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This Letter introduces a synergistic combination of analytical and numerical methods to study the Hawking
effect in optical systems containing the analog of a white-black hole pair. Our analytical treatment, based on
techniques from Gaussian quantum information, provides a simple and efficient model to describe all aspects
of the out-state, including the entanglement between any bipartition. We complement the study with a
numerical analysis and apply our tools to investigate the influence that ambient thermal noise and detector
inefficiencies have on the out-state. We find that aspects of the Hawking effect that are of quantum origin, i.e.,
quantum entanglement, are extremely fragile to the influence of inefficiencies and noise. We propose a
protocol to amplify and observe these quantum aspects, based on seeding the process with a single-mode
squeezed input, opening the door to new possibilities for experimental verification of the Hawking effect.
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Introduction.—The Hawking effect of spontaneous par-
ticle pair creation by black holes [1,2] can be understood as
a process of two-mode quantum squeezing triggered by a
causal horizon. What makes the phenomenon remarkable
is not only the squeezing—which generically appears in
other time-dependent spacetimes—but its intrinsic thermal
(Planckian) character allowing one to associate a temper-
ature with the horizon. This connection with thermody-
namics [3,4] led to a profound and fertile crossroad
between diverse areas of physics. There is, therefore, a
strong motivation to experimentally confirm this predic-
tion, as well as to explore open issues in Hawking’s
derivation, such as the role of arbitrarily high energy
modes [5] or a potential loss of unitarity [6]. This interest
has motivated a plethora of analog models, in which the
physics of squeezing generated by causal barriers can be
recreated in the laboratory [7–13].
A major challenge for observing aspects of the sponta-

neous Hawking process, even in analog models, is the
extraordinarily weak character of the output, easily masked
by ambient noise. A promising alternative is to enhance
the intensity of the output by replacing the initial vacuum
state with a nonvacuum input, i.e., to focus on the
stimulatedHawking process. However, although stimulated
Hawking radiation has been accessed in laboratory experi-
ments [8,9,12], one can explain the observations made
so far as a process of classical amplification of waves.
Consequently, the stimulated process has been regarded as
containing little value to assert the quantum nature of the
Hawking effect [8,12].
The goal of this Letter is to introduce a strategy to

enhance the quantum aspects of the Hawking process. We
point out that stimulating the Hawking effect can also

amplify the entanglement between the outputs—not merely
their intensities—as long as one chooses appropriate
quantum initial states and systematic inefficiencies are
sufficiently under control. We describe a protocol to
observe the amplified entanglement and to unambiguously
identify the main characteristics of the Hawking process
and its quantum origin out of observations.
Although the core of our ideas is general, we formulate

them in the context of optical systems. The advantage is the
possibilities optical systems offer to generate, manipulate,
and observe quantum states as well as their entanglement
structure [14]. We use units in which c ¼ ℏ ¼ kB ¼ 1.
Setup.—Optical systems provide a popular scenario to

recreate the physics of the Hawking process [7,12,15–26].
An electromagnetic pulse propagating in a dielectric
medium can locally change the optical properties of the
medium, modifying the refractive index (Kerr effect). In
this way, by introducing strong pulses in nonlinear materi-
als, one can modify the speed of propagation of weak
probes propagating thereon. Probes that are initially faster
than the pulse will slow down when trying to overtake it,
and if the pulse is strong enough, its rear end will act as an
impenetrable (moving) barrier. This is the optical analog of
the horizon of a white hole—a region where no signal can
enter. Similarly, an analog black hole horizon appears in
the front end of the pulse. Since the pair white-black hole
propagates with the strong pulse, from now on we will
work in the frame comoving with it.
The presence of white-black horizons can also be

understood by looking at the dispersion relation for weak
probes of frequency ω. A detailed analysis of the dispersion
relation of dielectric materials with a subluminal dispersion
relation and characterized effectively by a single Sellmeier
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term, such as diamond, can be found in [20]. The most
relevant features are the following. Far away from the
strong pulse, the dispersion relation has four solutions, ki,
i ¼ 1;…; 4. The modes k1 and k4 are short-wavelength
modes, in contrast to k2 and k3. The mode k1 is the only one
with negative symplectic norm. Furthermore, k1, k2, and k4
are left movers (negative group velocity), while k3 wave
packets propagate to the right (see Fig. 1). The strong pulse
modifies the dispersion relation in such a way that, inside
the pulse, the wave numbers k3 and k4 become complex and
no longer describe propagating modes. Only k1 and k2
propagate in the interior region, and since both are left
movers, they will necessarily exit the rear end of the pulse.
Hence, the interior of the strong pulse is analogous to the
interior region of a white-black hole pair.
The analog quantum circuit.—Although the existence of

