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Abstract. There seems to exist agreement about the fact that inflation squeezes the quantum
state of cosmological perturbations and entangles modes with wavenumbers k and —k. Para-
doxically, this result has been used to justify both the classicality as well as the quantumness
of the primordial perturbations at the end of inflation. We reexamine this question and point
out that the definition of two-mode squeezing of the modes k and —k used in previous work
rests on choices that are only justified for systems with time-independent Hamiltonians and
finitely many degrees of freedom. We argue that for quantum fields propagating on generic
time-dependent Friedmann-Lemaitre-Robertson-Walker backgrounds, the notion of squeezed
states is subject to ambiguities, which go hand in hand with the ambiguity in the definition
of particles. In other words, we argue that the question “does the cosmic expansion squeeze
and entangle modes with wavenumbers k and —k?” contains the same ambiguity as the
question “does the cosmic expansion create particles?”. When additional symmetries are
present, like in the (quasi) de Sitter-like spacetimes used in inflationary models, one can
resolve the ambiguities, and we find that the answer to the question in the title turns out to
be in the negative. We further argue that this fact does not make the state of cosmological
perturbations any less quantum, at least when deviations from Gaussianity can be neglected.
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1 Introduction

The paradigm of cosmic inflation gave rise to an unforeseen and profound lesson: the
density perturbations in the universe may have a quantum origin [1-5]. In inflation, density
perturbations originate from the quantum fluctuations of the vacuum itself, which were
stretched to cosmological distances by the accelerated cosmic expansion. This claim is of
indisputable conceptual depth and beauty, and many efforts have been dedicated to investigate
it [6-17]. In this paper, we further scrutinize this fundamental question: is there a way to
confirm or refute the genuine quantum origin of the cosmic perturbations?

At present, cosmologists use purely classical tools to analyze the collected data, and
there is no evidence so far that such tools are insufficient to understand observations. More



concretely, in contrasting the predictions of inflation with observations, one replaces the
quantum probability distribution for the primordial perturbations —computed using quantum
field theory— by a classical stochastic function with identical statistical moments. In doing
so, one automatically eliminates any genuinely quantum trace. This situation has motivated
different researchers to investigate two natural questions: (i) If perturbations have a quantum
origin, how can we understand the apparent classicality of our universe? (ii) Is there any
observable in the cosmic microwave background (CMB) which could prove that a classical
treatment is insufficient?

Paradoxically, a single mechanism has been in the spotlight of the search for an answer
to these two questions: dynamical generation of two-mode squeezing during inflation between
perturbations with wavenumbers k and —k. On the one hand, it has been argued that this
squeezing mitigates many quantum aspects of the perturbations [6-12] (see [18] for a recent
criticism to these arguments) while, on the other hand, it has also been argued that squeezing
comes together with a generation of quantum entanglement between the modes k and —E,
which makes the state of perturbations at the end of inflation very quantum [14]. Single-mode
squeezing and its relation to the quantumness of the state of perturbations during inflation
has also been discussed in [15].

The aim of this paper is to take a critical view on the definition of two-mode (and also
single-mode) squeezing for quantum fields on Friedmann-Lemaitre-Robertson-Walker (FLRW)
spacetimes. Following earlier work, we will focus on Gaussian states, since observations
have not revealed any sign of primordial non-Gaussianity, despite important efforts [19]
(see [16, 17, 20, 21] for discussions of non-Gaussian states).

Our main goal is to point out an ambiguity underlying most discussions on the generation
of squeezing and entanglement in Fourier space by the cosmic expansion. In talking about
squeezing and entanglement between degrees of freedom with the wavenumbers k and —l;,
one needs to construct canonically conjugated pairs of Hermitian operators associated with
these degrees of freedom. We discuss the ambiguities one finds in this construction when
the underlying spacetime is homogeneous but time-dependent, and argue they are the same
ambiguities one finds in the definition of vacuum or particle. In a generic FLRW, there is
no preferred choice, and therefore the answers to these questions do not carry any invariant
physical meaning (some of the ambiguities we discussed have also been pointed out in [22]).
We also argue that the answer is not of direct relevance to understand observations —which are
carried out in real space— as one would expect given the inherent ambiguity. Entanglement
in real space is ubiquitous in quantum field theory [23, 24], even for the vacuum in Minkowski
spacetime, and it is independent of any particle interpretation, although its value depends on
a choice of observables. But current cosmological data is insufficient to reveal any trace of
this entanglement, due to the difficulty in observing non-commuting observables associated
with the primordial perturbations. It is for this reason that a classical stochastic state suffices
to completely account for observations.

We also discuss how the symmetries present in inflation can be used to resolve the
ambiguities mentioned above and to provide an answer to the question in the title of this
paper, and further discuss how the answer affects the quantumness or classicality of the
primordial perturbations at the end of inflation. Along the way, we will use simple examples
to illustrate the main messages of this paper, using a set of finitely many harmonics oscillators
and a linear scalar field in FLRW spacetimes.

This paper is organized as follows. We begin in section 2 with a brief review of
squeezing and entanglement for quantum systems with finitely many degrees of freedom and



quadratic Hamiltonians. We summarize the relation between squeezing, entanglement, and
“quantumness” of Gaussian states. The case of a time-dependent oscillator serves to illustrate
several messages which will be important for the study of squeezing in inflation. Although
the lessons extracted from this simple analysis are not new, they are not made explicit in
many treatments. In section 3, we extend the discussion to field theory by considering a
scalar field in spatially flat FLRW spacetimes. We discuss the additional subtleties that the
existence of infinitely many degrees of freedom introduces. To illustrate the role of symmetries
in the dynamical generation of squeezing, we consider the example of the Poincaré patch of
de Sitter spacetime, and use it to compare with the strategy followed in earlier work. This
example provides lessons of direct applicability for cosmological perturbations in inflation,
which are discussed in section 4. In section 5, we argue that a more fruitful strategy to
quantify the entanglement generated by inflation is to focus on entanglement in real space,
as recently done in [25, 26], and point out the ambiguities that such calculation entails. We
collect our results and put them in a broader perspective in section 6. Appendix A contains a
discussion of single-mode squeezing during inflation; appendix B summarizes other measures
of “quantumness” commonly use in the literature of quantum optics, such as the P-function;
and appendix C provides a derivation of the Bunch-Davies vacuum in the Poincaré patch of
de Sitter spacetime and its properties in the Schrodinger evolution picture, many of which
are used in the main text. Throughout this paper, we use units in which A = ¢ = 1.

2 Squeezing, entanglement and quantumness of Gaussian states of linear
finite-dimensional systems

The goal of this section is to emphasize three messages concerning finite-dimensional bosonic
systems: (i) The notion of squeezing requires a quantum state and a pair of non-commuting
operators. (ii) For any Gaussian state there always exists a basis of canonically conjugated
pairs of operators for which the state is not squeezed, and another basis for which the state
has arbitrarily large squeezing. The same applies to entanglement: one can always find
bi-partitions of the system for which the entanglement between the two sub-systems is zero, or
as large as desired. Hence, the sentence “p is a squeezed or an entangled state” is empty, unless
one has in mind a preferred set of canonically conjugated pairs or bi-partition. (iii) If the
Hamiltonian is time-dependent, the preferred canonically conjugated pairs and bi-partitions at
the initial and final instants are generically different. Therefore, the question “does evolution
squeeze or entangle the state p7” brings an additional ambiguity, related to the choice of
quadrature-pairs and bi-partitions at the initial and final times.

In the remainder of this section, we justify these statements and illustrate them with
simple examples. Most of this material is known (see, for instance, [27]), and our goal is
to simply emphasize aspects that are frequently unnoticed, and that are relevant for the
questions investigated in this article. The reader familiar with these topics can jump directly
to the next section.

2.1 Linear finite-dimensional systems: basic notation

We begin by introducing standard terminology for the quantization of a system with a
2N-dimensional phase space, for finite N. We will focus on linear systems for which the
classical phase space I' is a vector space, and one can choose global canonical coordinates
xr,pr, I = 1,...,N in T such that the Poisson brackets are {zr,z;} = {pr,ps} = 0 and
{zr,ps} = d77. This can be expressed more compactly by defining the column vector



rt = (z1,p1,. .. ,a:N,pN)T —we use lower case letters for indices in phase space, 1 = 1,...,2N
o g g 1
— in terms of which all Poisson brackets read {r*,7/} = Q% where QY = @y <_01 O) is the

(inverse of) the symplectic structure.

