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Interpretable Data-Driven Probabilistic Power
System Load Margin Assessment with Uncertain
Renewable Energy and Loads
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Abstract—The increasing uncertainties caused by the high-
penetration of stochastic renewable generation resources poses
a significant threat to the power system voltage stability. To
address this issue, this paper proposes a probabilistic deep
kernel learning enabled surrogate model to extract the hidden
relationship between uncertain sources, i.e., wind power and
loads, and load margin for probabilistic load margin assessment
(PLMA). Unlike other deep learning approaches, a kernel SHAP
provides the sensitivity analysis as well as interpretability of the
inputs to outputs influences. This allows identifying the critical
factors that affect load margin so that corrective control can
be initiated for stability enhancement. Numerical results carried
out on the IEEE 118-bus power system demonstrate the accuracy
and efficiency of the proposed data-driven PLMA scheme.

Index Terms—Voltage stability, deep kernel learning, surrogate
model, interpretability, uncertainty quantification.

I. INTRODUCTION

With the increased penetrations of stochastic renewable
generations and flexible loads induced uncertainties, there is
an increased concern for quantifying system stability under
uncertainties. If these uncertainties are ignored, inappropriate
actions may be taken, leading to power system instability, i.e.,
static voltage stability [1]. Static voltage stability, also known
as the load margin, refers to the capability of maintaining
at a stable voltage operating point after a small disturbance.
Once static voltage stability occurs, power system voltage will
collapse. Thus, it is critical to assess the static voltage stability
(or load margin) under the strong uncertainties from renewable
generations and loads.

To quantify the uncertainties for load margin assess-
ment, many model-based probabilistic load margin assessment
(PLMA) approaches have been proposed. The widely utilized
method is the Monte Carlo sampling (MCS)-based technique
[2], which obtains the load margin distribution via a large
number of continuation power flow (CPF) evaluations [3].
However, as each CPF takes a rather long time for large-
scale systems, MCS involves tens of thousands of CPF eval-
uations, restricting their practical applications. Although the
Latin-hypercube-sampling [4] has been introduced to reduce
the required sample size, the accuracy of this technique is
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sacrificed. Besides, with an assumption that the uncertainties
of load parameters obey the Gaussian distribution, [5] proposes
an analytical approach to calculate load margin with improved
computational efficiency. However, it is not scalable to larger-
scale systems. Recently, some data-driven PLMA methods
are proposed to assess the probabilistic load margin with
much higher computational efficiency as compared to the
model-based solutions. For the fast global sensitivity analysis,
[6] employs polynomial chaos expansion to be the surrogate
model for load margin calculation but it is subject to the curse
of dimensionality issue. Combined with uncertainty distribu-
tion inference, [7] and [8] further propose a nonparametric
and reduced-order approximation method, Gaussian process
emulator (GPE), for the nonlincar CPF model. In [9], the
data-driven polynomial chaos expansion is improved to handle
the discrete probabilistic variable in the CPF calculation of
N-1 contingency analysis. Note that the interpretability of
these surrogate models have not been investigated thoroughly.
Specifically, the global sensitivity analysis can only give the
variable importance while the importance of uncertain inputs
on the load margin assessment that describes an trend between
the uncertain inputs and load margin has not been quantified.

This paper proposes an data-driven and interpretable PLMA
under uncertain wind generations and loads. The key idea
is to develop a probabilistic deep kernel learning to extract
the relationship between uncertain sources and load margin.
The uncertainty quantification capability of the probabilistic
deep kernel learning allows natural PLMA. Unlike other deep
learning approaches, a kernel SHAP provides the sensitivity
analysis as well as interpretability of the inputs to outputs
influences. This allows identifying the critical factors that
affect load margin so that corrective control can be initiated
for stability enhancement.

II. PROBLEM FORMULATION

In this section, the probabilistic load margin formulation
will be briefly introduced. Given the uncertain input vector
x = [z1,29,...,2,], Which consists of wind generations
as well as active power and reactive power of loads in this
paper, the relationship between the uncertain inputs and the
corresponding load margin y is:

y= f(x) (1)

where n is the dimension of the uncertain inputs x and
each element in x is corresponding to an uncertain source.
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Also, each element in x is called a feature in this paper.
f(-) represents the CPF model. Specifically, by continually
increasing the load level in an adaptive step size, CPF involves
multiple predictive and corrective directions, leading to CPF
calculations. Similar to other work, in this paper, all loads
follow the normal distribution while the statistical distribution
of wind speed follows the Weibull distribution
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where \ and « are respectively the shape parameter and scale
parameter; v, is the wind speed. With this uncertain modeling
of wind speed, the active power of the wind generator can be
determined by the speed-power curve of wind turbine:
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where P, is the active power of the wind generator; Piyeq 1S
the rated active power; v.;, Vg and v., are the cut-in, rated
and cut-out wind speeds, respectively.