optical horizons originates in nonlinear optics, it is well
known that the evolution of weak probes is well approxi-
mated by linear equations, and the nonlinearities induced
by the strong pulse can be all encoded in the optical
properties of the medium. This is the analog of the quantum
field theory in curved spacetimes used in Hawking’s
original derivation. In the optical setup, the resolution of
the evolution reduces to computing the scattering matrix
(S matrix) describing the dynamics of wave packet modes
which, in the asymptotic region, have the wave number
centered around kini . Since different frequencies ω do not
mix with each other—because the properties of the dielec-
tric are time independent in the comoving frame—one
computes the S matrix for each individual frequency. We
propose an analytical approximation for the S matrix,
obtained by combining elementary operations consisting
of two-mode squeezers and beam splitters, which we
choose by paying attention to the physics of the problem.
For pedagogical purposes, we begin by writing an analog

quantum circuit exclusively for the black hole side of
the pulse, momentarily neglecting the white hole. In the
astrophysical case, the evolution is dominated by two
physical processes, a mixing of positive- and negative-
frequency modes induced by the horizon, and a scattering
process due to the gravitational potential barrier.
Mathematically, the first process corresponds to a two-
mode squeezer, while the second corresponds to a beam
splitter. The situation is analog for optical black holes,

except that we have three inmodes kin1 , k
in
2 , and k

in
4 and three

out modes kint1 , kint2 , and kout3 (see Fig. 2).
It is straightforward to convert this circuit into an analytic

expression for the S matrix (see Supplemental Material
[27]). First, recall the action of a two-mode squeezer on the
annihilation operators,

akin1 → akin1 cosh rH þ a†kin4
eiϕ sinh rH;

akin4 → akin4 cosh rH þ a†kin1
eiϕ sinh rH; ð1Þ

where rH and ϕ are the intensity and angle, respectively, of
the “Hawking squeezer.” The action of the beam splitter is
the orthogonal transformation

akin2 → akin2 cos θ þ akout
3
sin θ;

akout
3

→ −akin2 sin θ þ akout
3
cos θ; ð2Þ

where cos θ and sin θ are the transmission and reflection
amplitudes of the splitter, respectively. Combining these
two operations—following the order written in the circuit—
and changing variables to the quadrature operators, xi≡
ð1=

ffiffiffi
2

p
Þðaki þa†kiÞ and pi ≡ ½ð−iÞ=

ffiffiffi
2

p
&ðaki − a†kiÞ, we con-

struct the S matrix corresponding to the circuit in Fig. 2,
which, when acting on the vector of quadrature operators
r⃗in ¼ ðx1; p1; x2; p2; x4; p4Þ, implements the Heisenberg
evolution: r⃗out ¼ S · r⃗in.
With this formalism, it is particularly easy to evolve any

Gaussian state, such as the vacuum, coherent, squeezed, or
thermal states. Note that a Gaussian state is completely
characterized by its first and second moments, μ⃗≡ hr⃗i
and σ ≡ hfðr⃗ − μ⃗Þ; ðr⃗ − μ⃗Þgi, where σ is the covariance
matrix and f·; ·g is the anticommutator (see, e.g., [28,29]).
Because linear evolution preserves Gaussianity, given an
initial Gaussian state (μ⃗in, σin), the final state is alsoGaussian,
characterized by ðμ⃗out; σoutÞ ¼ ðS · μ⃗in; S · σin · S⊤Þ.
Regarding the white hole, since it is the time reversal of

the black hole, its analog quantum circuit and corresponding

FIG. 1. Illustration of the structure of in, int, and out modes for
an optical analog white-black hole in the comoving frame.