In the quantum theory, the canonical coordinates 7 are promoted to operators satisfying
commutation relations [#%, 7] = i Q%Y. Together with the identity operator ﬁ, 7 can be used
to generate all other polynomial operators by taking linear combinations of their products.
Of particular relevance for our discussion are linear observables, made of simple linear
combinations of 7

=P

a -

.
Oga

=q;7,  with &eR¥ (2.1)

(sum over repeated indices is understood). It is convenient to identify @ with elements of I'*,
the dual of the phase space I, since in that way all operators Oz have dimensions of action.
Given two linear observables, Og and O 5 their commutator is simply [Og, O E] = iazﬂjQ“ , OT

in matrix notation [O&, O 5] =ial -Q-F (that is, i times the symplectic product of & and /§)

We say that two such operators O& and OE form a quadrature-pair if [O&,Og] = 1.
Furthermore, N mutually commuting quadrature-pairs will be said to form a Darboux basis.
For instance, the canonical operators #! —properly normalized, so they all have dimensions
of action while still satisfying the same commutation relations— form a Darboux basis of
quadrature-pairs. Given such a basis, and given a real 2N x 2N matrix S; that leaves the
symplectic structure invariant, i.e., satisfying ST - Q- S = €, the linear operators Pl=5.F
also form a Darboux basis of quadrature-pairs. The matrix S implements a linear canonical
transformation, and the set of all such matrices forms the symplectic group Sp(2N,R) (see
e.g. [22] for summary of the properties of the symplectic group, applied in a context of direct
interest to this paper).

2.2 Quadrature squeezing

We call a quantum state (Gaussian or not, pure or mixed) p squeezed relative to the quadrature-
pair (Og, O 5) when either of the dispersions AO2 or AO% satisfy

1

1
AO% < = or AO%< 3

2.2
: (22
where AO? = Tr[p O?] — Tr[p O]2. (Of course, Heisenberg’s principle implies that the product
AO2 AO% is never less than 1.)

Note that in the definition of squeezing it is pivotal that both Oz and OE have the
same dimensions, otherwise there is no unambiguous way of splitting Heisenberg’s uncertainty
lower bound between them. It is also important to emphasize that the notion of squeezing
requires both a state and a pair of quadratures. It is meaningless to simply say that a state
is squeezed.

Given two commuting quadrature-pairs, (O&I, 05’1) and (O@Q, 05,2), each describing
a physical degree of freedom (or mode) of the system, one says the state p is a two-mode
squeezed state relative to these pairs when it is squeezed for any quadrature-pair defined as a
non-trivial linear combination of the two pairs.



2.3 (Gaussian states and squeezing

We focus now on Gaussian states. This is the family of states most discussions of squeezing
and classicality in cosmology have focused on, motivated by the absence of primordial non-
Gaussianity in the CMB (see, however, [16, 17, 20]). The proofs omitted in this section can
be found, for instance, in [28]. The simplicity of quantum Gaussian states resides in the fact
that all their quantum moments Tr[,ﬁf -] are completely determined from the first and
second moments, Tr[p#¢] and Tr[p#7/]. We will denote the first moments by p® = Tr[p 7).
The non-trivial information in the second moments is more cleanly encapsulated in their
symmetrized version o = Tr[p {(?* — u’), (7 — p/)}], where the curly brackets indicate the
symmetric anti-commutator.! The matrix 0 is called the covariance matrix of the state, and
it carries information about the dispersion of all linear operators Oa =a-
o _1.r . 1 ij

AOa:§a -U-aziaiajaj. (2.3)
Therefore, all physical predictions relative to a Gaussian state, pure or mixed, can be obtained
from the 2/N-dimensional vector y’, and the 2N x 2N-symmetric matrix o,

An important property of the covariance matrix o is the following. First, it must satisfy
that o 4+ i) is a non-negative matrix (i.e., all eigenvalues must be non-negative). This
condition is tantamount to the positivity of the density matrix and it encodes the quantum
uncertainty inequalities, in particular Heisenberg’s principle. This further implies that o is a
positive-definite matrix. Williamson’s theorem then guarantees that o can be “symplecticly
diagonalized”, i.e., that there exists a symplectic transformation B € Sp(2N,R) such that
B.o-BT =diag(vy,v1,--- ,vn, vn). The N positive real numbers vy are called the symplectic
eigenvalues of o, and they encode the invariant information of the covariance matrix.?

One can further prove that all symplectic eigenvalues must be no smaller than one, vy > 1

— and they are all equal to one if and only if the state is pure. The symplectic eigenvalues vy,

by construction, are equal to twice the dispersion of the operators in the Darboux basis in
which the covariance matrix takes the diagonal form, that is, AX? = AP? = Z,I=1,---,N.
Hence, since vy > 1 for all I, none of the operators in this basis are squeezed. This proves
that for any Gaussian state there always exists a Darboux basis of canonical operators for
which the state is manifestly not squeezed.

On the contrary, one can always find quadrature-pairs with an arbitrary large degree
of squeezing. A trivial example is the following: if (O&, Og) is a quadrature-pair, the

~»

transformation Oz — e $Oz and Oz — ¢¢Og, parameterized by a real number ¢, is
a symplectic transformation which brings us to a new quadrature-pair with dispersions
e 26 (AO2) and €2¢ (AO%), respectively. Hence, tuning ¢ one can obtain quadratures with

as much or as little squeezing as desired. Therefore, the statement “p is a squeezed state” is
empty — unless one has in mind some preferred quadratures (see [22] for a similar discussion).

In practical cases, one can use physical arguments to choose some preferred quadratures
among the observables that are accessible in an experiment. For instance, for a time-
independent harmonic oscillator of mass m and frequency w, X = (mw)/?% and P =
(mw)~ 1/2 5 is the most physically relevant quadrature-pair, and it is natural to associate

!The anti-symmetric part of the second moments is proportional to the commutator [#*,7/] = i Q% whose
expectation value does not carry information about the state.

2Invariant in the sense of the symplectic group in phase space. Note that, in contrast, the ordinary
eigenvalues of o are not invariant under symplectic transformations; they depend on both, the quantum state
and the Darboux basis chosen to write o.



squeezing with this pair. For more general but time-independent systems with quadratic
Hamiltonians, the normal modes provide a physically preferred Darboux basis of quadrature-
pairs to which one can naturally refer when talking about squeezing. The process is as follows.
The ground state of the Hamiltonian defines a set of annihilation operators A; from which we

can write the normal modes of the system as X; = % (Ar + fl}) and Py = \_/—% (Af — fl}) It

is then straightforward to prove that the ground state, and in fact all eigenstates of A; (i.e.,
coherent states), are not squeezed relative to the basis of quadrature-pairs made of the normal
modes (X T P]). The reason we repeat this well-known fact is to emphasize that this familiar
notion of squeezed states rests on the existence of a time-independent Hamiltonian, which
has a ground state and an associated Darboux basis of quadrature-pairs made of normal
modes. These elements will not be available for fields in time-dependent geometries, for
which the difference between squeezed and coherent states dilutes, and become subject to
certain choices.

2.4 Gaussian states and entanglement

The conclusions of the previous subsection also apply to entanglement between bi-partitions
of any N-mode systems and Gaussian states. Entanglement is not an invariant notion that
can be attributed only to the quantum state, since it obviously depends on the bi-partition
chosen [27]. The arguments summarized in the previous section —in particular, the fact
that the covariance matrix can always be brought to diagonal form— automatically imply
that, given an arbltrary Gaussian state, pure or mixed, there always exist a Darboux basis
of quadrature-pairs, Xi,P;,---,Xn, Py, for which there is no entanglement among any
bi-partition of these pairs, and the state is in a manifestly non-entangled and uncorrelated
form. On the contrary, one can always build suitable linear combinations of these operators to
find bi-partitions for which the entanglement is arbitrarily high. For instance, the subsystems
defined by the canonical pairs (Xl Xl, pl P+ Xg) and (X'Q X2, P2 P+ Xl) can
be entangled for states for which the subsystems (X1, P) and (X5, P;) are not, as it can be
checked for two harmonic oscillators in the vacuum state. Hence, the sentence “the Gaussian
state p is an entangled state” is incomplete, unless one specifies a bi-partition. Consequently,
little or much entanglement for a given bi-partition does not make the state more or less
quantum in any invariant manner. Entanglement is intrinsic to all Gaussian states of any
multimode system. The difference is only that some Gaussian states contain entanglement
among the most physically relevant bi-partitions, and it is common practice to reserve for
them the name “entangled states” (see appendix B for more discussion).

