graph
topology, and certain improvements are achieved. Mixup-For-Graph exclusively excels at node
prediction tasks, yielding consistent gains across datasets, which can attribute to its node-specific
design [46]. It outperforms 6 out of 14 node-task OOD splits. However, it fails at graph prediction
tasks due to the simple graph representation mixup strategy. DIR specifically solves concept shifts for
graph classification tasks and outperforms on 3 splits, indicating that interventional augmentation on
representations weakens spurious correlations by diversifying the distribution. Its benefit on concept
shift does not apply to covariate shifts since DIR only expands the combination of representations
without creating new domains; it also fails on regression tasks which require a more delicate learning
process. EERM and SRGNN generally have average performances, outperforming only on a few splits.
EERM reveals that while environment generation is learnable with REINFORCE, this adversarial
training is difficult and needs to be perfected. SRGNN makes use of our OOD validation data to
draw the training data closer to an OOD distribution; however, without sufficient generalization, it
can seldom perform well in tests since OOD validation data cannot exactly reflect OOD test data.
To conclude, while these graph-specific methods apply well to graph topology, other flaws in the
methodology design create a performance bottleneck.

6 Discussions

GOOD aims to facilitate the development of graph OOD and general OOD algorithms. Our results
and comparisons show that current OOD algorithms can improve generalization abilities, but not
significantly. In addition, an algorithm might improve performance on one type of shift, but not both.
With these observations, future OOD methods can focus on solving one of covariate and concept
shifts to improve the specific generalization ability. The improvement might be achieved by managing
well-designed model architectures, optimization schemes, or data augmentation strategies. Moreover,
models cannot be expected to solve unknown distribution shifts. Thus, we believe using the given
environment information to convey the types of shifts expected during testing is a promising direction.

Our GOOD benchmark is a growing project. We expect to include more methods as the OOD field
develops especially graph-specific algorithms and include datasets and domain selections of a larger
quantity and variety. In addition, the current benchmark does not consider link prediction tasks [58],
which will be added as the project develops.

Acknowledgments and Disclosure of Funding

We thank Jundong Li and Jing Ma for insightful discussions. This work was supported in part by
National Science Foundation grants IIS-1955189, IIS-1908198, and I1S-1908220.

10

References

[1] Kartik Ahuja, Ethan Caballero, Dinghuai Zhang, Jean-Christophe Gagnon-Audet, Yoshua
Bengio, Ioannis Mitliagkas, and Irina Rish. Invariance principle meets information bottleneck

for out-of-distribution generalization. Advances in Neural Information Processing Systems, 34:
3438-3450, 2021.

[2] Rocio Alaiz-Rodriguez and Nathalie Japkowicz. Assessing the impact of changing environments
on classifier performance. In Conference of the Canadian Society for Computational Studies of
Intelligence, pages 13-24. Springer, 2008.

[3] Martin Arjovsky, Léon Bottou, Ishaan Gulrajani, and David Lopez-Paz. Invariant risk mini-
mization. arXiv preprint arXiv:1907.02893, 2019.

[4] Guy W Bemis and Mark A Murcko. The properties of known drugs. 1. molecular frameworks.
Journal of medicinal chemistry, 39(15):2887-2893, 1996.

[5] Shai Ben-David, John Blitzer, Koby Crammer, Alex Kulesza, Fernando Pereira, and Jen-
nifer Wortman Vaughan. A theory of learning from different domains. Machine learning, 79(1):
151-175, 2010.

[6] Beatrice Bevilacqua, Yangze Zhou, and Bruno Ribeiro. Size-invariant graph representations for
graph classification extrapolations. In International Conference on Machine Learning, pages
837-851. PMLR, 2021.

[7] Aleksandar Bojchevski and Stephan Giinnemann. Deep gaussian embedding of graphs: Unsu-
pervised inductive learning via ranking. arXiv preprint arXiv:1707.03815, 2017.

[8] Yonggiang Chen, Yonggang Zhang, Han Yang, Kaili Ma, Binghui Xie, Tongliang Liu, Bo Han,
and James Cheng. Invariance principle meets out-of-distribution generalization on graphs. arXiv
preprint arXiv:2202.05441, 2022.

