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Abstract—The increasing uncertainties caused by the high-
penetration of stochastic renewable generation resources poses
a significant threat to the power system voltage stability. To
address this issue, this paper proposes a probabilistic deep
kernel learning enabled surrogate model to extract the hidden
relationship between uncertain sources, i.e., wind power and
loads, and load margin for probabilistic load margin assessment
(PLMA). Unlike other deep learning approaches, a kernel SHAP
provides the sensitivity analysis as well as interpretability of the
inputs to outputs influences. This allows identifying the critical
factors that affect load margin so that corrective control can
be initiated for stability enhancement. Numerical results carried
out on the IEEE 118-bus power system demonstrate the accuracy
and efficiency of the proposed data-driven PLMA scheme.

Index Terms—Voltage stability, deep kernel learning, surrogate
model, interpretability, uncertainty quantification.

I. INTRODUCTION

With the increased penetrations of stochastic renewable

generations and flexible loads induced uncertainties, there is

an increased concern for quantifying system stability under

uncertainties. If these uncertainties are ignored, inappropriate

actions may be taken, leading to power system instability, i.e.,

static voltage stability [1]. Static voltage stability, also known

as the load margin, refers to the capability of maintaining

at a stable voltage operating point after a small disturbance.

Once static voltage stability occurs, power system voltage will

collapse. Thus, it is critical to assess the static voltage stability

(or load margin) under the strong uncertainties from renewable

generations and loads.

To quantify the uncertainties for load margin assess-

ment, many model-based probabilistic load margin assessment

(PLMA) approaches have been proposed. The widely utilized

method is the Monte Carlo sampling (MCS)-based technique

[2], which obtains the load margin distribution via a large

number of continuation power flow (CPF) evaluations [3].

However, as each CPF takes a rather long time for large-

scale systems, MCS involves tens of thousands of CPF eval-

uations, restricting their practical applications. Although the

Latin-hypercube-sampling [4] has been introduced to reduce

the required sample size, the accuracy of this technique is
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sacrificed. Besides, with an assumption that the uncertainties

of load parameters obey the Gaussian distribution, [5] proposes

an analytical approach to calculate load margin with improved

computational efficiency. However, it is not scalable to larger-

scale systems. Recently, some data-driven PLMA methods

are proposed to assess the probabilistic load margin with

much higher computational efficiency as compared to the

model-based solutions. For the fast global sensitivity analysis,

[6] employs polynomial chaos expansion to be the surrogate

model for load margin calculation but it is subject to the curse

of dimensionality issue. Combined with uncertainty distribu-

tion inference, [7] and [8] further propose a nonparametric

and reduced-order approximation method, Gaussian process

emulator (GPE), for the nonlinear CPF model. In [9], the

data-driven polynomial chaos expansion is improved to handle

the discrete probabilistic variable in the CPF calculation of

N-1 contingency analysis. Note that the interpretability of

these surrogate models have not been investigated thoroughly.

Specifically, the global sensitivity analysis can only give the

variable importance while the importance of uncertain inputs

on the load margin assessment that describes an trend between

the uncertain inputs and load margin has not been quantified.

This paper proposes an data-driven and interpretable PLMA

under uncertain wind generations and loads. The key idea

is to develop a probabilistic deep kernel learning to extract

the relationship between uncertain sources and load margin.

The uncertainty quantification capability of the probabilistic

deep kernel learning allows natural PLMA. Unlike other deep

learning approaches, a kernel SHAP provides the sensitivity

analysis as well as interpretability of the inputs to outputs

influences. This allows identifying the critical factors that

affect load margin so that corrective control can be initiated

for stability enhancement.

II. PROBLEM FORMULATION

In this section, the probabilistic load margin formulation

will be briefly introduced. Given the uncertain input vector

x = [x1, x2, . . . , xn], which consists of wind generations

as well as active power and reactive power of loads in this

paper, the relationship between the uncertain inputs and the

corresponding load margin y is:

y = f(x) (1)

where n is the dimension of the uncertain inputs x and

each element in x is corresponding to an uncertain source.
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Also, each element in x is called a feature in this paper.

f(·) represents the CPF model. Specifically, by continually

increasing the load level in an adaptive step size, CPF involves

multiple predictive and corrective directions, leading to CPF

calculations. Similar to other work, in this paper, all loads

follow the normal distribution while the statistical distribution

of wind speed follows the Weibull distribution

ϕ(vw, λ, α) =
α

λ

(vw
λ

)α−1

e−(vw/λ)α (2)

where λ and α are respectively the shape parameter and scale

parameter; vw is the wind speed. With this uncertain modeling

of wind speed, the active power of the wind generator can be

determined by the speed-power curve of wind turbine:

Pw =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

0, (νw < vci, νw > vco)

Prated ·
(

νw−vci
νrd−vci

)

, (vci ≤ νw ≤ νrd)

Prated, (νrd < νw < vco)

(3)

where Pw is the active power of the wind generator; Prated is

the rated active power; vci, νrd and vco are the cut-in, rated

and cut-out wind speeds, respectively.