2.5 Dynamics, squeezing and entanglement

As mentioned before, we restrict here to Hamiltonians which are quadratic polynomials of the
canonical variables, H= %'Fi hij 77 + ¢, where hij is a symmetric, positive definite, possibly
time-dependent matrix, and ¢ a constant.? This family of Hamiltonians is the analog for a
finite-dimensional system of the Hamiltonian for a free field theory discussed in the next section.
These Hamiltonians preserve the Gaussianity of quantum states in the sense that the evolution
of a Gaussian state with mean i and covariance matrix o from time tg to ¢, is another Gaussian
state with mean and covariance matrix E - ji and E-o - E T, respectively, where E’] is the time

evolution matrix, determined from the Hamiltonian through £ = T exp fttol Q- h(t')dt', with
T indicating the standard time-ordered product. Note that the 2N x 2N matrix F provides

3 Any terms linear in # can be removed by a re-definition of 7.



the evolution of the canonical variables in the Heisenberg picture: #(t;) = EZJ 7 (tg). Tt is
also exactly the same matrix that implements the Hamiltonian flow in the classical theory,
in particular, r(t) = EZ] 77 (tp) is a solution to the classical Hamilton’s equations. That the
classical evolution completely determines the quantum dynamics, is a peculiarity of quadratic
Hamiltonians — it is not true for more complicated Hamiltonians due to factor ordering
ambiguities. Hence, evolving Gaussian states under quadratic Hamiltonians is extremely
simple: we can forget about (infinite-dimensional) density matrices, unitary operations or
Schrédinger’s equation; we only need to evolve their first and second moments (ji, o) by
multiplying them with the classical evolution matrix as indicated above. The evolution matrix
Ezj is always an element of the symplectic group.

Given this background, we are now ready to study the evolution of squeezing and
entanglement of a quantum state. We are interested in the analog of the question which
we want to answer for scalar fields and cosmological perturbations in sections 3 and 4: if
we choose a non-squeezed and non-entangled quantum state at time t,, is the time-evolved
state squeezed and entangled at tous > tin? As emphatically discussed above, this question is
unambiguous only if there are preferred quadratures at times t;, and tout. If the Hamiltonian
is time-independent, the preferred set of Darboux quadrature-pairs is made of the normal
modes of the system. Therefore, all we have to do to answer the question is to express the
covariance matrix in this basis, and follow the time evolution of its components, E - o - E'T.
From them, it is straightforward to compute squeezing and entanglement among different
bipartitions of the preferred quadrature-pair basis.

However, if the Hamiltonian does depend on time, the answer to the question requires
more work, because the preferred set of Darbouzr quadrature-pair basis may also change in
time. Therefore, from a physical standpoint, we will say that the state is not squeezed or
entangled at the initial time ¢;,, when we find negative answers relative to the normal modes
at tin. But at time t,,, what quadratures-pairs should we use to determine whether the
evolved state is squeezed or entangled, the preferred quadrature-pairs at ¢, or at tout? The
following simple example illustrates the difference between these two choices, and helps us to
understand their physical content.

Example: A time-dependent harmonic oscillator. Consider a single mode system
with Hamiltonian H(t) = 7 P + $ mw?(t) £%, where w(t) is time-independent in the past,
then varies smoothly and monotonically, and finally becomes constant again. Let ti, (tout) be
a time inside the initial (final) interval where w(t) is constant, and let w;, and weyt be its
initial and final values, respectively.

At ti,, the normal modes of the system are X = (m win)1/2 #and P, = (m win)_1/2 .

They define the annihilation and number operators, A;, = % (X'in + zpm) and N, =

% (X?n + 151% — ﬁ), respectively. Let’s assume the system starts at i, in the ground state of the
Hamiltonian H (t;,), which we will denote as |in). This is a Gaussian state, with zero mean
and covariance matrix i, = Iz equal to the identity when expressed in the Darboux basis
Xin, Py, Therefore, the initial state is not squeezed. We want to answer the question: does
evolution generate squeezing?

To emphasize our point more clearly, let us consider two situations: (a) We assume that
the change from w;, to wewt happens adiabatically, i.e., in a timescale 7 much larger than
any other natural timescale in the system, ideally 7 — oco. (b) The change from wiy to wout
happens instantaneously. This corresponds to the limit 7 — 0.



In the adiabatic situation (a), the adiabatic theorem (see e.g. [29]) guarantees that
the evolution of the state |in) from ¢;, to tou produces precisely the ground state of the

Hamiltonian at time tou: Ulin) = |out). Is |out) a squeezed state? The variances of the
quadrature-pair Xj, and P, are AXizn = % ﬁ and API%1 = % wwo—lunt Therefore, if win # Wout

there is squeezing either in X'm or ]5in. But these quantities do not have any natural meaning
at time tou;. An experimentalist entering the room at to,¢ will argue that the system is in
the ground state of the Hamiltonian, and that the dispersions of the normal modes at tqyut,
namely Xout = (m wout)1/2 & and Py = (m wout)_l/2 P, are both equal to 1/2. Hence, there
is neither generation of quanta nor squeezing according to this observer at time toyus.

In case (b), it is well known in quantum mechanics that under the instantaneous change
in the Hamiltonian the state remains invariant under Schrodinger evolution (see e.g. [30]),
Ulin) = |in), and therefore there is no squeezing in the initial quadrature-pair (Xi,, Py) at
tout- However, the physical Hamiltonian has changed and an experimentalist at time ., will
say that the system is not in the ground state; the evolved state is excited and squeezed with
respect to the preferred quadratures at tqyt.

These rather academic examples* reveal the importance of the choice of quadratures in
order to argue whether evolution has generated squeezing and quanta, precisely because these
notions do not have an invariant meaning, but are rather associated with observers or choices
of creation and annihilation operators (a similar argument works for entanglement, although
the discussion requires at least two oscillators). Therefore, although mathematically one could
decide to fix the quadratures once and for all and follow the evolution of their dispersions, such
a strategy does not reproduce the quantities of natural interest for time-dependent systems.
For them, the observables of physical interest evolve in time, and the physical characterization
of a state as squeezed or entangled must be adapted to the evolution. This argument will
be important for fields in time-dependent spacetimes, for which additional ambiguities and
mathematical subtleties arise due to the infinite number of degrees of freedom.

3 Dynamical generation of squeezing for a scalar field in FLRW spacetimes

For pedagogical purposes, we consider first a real scalar field on FLRW spacetimes, since
it is free of some additional complications involved in the definition of scalar and tensor
curvature perturbations, which happen to be unessential for the discussion of the dynamical
generation of squeezing and entanglement. In section 4, we extend the discussion to include
curvature perturbations. The discussion of squeezing is clearer in the Schrédinger evolution
picture [31], and we will use it in this section — the translation to the Heisenberg picture is
straightforward.
We will work with a real scalar field, which in the classical theory satisfies the Klein-
Gordon equation
(A—m?—€ER)®(n, %) =0, (3.1)

where [ is the d’Alembertian operator associated with the spacetime line element, which in
FLRW spacetime reads ds? = a?(n) (—dn? + dz?), where 7 represents conformal time, a(n) is
the scale factor, R = 6a” /a® the Ricci scalar, and m and ¢ are real numbers representing the
mass of the scalar field and its coupling to the background curvature, respectively.

4For quantum fields during inflation, we will not assume the expansion of the universe is either adiabatic or
instantaneous, but we will find that there is no generation of squeezing if one uses the quadratures singled out
by the de Sitter symmetry.



The goal of this paper is to understand whether time evolution generates two-mode
squeezing and entanglement between pairs of Fourier modes of the field with wavenumbers k
and —Fk. Alternatively, one can also investigate if evolution squeezes each mode individually;
a discussion of such single-mode squeezing is relegated to appendix A.

To investigate two-mode squeezing we can use the same tools as described in the previous
sections for finite-dimensional systems, and apply them to the quadrature-pairs describing
degrees of freedom of the fields associated with wavenumbers k and —k. Hence, the first
question we need to address is a simple one, but which contains some subtleties Worth
clarlfylng how can we define quadrature-pairs, or modes, associated with wavenumbers k
and —k out of the field operator ®(Z) and its conjugate momentum II(Z)? We describe two
possible strategies, of which only the second one turns out to be satisfactory.

Strategy 1. Use Fourier modes.
Let us pay attention to the Fourier components of ®(#) and II(Z), and define a pair of
operators labeled by k as

)

I(z) . (3.2)

e kT A(a‘;’), fp= /dga: ik

The canonical commutation relations [®(Z), II(Z)] = i §(Z — &) imply [qglg, fiz] = i0(k +
K ). Hence, for each wavenumber k the operators (ng and 7_j form a canonically conjugated
pair. However, these operators are not Hermitian and consequently do not describe observables.
In particular we have qbﬁ = qS . One way to bypass this impediment is by focusing on the
real and imaginary parts of these operators (which are associated with the cosine and sine
Fourier modes of the field):

. 1. 2 —ta 2

¢I%R) = 7 (op +0_3), ¢g) = 2 (Y5 —o_5)>

R 1 . . -, .