[9] Mucong Ding, Kezhi Kong, Jiuhai Chen, John Kirchenbauer, Micah Goldblum, David Wipf,
Furong Huang, and Tom Goldstein. A closer look at distribution shifts and out-of-distribution
generalization on graphs. In NeurIPS 2021 Workshop on Distribution Shifts: Connecting
Methods and Applications, 2021. URL https://openreview.net/forum?id=XvgPGWazqRH.

[10] Shaohua Fan, Xiao Wang, Chuan Shi, Peng Cui, and Bai Wang. Generalizing graph neural
networks on out-of-distribution graphs. arXiv preprint arXiv:2111.10657, 2021.

[11] Yaroslav Ganin, Evgeniya Ustinova, Hana Ajakan, Pascal Germain, Hugo Larochelle, Frangois
Laviolette, Mario Marchand, and Victor Lempitsky. Domain-adversarial training of neural
networks. The journal of machine learning research, 17(1):2096-2030, 2016.

[12] Hongyang Gao and Shuiwang Ji. Graph U-nets. In international conference on machine
learning, pages 2083-2092. PMLR, 2019.

[13] Hongyang Gao, Yi Liu, and Shuiwang Ji. Topology-aware graph pooling networks. IEEE
Transactions on Pattern Analysis and Machine Intelligence, 43(12):4512-4518, 2021.

[14] Justin Gilmer, Samuel S Schoenholz, Patrick F Riley, Oriol Vinyals, and George E Dahl. Neural
message passing for quantum chemistry. In International conference on machine learning,
pages 1263-1272. PMLR, 2017.

[15] Rafael Gémez-Bombarelli, Jennifer N Wei, David Duvenaud, José Miguel Herndndez-Lobato,
Benjamin Sanchez-Lengeling, Dennis Sheberla, Jorge Aguilera-Iparraguirre, Timothy D Hirzel,
Ryan P Adams, and Aldn Aspuru-Guzik. Automatic chemical design using a data-driven
continuous representation of molecules. ACS central science, 4(2):268-276, 2018.

[16] Ishaan Gulrajani and David Lopez-Paz. In search of lost domain generalization. arXiv preprint
arXiv:2007.01434, 2020.

[17] David J Hand. Classifier technology and the illusion of progress. Statistical science, 21(1):
1-14, 2006.

[18] Yue He, Zheyan Shen, and Peng Cui. Towards non-iid image classification: A dataset and
baselines. Pattern Recognition, 110:107383, 2021.

[19] Weihua Hu, Matthias Fey, Marinka Zitnik, Yuxiao Dong, Hongyu Ren, Bowen Liu, Michele
Catasta, and Jure Leskovec. Open graph benchmark: Datasets for machine learning on graphs.
Advances in neural information processing systems, 33:22118-22133, 2020.

11

https://openreview.net/forum?id=XvgPGWazqRH

[20] Yuanfeng Ji, Lu Zhang, Jiaxiang Wu, Bingzhe Wu, Long-Kai Huang, Tingyang Xu, Yu Rong,
Langing Li, Jie Ren, Ding Xue, et al. DrugOOD: Out-of-distribution (OOD) dataset curator
and benchmark for Al-aided drug discovery—a focus on affinity prediction problems with noise
annotations. arXiv preprint arXiv:2201.09637, 2022.

[21] Wengong Jin, Regina Barzilay, and Tommi Jaakkola. Junction tree variational autoencoder for
molecular graph generation. In International conference on machine learning, pages 2323-2332.
PMLR, 2018.

[22] Thomas N. Kipf and Max Welling. Semi-supervised classification with graph convolutional
networks. In International Conference on Learning Representations (ICLR), 2017.

[23] Pang Wei Koh, Shiori Sagawa, Henrik Marklund, Sang Michael Xie, Marvin Zhang, Akshay
Balsubramani, Weihua Hu, Michihiro Yasunaga, Richard Lanas Phillips, Irena Gao, et al.
Wilds: A benchmark of in-the-wild distribution shifts. In International Conference on Machine
Learning, pages 5637-5664. PMLR, 2021.

