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ARTICLE INFO ABSTRACT

Keywords: The application of deep learning methods to speed up the challenging power system problems has recently
Deep learning shown very encouraging results. However, power system dynamics are not snapshot, steady-state operations.
Power system dynamics These dynamics must be considered to ensure that the optimal solutions provided by these models adhere

Physics-informed neural networks
Optimal power flow
Transfer learning

to practical constraints to avoid frequency fluctuations and grid instabilities. Unfortunately, dynamic system
models based on ordinary or partial differential equations are frequently unsuitable for direct application
in control or state estimates due to their high computational costs. To address these challenges, this paper
introduces a machine learning method to approximate the behavior of power systems dynamics in near real-
time. The proposed framework is based on gradient-enhanced physics-informed neural networks (gPINNs)
and encodes the underlying physical laws governing power systems. A key characteristic of the proposed
gPINN is its ability to train without the need of generating expensive training data. The paper illustrates the
potential of the proposed approach in both forward and inverse problems in a single-machine infinite bus
system and a three-bus power network for predicting rotor angles and frequency, and uncertain parameters
such as inertia and damping to showcase its potential for a range of power systems applications. The model
exhibited high accuracy in predicting the variables, achieving a range of 0.533-4.092 and an average L?
relative error improvement of up to 13.30x compared to the PINN model. The computational performance of
the proposed gPINN model was compared to a conventional solver, revealing a remarkable speed-up of 31 to
171 times faster in solving differential-algebraic systems of equations in power systems.

1. Introduction mostly being applied to steady state power flow. This is largely due
to harnessing the benefit of historical data and moving most of the
Recently, electric power networks have incorporated increasing computational burden to an off-line setting [4-9]. In other words,
levels of renewable energy sources, further deregulated markets, and power systems are dynamic (e.g., generator dynamics affect the stabil-
intricate communication and control systems have been implemented ity of system operations). Therefore, their operations cannot be reliably
to increase stability and efficiency. Nonetheless, these advancements controlled when considering steady-state behaviors alone.
have resulted in a broader range of operating scenarios and potential In power systems, simulating the dynamic response of a power net-
risks that could pose a threat to the security of the power network work requires solving a set of complex nonlinear differential-algebraic
[1,2]. On the other hand, these advancements provide new opportuni- equations (DAEs) [10]. This task, however, is challenging as tradi-
ties to utilize an abundance of measurements from the grid. Hence, with tional explicit integration methods fail to produce accurate results [11].
the dramatic growth of available data and computing resources, there Therefore, commercial solvers use numerically stable methods to in-

tegrate dynamic equations and iterative schemes to solve algebraic
equations [12]. The cost and memory required to integrate DAEs are
substantial and pose a hindrance to performing real-time dynamical
assessments [13]. However, with the ongoing transformation of the
power network, it will become increasingly crucial for electric utili-
ties to perform real-time dynamical assessments, necessitating faster
methods of integrating and simulating DAEs.

has been a revolution in the successful application of Artificial Neural
Networks (ANN), also commonly referred to as Deep Neural Networks
(DNN) and Deep Learning (DL), in power systems [3].

Although some recent works have been focused on using machine
learning to solve power systems’ operational challenges at a fraction
of the time required by traditional approaches, they have fundamental
flaws; e.g., not considering dynamics, not being generalizable, and
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Nomenclature

0 Network weights and biases

1) Voltage angles behind the transient reac-
tance (rad)

i System parameter

B Initial condition of an ODE

N Nonlinear differential operator

Ny Set of initial training points

Ny Set of residual training points

Ny Set of residual points associated with the
derivative %

N; Set of measurements points

® Angular frequency (rad/s)

B, Standard infinite bus

d, Damping coefficient of generator

E, Voltage behind the transient reactance of
generator (p.u.)

E, Infinite bus voltage (p.u.)

f Differential equation residual

my Moment of inertia of generator

P, Electrical power output (p.u.)

P, Input shaft power (p.u.)

t Time (s)

u State of the dynamic system

Wy, Wy, Wi, Wy Loss component weights

Xg Synchronous generator reactance (p.u.)

X; Transmission line reactance (p.u.)

In recent years, scientific machine learning has introduced new
innovative approaches aimed at understanding the differential equa-
tions that describe dynamic systems, thus providing a more efficient
alternative to traditional and expensive numerical solvers. Despite
the success of these methods, the current application of a DL-based
framework for learning and simulating the solution trajectories of the
dynamic behavior of a power network is limited to the single-machine
infinite bus (SMIB) system. These methods lack robustness and gener-
alization capabilities (e.g., different initial conditions or states of the
system) [14]. Therefore, in this paper, a method that utilizes physics-
informed neural networks to simulate power systems dynamics in
multi-machine systems is developed while not requiring much training
data and being more generalizable to the different initial conditions.

The remainder of this paper is organized as follows. Sections 2
and 3 are dedicated to the related works and goals of the paper,
respectively. In Section 4, after introducing the physics-informed neural
network’s architecture, the extension to gPINN for the power system
and theoretical intuitions for the enhanced performance over PINN
models is presented. Section 5 describes the employed power system
models including the single machine infinite bus (SMIB) system and
three-bus power network used for the prediction task. In Section 6,
the simulation results demonstrating the performance of the physics-
informed neural networks and the gPINN models are presented. Finally,
conclusions and future work are given in Section 7.