TI'I%R) = 7\& (W,; + 7T_12) ) F,(;I) = ﬁ (”12 - 77—12) : (3.3)

These operators are Hermitian, and the only non-vanishing commutation relations
between them are

[P &80 =is (F+ ), [0V 49] =is (F+F) (3.4)

and, consequently, for each E, they define two canonical quadrature-pairs. However, because
the operators gZA)I(ZR) and fr]%R) are invariant under k — —E, while qgg) and frg) change sign (as
expected from cosine and sine modes), when working with these Hermitian fields one must
restrict to half of the wavenumber space,” since the other half does not describe independent
degrees of freedom. (Of course the number of degrees of freedom remains the same, as simple
counting reveals.) Therefore, for these Hermitian pairs of operators it does not make sense to
talk about two-mode squeezing or entanglement between modes k and —k. One could instead
discuss two-mode squeezing and entanglement between (@I%R),ﬁ]%m) and (gbg) A](:)). But a
simple calculation shows that for Gaussian states all cross-correlations between these two pairs

®More concretely, the Hermitian quadratures are defined for wavenumbers k € ko x R? +), Where ko is a real
number with dimensions of inverse length and R(+) = {(ks, ky, k) €R3 ¢ by > 0y U {(Ku, by, k2) €R? 2 by =
0,ky > 0YU {(ks, ky,kz) €R® : k., =0,k, =0,k >0} [32].



vanish at any time, due to the “orthogonality” of the cosine and sine modes. Hence, there is
no squeezing or entanglement generated between them in FLRW spacetimes, no matter what
the expansion of the universe is. We therefore conclude that the Fourier components of the
field are not suitable variables for our purposes.

Strategy 2. Use creation and annihilation operators and build Hermitian quadrature-pairs
from them as follows

- A}s) . (3.5)

(The operator X i should not be confused with 5312? the latter is not Hermitian, and when it
expansion in annihilation and creation operators takes the form @E = fi flE + fx fli’;, for
appropriately normalized mode functions f;. Even the units of X i and QEE are different.)
These Hermiti_fm operAators are canonicallyAconjugate, [X i PE'} = 25(E — K ). They
are defined for all k, and X} is independent of X ; —and not related to it by Hermitian
conjugation (for the same reason that AE is independent of fl_E) Consequently, these

operators allow us to define bi-partitions, squeezing and entanglement between modes k and
—kin a mathematically well-defined manner. This is indeed the strategy used in some of
the previous literature (see e.g. [14]). The drawback is that there is huge ambiguity in the
definition of X and P~ precisely the well-known ambiguity associated with the definition of
A and AT or, equivalently, with the ambiguity in the definition of vacuum and particles in
FLRW spacetlmes 6 One of the key goals of this paper is to emphasize thls ambiguity in the
definition of quadrature-pairs X P~ associated to each Fourier mode k and to argue that
it translates to an ambiguity in the definition of squeezing and entanglement between the
sectors k and —k of the field.

To better understand the impact of this ambiguity, it is illustrative to write explicitly
how it affects the quadrature-pairs X 7 P~ The ambiguity in the definition of A~ and AJr
reduces to

AL = oy Ap + B AT (3.6)

where o and B are complex numbers which depend only on the modulus of k and satisfy
the normalization condition |az|? — [Bk|> = 1. Any set of such operators {A,E}IZ defines a
legitimate Fock vacuum that is invariant under translations and rotations, and no choice is
preferred, except when the expansion of the universe is very special. The important aspect of
this ambiguity is that it mixes the k and —k sectors. This can be seen explicitly by writing

SFor finite-dimensional systems, one can always define preferred quadratures at any chosen time 7, even if
the Hamiltonian is time dependent, by using the instantaneous normal modes of the Hamiltonian. This defines
annihilation operators A,; at 1o, whose associated vacuum is the instantaneous ground state of the Hamiltonian.
This instantaneous diagonalization of the Hamiltonian, although it is a licit strategy for finite-dimensional
systems, presents numerous problems in field theory, even in the simple case of FLRW spacetimes [33]: in
addition to the large ambiguity in the definition of a canonical Hamiltonian of a field theory in a time-dependent
spacetime, the strategy fails to produce finite particle creation in the course of time and renormalizability of
the energy-momentum tensor, for generic forms of the scale factor a(n) and arbitrary values of m and £. These
arguments are well-known [33], although often overlooked.
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the relation between the quadrature-pairs defined from AE and A;-C.

X’% = Re[ak] XE — Im[ak] PE + Re[ﬂk} X—E + Im[ﬁk] p—E ,
Pl = Re[ox] Py + Im[oy) Xz — Re[Be] P_z + Tm[B:] X 7. (3.7)

This expression shows that the “primed” quadrature-pair for k is a mix of the original
quadrature-pairs for k and —E; or in other words, in a genereci FLRW spacetime, there is no
invariant definition of the k and —k physical sectors of the field theory. This also implies that
we can obtain any answer we want for the amount of two-mode squeezing and entanglement
between k and —k by appropriately choosing «; and (i in the previous expressions. In
particular, there always exists a choice for which any homogeneous and isotropic Gaussian
state is manifestly unsqueezed and unentangled.

One could still think that, although it is true that there exists ambiguity at a given
time, one can still unambiguously talk about the generation of squeezing and entanglement
during evolution as follows: fix a choice of quadrature-pairs once and for all, and compare
their properties in the state before and after the evolution. If initially the state is unsqueezed
and unentangled between the k and —Fk sectors and after the evolution this is no longer
true, one can say that the evolution has squeezed and entangled these two sectors. This
strategy is problematic in time-dependent spacetimes, since generically it involves the use of
non-Hadamard states, as we argue below. Moreover, this strategy ignores another ambiguity:
there is no reason to choose the same quadrature-pairs at the initial and final times, and in
general one should not. This may seem counter-intuitive and unnatural at first, and we now
provide two reasons to argue why this is indeed the case, one physical and one mathematical.

(i) From the physical viewpoint, because the properties of the spacetime change due
to the expansion, the most natural choice of creation and annihilation variables (fl,;, fl;%)
and quadrature-pairs constructed from them also changes. To evaluate whether the final
state is squeezed and entangled, it is natural to use the preferred notions at the final time
(if such exist); this is analogous to the example of the time-dependent oscillator discussed
in section 2.5. In fact, this is what is done in the most well-known examples of particle
creation in curved spacetimes, namely the Hawking effect [34] and Parker’s particle creation in
FLRW spacetimes that are asymptotically Minkowskian in the past and future [35-37]. In the
Hawking effect, one chooses an initial state that is the vacuum relative to the preferred creation
and annihilation variables in the asymptotic past, but probes the properties of the final state
after the evolution using the natural choice of creation and annihilation variables in the future
asymptotic region. This is indeed the natural strategy from a physical perspective. In such a
scenario, one finds that the final state contains particles, and the degrees of freedom escaping
the black hole are squeezed and entangled with those falling into the horizon. Similarly, in
Parker’s asymptotically Minkowskian FLRW, one has preferred quadrature-pairs in the past
and future, but they are different. One uses the preferred choice in the past to prepare the
state and the preferred choice in the future to probe it after the evolution. One also finds that
there is particle creation for general expansion histories, which is accompanied by squeezing
and entanglement between the k and —k sectors.

Hawking’s and Parker’s examples have permeated the intuition of many physicists, due
to its simple interpretation in terms of particles. But this interpretation rests crucially on the
assumption of asymptotically Minkowskian regions, which allow us to select preferred choices
of creation and annihilation variables in the past and future, respectively. In our universe,
such regions are not available and one must face the ambiguity in the choice of creation and

- 11 -



annihilation variables. The examples of Hawking radiation and Parker’s particle creation
teach us, however, that there is no reason to use the same notion of particles and choice of
quadrature-pairs at initial and final times.

(ii) Recall that we work in the Schrodinger picture. A choice of creation and annihilation
variables at a time ¢ defines a vacuum state at that time, and the associated notion of particles
and quadrature-pairs. In making such a choice, there are certain restrictions one must follow.
In arbitrary spacetimes, it is accepted that any permissible vacuum must be a Hadamard
state [38]. This guarantees that the short distance behavior of the state has the appropriate
physical and mathematical form, which in turn allows one to recover results compatible with
local Lorentz invariance at short distances, and to renormalize the ultraviolet divergences
that appear in calculations of the energy-momentum tensor and other composite operators.
The Hadamard condition depends on the details of the geometry at the time it is applied.
Consequently, a Schrédinger state that is Hadamard at t; is in general not Hadamard at
time ¢ if the spacetime is time dependent.” Therefore, if one uses the same choice for AE

and AJL, and the same notion of quadrature-pairs at all times, one is involving mathematical
structures that violate the Hadamard condition. This is accompanied by some well-known
issues; particularly, one would generically find that infinitely many particles are created per
unit volume of space and that the energy-momentum tensor is not renormalizable. One could
ignore this issue by arguing that these are “ultraviolet problems”, which can be hidden by
introducing a cut-off. The introduction of a cut-off, however, introduces other problems
(breakdown of unitarity, no conservation of energy and momentum, etc.). These mathematical
complications are peculiar to field theory in time-dependent spacetimes. They neither arise
for fields in Minkowski spacetime nor for time-dependent finite-dimensional systems, and it is
for this reason that they are sometimes overlooked.

We reach the conclusion that in general FLRW spacetimes the question “does time
evolution produce two-mode squeezing and entanglement between the k and —k degrees of
freedom?7”, is equivalent to the question “does the evolution create particles?”, and they both
suffer from the same ambiguity, namely the definition of particles at initial and final times.