[24] David Krueger, Ethan Caballero, Joern-Henrik Jacobsen, Amy Zhang, Jonathan Binas, Dinghuai
Zhang, Remi Le Priol, and Aaron Courville. Out-of-distribution generalization via risk extrap-
olation (REX). In International Conference on Machine Learning, pages 5815-5826. PMLR,
2021.

[25] Matt J Kusner, Brooks Paige, and José Miguel Herndndez-Lobato. Grammar variational
autoencoder. In International conference on machine learning, pages 1945-1954. PMLR, 2017.

[26] Haoyang Li, Xin Wang, Ziwei Zhang, and Wenwu Zhu. OOD-GNN: Out-of-distribution
generalized graph neural network. arXiv preprint arXiv:2112.03806, 2021.

[27] Haoyang Li, Xin Wang, Ziwei Zhang, and Wenwu Zhu. Out-of-distribution generalization on
graphs: A survey. arXiv preprint arXiv:2202.07987, 2022.

[28] Meng Liu, Youzhi Luo, Limei Wang, Yaochen Xie, Hao Yuan, Shurui Gui, Haiyang Yu, Zhao
Xu, Jingtun Zhang, Yi Liu, et al. DIG: a turnkey library for diving into graph deep learning
research. Journal of Machine Learning Research, 22(240):1-9, 2021.

[29] Meng Liu, Haiyang Yu, and Shuiwang Ji. Your neighbors are communicating: Towards powerful
and scalable graph neural networks. https://arxiv.org/abs/2206.02059, 2022.

[30] Yi Liu, Hao Yuan, Lei Cai, and Shuiwang Ji. Deep learning of high-order interactions for
protein interface prediction. In Proceedings of the 26th ACM SIGKDD international conference
on knowledge discovery & data mining, pages 679-687, 2020.

[31] Yi Liu, Limei Wang, Meng Liu, Yuchao Lin, Xuan Zhang, Bora Oztekin, and Shuiwang Ji.
Spherical message passing for 3d molecular graphs. In International Conference on Learning
Representations, 2022. URL https://openreview.net/forum?id=givsRXsOt9r.

[32] Chaochao Lu, Yuhuai Wu, José Miguel Herndndez-Lobato, and Bernhard Scholkopf. Invariant
causal representation learning for out-of-distribution generalization. In International Conference
on Learning Representations, 2021.

[33] David Mendez, Anna Gaulton, A Patricia Bento, Jon Chambers, Marleen De Veij, Eloy Félix,
Maria Paula Magarifios, Juan F Mosquera, Prudence Mutowo, Michat Nowotka, et al. ChEMBL.:
towards direct deposition of bioassay data. Nucleic acids research, 47(D1):D930-D940, 2019.

[34] Federico Monti, Davide Boscaini, Jonathan Masci, Emanuele Rodola, Jan Svoboda, and
Michael M Bronstein. Geometric deep learning on graphs and manifolds using mixture model
CNNs. In Proceedings of the IEEE conference on computer vision and pattern recognition,

pages 5115-5124, 2017.

[35] Jose G Moreno-Torres, Troy Raeder, Rocio Alaiz-Rodriguez, Nitesh V Chawla, and Francisco
Herrera. A unifying view on dataset shift in classification. Pattern Recognition, 45(1):521—
530, 2012. ISSN 0031-3203. doi: https://doi.org/10.1016/j.patcog.2011.06.019. URL https:
/lwww.sciencedirect.com/science/article/pii/S0031320311002901.

[36] Judea Pearl. Causality. Cambridge university press, 2009.

[37] Jonas Peters, Peter Bithlmann, and Nicolai Meinshausen. Causal inference by using invariant
prediction: identification and confidence intervals. Journal of the Royal Statistical Society:
Series B (Statistical Methodology), 78(5):947-1012, 2016.

12

https://openreview.net/forum?id=givsRXsOt9r
https://www.sciencedirect.com/science/article/pii/S0031320311002901
https://www.sciencedirect.com/science/article/pii/S0031320311002901

[38] Joaquin Quifionero-Candela, Masashi Sugiyama, Anton Schwaighofer, and Neil D Lawrence.
Dataset shift in machine learning. Mit Press, 2008.