2. Related works

In physics and engineering, many crucial physical models are ex-
pressed as partial differential equations (PDE), such as Navier-Stokes
equations [15] in fluid mechanics and Maxwell equations [16] in
electromagnetic field theory. Conventional numerical methods used
for solving PDEs can encounter challenges such as high computation
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costs, technical difficulties, and the curse of dimensionality. Recently,
scientific machine learning has delivered new ground-breaking contri-
butions, aiming at learning the differential equations describing dynam-
ical systems and, hence providing us with an efficient alternative to
traditional costly numerical solvers [17-19].

In 2018, Karniadakis and his team introduced the idea of physics-
informed neural networks (PINNs) [17], which approximates PDEs by
integrating their governing equations and their initial and boundary
conditions into the neural network’s loss function. These models heavily
exploit automatic differentiation [20] — a key feature of deep learning
frameworks such as Tensorflow [21] and PyTorch [22] - to compute
partial derivatives with respect to quantities of interest. In contrast to
traditional supervised learning methods, PINNs do not require labels,
but training data can be generated on the fly and self-supervision is
provided by virtue of approximating the known PDEs governing behav-
ior and initial and boundary conditions. Additionally, and differently
from traditional numerical methods used for solving PDEs, PINNs do
not require discretizing the input space, thereby avoiding the curse
of dimensionality [23], and provide significant benefits for solving
forward and inverse problems of PDEs. Generally, they have the ability
to solve systems of differential-algebraic equations in a fraction of the
time required by traditional methods, to directly determine the value
of state variables at any time instant 7; (without the need to integrate
from 1, to t,), and to solve higher-order differential equations without
the need to introduce additional variables to solve a first-order system.

Recently, a small number of studies have explored the adoption
of PINNs in power systems. One notable study by Misyris et al. [14]
used a physics-informed continuous deep learning model to obtain the
unknown parameters of a power network, demonstrating its potential
with a single-machine infinite bus system. However, this PINN faced
fundamental challenges: while it is able to predict with relatively good
accuracy the voltage angle variables when the system is stable, the
method fails to provide sufficient accuracy in unstable or oscillating
cases, which are crucial for power system reliability assessments. This
approach also suffers from fundamental efficiency problems, e.g., when
it is required to predict multiple states (multiple ODEs). Finally, is
also unclear if the framework learned the stiff nonlinear dynamical
equations or a non-stiff ODE-based approximation of power network
dynamics.

In another study [24], a DAE-PINN framework was developed to
learn and simulate the solution trajectories of nonlinear differential—
algebraic equations. This method effectively utilized the synergy be-
tween implicit Runge-Kutta time-stepping schemes and PINNs. How-
ever, it did not address the applicability to different system states or the
ability to generalize to different initial conditions within a reasonable
computation time.

This paper departs from previous contributions by addressing these
issues and thoroughly validating the performance of a class of PINN
networks suitable for solving power system problems.

3. Settings and goals — Departure from existing works

While progress has been made in physics-informed deep learning,
these methods are not yet scalable enough to serve as accurate mod-
els for large-scale dynamic systems. To achieve this objective, the
models must possess two critical capabilities: (i) accurately predicting
solution trajectories for a diverse set of initial conditions and (ii)
maintaining physical accuracy over extended time periods. Therefore,
this paper, not only considers a single machine infinite bus case [14],
but also solves stiff dynamical equations for entire networks with
multiple generators, observing the evolution of multiple system states
simultaneously. This ability to solve stiff dynamical equations for an
entire network with multiple generators challenges previous models
but is crucial in modern electrical power systems, which are becoming
increasingly complex and interconnected.
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To enhance the generalization of neural networks in power system
applications, the use of Gradient-enhanced Physics-informed neural
networks (gPINNs) is investigated [25]. Transfer learning is employed
to reduce computational costs and enable the model to generalize to
various initial conditions. This technique significantly lowers compu-
tation time, which is a current limitation of PINN models in power
system applications. Residual-based adaptive refinement (RAR) and
an improved fully-connected architecture for gPINN are introduced
to enhance neural network performance. Additionally, the paper also
proposes a variation of the gPINN formulation in order to integrate
initial conditions effectively, even with a significant number of ODEs.
This approach is applied to solve forward and inverse problems of
ordinary differential equations, specifically for power system dynamics
equations.

It is worth noting that the methodologies studied in this work are
intended to serve as an aid to human dispatchers, rather than as a
direct replacement for current controllers. By leveraging these models,
operators can rapidly simulate a broad range of dynamic system condi-
tions, enabling them to make well-informed decisions during operation
and, ultimately, enhance security and decrease costs. Consequently, the
results produced by our model may be utilized to implement preventive
measures focused on operations, which dispatchers can utilize to steer
clear of critical scenarios.

The main contributions of this paper center around demonstrating
the efficacy of gPINN models in both finding solutions to the swing
equation and a three-bus network and estimating unknown parameters.
In more detail:

1. A model which uses deep learning to reliably calculate solutions
to the swing equation is developed, as a result, can rapidly obtain
values such as load angle and frequency in the swing equation and
a three-bus power network example described by a set of stiff and
nonlinear dynamical equations;

2. The model is capable of accurately estimating uncertain power
system parameters from limited measurements, which becomes in-
creasingly important as generators age and parameters naturally
change;

3. Lastly, the proposed model can quickly generalize to different initial
conditions through transfer learning, meaning that operators can use
the model as an advisory tool to simulate a wide variety of possible
system states.