Nevertheless, in special situations for which additional symmetries exist, one can take
advantage of them to find a preferred choice. We will now discuss an example of direct
relevance for this paper: a scalar field in the Poincaré patch of de Sitter spacetime.

3.1 Example: A scalar field in the Poincaré patch of de Sitter spacetime

Consider a spatially flat FLRW universe with a scale factor of the form a(n) = _%n with
n denoting the conformal time and H a constant (in proper time, a(t) = age?). We will
refer to it as the Poincaré patch of de Sitter spacetime (PdS). This spacetime admits, in
addition to the six isometries common to all FLRW geometries accounting for homogeneity
and isotropy, one extra Killing vector field associated with the de Sitter group.® Although

this extra isometry is not globally time-like, it suffices to single out a preferred notion of

"This statement should not be confused with the well-known fact that the evolution from time ¢; to t2 of a
state that is Hadamard at ¢; is always a Hadamard state at t2, since the Hadamard structure is preserved in
time. The point we are emphasizing is rather that if a state that is Hadamard at ¢; is itself considered as a
state at to —without evolving it— it is not generally a Hadamard state at t2, because the spacetime metric
may have changed.

8The de Sitter group has ten independent Killing vectors fields, and all of them, locally, are isometries of
PdS. However, the PdS is only a portion of de Sitter spacetime, so not all ten transformations are global
isometries of PdS. Only the subgroup of the de Sitter group which leaves the Poincaré patch invariant describes
the global isometries of PdS. See [39, section IV C] and appendix A for further details.
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vacuum at a given time (when complemented with the Hadamard condition); this is the
so-called Bunch-Davies (BD) vacuum [40-42] (see appendix C for details omitted in this
section). In the usual terminology, the BD vacuum at time 7y is defined from the initial
data (2P (no), 8,eRP (o)) of the Bunch-Davies solutions to the equations of motion, or mode

functions:?
eBP(n) = | —e—a b H(—kp) (3.8)
12m)Pa(m)? H ’

where H, ,Sl)(w) is a Hankel function with index u? = % — E—; — 12¢ (recall the BD state is
ill-defined for m = 0 and £ = 0 [43]). One important point to notice is that, in the Schrédinger
picture, there is not a single BD vacuum, but rather a BD vacuum at each instant of time,
which we will denote by |BD, ). The BD vacuum at 79, |BD,79), is defined from the initial
data (2P (no), 9,e2P (n0)), while |BD,n;) is defined from (e2P(n1), 8,e2P(n1)). Since these
two sets of initial data are different, these are different states in the Schrodinger picture. The
state [BD, ) is invariant under the PdS isometries and is Hadamard only at 7, and it is the
only state with such properties at 79. Moreover, the one-parameter family of states |BD,7)
are connected by time evolution: [BD,71) = Uy, [BD, 7o) (these statements are proven in
appendix C). These points go unnoticed if one works in the Heisenberg picture, which is far
more common in textbooks, since there one simply fixes the state |BD, ) at 19 once and for
all, and refers to it as the BD vacuum.

Therefore, the symmetries of PdS, when complemented with the Hadamard condition,
provide a preferred choice of quadratures at each instant of time n:

o) L ram) | amt s _ L (A it
X5 —ﬁ(Azz +APT), P = \/§<A;; APT)., (3.9)

where fll(;") is defined from (e2P(n), d,eEP(n)), and hence annihilates the state |BD,n) for all

wavenumbers k. We emphasize that the label n in these operators should not be interpreted
as Heisenberg evolution, since it is not — for the same reason that the quadrature Xout in
the example of the time-dependent harmonic oscillator in section 2.5 is not the Heisenberg
evolution of Xin and that the out number operator Nout in the Hawking effect is not the time
evolution of the in number operator Nin.

Therefore, if one decides to use the symmetries of the PdS to resolve the ambiguity in

the discussion of squeezing and entanglement, one must use the quadrature X zgm)’ ]55'0) at no,
and the quadratures X 971), A}ém) at n1. But as mentioned before, if the system is prepared at

time 79 in the state |BD, 7o), the evolution brings it to |BD,n;). This automatically implies
that the final state contains no particles and there is no squeezing or entanglement between
the sectors k and —Fk as defined by the preferred quadratures at the final time. Thus, although
we have used exactly the same strategy one uses in the Hawking effect, in PdS there is no
particle creation. The difference is of course the high degree of symmetry of PdS.

Based on this result, one should not conclude that the generation of the primordial
density perturbations during inflation does not generate any feature genuinely quantum,
such as entanglement. It simply tells us that there are no particles created for the notion of

9More precise, the BD vacuum at time 7o is the normalized state annihilated by the operators
A . BD=« A BD « 2
Ap =i (ex” " (no) g — (2m)° a(mo)” Dyex” " (mo) ¥z) »

for all values of k.
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particles singled out by the symmetries of PdS, and correspondingly there is no entanglement
given this notion of particles. Nevertheless, this does not necessarily imply that there is no
entanglement between the degrees of freedom that we have access to in observations, namely
the field in real space. We further elaborate on this in section 5.

3.2 Connection with previous work

The conclusions reached in the example above contrast with previous discussions (see e.g. [7,
9, 14, 18]). We explain here the origin of the differences. In short, in previous references there
is an implicit choice of quadrature-pairs at early times, and another choice at late times. We
argue in the following that (i) these choices are not natural in any sense; (ii) that they are
not compatible with the (approximated) symmetries of slow-roll inflation; (iii) and that they
also have some undesirable mathematical features.

In discussing the generation of squeezing during inflation, it has been common to define
quadratures-pairs using the following argument — although most times only in an implicit
way. Recall first that all spatially-flat FLRW metrics are conformally related to the Minkowski
line element. This in turn implies the following (see e.g. [44]): if a scalar field ®(n, Z) satisfies

[O-m?—¢R] ®(n,%) =0, with O=g¢"'V,V,, (3.10)

then, given any nowhere vanishing smooth function Q(n,¥), the re-scaled field v(n,Z) =
Q=1 ®(n, ¥) satisfies the equation

. 1 B _
O0-Q2m? - <§ - 6> 0 R} v(n,Z) =0, where O=g¢""V,V,, (3.11)

and g, = 0?2 9w is the conformally-rescaled metric. Hence, if we choose €2 = a(n)~!, we
have that §,, equals the Minkowski metric and the field v(n, Z) = a(n) ®(7n, ¥) satisfies the
Klein-Gordon equation in Minkowski spacetime, with a time-dependent potential: (0"0,, —
V(1)) 6(n, %) = 0, where the explicit form of the potential is V(n) = a?(n) m* + (£ — £) 6 %/
(we have used that R = 6‘;—,3:) In this way, the time dependence of the FLRW line element
can be traded off by a time-dependent potential.'’ One could then forget about the potential
and define quadratures using the isometries of the Minkowski metric. This is done by defining
annihilation operators Aé\/f using initial data

1 1 1 —ik

— ! = 3.12
’Uk<77()) (27‘(’)3/2 2k ) Uk(770) (271')3/2 2k ( )
and defining quadrature-pairs from them: i'g = % (121%4 + Ag“)’ 15%4 S ﬁ (fléw — fl%”T)

The analysis of [7, 9, 14, 18] shows that, if the system is prepared in the state annihilated
by Ag at some time 7y during inflation —hence the state has no squeezing or entanglement

between the pairs i]%‘/[ , ﬁ]IZV[ and 501‘:%, ﬁ]l/% at g — the inflationary evolution acts like a two-mode

0The introduction of the variable v(n) is usually motivated by saying that its equation of motion in Fourier
space, when expressed in conformal time, does not contain terms proportional to the first time derivative
of the field: vy (n) + f(k,n)vk(n) = 0, thereby simplifying to the equation of motion of a time-dependent
harmonic oscillator. Note, however, that v(n) is not the only variable with this property (e.g. it is also true
for x(&,7) = a®(7) ®(Z,7) when working with harmonic time 7, defined as dt = a® dr). What makes v(n, Z)
unique is the fact that it satisfies the Klein-Gordon equation with respect to the Minkowski spacetime metric
with a time-dependent potential.
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squeezer for these two quadrature-pairs, generating squeezing and entanglement. Although
this is mathematically true, we make the following observations:

(i) The physical meaning of the variable v(n, Z) is obscure, since it is constructed by
multiplying the scalar field ® by the scale factor a(n). Since the value of a(n) can be re-scaled
arbitrarily by a mere change of coordinates, so can v(n,Z). In particular, v(n, Z) does not
transform like a scalar field, or any other covariant quantity under diffeomorphisms. The
variable v(n, Z) has a clean physical meaning only in the special situation of a conformally
coupled massless scalar field (m =0, £ = 1).