Since wind generations and loads are subject to uncertain-
ties, according to f(-), the system load margin also follows a
probability distribution. To describe this probability distribu-
tion Y = {y(M,y@ ...y} MCS performs N times of
calculation of f(-) with corresponding N random samples of
x, namely X = {xM) 2@ . 2} To approximate the
true distribution of y accurately, a large N is required, which
is time-consuming. To avoid such heavy computational bur-
den, data-driven PLMA uses a reduced-order surrogate model
M(+), i.e., polynomial chaos expansion and GPE, to calculate
load margin in a computationally-cheap manner. However,
M(+) is a black-box model, which is difficult to extract explicit
relationship between inputs and outputs. Therefore, the goal
of this paper is to develop an appropriate scheme to find how
the uncertain inputs (wind generations and loads) affect the
trend of the load margin under a black-box surrogate model.

III. INTERPRETABLE DEEP KERNEL LEARNING FOR
PLMA

This paper develops the probabilistic deep kernel learning
enabled surrogate model to extract the hidden relationship
between uncertain sources and load margin for PLMA. The
interpretability of it is also investigated via the SHAP.

A. Probabilistic Deep Kernel Learning

Given the PLMA dataset D = {wm,y(i)}, where (" €
X,y eY,i=1,2---,N , the relationship between x
and y can be formulated as a regression problem for load
margin prediction. As mentioned before, a surrogate model
can be employed to extract this relationship. Since polynomial
chaos expansion suffers from curse of dimensionality problem
and GPE has limited capability of feature extraction, deep
kernel learning (DKL) [10] is employed to obtain the sur-
rogate model. This is because DKL can perform deep feature
extraction while the strong capability of Bayesian inference,

as Gaussian process, is maintained to learn the probability
distribution of load margin.

Since the Bayesian posterior distribution of an unknown sys-
tem output can be inferred from a Bayesian prior distribution,
we assume the Bayesian prior distribution of load margin with
N observations D = {X,Y} obeys joint multivariate normal
distribution:

F(X) = [f <93(1)) o (m:“v))}T ~ N Kxx) (@)

where p = [ (2, ... p (a:(N))}T is the mean function
and K x x is the covariance function, which is

k(g(z™), g(xM)) k(g(z™), ™)

Kxx =

E(g@™).9@D) -k (g(@™), g ™)

(5)

where g(z|w) denotes a neural network, where w is its

parameter vector. k(-,-) is the kernel function, which is

k (9(@), g(2)) = exp (=3 lg(@) — g(a')| /¢2) in this paper

and ¢ is the hyperparameter in the kernel function. Let ob-

servations Y (X) represent the system output F(X) with the
additive Gaussian noise € ~ N (O7 0’2In) :

YX ~N (u, Kx x +0°1y) (©)

where o is the standard deviation and I is a /N-dimensional
identity matrix.

By repeating the property of the Bayesian prior distribution,
the prediction distribution Y, at M unseen points indexed by
X, can be related with N observations:

(L | e e )

As a result, Y, can be formulated as:

Y
Y, | X,

Y. | X, X, Y, lw,0? ~N(E[Y.],cov (Y.)) (8)
E[Y.] = px. + Kx.x [Kxx +0°Iy] " (Y — px) 9

cov(f) = Kx, x. — Kx.x [Kxx +0’Iy] - Kxx,
(10)
To get the optimal hyperparametes 6 = {/,w}, we employ
stochastic gradient decreasing algorithm, i.e., Adam [12], to
maximize the marginal likelihood for target Y .:

logp(Y. |0,X) o =Y (Kxx +0°1,) ' Y

11
_10g|KX,X+0'2In| (an
Note that, all hyperparameters are inside the kernel function,
where the neural network is embedded, and this is the reason
that the algorithm is called deep kernel learning. With the
kernel learning, the surrogate model M(+), namely DKL, can
be obtained.
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B. Intepretable Kernel SHAP

For the PLMA, it is important to indicate how each un-
certain source affects the load margin so that TSOs can
give appropriate actions to maintain power system stability.
However, the surrogate models are in black-box, leading to
the difficulties to find hidden mechanism between uncertain
sources and load margin. Although some researches can give
the sensitivity between them, it is not quite understandable
for TSOs. Thus, Kernel SHAP [11] is employed to explicitly
extract rules between uncertain sources and load margin,
e.g., in which operation interval and how does uncertainties
critically influence the trend of load margin?