4. gPINNs for power system application
4.1. Methods

In this section, an overview of physics-informed neural networks
(PINNSs) is provided, followed by the introduction of the method of
gradient-enhanced PINNs. The aim is to enhance the accuracy and
training efficiency of PINNs within the given context

The PINNs aim at approximating the solution of a system of one or
more differential, possibly non-linear equations, by explicitly encoding
the differential equation formulation in the neural network. For gener-
ality, let us consider the following parametrized and nonlinear ordinary
differential equation (ODE):

@ = u®), + Nu®), 4] =0,
Bu(0)) =0,

te[0,7T] o

where u(f) denotes the state of the dynamic system (the latent ODE
solution), M- 4] is a nonlinear differential operator connecting the
state variables u with the system parameters 4 and operator /3 denotes
the initial condition of an ordinary differential equation. When 4 is
unknown in the context of approximating the solution of function (1),
it becomes a problem of system identification. The goal is to find
parameters A that satisfy the expression in (1).
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Fig. 1. Schematic of a typical PINN.

The physics-informed neural networks use automatic differentiation
to embed the partial differential equation and its initial boundary
conditions to the neural network loss function. The goal is to find the
optimal weights of the model that minimize the defined function of
loss. Mean Square Error (MSE) is commonly used to construct the loss
function for Eq. (1), which is defined as follows [17]:

LON) = weL (6, ./\ff)+ wyL,(60; Nyp), 2)
where
L0 N === ¥ 1fOF
| fl,eN'f
1 A2
LyO;N) = —— [B@)]°,
A VYA z/;

here w, and w), are weights associated with the two loss components
and N, and W, represent the number of ODE residual training points
and the number of initial training points, respectively. Specifically,
the loss L, enforces the physics of the dynamical system by Eq. (1)
at a finite set of collocation points and £, corresponds to the initial
conditions Fig. 1 shows the general architecture of a sample PINN.
One key advantage of PINNs is that the same formulation can be
utilized not only for forward problems but also for inverse PDE-based
problems. When the parameter in Eq. (1) is unknown and additional
measurements u are available on the set of points W, it has been
demonstrated in [26] that an extra data loss term is included.

1 .
L0, 4 N) = — Y la) —u(n). ®3
IVl 4 v,
To simultaneously learn the unknown parameters with the solution u,
then our new loss function is described as

LO,AN) = wrL (0, ;N p) + w,L4(0, s Ny) + w; £,(0, 1 N)).

The approach in physics-informed neural networks is to enforce
the differential equation residual, f, to be zero. Nonetheless, due to
the nature of f,(r) being zero for any input ¢, it follows that the
derivatives of f are also zero within the simulation domain. To address
this limitation, the recent development of gradient-enhanced PINNs
proposes enforcing the derivatives of the differential equation residual
to be zero as well, as introduced by Yu et al. [25], i.e.,

AU
ot

Then the loss function of gPINN thus becomes:

te[0,T] ()]

D
L=w Ly +wyly+wLy+ Y wy Lo (0N, )
i=1

where the loss of the derivative L, (6 N, ) with respect to x; is defined
as

. _ 1 af 2
£gi(9’Ngi)_ IN, | Z |;

&ilreN, 1
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In this context, the set N, ¢, Tefers to the residual points associated with
the derivative ‘)—f_, which may differ from the set V,. Our simulation
results demonstrate that by enforcing the gradient of the PDE residual
function, the gPINN formulation offers enhanced accuracy for predict-
ing solutions to u, requiring fewer training points compared to other
methods. In addition, gPINN significantly improves the accuracy of
predicted solutions for ‘;—:, a crucial aspect of our study.

In large-scale dynamical systems with numerous differential equa-
tions to learn, it becomes beneficial to reduce the number of terms in
the loss function to avoid vanishing gradient issues and enhance the
satisfaction of initial constraints. To accomplish this, the loss term for
initial conditions can be generalized as follows:

Ly(O: N,) = Y lutx;) — x| 6

1
Nl tEN

where the pair (x;,&) corresponds to the jth training example and
x; = (t,u(0)); is the whole input to the network (i.e., time and initial
state). This dataset contains only the initial conditions of the modeled
ODE. An example of a training data pair is ((0,0.5), 0.5), which indicates
that the initial state at time + = 0 is 0.5 and the desired output is
also 0.5. Note that, with this approach, the training set includes an
input value u;(0) equal to the desired output value #;. Thus, the neural
network learns to reproduce the initial state u;(0) in its output value
u(x;) at t = 0 in a supervised learning setting, as opposed to using
automatic differentiation. This not only simplifies the training process
but also reduces the computational burden.

4.2. Why gPINNs provides enhanced performance: Theoretical intuitions

In contrast to a standard Physics-Informed Neural Network, a
gradient-enhanced PINN incorporates both the values and gradients
of the partial differential equations being solved. This additional in-
formation provides insight into the underlying physics, allowing for a
more precise and robust solution to stiff differential equations, often
encountered in power systems dynamical studies.

Using gradient information in the loss function has several benefits
over traditional PINN:

First, it reduces the risk of overfitting and increases the network’s
convergence speed, improving overall performance.

Second, gPINN is less sensitive to the choice of activation functions
and network topology, making it more robust and reliable than
standard PINN.

Third, gPINN can handle more complex boundary and initial condi-
tions, as well as multi-field PDEs with multiple variables and gradi-
ents, making it more versatile.

Finally, gPINN can improve the accuracy of solutions in areas with
sparse or unreliable data by aiding in the regularization of the net-
work.