(ii) The choice of quadrature-pairs based on (3.12) is motivated by the symmetries of the
auxiliary Minkowski metric and neglects the time-dependent potential V'(n). This amounts to
ignoring the actual time-dependence of the physical spacetime.

(iii) If this initial choice of quadrature-pairs (based on (3.12)) is translated to the

physical field ®, it actually corresponds to a time-dependent choice X ]gM’n)

PléM’") = ﬁ ]3%/[ , because the relation between ¢ and ® is time-dependent. Thus, although one
may have the impression of working with a fixed choice of quadrature-pairs when using (3.12),
from the viewpoint of the physical field ® one is actually working with time-dependent
quadrature-pairs.

(iv) The vacuum state selected by the quadratures (3.12) is not Poincaré-de Sitter
invariant.

(iv) The choice (3.12) is not only not preferred, but it contains undesirable features: the
vacuum state it selects is not a Hadamard state [38]. More specifically, it is a state of zeroth
adiabatic order, as defined by Parker and Fulling [45, 46]. Consequently, for this state the
energy-momentum tensor is non-renormalizable using local and covariant methods [38].

In spite of these features, one could argue that there is nothing actually incorrect in using
(M) p(M.n)
kE_ Tk
during inflation between k and —k modes, and we do not completely disagree with that. In
other words, our goal here is not to identify any mistake in the previous literature, but rather
to emphasize the huge ambiguity in speaking about squeezing and entanglement in Fourier
space. Because of this ambiguity, the answer one obtains tells us more about the concrete
choice made to define quadrature-pairs than about the invariant and physical properties of
the quantum state. Our conclusion is therefore that it would be more fruitful to leave aside
Fourier space when speaking about generation of entanglement during inflation and rather
focus attention on the degrees of freedom which we can actually observe, namely the field
in real space, as in [25, 26]. Centering the discussion on concrete physical observables would
help to remove the ambiguities, and to quantify in an invariant manner the entanglement
that could have accompanied the generation of the primordial density perturbations during
inflation. We discuss this in section 5.

= a(n) :i‘%/" and

the quadrature-pairs X for the task of quantifying the entanglement generated

Remark. The authors of the recent analysis [22] have argued that the generation of squeezing
is not an invariant concept, in the sense that it can be modified as desired by a change of
canonical variables. This viewpoint is very much aligned with our arguments. The analysis
in [22] provides, therefore, further support to the conclusions we reach in this work.

4 Cosmological perturbations and inflation

The goal of this section is to extend the previous discussions to cosmological perturbations
during inflation. We will focus on scalar perturbations for brevity, but all conclusions
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apply equally to tensor perturbations. When compared to the scalar field in PdS spacetime,
two additional subtleties appear: (i) the issue of gauge freedom in the definition of scalar
perturbations, and (ii) the fact that an inflationary spacetime deviates from an exact PdS
spacetime. The goal of this section is to check that these two subtleties do not modify the
conclusions reached in previous sections.

Consider an inflationary spacetime, where the matter content is given by a scalar field
v, the inflaton, subject to a potential V(¢) compatible with slow-roll inflation. Let € = —%

and § = ﬁ be the slow-roll parameters, which are assumed to be €,§ < 1 during inflation.
In particular, this implies that their time derivatives can be neglected, so they will be treated
as constants; this is the so-called slow-roll approximation. This facilitates finding analytic
expressions for the vacuum state.

The most commonly used variable to describe scalar perturbations during inflation is
the comoving curvature perturbation field R(n, Z). It is related to the perturbations of the
inflaton field d¢ and the Bardeen potential ¥ through R = ¥ + % ¢ (see, e.g. [47]). The
equation of motion for R is obtained by expanding Einstein’s equations to linear order in the
perturbation; in Fourier space, it reads

/

z
Rp(n) + 2= Ri(n) + k* Ry(n) = 0, (4.1)

where z(n) = a %. The main advantages of the variable R are: (i) It is gauge invariant at first
order in perturbations. (ii) It has a direct physical meaning: it describes the curvature of the

n = constant spatial sections, R®)(Z) = ;% V2R (&), or in Fourier space R](;) = —4’;—; Ry (iii)
It is time-independent for super-Hubble modes [47]—this allows us to identify the value of the
perturbations at the end of inflation with its value at horizon re-entry during the radiation or
matter dominated eras.

The main difference with the previous section is that the exact de PdS invariance is
lost, because €, # 0, i.e. H is no longer constant. Therefore, strictly speaking, the extra
symmetry which one uses to single out a preferred vacuum and quadrature-pairs for k and —E,
is not available. However, since €, < 1, the common strategy is to use the approximate PdS
invariance to extend the arguments of the previous section by replacing the Bunch-Davies
modes of eq. (3.8) by their slow-roll generalization:!'!

200 =\ | Tam g I () (4.2)

where p = % + 2e + 4. It is common to keep using the name Bunch-Davies for these solutions

and the vacua they define, and use them to define preferred quadratures associated with k
and —k at each instant of time, as we did in the previous section. More explicitly, in the
Schrodinger picture, (4.2) defines a one-parameter family of vacua, which we will denote as

(n)
() (m) (mt (n) (m) (n) 1 !
: o (7 1 AN AN HN —i /AN AN : :

airs X" = —=(A.> A and P27 = =L(A. — AL in terms of which the number
p k V2 ( P A ) k V2 ( k k ),

Recall that comoving curvature perturbations cannot be defined for exact PdS spacetime, i.e., in the limit
e — 0. Also, even for non-zero ¢, the state must be modified for |k| — 0 to avoid infrared divergences (see
e.g. [48]). This implies that, strictly speaking, there is no PdS invariant state for cosmological perturbations.

IBD, 7). One also has the associated family of annihilation operators A>" and quadrature-

However, since the deviations from PdS invariance occur for |12| — 0, they are not accessible with observations
within our finite patch of the universe, and because of this it is normally argued that the state is PdS invariant
for “all practical purposes”.
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operators read ngn) = %[(X]%m)Q + (15]5"))2 — 1. The states in the family [BD,n) are related
by time evolution in Schrodinger’s picture, |BD, 1) = Uy, »|BD, m0). Then, if perturbations
are in the state |BD,79) at time 79, for which ( A]%no)> =0 for all k, at time 1, > 1o the state

evolves to |[BD,n;), for which <Nl§m)) = 0 for all k, and there is neither entanglement nor

squeezing between the pairs (X l%m), ﬁém)) and (X (_7%1), ]ADYE))

In summary, whether inflation squeezes and entangles scalar curvatures perturbations
is an ambiguous question, and the answer depends on the choice of quadratures associated
with the wavenumbers k and —k at the initial and final times. If one takes advantage of the
approximate de Sitter symmetries to define preferred vacua, particles and quadratures at each
instant, there is neither particle creation nor generation of squeezing and entanglement. This
result, however, does not make the state of perturbations at the end of inflation less quantum
in any invariant manner.

5 Correlations and entanglement in real space

Fourier space is a useful tool to compute many aspects of field theory in FLRW spacetimes.
However, for the generation of squeezing and entanglement during inflation it is crucial we
pay attention to the observables we have access to. We observe in real space, and whether
there is entanglement between modes k and —k in Fourier space is not of direct physical
relevance. Therefore, we are interested in whether inflation creates entanglement between
the degrees of freedom of the primordial curvature perturbations associated with different
regions of space. Even in real space we need to formulate the question with care, because: (i)
Entanglement between spatially separated regions is ubiquitous in quantum field theory, even
for the vacuum in Minkowski spacetime [24, 49]. One possible avenue to isolate what inflation
is adding, is to compare the entanglement at the end of inflation with what one would find
in Minkowski spacetime for the “same two regions”. (ii) To discuss entanglement, we first
need to define the two subsystems we are interested in. A field has infinitely many degrees of
freedom and we can only access a few in observations, out of which we want to define our
two subsystems. Recall that a physical subsystem can be identified with a set of pairs of
canonically conjugated observables — more precisely, with the subalgebra they define [50]. In
the problem we are considering, we can obtain such pairs by “averaging” (or smearing) the
field and its conjugate momenta in a region of space R

B[f] = /m &z f(7)b(F), g = /m & g(7) 11(7) (5.1)

where f(Z) and ¢(Z) are two functions of compact support restricted to the region of space fR.
This region can be thought of as the minimum resolution of our detectors, and the functions
f(&) and ¢(&) are determined by the properties of the detector. The commutation relations
of these two observables are

BUA. Al = i [ % () 9(@) (52)

i.e., the overlap of the two smearing functions f(Z) and g(Z). Hence, if these functions are

such that [ d3zf(F) g(Z) = 1, the operators (®[f],1I[g]) form a canonical pair, and define a
“single-mode” subsystem (classically this subsystem corresponds to a two-dimensional subspace
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of the phase space).'? Given two such pairs commuting among themselves, (®[f],I[g]) and
(@)[ 11, ﬁ[g’ ]), and a quantum state p, we can apply techniques from finite-dimensional systems
and compute the entanglement between the two subsystems each pair defines. Obviously, we
can also consider more complicated subsystems, each made of an arbitrary but finite number
of independent “modes”. This strategy can be used to evaluate the entanglement generated
during inflation. For instance, one can use the Peres-Horodecki criterion [51-53] to the
reduced quantum state describing the two subsystems, which provides a sufficient condition
for separability, and in certain situations can be used to define entanglement quantifiers [28].
Such a calculation goes beyond the scope of this paper. Nevertheless, we want to emphasize
two important aspects of it:

(1) Given a “field observable” ®[f], there is freedom in choosing a conjugate momentum.
In other words, there are infinitely many operators II[g] satisfying [®[f],II[g]] = 1. This
well-known fact has important consequences for entanglement, since each choice of f[[g] gives
rise to a different physical subsystem, and therefore to a different result for the entanglement
with the other subsystem. Hence, it is important to keep in mind that entanglement requires
a choice of both field and momentum observables.