FIG. 2. Left: illustration of the two elements responsible for the
Hawking process in optical black holes: a two-mode squeezer
associated with the horizon and a beam splitter associated with a
process of scattering. Right: equivalent quantum circuit.
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S matrix can be easily obtained by inverting the elements in
the black hole circuit. Combining the two, one obtains the
analog circuit for the complete white-black hole system (see
Fig. 3). The S matrix for the white-black hole system is then
obtained by multiplying the action of squeezers and beam
splitters in the sequence indicated in the circuit. The result is
an 8 × 8 matrix that depends on three parameters: rH, θ, and
the phase ϕ.
Numerical analysis.—In order to test the accuracy at

which our analog circuit describes the physics of the white-
black hole system, we have solved the dynamical evolution
numerically (see [16,17,30–39] for previous numerical
efforts). We summarize here the most important results
of our analysis (a detailed description will appear in [40]).
Our code is based on the analytical model proposed in

[20], building on previous work [41] and rooted in the
Hopfield model [42]. We solve the dynamical equation in
the frequency domain, which is a fourth-order ordinary
differential equation in the comoving frame [Eq. (11)
in [20]]. We compute the evolution of in wave packets
uinkiðtinÞ, with wave numbers centered on each of the four
solutions of the dispersion relation ðkin1 ; kin2 ; kin3 ; kin4 Þ and
with initial spatial support far away from the white-black
hole. After evolving each wave packet, we decompose
the result in the basis of out wave packets centered
around ðkout1 ; kout2 ; kout3 ; kout4 Þ, uinkiðtoutÞ ¼

P
j αiju

out
kj

ðtoutÞþ
βijūoutkj

ðtoutÞ, where the bar denotes complex conjugation.
The Bogoliubov coefficients αij and βij encode the dynam-
ics, and from them we construct the S matrix.
We model the perturbation of the refractive index as

δnðx; tÞ ¼ δn0sech2½ðt − x=uÞ=Δ& (a common choice in the
literature [7,12]), where u is the speed of the perturbation, x
and t are spacetime coordinates in the lab frame, and δn0
and Δ determine its amplitude and width, respectively. We
have performed simulations for δn0 and Δ ranging from
0.01 to 0.1 and from 2 to 10 fs, respectively. We find this is
the range for which the analogy with the Hawking effect
works better (see below).
For Δ≳ 4 fs and 0.1 ≤ ω=TH ≤ 5, the circuit in Fig. 3

provides a good approximation for the dynamics, with
agreement at the level of (or better than) a percent. In this
regime, we confirm that the intensity of the Hawking
squeezer rH, when computed for different frequencies,
follows a Planckian distribution, in the sense that coth2rH ≈
expfω=THg with a temperature TH, which agrees with

the analog surface gravity of the horizon at the level of a
few percent (see Fig. 4). (Deviations at the percent level are
expected due to dispersive effects.) For instance, we find
TH ¼ 10.4 K for ðΔ ¼ 4 fs; δn0 ¼ 0.1Þ, TH ¼ 3.51 K for
ðΔ ¼ 6 fs; δn0 ¼ 0.05Þ, and TH ¼ 0.52 K for ðΔ ¼ 8 fs;
δn0 ¼ 0.01Þ for diamond, for which the refractive index is
approximately given by n2ðλÞ¼1þ½4.658λ2=ðλ2−112:52Þ&
[43], where λ is the free-space wavelength measured in the
lab frame and expressed in nanometers.
The analysis also reveals interesting subtleties: (i) If the

pulse width Δ and/or the intensity δn0 are very small, the
tunneling probability for the in mode kin3 to cross the white
hole and exit on the black hole side as kout3 becomes non-
negligible. This effect is more pronounced for low frequen-
cies. For instance, for Δ ¼ 2 fs and δn0 ¼ 0.01, this effect
introduces order-one discrepancies between the numerics
and our analytical circuit for ω=TH ≲ 0.1, although the
discrepancies quickly decrease for larger ω or larger
values of Δ and/or δn0. This is an intrinsic limitation of
optical analog models, rooted in the fact that right moving
modes in the region between the two horizons do actually
exist—in contrast to the astrophysical case—although they
have exponentially decaying amplitudes. See [44] for a
previous analysis on this tunneling effect. (ii) We observe a
mixing between kin2 and kout1 slightly higher than predicted
by our circuit. Since these modes have symplectic norms of
different signs, this implies that there is another contribu-
tion to particle creation, originating from scattering and
unrelated to the Hawking process. Such contribution
was discussed in a different context in [45]. We find that
this additional particle creation is nonthermal. It impacts
the mean number of output quanta in the mode kout2 and
its relevance is more important for large frequencies.
However, the impact on the most relevant output channels

FIG. 3. White-black hole analog quantum circuit.