To comprehend this concept, the reference is made to the Rademacher
Complexity Bound theorem, which presents a mathematical framework
for bounding the expected difference between the empirical risk and
the true risk of a function class. The Rademacher complexity bound
provides a measure of the generalization performance of a function
class, that is, how well the function class can generalize to new data
beyond the training data. A smaller Rademacher complexity bound
indicates a better generalization performance, as it suggests that the
function class is less sensitive to random noise in the training data.

One way to reduce the Rademacher complexity of a function class is
to introduce additional constraints or penalties that encourage simpler
or smoother functions. For instance, this term can be included in the
loss function to penalize large weights or biases, which can result in
sparser or smoother functions. In gradient-enhanced PINNs, an addi-
tional gradient component is used to help enhance the generalization
ability of the resulting PINNS.
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Fig. 2. Configuration of a single machine infinite bus system.

5. Physical model for power system dynamics

This section provides an overview of the two system models utilized
to assess the performance of the proposed method.

5.1. Single machine infinite bus system

In three-phase, high-voltage power transmission systems,
synchronous generators of the system accelerate or decelerate with
respect to the synchronously rotating air gap magnetomotive force, to
adapt to changing power transfer requirements that occur during sys-
tem disturbances. In electrical power systems networks, the frequency
varies constantly based on system dynamics. Modeling power system
dynamics from oscillations and transients using time-synchronized
measurements can provide real-time information, including angular
displacements, voltage and current phasors, frequency changes, and
rate of signal system decay from positive-sequence components that
can help system operators or dispatchers in decision-making.

In general, the dynamics of a generator are defined by its internal
voltage phasor. In the context of transient stability assessment, the
internal voltage magnitude is usually considered to be constant due to
its slow variation in comparison to its angle [27]. Therefore, power
system dynamics are described by the swing equation in their simplest
and most common form, neglecting transmission losses and bus voltage
deviations. As such, for each generator k, the resulting swing equa-
tion that governs the dynamics of the synchronous generator can be
described by [14]
mg by +dg b + P, — P, =0, @)

My

where m; > 0 is the dimensionless moment of inertia of the generator,
d, > 0 represents primary frequency controller action on the governor
(called damping coefficient), P,, is the input shaft power producing
the mechanical torque acting on the rotor of the generator, P, is the
electrical power output in per unit, 5, denotes the voltage angles behind
the transient reactance, and §, is the angular frequency of the kth
generator, often also represented as w,.

The single machine infinite-bus (SMIB) system, as depicted in Fig. 2,
where G is a synchronous generator and B, denotes a standard infinite
bus, has been widely used to perceive and analyze the fundamental dy-
namic phenomena occurring in power systems. The swing equation (7)
for the SMIB system can be written as follows:
mg6+d, 6+ EE,B

g0 Tgoo

sin(6) — P,, =0, 8)

where 6 is the phase difference between the voltage vector of the
generator and the infinite bus, E, is the voltage behind the transient
reactance of the generator, E is the infinite bus voltage, and B, :=
Xgix[ is the combined susceptance in between (x, and x; are the
synchronous generator and transmission line reactance, respectively).
This study demonstrates the accurate estimation of rotor angle § and
angular frequency é (or @) of the swing equation (8) at any given time
t for a range of mechanical power P,, using gradient-enhanced physics-
informed neural networks. Furthermore, the framework can effectively
identify uncertain parameters, such as m, and d,.

At the first step for solving the forward problem, it is assumed that
the system parameters for a given synchronous generator A := {m,,d,}
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slack generator

JjB13

Fig. 3. Three-bus, two-generator power network.

are known priori and the voltages E, and E, are fixed and constant. As
a result, the system input to our proposed gPINN (and PINN) model is
defined as 7 (in our simulation domain). Despite conventional numerical
solvers in simulating multi-physics problems, which necessitate the
conversion of higher-order ordinary differential equations (ODEs) to
first-order in order to solve them (by introducing additional variables),
gPINNSs can directly incorporate higher-order ODEs, as it will be shown
in (10). Incorporating (8) to the neural network in Section 4.1, func-
tions (9) and (10) are given (with the time index omitted for clarity)
as:

u(®) 1= 8(0), 9
fo) =my 5 +d, 6+ E Ey B, sin(8) — P, =0, 10)

g0 Tgoo

Pm € [Pmim Pmax]vt € [07 T]

The interval [0,T] can be specified based on the time horizon of
interest for the dynamic simulation. The domain 2 of the input P,
is restricted to [P.;,, Pn.) due to the capability of the generator. The
neural network output is only 6(¢), rotor angular displacement with
respect to the synchronous reference axis. After the training phase,
the angular frequency signal @ := 6 is extracted as a function of the
estimated angle § using the automatic differentiation of the same neural
network. As a result, the prediction error of the frequency w depends
on the prediction error of the angular position § and the differential
method.

In the second part, the system parameters 4 := {m,.d,} are also the
problem of interest to be determined by the gPINN model as well as
angular position and frequency. For system operators to avoid substan-
tial frequency deviations and preserve frequency stability, information
about power system factors such as system inertia is critical. Varying
power-infeed from converter-based generation units introduces great
uncertainty on system parameters such as inertia and damping and,
therefore, has to be estimated (or predicted) at regular time inter-
vals [28]. The problem of system identification and data-driven dis-
covery of partial differential equations can be addressed with gradient-
enhanced physics-informed neural networks. Therefore, m, and d, are
defined as unknown parameters in Eq. (10). Here, the topology of the
gradient-enhanced physics-informed neural network stays unchanged,
with the exception that when minimizing (5) during neural network
training, a subset of the system parameters are now handled as new
variables.