Since wind generations and loads are subject to uncertain-

ties, according to f(·), the system load margin also follows a

probability distribution. To describe this probability distribu-

tion Y = {y(1), y(2), . . . , y(N)}, MCS performs N times of

calculation of f(·) with corresponding N random samples of

x, namely X = {x(1),x(2), . . . ,x(N)}. To approximate the

true distribution of y accurately, a large N is required, which

is time-consuming. To avoid such heavy computational bur-

den, data-driven PLMA uses a reduced-order surrogate model

M(·), i.e., polynomial chaos expansion and GPE, to calculate

load margin in a computationally-cheap manner. However,

M(·) is a black-box model, which is difficult to extract explicit

relationship between inputs and outputs. Therefore, the goal

of this paper is to develop an appropriate scheme to find how

the uncertain inputs (wind generations and loads) affect the

trend of the load margin under a black-box surrogate model.

III. INTERPRETABLE DEEP KERNEL LEARNING FOR

PLMA

This paper develops the probabilistic deep kernel learning

enabled surrogate model to extract the hidden relationship

between uncertain sources and load margin for PLMA. The

interpretability of it is also investigated via the SHAP.

A. Probabilistic Deep Kernel Learning

Given the PLMA dataset D =
{

x(i), y(i)
}

, where x(i) ∈
X, y(i) ∈ Y, i = 1, 2, · · · , N , the relationship between x

and y can be formulated as a regression problem for load

margin prediction. As mentioned before, a surrogate model

can be employed to extract this relationship. Since polynomial

chaos expansion suffers from curse of dimensionality problem

and GPE has limited capability of feature extraction, deep

kernel learning (DKL) [10] is employed to obtain the sur-

rogate model. This is because DKL can perform deep feature

extraction while the strong capability of Bayesian inference,

as Gaussian process, is maintained to learn the probability

distribution of load margin.

Since the Bayesian posterior distribution of an unknown sys-

tem output can be inferred from a Bayesian prior distribution,

we assume the Bayesian prior distribution of load margin with

N observations D = {X,Y} obeys joint multivariate normal

distribution:

F(X) =
[

f
(

x(1)
)

, . . . , f
(

x(N)
)]⊤

∼ N (μ,KX,X) (4)

where μ =
[

μ
(

x(1)
)

, . . . , μ
(

x(N)
)]⊤

is the mean function

and KX,X is the covariance function, which is

KX,X =

⎡

⎢

⎣

k
(

g(x(1)), g(x(1))
)

· · · k
(

g(x(1)),x(N)
)

...
. . .

...

k
(

g(x(N)), g(x(1))
)

· · · k
(

g(x(N)), g(x(N))
)

⎤

⎥

⎦

(5)

where g(x|ω) denotes a neural network, where ω is its

parameter vector. k(·, ·) is the kernel function, which is

k (g(x), g(x′)) = exp
(

− 1
2 ‖g(x)− g(x′)‖ /ℓ2

)

in this paper

and ℓ is the hyperparameter in the kernel function. Let ob-

servations Y(X) represent the system output F(X) with the

additive Gaussian noise ǫ ∼ N
(

0, σ2
In

)

:

Y|X ∼ N
(

μ,KX,X + σ2
IN

)

(6)

where σ is the standard deviation and IN is a N -dimensional

identity matrix.

By repeating the property of the Bayesian prior distribution,

the prediction distribution Y∗ at M unseen points indexed by

X∗ can be related with N observations:

[

Y

Y∗ | X∗

]

∼ N

([

μ(X)
μ(X∗)

]

,

[

KX,X KX,X∗

KX∗,X KX∗,X∗

])

(7)

As a result, Y∗ can be formulated as:

Y∗ | X∗,X,Y, ℓ,ω, σ2 ∼ N (E [Y∗] , cov (Y∗)) (8)

E [Y∗] = μ
X∗

+KX∗,X

[

KX,X + σ2
IN

]−1
(Y − μ

X
) (9)

cov (f∗) = KX∗,X∗
−KX∗,X

[

KX,X + σ2
IN

]−1
KX,X∗

(10)

To get the optimal hyperparametes θ = {ℓ,ω}, we employ

stochastic gradient decreasing algorithm, i.e., Adam [12], to

maximize the marginal likelihood for target Y∗:

log p(Y∗ | θ,X) ∝ −Y
⊤
(

KX,X + σ2
In

)−1
Y

− log
∣

∣KX,X + σ2
In

∣

∣

(11)

Note that, all hyperparameters are inside the kernel function,

where the neural network is embedded, and this is the reason

that the algorithm is called deep kernel learning. With the

kernel learning, the surrogate model M(·), namely DKL, can

be obtained.
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B. Intepretable Kernel SHAP

For the PLMA, it is important to indicate how each un-

certain source affects the load margin so that TSOs can

give appropriate actions to maintain power system stability.