FIG. 4. Left axis (red dots): numerical results for lnðcoth2rHÞ vs
ω for a strong pulse determined by Δ ¼ 6 fs and δn ¼ 0.05. We
also show the straight line fit ω=TH , with TH ¼ 3.51 K. Right
axis (blue triangles): deviation of the beam splitter transmission
probability from unity (1 − cos2 θ) vs ω.
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for the Hawking effect—the modes kout1 , kout3 , and kout4 —is
negligible for ω=TH ≲ 5 in all our simulations.
Stimulated Hawking process.—We have explored the

evolution of a family of Gaussian initial states and have
studied the output intensities and entanglement structure
generated during the Hawking process. We quantify the
entanglement by means of the logarithmic negativity (LN)
[46,47] (for previous discussion of entanglement in other
analog models, see [24,33,48–58]). LN is based on the
Peres-Horodecki criterion [59,60], similar to other inequal-
ities used in some previous works (see, e.g., [52]). But LN
has the additional advantage that it is an entanglement
quantifier; i.e., it can be used to quantify the amount of
entanglement and not only to signal its presence. This is
important for our goals. An interesting observation is that
nonclassical inputs (squeezed states) alter the covariance of
the final state and can be used to amplify the entanglement
generated by the Hawking process. This is not possible with
coherent state inputs, since they have the same covariance
matrix as the vacuum. Using our formalism, we can obtain
analytical expressions for the main aspects of the out-state
(given any initial state) in terms of the open parameters rH, θ,
and ϕ of the circuit, the latter of which we determine
numerically and are obviously independent of the quantum
states chosen for the weak probes.
We have incorporated the effect of losses (e.g., detector

inefficiencies) and ambient noise, both ubiquitous in real
experiments. Noise (e.g., a thermal environment) can be
incorporated by adding nenv photons to each input mode,
while the effects of inefficiencies can be modeled by the
following transformation of the final state: μ⃗out →

ffiffiffi
η

p
μ⃗out,

σout → ησout þ ð1 − ηÞI, where 0 ≤ η ≤ 1 is the attenuation
factor. In the calculations below, we add the same amount
of noise and inefficiencies to all channels, although this can
be generalized straightforwardly.
A simple protocol.—We find that a convenient strategy is

to illuminate the white hole with a single-mode squeezed
state in the long-wavelength mode kin3 and observe the
Hawking pair of modes ðkout1 ; kout4 Þ leaving the white hole
(see Fig. 1). This strategy produces an optimal amount of
entanglement enhancement, carried by the ðkout1 ; kout4 Þmode
pair, and more importantly, it allows us to recover the
information about the Hawking process in a simple manner,
as we now describe.
From the quantum circuit, we find that the mean particle

number hnoutki
i for i ¼ 1, 4 grows linearly with sinh2rink3 ,

where rink3 is the squeezing intensity chosen for the input
state. The rates of these linear growths are

mkout1
¼ ηð1þ 2nenvÞcos2θsinh2rH;

mkout4
¼ ηð1þ 2nenvÞcos2θcosh2rH: ð3Þ

These rates can be determined in the lab by measuring
the intensity of the output modes while tuning the initial

squeezing rink3 . By taking ratios, one can obtain the intensity
of the Hawking squeezer rHðωÞ as mkout4

=mkout1
¼ coth2rH.