5.2. Three-bus power network

This section contains a systematic study of a three-bus power net-
work with the goal of illustrating the performance of our framework.
The three-bus power network shown in Fig. 3 is considered, and it
is described by the following set of nonlinear and stiff dynamical
equations:

&y = MLI(—dml tfi 4 1) (11a)
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. 1
0’2=E(—d@2—f1) (11b)
8y = wy — @, (110)
63 = —(w — %), (11d)
I

where (0, ®,, 52,53)T are the dynamic states, and

J1=BpV1Vysin(6y) + By Vo V3 sin(6; — 63) + Py
fo = B3V V3sin(63) + By Vo V3 sin(63 — 6,) + Py

The power network’s parameters are set to the following values:
M, =06 M, =08,d=2d =05V, =102V, = 1.05, V; = 1.02,
By, By3, Bys = 10, P, = -2.0, and P, = 3.0.

6. Experiments

This section presents a series of tests conducted to validate the
proposed methodology. The goal of our experiments is to show that our
gradient-enhanced physics-informed neural network is indeed capable
of approximating the analytical solution given in (10) and (11). The
neural network models (PINNs and gPINNSs) are constructed based on
the given initial conditions. In this paper, the neural network approx-
imation results are compared to the true solutions in order to test the
models. The experimental design and findings of the equation utilizing
the two models will be presented in the following sections.

6.1. Simulation setup and training

A fully-connected four-layer model with a hyperbolic tangent acti-
vation function is used for the approximator/surrogate network. The
input layer consists of one neuron (the time coordinate of one col-
location point), while the hidden layers comprise [200, 150,100, 50]
neurons, respectively, and the output is the linear combination of
output neurons. Although the weights and biases of the networks are
initialized randomly at the start of the training, both of them start from
the same initial condition to ensure a fair comparison. As a reminder,
the output of the approximator/surrogate network is the approximate
solution to our problem. The residual network is a graph encoding the
swing equation and source term and provides the loss function or (5)
to drive the approximator/surrogate network’s optimization in PINN or
gPINN, respectively. The residual points | N;| are distributed randomly
in the interior of the computational domain (time domain of t € [0, 20s])
at which the swing equation should hold and the initial condition is
incorporated with 50 values (|V}|). In addition to an initial training set,
an extensive test data set is also required to evaluate the performance of
the neural network. To create the true solutions to the swing equation,
the Scipy.integrate package in Python is used as an ODE numerical
solver. Here, the voltage magnitudes E, and E, are equal to 1 p.u.
and B, = 0.2 p.u. The models were implemented and trained using the
Pytorch package in Python 3.7 on a personal computer (Apple MacBook
Pro with M1 chip), the Adam optimizer [29] with the default learning
rate Ir = 1073 and a maximum of 20000 epochs in all the cases barring
the transfer learning case study. The L? relative error of the prediction
of u and @ and the L! relative error of m, and d, is used to evaluate
the performance of the estimating models (proposed model over the
PINN model). In this study, weights w, = w, = w; = 1 are chosen.
Different values of w,, including 1, 0.1, and 0.01, were used during the
network training to evaluate the sensitivity of gPINN’s performance to
this parameter. By assessing the relative L? error between the predicted
and the exact solution of §(¢) and w(¢), the proper value chosen for the
w, is 0.01 which achieved the lowest error.

In the first part of the study, system inertia and damping are as-
sumed to be known, and it is assumed that the system is not in equilib-
rium. Active power input (P,,) and the initial condition ([5(z,), @(t)]T)
is specific to each case study and will be defined later on. For different
values of power input and initial conditions, the system may be stable,
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Fig. 4. L? relative error of § and % = o for the PINN and gPINN. The shaded regions represent one standard deviation across 10 random runs.

become unstable, or multiple oscillations may occur. Therefore, it is
crucial to achieve high accuracy in each of these regimes. In the second
part, inertia and damping are also unknown parameters. Given scat-
tered observed data about angle measurements, our goal is to identify
the parameters m, and d, of (10), as well as to obtain the trajectory of
d.

6.2. Forward ODE problem — Prediction accuracy in capturing power
system dynamics

Our first experiment investigates how the size of the training dataset
affects the training convergence of our proposed framework. Fig. 4
depicts the L? relative error of prediction 6(r) and w(f) for PINN and
gPINN when they are trained with different numbers of residual points.
The mean and one standard deviation of 10 independent runs are
represented by the line and shaded region. Since increasing the number
of residual points in our simulations may lead to over-fitting to the
training data, this observation can shed light on choosing the number
of appropriate residual points for solving our specific problem that is
the swing equation in (10). Note that these results are obtained for the
case that the given generator is in the stable mode of operation. It is
shown that using up to 150 training points results in smaller L? relative
error for the prediction of §(¢) for both gPINN and PINN. Notably,
gPINN outperforms PINN with an error approximately one order of
magnitude smaller. Furthermore, the gPINN outperforms the PINN in

terms of predicting the derivative % = w(t). The standard deviation

in the gPINN has a tighter bound which represents the robustness
of the proposed method in predicting the target variables. Finally, a
baseline of 150 residual points was chosen for training the models in
the remaining case studies.