(2) No information about the conjugate momenta of the primordial perturbations has
been extracted from data so far. In fact, such observations are considered nonviable, at least
for the accepted models of inflation (see e.g. [54] for a discussion about this point), because
information about the momenta must be extracted from the time derivatives of the field, which
are exponentially small in the simplest inflationary models. The absence of information about
momentum observables Il precludes us from making any statement related to entanglement
(see appendix B for further discussions).

Current data inform us only about the statistics of field observables ®[f] at a given time,
and reveal that the observed correlations between the field at spatially separated regions
of space are stronger than one would expect in the vacuum in Minkowski spacetime. The
inflationary paradigm can account for these observed correlations, due to the fact that the
primordial power spectrum Pr(k) oc H? remains almost scale invariant for super-horizon
scales, in contrast to the decay Pr (k) o< k? one would find in Minkowski spacetime when k& — 0.
But stronger correlations in the field dgy do not necessarily imply stronger entanglement.
In fact, these correlations alone cannot inform us about entanglement, since all the field
observables commute. As emphasized above, to speak about entanglement one needs to involve
observables not commuting among themselves. In the absence of momentum observables, there
is no way to check whether the observed correlations come together with any entanglement.
All observations so far can be accounted for by a classical theory, as previously emphasized
in [14, 15, 54]. More precisely, in the absence of non-Gaussianity, all observations can be
accounted for by a classical Gaussian stochastic state (i.e., a probability distribution in phase
space) with appropriate mean and covariance, since the differences between such a classical
state and a quantum Gaussian state are accessible only if non-commuting observables are
measured (see appendix B). This is true even in the idealized case considered here, in which
we have ignored the effects of the ubiquitous decoherence processes that may have affected
the primordial perturbations, e.g. due to their interaction with matter and radiation in the
universe, as well as to potential self-interactions among different modes.

2Tt is important to notice that we can extract (infinitely) many different canonical pairs from any finite
region of space RR. This can be done by choosing smearing functions f’(£) and g¢’'(#) with compact support
within $& and whose integrals against f(&) and g(&) vanish. There are infinitely many such choices. This is in
agreement with the well-known fact that any region of space JR hosts infinitely many degrees of freedom of the
field. Each smearing extracts a single one of them.
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To finish, we briefly mention that the entanglement entropy in full de Sitter spacetime
between a region of space and its complement, was computed in [55], and compared with
the same calculation in Minkowski spacetime. Such entropy is infinite, due to the infinitely
many degrees of freedom that a field hosts within any finite region, and must be regularized.
After appropriately separating the finite and the divergent parts, the entanglement entropy is
compared with a similar calculation in Minkowski spacetime. The authors of [55] conclude
that the Bunch-Davies vacuum in full de Sitter space contains more entanglement between a
spherical region and its complement than the Minkowski vacuum, whenever the radius of the
region is larger than the de Sitter radius. While conceptually interesting, this entanglement
entropy is not associated with concrete observables, and therefore cannot be directly accessed
in observations.

6 Discussion

The first investigations of quantum field theory in curved spacetimes focused on FLRW
universes that become asymptotically Minkowskian in the past and future [35-37], and
interpreted the effects that the expansion of the universe produces on quantum fields in
terms of particles created out of the vacuum. Soon after, it was understood that such a
particle interpretation is not available in more realistic FLRW geometries, except in special
circumstances. In general, the notion of particles is ambiguous at cosmological scales. The
physical and invariant properties of the system are better encoded in field observables. This
is indeed the strategy followed in the context of inflation, where the state of the primordial
perturbations at the end of the inflationary era is commonly characterized by the two-
point correlation function — the power spectrum. Speaking about particles created during
inflation introduces an unnecessary ambiguity, which masks the information that is relevant
for observations.

In this paper, we argue that the question “does the expansion of the universe squeeze and
entangle perturbations with wavenumber k and —k?” suffers from exactly the same ambiguities
as the calculation of the creation of particles. The reason is that in order to quantify squeezing
and entanglement one needs to define observables associated with wavenumber k and —k and
such a definition requires a choice of creation and annihilation operators. More importantly,
the ambiguity in the definition of creation and annihilation operators mizes degrees of freedom
with wavenumber k and —k [see eq. (3.7)], directly affecting the answer one is trying to find.
In other words, in a generic FLRW spacetime there is no unambiguous separatlon of the
degrees of freedom of the field in those associated with k and those with k contrary to
what one could intuitively think — except in special circumstances, e.g. when additional
symmetries are present. Even more, to quantify the dynamical generation of squeezing and
entanglement, one needs to make a choice at both, the initial and final times. Given any
homogeneous and isotropic Gaussian state in an FLRW spacetime, there always exist choices
of creation and annihilation variables for which an arbltrary Gauss1an state contains no
particles and no squeezing or entanglement between the k and —k sectors at all times. This
is the case in inflation if one adapts the definition of particles to the approximate de Sitter
symmetries of the spacetime. Other choices are of course possible —although, in our opinion,
less desirable (see section 3.2) — and lead to different conclusions. The absence of particle
creation, generation of squeezing and entanglement for a given choice, however, does not
make the state more or less quantum, since the physical properties of the state are insensitive
to this ambiguity. This situation is not very different from what happens in the well-known
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Unruh effect [56-58]: the Minkowski vacuum is made of entangled pairs of Rindler particles.
Obviously, the way Rindler observers perceive the Minkowski vacuum does not make the
state any more quantum. The invariant information in the state is encoded in its two-point
function (0|®(¢, Z)®(t', 2)|0) rather than in its particle content.

Observations in cosmology are performed in real space and are independent of the
ambiguities appearing in Fourier space, as we have discussed in section 5. Therefore, smeared
fields in real space are the type of observables one should focus on to quantify the “quan-
tumness” of the CMB, as has been recently emphasized e.g. in [25, 26]. Observations of the
CMB reveal that the primordial perturbations are correlated at spatial separations more
strongly than they would be in the vacuum in Minkowski spacetime. Inflation can indeed
account for these strong correlations. But stronger correlations in field observables do not
necessarily imply stronger entanglement. References [25, 26] have studied quantum discord
as a way of measuring quantum correlations between space-like separated regions at the
end of inflation. However, as emphasized in [25], quantum discord does not have a clear
physical meaning when applied to mixed states (which are unavoidably in this context due
to the process of “tracing out” the degrees of freedom in other regions of space). It would
be desirable to study quantifiers of entanglement with a more transparent physical interpre-
tation in order to understand whether the generation of field correlations in inflation comes
together with the production of quantum entanglement in real space (see [26] for a recent
interesting analysis).

But even if one restricts to observables in real space, the computation of entanglement still
faces an ambiguity: the choice of conjugate momentum of a field observable. This ambiguity is
enormous in field theory, and it directly affects any calculation of entanglement. In practice, one
could make a choice based on what can be actually observed, but unfortunately current CMB
data informs us only about correlations among field observables at a given time, and not about
any non-commuting observable which could play the role of a conjugate momentum. Therefore,
current data is insufficient to determine whether there is any entanglement associated with the
observed correlations. The question “how much entanglement exists in this quantum state?”
is meaningless unless one has access to non-commuting observables. Consequently, there is
nothing genuinely quantum in observations made so far, in the sense that all observations
can be satisfactorily accounted for by a classical theory and a stochastic classical state (a
probability distribution function in phase space), as previously emphasized in [14, 15].

In this article, we have focused on Gaussian states and ignored possible deviations from
Gaussianity, motivated by the fact that observations to date have been unable to reveal
deviations from Gaussianity in the primordial perturbations. Gaussian states are easy to
manipulate and to perform calculations with, but they are also limited in the content of
genuinely quantum information one can extract from them. Nonetheless, it may be that the
primordial perturbations are non-Gaussian. Observation of non-Gaussianities (see e.g. [59]
for a possible way using the large scale structure) could make the task of finding whether the
origin of the primordial perturbations is quantum easier, as recently advocated in [17].