The main idea of Kernel SHAP is to use an additive model
to fit the trained surrogate model:

n
@) =do+ Y o (12)
j=1

where ¢ is the the basic prediction, which is calculated by the
expected value of predictions for all samples. ¢; is the Shapley
value for the j-th feature of x. Thus, the final prediction of
any sample is denoted by the sum of all samples’ expected
prediction and Shapley values for all features of this sample.

To estimated all Shapley values, the following loss function
can be built for a certain instance in the samples:

L(M,B,m) =Y [M(h(2) - B(z)’ma(z)  (13)
z€Z
n—1
Mp(2) = ——/—— (14)
O |2l(n — |2))
B(2)) = ¢o + Zqﬁm (15)

where z is an indicator vector and each element only has
value of 0 or 1. For example, for the value of O for j-th
element z;, h(z;) means the j-th feature of x is randomly
replaced by that of another instance, while h(z;) means the
j-th feature of x is remained with the value of O of the j-
th element z;. Besides, |z| is equal to number of 1 in z
and C is a combination function. (13) can also be solved
by the gradient-based optimization algorithm with randomly
generated Z, which consists of m indicator vectors.

For a specific sample, the larger the Shapley value of a
feature (one of uncertain sources) is, the larger impacts of this
feature is on the load margin. Also, a negative Shapley value
of a feature means that this feature will reduce load margin
while a positive Shapley value of a feature can help increase
load margin.

C. Algorithm Implementation

To implement the proposed intepretable PLMA, the offline
training and online application are needed as shown in Fig. 1.
1) Offline training: To obtain a comprehensive dataset for
training DKL, active power of wind generations and the real
and reactive power of loads are sampled from their correspond-
ing probabilistic distributions. However, the exact probabilistic
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Fig. 1. Framework of the proposed scheme.

distributions of these uncertain sources may be unknown since
only historical data is provided. Thus, we employ C-vine Cop-
ula [13] to construct the joint probabilistic distributions from
the historical data. Based on the inferred joint probabilistic
distributions, active power of wind generations and the real and
reactive power of loads can be sampled by MCS. As a result,
corresponding load margins are calculated by CPF. Thus, DKL
can be trained with the dataset, where active power of wind
generations, active power of synchronous generations as well
as active power and reactive power of loads are as inputs and
corresponding load margins are as outputs.

2) Online application: Once DKL is trained, wind power
and loads can be sampled predict their corresponding load
margins. Based on these predictions, the probabilistic distri-
bution of load margin can be established by a non-parametric
inference method using a kernel density estimator [14]:

g (11
=gy e ("

where ¢ is the sampling size; h is the bandwidth of the
estimator and it is generally set as 1.060¢~ 2 and o is the
estimated sample standard deviation; y; is the estimated (using
surrogate model) or real (using MCS) y for the i-th sample; ¢
is the kernel smoothing function, i.e., standard Gaussian kernel
utilized in the paper. As a result, proper predictive control
schemes can be made based on the probabilistic distribution.
After that, comprehensive rules can be extracted by Kernel
SHAP, which allows TSOs to determine proper actions to
control voltage stability.

(16)

IV. NUMERICAL RESULTS

The proposed method is verified on the IEEE 118-bus power
system, where synchronous generators at buses 1, 4, 6, 8§,
10, 12, 15 and 18 are replaced by eight wind farms with
same rated power respectively. The parameter settings for
uncertainty sources are as follows [15]:

o The shape and scale parameters of the Weibull distribu-
tion are respectively set as A = 20 and a = 12. The
cut-in, rated and cut-out wind speeds are respectively set
as Ve = 3, Voo = 25 and v.g = 12.
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Fig. 2. Probabilistic distribution inference by Copula statistics.

o The mean and standard deviation of loads are assumed
as the basic load pr, and o, = 0.1, respectively.
Based on the above settings of uncertainties, database is
generated by using MCS according to Section III-C. All
simulations are performed on the computer with a CPU of

“Intel(R) Core(TM) i5-11500 @ 2.70GHz”.