Table 1 shows the L? relative error (x102) for the prediction of §(f)
and recovered w(f) of 10 independent trials, where the performance
of the gPINN algorithm over the PINN algorithm is demonstrated in
each considered condition: stable, unstable, or oscillating. Note that
for computing the frequency w(f), automatic differentiation is employed
to directly extract the frequency from the gPINN or PINN. Hence, the
more accurate prediction of the §(¢) will result in a better estimation of
the frequency of the system. The table reports the comparison of the
best, average, and worst results that are obtained by these two models
over the test set. It is observed that minimum, average, and maximum
L? error for prediction of the (t) offered by the gPINN is lower than
corresponding values obtained from the PINN, with the exception of the
“stable” case study for the best load angle estimation. An even greater
improvement by the gPINN can be seen in the L? relative error of w(?).
Further, the worst L? relative error obtained by the gPINN is lower than
the average results of the PINN in almost all the cases. As these values
indicate, contrary to the gPINN, the PINN struggles with predicting
the 6(¢) with high accuracy and subsequently recovering the frequency
w(t) when the system is facing an oscillating condition. Most of the
time it fails to predict the target variables with an acceptable level of
confidence for making an informed decision. The calculated standard
deviation of the error for the gPINN is considerably less than the PINN
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Table 1
Comparison of L? relative error (x1072) for prediction of § and recovered w of two models based on 10 trials.
Model Test case 8 )
Min Average Max Standard Min Average Max Standard
deviation deviation
Stable 0.054 0.533 1.467 0.506 0.217 0.705 1.278 0.441
gPINN Unstable 0.123 0.481 1.655 0.481 0.147 0.737 2.356 0.708
Oscillating 0.994 1.794 4.920 1.198 2.448 4.092 7.395 3.049
Stable 0.048 0.916 3.185 1.027 0.152 2.908 9.931 3.258
PINN Unstable 0.811 3.758 8.181 2.586 1.517 4.763 10.202 3.204
Oscillating 3.304 22.946 38.792 16.536 7.653 54.415 94.681 39.243
Table 2
Comparison of L? relative error (x1072) for prediction of 6 and w of two models based on 10 trials.
Model Test case 1 @
Min Average Max Standard Min Average Max Standard
deviation deviation
Stable 0.062 0.536 1.288 0.463 0.244 0.620 1.167 0.403
gPINN Unstable 0.120 0.440 1.649 0.501 0.166 0.769 2.375 0.814
Oscillating 1.178 1.829 4.463 1.306 2.541 4.338 8.178 2.858
Stable 0.047 1.050 2.724 1.098 0.153 2.355 9.518 2.965
PINN Unstable 0.962 4.302 7.081 2.161 1.759 4.647 8.230 3.006
Oscillating 2.848 18.892 42.497 14.311 6.687 63.828 98.526 41.55

(up to 5 and 10 times smaller in the oscillating case for predicting 5(¢)
and w(r) respectively), which clearly indicates a small variation range
for prediction values and robustness of the gPINN. The noted results
prove the superiority of the proposed gPINN for solving the general
swing equation problem as compared with the base PINN model in
different conditions of the systems.

The training of the gPINN and PINN models was conducted over 10
independent trials, with respective average training times of 251.85 +
27.48 s and 225.82 + 20.97 s. The slightly increased training time for
the gPINN models can be attributed to the additional computational
burden involved in computing the gradient of the governing equation.
After training, the computational speed of the models in solving the dif-
ferential equation was evaluated. The solver package took an average of
9.11 ms+5.31 ps to solve the differential equations (8), while the gPINN
model required only 294 ps+10.9 ps, resulting in a speed-up factor of 31.
Importantly, the physics-informed neural network is capable of directly
determining 6 at any specified time step §(,), bypassing the need for
numerical integration from the boundary conditions at 7 = ¢, to t = .
This highlights the ability of gPINN/PINN models to accurately and effi-
ciently predict solutions to higher-order differential equations, offering
significant advantages over classical numerical integration methods.

To evaluate the performance of the gPINN/PINN models with a
dedicated output for w, we calculated the L? relative error (x10?) for
the prediction of §(f) and w(r) based on 10 independent trials. The
results are presented in Table 2. It is important to note that the swing
equation (Eq. (8)) can be rewritten as a system of two equations:

d .
Eé =w mg,w+dg,
o+ E,E B, sin(6) — P, =0.

goo

By considering separate outputs for §(f) and w(r), the gPINN model still
outperforms the PINN model in terms of overall performance. However,
compared to the previous case, the results do not exhibit a significant
improvement. Therefore, for the SMIB system, the neural network
architecture with a single output for 6 (and subsequently determining
 through numerical differentiation) is preferred due to its advantages
in training time and predictive accuracy.

Fig. 5 depicts the swing equation’s approximate solution with the
actual trajectory of the load angle §(r) (in the left side) and the cor-
responding recovered frequency signal w(r) (in the right side) for the
gPINN and PINN models on the test set. Fig. 5(a)-(c) shows the pre-
dicted load angle and frequency for the three possible states of the
generator as mentioned in Table 1. In all these cases, the trajectory
starts from the same initial condition [5(), @(ty)]” = [0.1,0.1]", and

only the input mechanical power is different which puts the system in
different condition. Moreover, the depicted approximate solutions have
the L? relative error close to the average value reported in Table 1
to provide a pictorial overview of the ability of models in estimating
the desired variables of interest. In the left figures, it is shown that the
trajectory of the (t), with a L? relative error of 0.94-10~2 and 0.23-1072
in stable, 5.89-1072 and 0.19-1072 in unstable, 25.35-1072 and 1.87-1072
in oscillation state for both PINN and gPINNs, respectively.