The effects of thermal noise and inefficiencies cancel out in
this ratio.
Although this protocol permits one to reconstruct the

properties of the Hawking squeezer rHðωÞ, it is based on
intensities and does not involve any genuinely quantum
property. Interestingly, the rHðωÞ can be independently
reconstructed from the entanglement (LN) between the
Hawking pair ðkout1 ; kout4 Þ emitted by the white hole. The
analytical expression for the LN between these two modes
is lengthy, and its behavior with the initial squeezing
intensity rink3 is better illustrated in Fig. 5. There are two
important takeaway messages from our analysis: (i) In the
absence of the Hawking squeezer, rHðωÞ ¼ 0, there is no
entanglement between kout1 , kout4 (not explicitly shown in
Fig. 5), no matter what the value of the initial single-mode
squeezing rink3 is. Therefore, the observation of such
entanglement must be attributed to the Hawking effect,
and not to the initial state, which contains no entanglement
between these two modes. (ii) The LN increases mono-
tonically with the initial squeezing intensity rink3 (if ineffi-
ciencies are small; see below), and thus initial squeezing
enhances the quantum properties of the output. Obtaining
the LN, for instance, by reduced-state reconstruction using
homodyne measurements [14], and comparing with the
theoretical curves in Fig. 5, the Hawking squeezing
strength rHðωÞ can be obtained from a quantity of purely
quantum origin. The value of rHðωÞ obtained in this way

FIG. 5. Stimulating the white hole for entanglement enhance-
ment. Continuous lines: LN between the outgoing white-hole
partner modes kout1 and kout4 vs the initial squeezing intensity rink3,
computed from the circuit model for various values of the
Hawking squeezing strength rH . Curves from top to bottom
indicate decreasing values of rH . Dots: results from the
numerical simulations evaluated at ω=TH ¼ 1.08 (same con-
ditions as Fig. 4). Noise parameters are nenv ¼ ðew=ðTH=2Þ − 1Þ−1
and η ¼ 0.9.
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must agree with the one independently obtained from
intensities [Eqs. (3)], providing a strong consistency test.
To illustrate the way this protocol works, we have added

to Fig. 5 the results for the LN obtained from numerical
simulation, for different initial squeezing rink3 . The numeri-
cal simulations are completely independent from our
analytical calculations. By comparing with a family of
theoretical curves obtained for different rH, we can identify
the value of the Hawking squeezing intensity rHðωÞ that
corresponds to the numerical simulations. In a real experi-
ment, one would proceed in a similar fashion, by replacing
the numerically generated points in Fig. 5 with exper-
imental data. One needs to make sure that the initial
squeezing is not too large to trigger substantial nonlinear
effects, such as those discussed in [61].
We now discuss the effects of noise and inefficiencies.

Noise systematically reduces the entanglement in the final
state, even causing it to vanish if the environment number
of photons nenv is large enough. For instance, for vacuum
input, the entanglement in the bipartition ðkout1 jkout4 Þ dis-
appears when nenv is larger than a frequency-dependent
threshold, which we find to be equal to ðeω=TH − 1Þ−1 for
low frequencies (ω=TH ≪ 1) and equal to e−ω=ð2THÞ for
large frequencies (ω=TH ≫ 1). This last result is in agree-
ment with previous findings in [50]. In the absence of
inefficiencies (η ≈ 1), squeezing a single mode in the initial
state can always be used to overcome these thresholds and
restore the entanglement.
On the other hand, entanglement is sensitive to the

effects of inefficiencies even when initial squeezing is
present. In particular, for values of the attenuation param-
eter η smaller than a critical value ηc, the effect of squeezing
the input is reversed, and initial squeezing degrades the
entanglement in the output. For instance, we find ηc ≈ 0.8
for ω=TH ¼ 1, while ηc ≈ 0.9 for ω=TH ¼ 4.
Conclusions.—Our analytical treatment presents two

main advantages: (i) its generality—it is not based on
any concrete model of the optical media, and in fact, it can
be applied to other, nonoptical analog models (see [58],
where related techniques have been recently discussed in
Bose-Einstein condensates); (ii) its capabilities—it allows
us to compute in a few lines all aspects of the output
channels, including the entire entanglement structure. We
have complemented the model with a numerical simulation,
which we use to check its validity, determine its free
parameters, and delimit its regime of applicability. We have
analyzed the effects of background noise and inefficiencies
and found that quantum entanglement is easily masked, or
completely erased, by these deleterious effects.
Furthermore, we have introduced a strategy to amplify

the quantum features and overcome entanglement-
degrading effects and have proposed a protocol to observe
them in the lab. Although additional difficulties may arise
in a real experiment, our ideas constitute a step forward in
the observability of the Hawking process.
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