A. Uncertainty Probabilistic Distribution Modeling

The probability distributions of wind power and loads are
unknown and sampling-based approaches, i.e., MCS, are not
applicable. Thus, Copula statistics are utilized to infer the joint
probabilistic distribution from historical data. To verify its
effectiveness, the probability distributions of wind generations
and loads are the same as Section II. With 10000 samples, it
can be seen that the reconstructed distribution is very close
to the original distribution for both wind power and loads, as
shown in Fig. 2. This allows generating more representative
data for DKL training with obtained Copula statistics rather
than explicitly using the specific probabilistic distributions of
uncertain sources.

B. Performance Comparisons on PLMA

In this paper, MCS is used as the benchmark to assess the
performance of each approach. The shadow learning methods
(Support Vector Regression (SVR) and GPE) as well as deep
learning methods (Deep Neural Network (DNN)) are selected
to compare their PLMA performance with DKL. SVR and
GPE are respectively constructed in the scikit-learn, which
is a powerful machine learning library in Python. Specifi-
cally, regularization parameters and base kernel in SVR are
respectively chosen as 10000 and the radial basis function.
DNN utilizes a three-layer architecture of 251-100-1, where
the activation function is Relu. For DKL, the same neural
network architecture as DNN is used in the Gaussian process
framework. Both DKL and DNN are built in Tensorflow
library of Python.

Fig. 3 shows the variance and mean value curves of load
margin with increased samples for MCS method. It can be seen
that MCS converges with 10000 samples. This demonstrates
that MCS can provide a reliable benchmark though it is a very
time-consuming. Note that this takes more than three hours to
finish, as shown in Table I. For the data-driven PLMA method,
i.e. DKL, the online computing time is less than one second.

From Figs. 4, it can be observed that although the non-
parametric method GPE requires the least number of samples,
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Fig. 3. Convergence curve of the MCS.

TABLE I
PERFORMANCE COMPARISON UNDER VARIOUS METHODS

Model MCS DKL SVR

Computing time >3h <ls <ls

Number of samples 10000 2500 4000
Model GPE DNN
Computing time <ls <ls
Number of samples 2000 8000

its accuracy of is not satisfactory compared with DKL and
DNN. DKL and DNN outperform both GPE and SVM re-
garding to the prediction accuracy. Specifically, GPE and SVM
do not work well at the summit and tail of the load margin
distribution, where the latter is especially critical for voltage
stability analysis. On the other hand, DKL requires much
less samples than DNN due to its strong Bayesian inference
capability.
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Fig. 4. Load margin distribution predicted by various methods.
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C. Interpretability Analysis

Once DKL is trained, its results can be interpreted by Kernel
SHAP as shown in Fig. 5, where seven features with the largest
Shapley values are selected to analyze. In Fig. 5, higher degree
of the red the feature is, the larger value of the feature is. We
can find that increasing the generations at buses 59, 62 and 100
will lead to decrease of load margin while the reactive power
of load at bus 58 has the positive impacts since it can provide
voltage support. In Fig. 6, it shows that the wind generation at
bus 10 has a positive Shapley value. Therefore, to get a large
load margin, we can keep the active power at bus 10 larger
than 3 p.u. This information is valuable since it can guide
TSOs to perform appropriate controls.
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Fig. 6. Shapley values distribution for wind power at bus 10.

V. CONCLUSION

In this paper, an interpretable data-driven PLMA approach
is proposed. Specifically, Copula statics are employed to infer
the joint probabilistic distribution of wind generation and

loads from historical data to generate representative data.
With these data, DKL is developed to extract the relationship
between uncertain sources and load margin. The Kernel SHAP
is utilized to interpret the characteristic of the load margin
distribution. Numerical results on the IEEE 118-bus power
system demonstrate that the proposed method is able to
perform accurate PLMA with fewer number of historical data
requirements as compared to other deep learning approaches.
Thanks to the Shapley values, the proposed approach can
also provide the influence of input to the model outputs
quantitatively. This provides useful information for system
operator for corrective controls for system voltage stability
improvement.
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