[39] Elan Rosenfeld, Pradeep Ravikumar, and Andrej Risteski. The risks of invariant risk minimiza-
tion. arXiv preprint arXiv:2010.05761, 2020.

[40] Shiori Sagawa, Pang Wei Koh, Tatsunori B Hashimoto, and Percy Liang. Distributionally
robust neural networks for group shifts: On the importance of regularization for worst-case
generalization. arXiv preprint arXiv:1911.08731, 2019.

[41] Zheyan Shen, Jiashuo Liu, Yue He, Xingxuan Zhang, Renzhe Xu, Han Yu, and Peng Cui.
Towards out-of-distribution generalization: A survey. arXiv preprint arXiv:2108.13624, 2021.

[42] Hidetoshi Shimodaira. Improving predictive inference under covariate shift by weighting the
log-likelihood function. Journal of statistical planning and inference, 90(2):227-244, 2000.

[43] Baochen Sun and Kate Saenko. Deep coral: Correlation alignment for deep domain adaptation.
In European conference on computer vision, pages 443—450. Springer, 2016.

[44] Eric Tzeng, Judy Hoffman, Kate Saenko, and Trevor Darrell. Adversarial discriminative domain
adaptation. In Proceedings of the IEEE conference on computer vision and pattern recognition,

pages 7167-7176, 2017.

[45] Petar Velickovié, Guillem Cucurull, Arantxa Casanova, Adriana Romero, Pietro Li0, and Yoshua
Bengio. Graph Attention Networks. International Conference on Learning Representations,
2018. URL https://openreview.net/forum?id=rJXMpikCZ. accepted as poster.

[46] Yiwei Wang, Wei Wang, Yuxuan Liang, Yujun Cai, and Bryan Hooi. Mixup for node and graph
classification. In Proceedings of the Web Conference 2021, pages 3663-3674, 2021.

[47] Gerhard Widmer and Miroslav Kubat. Learning in the presence of concept drift and hidden
contexts. Machine learning, 23(1):69—-101, 1996.

[48] Qitian Wu, Hengrui Zhang, Junchi Yan, and David Wipf. Handling distribution shifts on graphs:
An invariance perspective. arXiv preprint arXiv:2202.02466, 2022.

[49] Ying-Xin Wu, Xiang Wang, An Zhang, Xiangnan He, and Tat seng Chua. Discovering invariant
rationales for graph neural networks. In ICLR, 2022.

[50] Zhengin Wu, Bharath Ramsundar, Evan N Feinberg, Joseph Gomes, Caleb Geniesse, Aneesh S
Pappu, Karl Leswing, and Vijay Pande. MoleculeNet: a benchmark for molecular machine
learning. Chemical science, 9(2):513-530, 2018.

[51] Keyulu Xu, Weihua Hu, Jure Leskovec, and Stefanie Jegelka. How powerful are graph neural
networks? In International Conference on Learning Representations, 2019. URL https:
/lopenreview.net/forum?id=ryGs6iASKm.

[52] Nanyang Ye, Kaican Li, Lanqing Hong, Haoyue Bai, Yiting Chen, Fengwei Zhou, and Zhenguo
Li. OoD-Bench: Benchmarking and understanding out-of-distribution generalization datasets
and algorithms. arXiv preprint arXiv:2106.03721, 2021.

[53] Zhitao Ying, Dylan Bourgeois, Jiaxuan You, Marinka Zitnik, and Jure Leskovec. GNNExplainer:
Generating explanations for graph neural networks. Advances in neural information processing
systems, 32, 2019.

[54] Hao Yuan, Haiyang Yu, Shurui Gui, and Shuiwang Ji. Explainability in graph neural networks:
A taxonomic survey. arXiv preprint arXiv:2012.15445, 2020.

[55] Hanqging Zeng, Hongkuan Zhou, Ajitesh Srivastava, Rajgopal Kannan, and Viktor Prasanna.
GraphSAINT: Graph sampling based inductive learning method. In International Conference
on Learning Representations, 2020. URL https://openreview.net/forum?id=BJe8pkHFwS.