However, the surrogate models are in black-box, leading to

the difficulties to find hidden mechanism between uncertain

sources and load margin. Although some researches can give

the sensitivity between them, it is not quite understandable

for TSOs. Thus, Kernel SHAP [11] is employed to explicitly

extract rules between uncertain sources and load margin,

e.g., in which operation interval and how does uncertainties

critically influence the trend of load margin?

The main idea of Kernel SHAP is to use an additive model

to fit the trained surrogate model:

γ(x) = φ0 +

n
∑

j=1

φj (12)

where φ0 is the the basic prediction, which is calculated by the

expected value of predictions for all samples. φj is the Shapley

value for the j-th feature of x. Thus, the final prediction of

any sample is denoted by the sum of all samples’ expected

prediction and Shapley values for all features of this sample.

To estimated all Shapley values, the following loss function

can be built for a certain instance in the samples:

L (M, β, πx) =
∑

z∈Z

[M(h(z))− β(z)]2πx(z) (13)

πx(z) =
n− 1

C
|z|
n |z|(n− |z|)

(14)

β (z)) = φ0 +

n
∑

j=1

φjzj (15)

where z is an indicator vector and each element only has

value of 0 or 1. For example, for the value of 0 for j-th

element zj , h(zj) means the j-th feature of x is randomly

replaced by that of another instance, while h(zj) means the

j-th feature of x is remained with the value of 0 of the j-

th element zj . Besides, |z| is equal to number of 1 in z

and C is a combination function. (13) can also be solved

by the gradient-based optimization algorithm with randomly

generated Z, which consists of m indicator vectors.

For a specific sample, the larger the Shapley value of a

feature (one of uncertain sources) is, the larger impacts of this

feature is on the load margin. Also, a negative Shapley value

of a feature means that this feature will reduce load margin

while a positive Shapley value of a feature can help increase

load margin.

C. Algorithm Implementation

To implement the proposed intepretable PLMA, the offline

training and online application are needed as shown in Fig. 1.

1) Offline training: To obtain a comprehensive dataset for

training DKL, active power of wind generations and the real

and reactive power of loads are sampled from their correspond-

ing probabilistic distributions. However, the exact probabilistic
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Fig. 1. Framework of the proposed scheme.

distributions of these uncertain sources may be unknown since

only historical data is provided. Thus, we employ C-vine Cop-

ula [13] to construct the joint probabilistic distributions from

the historical data. Based on the inferred joint probabilistic

distributions, active power of wind generations and the real and

reactive power of loads can be sampled by MCS. As a result,

corresponding load margins are calculated by CPF. Thus, DKL

can be trained with the dataset, where active power of wind

generations, active power of synchronous generations as well

as active power and reactive power of loads are as inputs and

corresponding load margins are as outputs.

2) Online application: Once DKL is trained, wind power

and loads can be sampled predict their corresponding load

margins. Based on these predictions, the probabilistic distri-

bution of load margin can be established by a non-parametric

inference method using a kernel density estimator [14]:

ϑ(y) =
1

ch

c
∑

i=1

Φ

(

y − ŷ(i)

h

)

(16)

where c is the sampling size; h is the bandwidth of the

estimator and it is generally set as 1.06σc−0.2 and σ is the

estimated sample standard deviation; yi is the estimated (using

surrogate model) or real (using MCS) y for the i-th sample; Φ
is the kernel smoothing function, i.e., standard Gaussian kernel

utilized in the paper. As a result, proper predictive control

schemes can be made based on the probabilistic distribution.

After that, comprehensive rules can be extracted by Kernel

SHAP, which allows TSOs to determine proper actions to

control voltage stability.

IV. NUMERICAL RESULTS

The proposed method is verified on the IEEE 118-bus power

system, where synchronous generators at buses 1, 4, 6, 8,

10, 12, 15 and 18 are replaced by eight wind farms with

same rated power respectively. The parameter settings for

uncertainty sources are as follows [15]:

• The shape and scale parameters of the Weibull distribu-

tion are respectively set as λ = 20 and α = 12. The

cut-in, rated and cut-out wind speeds are respectively set

as vci = 3, vco = 25 and vrd = 12.
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Fig. 2. Probabilistic distribution inference by Copula statistics.