It can be found that the gradient-enhanced physics-informed neural
network is able to predict the trajectory of the angle §(r) with high ac-
curacy and that the frequency signal w(r) can be successfully recovered
using automatic differentiation in all three examples. Interestingly, in
the analysis of the accuracy of the prediction (¢) or the recovered w(r)
in all three conditions mentioned, it is observed that the PINN tends
to underestimate the peaks and troughs, particularly in the unstable or
oscillating state (see Fig. 5(b) and (c)). Moreover, these predictions tend
to worsen as the predictions are made further into the future. Overall,
gPINN model outperforms the PINN in terms of both predicting 6(r)
and obtaining corresponding w(r), since gPINN utilizes the information
of the gradient and thus has a much faster convergence rate than PINN.
In other words, the gPINN also has computational benefits versus the
PINN. Therefore, using only a handful of initial data, the gradient-
enhanced physics-informed neural network can accurately capture the
intricate nonlinear behavior of the swing equation.

6.3. The importance of transfer learning

Subsequently, the significance of employing transfer learning be-
came evident as it accelerated training and enhanced the performance
of our proposed model, even with a reduced number of epochs. The
transfer learning method entails using pre-trained models as the start-
ing point on specific tasks (e.g. solving a swing equation) given the vast
computational and time resources required to develop neural network
models on these problems and from the huge jumps in a skill that they
provide on related problems. The initial network weights and biases,
obtained from the fully trained network for predicting 6(r), can be
utilized to initialize the gPINN/PINN network that is to be solved. In
this way, the first gPINN/PINN passes on the encoding knowledge it
has gained to the second gPINN/PINN.

To showcase the advantage of transfer learning in gPINN/PINN, a
test case with a stable state and a source term is solved. The networks
are initialized with the outcomes achieved during the training with
Eq. (10) serving as the source term. In the absence of transfer learning,
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Fig. 5. Example of the predicted 5(r) (left) and corresponding w(?) (right) in three cases. As expected, the prediction error increases as the distance into the future increases.
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Fig. 6. Training error with transfer learning for the gPINN/PINN models and their pre-trained test cases.

the gPINN/PINN models were trained using the Adam optimizer for
20,000 epochs to achieve comparable performance to state-of-the-art
studies in this field. But when using a transfer learning technique
each model is only trained over 5000 epochs which therefore indicates
quicker training. Fig. 6 depicts a comparison of the training error
for the gPINN and PINN network initialized with their corresponding
pre-trained models (in their first 5000 epochs), e.g., without transfer

learning and with transfer learning. In this case, transfer learning
usage allows gaining at least two orders of magnitude improvement
in the training error in less than 1000 epochs. Further, it is found that
utilization of transfer learning leads to an initial super-convergence to
a relatively low training error. Applying this technique significantly
reduces the average training time of gPINN/PINN to 64.98 + 7.16 s
and 62.43 + 5.46 s, respectively, resulting in a notable speed-up of 3.8
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Fig. 7. The predicted 6 and w from PINN and gPINN after 5000 training epochs using transfer learning.

times compared to the original training process. It is important to note
that the evaluation of a trained neural network remains unchanged,
ensuring consistent performance during inference. As a result, transfer
learning is a crucial operation for gPINN/PINN to compete with other
scientific computing solvers.

The performance and convergence behavior of the proposed model
suggests that the transfer learning method is a good match for the
network learning this problem. Fig. 7 illustrates actual trajectories of
the 6(¢) and the recovered frequency signal w(t), and the approximations
learned by the PINN and gPINN on the test set. It is shown how much
each model has the ability to tacking the true solution after just 5000
epochs. In this case, the relative L? between the exact and predicted
solutions in 6(t) are 29.3 - 1072 and 0.17 - 10~2 for PINN and gPINN
models, respectively. These values for the frequency signal w(r) are
27.7 - 1072 and 0.75 - 1072, This plot shows that the gPINN has an
easy prediction task in finding the true solution compare to the PINN
network, indicating that the proposed model may effectively capture
such behavior, as indeed confirmed in the corresponding low gPINN
prediction errors.

6.4. Inverse problem of ODE — Discovery of inertia and damping coeffi-
cients

Here, the performance in predicting system inertia and damping
from observed trajectories is evaluated. Given scattered and potentially
noisy data on the §(f) component, our goal is to identify unknown

parameters m, and d,, as well as to obtain a qualitatively accurate
reconstruction of §(r). For inferring my and dg, the data measurements
of the load angle 6(r) have been selected in only 5 time steps. These
time steps are randomly chosen within the simulation horizon, demon-
strating the capability of our method to learn from sparse and scattered
training data The neural network architectures used here are the same
as the cases for the forward problem. A visual comparison against the
exact load angle and frequency solutions is presented in Fig. 8. Similar
to the observation made in the forward swing equation problem, the
gPINN exhibits superior performance compared to the PINN in this
case. While the PINN failed to predict 6(r) and w(f) near the peaks and
end of the simulation, the gPINN has decent accuracy. Moreover, it
is shown that during training, the predicted m, and d, in PINN did
not converge to the true value (in the case of predicting d,, the PINN
performs better), while with the gPINN, the predicted m, and d, of a
system is more accurate. Note that the predicted parameters will have
an effect on the relative error of the predicted variables §(¢) and the
recovered frequency signal w(f). For a better illustration and to test
the robustness of the models, Table 3 compares the performance of
the gPINN and PINN algorithms in terms of the minimum, average,
maximum, and standard deviation of L! relative error of the predicted
parameters m, and d, based on 10 independent trials for the stable
state of the system. It is found that the best L! relative error in
predicting both parameters is offered by the gPINN algorithm (0.000 -
1072 and 0.008 - 102 for m, and d,, respectively). It is observed that
the minimum, average, and maximum L' relative error offered by the
gPINN algorithm is lower than the corresponding values obtained from
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Fig. 8. Inferring both m, and d, throughout training. The black dots in (a) show the observed locations of 4.