[56] Hongyi Zhang, Moustapha Cisse, Yann N Dauphin, and David Lopez-Paz. mixup: Beyond
empirical risk minimization. arXiv preprint arXiv:1710.09412, 2017.

[57] Xingxuan Zhang, Linjun Zhou, Renzhe Xu, Peng Cui, Zheyan Shen, and Haoxin Liu. NICO++:
Towards better benchmarking for domain generalization. arXiv preprint arXiv:2204.08040,
2022.

[58] Yangze Zhou, Gitta Kutyniok, and Bruno Ribeiro. OOD link prediction generalization ca-
pabilities of message-passing GNNs in larger test graphs. arXiv preprint arXiv:2205.15117,
2022.

13

https://openreview.net/forum?id=rJXMpikCZ
https://openreview.net/forum?id=ryGs6iA5Km
https://openreview.net/forum?id=ryGs6iA5Km
https://openreview.net/forum?id=BJe8pkHFwS

[59] Qi Zhu, Natalia Ponomareva, Jiawei Han, and Bryan Perozzi. Shift-robust GNNs: Overcoming
the limitations of localized graph training data. Advances in Neural Information Processing
Systems, 34, 2021.

14

Checklist

1. For all authors...
(a) Do the main claims made in the abstract and introduction accurately reflect the paper’s
contributions and scope? [Yes]

(b) Did you describe the limitations of your work? [Yes] Section 6 includes current
limitation and future work of our GOOD benchmark.

(c) Did you discuss any potential negative societal impacts of your work?
(d) Have you read the ethics review guidelines and ensured that your paper conforms to
them? [Yes]
2. If you are including theoretical results...

(a) Did you state the full set of assumptions of all theoretical results? [N/A]
(b) Did you include complete proofs of all theoretical results? [IN/A]

3. If you ran experiments (e.g. for benchmarks)...

(a) Did you include the code, data, and instructions needed to reproduce the main ex-
perimental results (either in the supplemental material or as a URL)? [Yes] Datasets,
implementation codes, and best checkpoints to reproduce the results in this paper are
available at https://github.com/divelab/GOOD/.

(b) Did you specify all the training details (e.g., data splits, hyperparameters, how they
were chosen)? [Yes] Experimental details and hyper-parameter selections are provided
in Appendix B.

(c) Did you report error bars (e.g., with respect to the random seed after running experi-
ments multiple times)? [Yes] We report the average value over 10 runs. The standard
deviations are listed in Appendix D due to space limitation.

(d) Did you include the total amount of compute and the type of resources used (e.g., type
of GPUs, internal cluster, or cloud provider)? [Yes] Computational resources used are
provided in Appendix B along with the experimental details. We use one NVIDIA
GeForce RTX 2080 Ti for each single experiment.

4. If you are using existing assets (e.g., code, data, models) or curating/releasing new assets...

(a) If your work uses existing assets, did you cite the creators? [Yes]
(b) Did you mention the license of the assets? [Yes] See Appendix A and F.
(c) Did you include any new assets either in the supplemental material or as a URL? [Yes]

(d) Did you discuss whether and how consent was obtained from people whose data you’re
using/curating? [Yes] We are using public datasets and closely follow the license rules.

(e) Did you discuss whether the data you are using/curating contains personally identifiable
information or offensive content? [N/A |
5. If you used crowdsourcing or conducted research with human subjects...
(a) Did you include the full text of instructions given to participants and screenshots, if
applicable? [N/A]
(b) Did you describe any potential participant risks, with links to Institutional Review
Board (IRB) approvals, if applicable? [N/A]

(c) Did you include the estimated hourly wage paid to participants and the total amount
spent on participant compensation? [N/A]

15

https://github.com/divelab/GOOD/

	Introduction
	Related Work
	The GOOD Benchmark Design
	Covariate shifts
	Concept shifts
	Environments

	The GOOD Datasets
	Graph prediction tasks
	Node prediction tasks

	Experimental Studies
	In-distribution versus out-of-distribution performance gap
	Performance of baseline algorithms
	Baseline methods
	Quantitative comparison and analysis

	Discussions