• The mean and standard deviation of loads are assumed

as the basic load μL and σL = 0.1μL, respectively.

Based on the above settings of uncertainties, database is

generated by using MCS according to Section III-C. All

simulations are performed on the computer with a CPU of

“Intel(R) Core(TM) i5-11500 @ 2.70GHz”.

A. Uncertainty Probabilistic Distribution Modeling

The probability distributions of wind power and loads are

unknown and sampling-based approaches, i.e., MCS, are not

applicable. Thus, Copula statistics are utilized to infer the joint

probabilistic distribution from historical data. To verify its

effectiveness, the probability distributions of wind generations

and loads are the same as Section II. With 10000 samples, it

can be seen that the reconstructed distribution is very close

to the original distribution for both wind power and loads, as

shown in Fig. 2. This allows generating more representative

data for DKL training with obtained Copula statistics rather

than explicitly using the specific probabilistic distributions of

uncertain sources.

B. Performance Comparisons on PLMA

In this paper, MCS is used as the benchmark to assess the

performance of each approach. The shadow learning methods

(Support Vector Regression (SVR) and GPE) as well as deep

learning methods (Deep Neural Network (DNN)) are selected

to compare their PLMA performance with DKL. SVR and

GPE are respectively constructed in the scikit-learn, which

is a powerful machine learning library in Python. Specifi-

cally, regularization parameters and base kernel in SVR are

respectively chosen as 10000 and the radial basis function.

DNN utilizes a three-layer architecture of 251-100-1, where

the activation function is Relu. For DKL, the same neural

network architecture as DNN is used in the Gaussian process

framework. Both DKL and DNN are built in Tensorflow

library of Python.

Fig. 3 shows the variance and mean value curves of load

margin with increased samples for MCS method. It can be seen

that MCS converges with 10000 samples. This demonstrates

that MCS can provide a reliable benchmark though it is a very

time-consuming. Note that this takes more than three hours to

finish, as shown in Table I. For the data-driven PLMA method,

i.e. DKL, the online computing time is less than one second.

From Figs. 4, it can be observed that although the non-

parametric method GPE requires the least number of samples,

Fig. 3. Convergence curve of the MCS.

TABLE I
PERFORMANCE COMPARISON UNDER VARIOUS METHODS

Model MCS DKL SVR
Computing time >3 h <1 s <1 s

Number of samples 10000 2500 4000

Model GPE DNN
Computing time <1 s <1 s

Number of samples 2000 8000

its accuracy of is not satisfactory compared with DKL and

DNN. DKL and DNN outperform both GPE and SVM re-

garding to the prediction accuracy. Specifically, GPE and SVM

do not work well at the summit and tail of the load margin

distribution, where the latter is especially critical for voltage

stability analysis. On the other hand, DKL requires much

less samples than DNN due to its strong Bayesian inference

capability.

Fig. 4. Load margin distribution predicted by various methods.
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C. Interpretability Analysis

Once DKL is trained, its results can be interpreted by Kernel

SHAP as shown in Fig. 5, where seven features with the largest

Shapley values are selected to analyze. In Fig. 5, higher degree

of the red the feature is, the larger value of the feature is. We

can find that increasing the generations at buses 59, 62 and 100

will lead to decrease of load margin while the reactive power

of load at bus 58 has the positive impacts since it can provide

voltage support. In Fig. 6, it shows that the wind generation at

bus 10 has a positive Shapley value. Therefore, to get a large

load margin, we can keep the active power at bus 10 larger

than 3 p.u. This information is valuable since it can guide

TSOs to perform appropriate controls.

S
h
ap

le
y
 v

al
u
e

10wP

Fig. 6. Shapley values distribution for wind power at bus 10.

V. CONCLUSION

In this paper, an interpretable data-driven PLMA approach

is proposed. Specifically, Copula statics are employed to infer

the joint probabilistic distribution of wind generation and

loads from historical data to generate representative data.

With these data, DKL is developed to extract the relationship

between uncertain sources and load margin. The Kernel SHAP

is utilized to interpret the characteristic of the load margin

distribution. Numerical results on the IEEE 118-bus power

system demonstrate that the proposed method is able to

perform accurate PLMA with fewer number of historical data

requirements as compared to other deep learning approaches.

Thanks to the Shapley values, the proposed approach can

also provide the influence of input to the model outputs

quantitatively. This provides useful information for system

operator for corrective controls for system voltage stability

improvement.
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