Table 3
Comparison of L' relative error (x1072) for prediction of moment of inertia my and
damping coefficient d, of two models based on 10 trials.

Model Parameter Min Average Max Standard
deviation
m 0.000 0.181 0.615 0.222
PINN &
& d, 0.008 0.195 0.456 0.167
0.061 1.432 7.150 2.124
PINN 0.013 0.575 3.374 1.011

the PINN algorithm. This finding of inferring a continuous quantity
of interest from auxiliary measurements by exploiting the underlying
physics demonstrates promise in handling high-dimensional inverse
problems.

6.5. Three-bus power network

The improved fully-connected architecture proposed in [30] was
used to implement the neural network that estimates the state variable
trajectories (i.e., dynamic equations). This architecture has a forward
pass described as follows:

U=¢pXW' +bY, V=pXW?+p?)

HD = pxw=! + 71

Z® = g(HOWk + p**) k= 1,....,d

H*D =1-zMoeUu+z®WoVv.k=1,..d

fox)= HDW + b,

In this context, the input tensor to the neural network is represented

by X which is time, while d denotes the number of hidden layers in
the network. The symbol © represents the Hadamard or element-wise

product, and ¢ is a point-wise hyperbolic tangent activation function
used in this paper. The set of trainable parameters in this new network
architecture is fundamentally identical to those in a typical fully-
connected architecture with the addition of the weights and biases used
by the two transformer networks. These parameters are initialized using
the Glorot normal algorithm and can be represented by the following
collection:

0 = (W' ', W2 (W b} W, b)

The results of our experiments indicate that this new architecture
performs better than the traditional fully connected architecture. This
is due to its ability to consider the multiplicative interactions be-
tween various inputs and improve the hidden-state representation using
residual connections, as proposed in [30].

Fig. 9 compares the PINN and gPINN models for a simulated dynam-
ical equations trajectory for the representative initial condition selected
from the test dataset. There is excellent agreement observed between
the simulated trajectory generated by the gPINN model and the true
trajectory obtained through the integration of Eq. (11). The results
clearly illustrate that our gPINN method significantly outperforms the
other PINN model. In order to gain a better understanding of the long-
time simulation accuracy of the gPINN/PINN framework, 10 initial
conditions are randomly sampled from the test dataset. The frameworks
are then trained on these conditions, and the average and standard
deviation of the L? relative error for each state variable are computed.
The L? relative errors for each state variable are shown in Table 4.
Based on the results presented, it can be concluded that gPINN is capa-
ble of accurately simulating dynamical equations for a sample power
network over lengthy time horizons. In this case, the average training
time for gPINN/PINN is reported as 314.54 + 27.10 s and 250.35 +
20.95 s, respectively. The slight increase in training time compared to
the SMIB case is attributed to the complexity of the models. In terms of

10
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Fig. 9. Example of predicted variables for Eq. (11).

Table 4

Comparison of L? relative error (x1072) for prediction of variables of two models based
on 10 trials.

Model @, w, 8, 53
Average 1.441 1.131 0.428 0.776

8PINN St. Dev. 0.858 0.920 0.204 0.025

PINN Average 3.932 3.174 1.373 1.111
St. Dev. 1.339 1.412 0.512 0.057

inference, the solver package takes an average of 58.21 ms + 6.37 ps
to solve Eq. (11), while the gPINN only requires 325.93 ps +9.81 ps. As
expected, for larger systems, the computational speed-up becomes even
more significant, as solving large-scale differential equations can be
computationally expensive. Meanwhile, the evaluation of a trained neu-
ral network remains computationally efficient even for large network
sizes.

7. Discussion and conclusions
This paper presents a framework based on the gradient-enhanced

physics-informed neural networks (gPINNs) for power system appli-
cations specifically in dynamics studies. The effectiveness of gPINN

11

in determining the rotor angle and frequency for a single-machine
infinite-bus system is demonstrated in the forward problem case. Our
numerical findings from all of the cases show that the considered gPINN
outperforms the considered PINN with the same number of train-
ing points. By incorporating the underlying swing equation, gradient-
enhanced physics-informed neural networks achieve high accuracy (up
to 13.30x improvement on the average L? of relative error compared
to the PINN model) while requiring significantly less training data.
Our approach significantly reduces the computational time required
to solve differential-algebraic systems of equations in power systems.
It achieves a speed-up ranging from 31 to 171 times faster compared
to conventional numerical methods, showcasing its superior computa-
tional efficiency. Additionally, the application of transfer learning is
shown to effectively optimize the model with a reduced number of
training epochs (the training time is reduced to just over 1 min).
Moreover, one of the key advantages of gPINNs is that they can
solve inverse PDE/ODE issues as readily as forward problems in terms
of implementation. The results have demonstrated successful identifica-
tion of uncertain system parameters, such as inertia and damping, with
an L' relative error of approximately 0.181 — 0.195 x 1072 using a very
limited set of input data. Our findings suggest that these methods have
the potential to be successfully applied in larger systems, opening up
a slew of new possibilities for power system security and optimization
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while maintaining high computational speed and accuracy. As a future
extension of this work, the focus will shift toward exploring physics-
aware learning models for Optimal Power Flow (OPF). This approach
is crucial to ensure that the optimal solutions obtained from machine
learning models adhere to practical dynamical constraints.
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