We have also ignored the effects of decoherence —either produced by interactions of
the primordial perturbations with matter and radiation soon after the end of inflation, or
from self-interactions— in washing away quantum aspects, since decoherence would only
aggravate the possibility of observing any quantum trace from the mechanism that generated
the perturbations. Finally, we have not considered potential deviations from the standard
theory of quantum measurement, which could play a role in cosmology and account for the
absence of the exact (rather than statistical) rotational symmetry of CMB anisotropies, as
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described in [13, 60—64]. The effects of a potential spontaneous collapse process of the wave
function could also add to the classicality of primordial perturbations, as discussed in [65].
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A One-mode squeezing in the Poincaré patch of de Sitter space

In addition to two-mode squeezing and entanglement between the degrees of freedom of
a scalar field associated with wavenumbers k and —k discussed in section 3, the question
of one-mode squeezing and its relation to the quantumness of cosmological perturbations
has been also discussed in the literature [15]. In this section, we discuss the generation
of single-mode squeezing in FLRW geometries in general, and inflationary spacetimes in
particular, emphasizing the ambiguities it involves. We investigate these questions for the two
strategies introduced in section 3 to define quadrature-pairs associated with a wavenumber k.

For the intermediate calculations in this section, it will be convenient to “put the universe
in a box” of coordinate volume Vg, with Vj finite but arbitrary large. This helps to avoid the
mathematical inconvenience of having modes normalized to the Dirac delta distribution, and
will make the arguments below more transparent. Physical quantities do not depend on 1,
and we can send it to infinity at the end of the calculation. Mathematically, sending Vj — oo
is equivalent to replacing Vp by (27)2 in all calculations below.

Strategy 1. Quadrature-pairs defined from the Fourier modes of the field. As discussed
above, from the (non-Hermitian) Fourier modes of the field

1 A AT
b= [ b, = [ ), (A1)
0
one can define two Hermitian quadrature-pairs

R = VEVha— (
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for k € % Z?+), where Z?Jr) is defined in footnote 5. The pre-factors vk Vya and ﬁ

in the fields and momenta were not introduced in section 3, but they will be important in
the following discussion. They are motivated by: (i) The two elements of each quadrature-
pair need to have the same dimensions — square root of action — in order to define
squeezing (see section 2.2). (ii) Only coordinate-independent, physical quantities enter in their

definition — e.g., vVEVya = \/g VVo a®, which depends on the physical wavenumber ky, = £
and the physical volume a3V}, and therefore do not change under mere re-scaling of the
coordinates ¥ — a &, with « a real number. Restricting to coordinate invariant observables
will guarantee that our results below have direct physical meaning and cannot be attributed

to coordinate artifacts.
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The quadrature-pairs (A.2) are defined using only structures present in the FLRW
geometry and do not require any additional choice. In particular, they do not require a choice
of creation and annihilation variables, neither at the initial nor at the final time. They are,
therefore, free from extra ambiguities and can be used to define the generation of single-mode
squeezing in an invariant manner.

Let us now focus on the Poincaré patch of de Sitter (PdS) spacetime, and assume the
field is in the BD vacuum at time 7y (see appendix C). The calculations below are more
straightforward in the Heisenberg picture. We will denote by IBD) the BD vacuum and by
A the operators annihilating them. It is then convenient to expand qﬁk( ) in terms of A~
and its Hermitian conjugate:

Gp(n) = eP(n) Ap+epP(m) AT . (A.3)
where the modes ePP(n) are written in expression (3.8). From this, we obtain a representation
for the Hermitian fields

(R A(R %\ A(R

S0 ) = VVoka(n) (efP(n) ALY + B () ALV (A4)

~(1 A1 vy A

6 (n) = VVoka(n) (efP(m) AL + P () ALY, (A5)
where we have defined AI% ) = % (flE + A,g) and fl’%[) = _—; (AE - A,;‘;) One can easily

R) ORI F(R) 21 2 i
check that [AYY, AUDT) = 5 o, = AV, ADT) ana (AL, 4] = 0= AL, 14](3,) ]. From this,
it is straightforward to obtain that the cross-correlations between qﬁl(gR) and qﬁg) vanish at any
time: <BD|¢§]%R) (n) qASI(Z]) (n)|BD) = 0. Furthermore, the variances of QABI%R) and ggg) are equal to
each other and can be written in terms of the non-Hermitian fields ngSE

(AT = (AGV)? = Vo ka® (dpd_p) (A.6)

This justifies why it is standard to focus attention on (ég({)_g), even though <Z>~ is not an
observable, since the correlations among the Hermitian fields can all easily obtained from it.
The same argument applies to the momenta:

ARN\2 _ aaDye L
Let us use the Bunch-Davies form for the modes of a massless, minimally coupled field,
m = 0 =&, as this case is often discussed in the literature because it is closer to the study of

cosmological perturbations:

BD 1 1 o1 —ik
B0 = o var (i) (A8)

Then, we obtain

. 1 1 H?
(Ppd_p) = Vo a2 2k <1 + kﬁﬂ”)) : (A.9)
so that
AR)2 _ aaDye L H?
~(R) . (I) 1
(D) = (amy)? = 2. (A.10)
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Note that: (i) These variances only depend on physical quantities, namely the Hubble rate
H and the physical wavenumber k), = g In particular, they do not depend on the volume
Vo, which can be sent to infinity if desired.'® (ii) In the limit H — 0 one recovers the result
expected for Minkowski spacetime and the Minkowski vacuum, namely all four variances are
equal to % (iii) While the variances of the momenta are time-independent, the variances of
the fields grow in time. Therefore, the evolution does not squeeze these two quadrature-pairs.

One could be tempted to focus instead on the non-Hermitian field éE and argue that,
because (A.9) decreases in time due to the presence of the pre-factor a=2, single-mode
squeezing occurs during inflation. We do not support this argument because qBE is not an
observable (since it is a non-Hermitian operator) and, as we just showed, a natural way of
interpreting (A.9) in terms of Hermitian quadratures shows that the later do not get squeezed.

We conclude that there is no reason to support that single-mode squeezing happens
during inflation for the Fourier modes associated with wavenumber E, as long as one restricts
attention to physical quantities.

Strategy 2. A second option is to define quadratures, as we did in the discussion of
two-mode squeezing, from annihilation and creation variables

. — A AT D, _
Xl_c’* (AE+AE)’ Pr=—

: (Ag — AL). (A.11)

-
-

This definition, however, requires a choice for AE and fl%, and consequently the result depends
on this choice. As before, in PdS one can use the spacetime symmetries to single out the
one-parameter family of quadrature-pairs written in (3.9). The discussion of single-mode
squeezing becomes identical to the discussion of two-mode squeezing in section 3: if the
system is prepared in the BD vacuum at time 7y (in Schrédinger’s picture), it will evolve
to the BD vacuum at time n; > 1. The final state will look physically identical to an
observer at 7; as the initial state did for an observer at 19. Hence, there is no generation of
single-mode squeezing during inflation if one uses the spacetime symmetries of PdS to remove
the ambiguities.

B Relation between squeezing, entanglement, and quantumness of Gaus-
sian states

Several ways to identify and quantify the “quantumness” of Gaussian states are frequently
described in textbooks (see, e.g., [28]). Squeezing and entanglement are two such examples,
but there are also others like the P-function. In the main body of this paper, we showed that
squeezing and entanglement are not intrinsic properties of the state, since they depend on a
choice of quadratures. This also applies to the alternative methods of describing the “quan-
tumness” of Gaussian states. We will elaborate upon this here, first, for the simplified setting
of quantum mechanics and next, for quantum field theory on time-dependent spacetimes.

13Independently of the value of Vp, this expression blows up for the zero mode. This corresponds to the
well-known infrared divergences of the Bunch-Davies vacuum for massless fields. In cosmology, one assumes
that the state is modified for very infrared scales in a way that makes it infrared finite — at the expense of
breaking the PdS invariance. Since the modification is irrelevant for observations, because it only involves
extreme infrared scales, there is no need to specify it.
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B.1 P-function and entanglement in quantum mechanics

Perhaps the most commonly used “quantumness” criterion is the so-called P-function, from
which one characterizes a Gaussian state (or any state in general) as quantum if its P-function
takes negative values [66]. For a time-independent simple oscillator, squeezed states are
examples of states with negative P-functions, while vacuum and coherent states in general are
not. Regarding separability, a sufficient criterion to detect its presence is by paying attention
to the (ordinary) eigenvalues of the covariance matrix: if all the ordinary eigenvalues of o
are equal or larger than one, then a Gaussian state is separable across any bipartition of the
quadrature-pairs. Do these widely used definitions provide an invariant way of characterizing
quantumness and separability? The answer is no, since a close inspection reveals that neither
of these properties of the P-function and the ordinary eigenvalues of o are symplectic invariant.
On the one hand, the P-function rests on a choice of annihilation and creation variables (or
equivalently, on a choice of quadrature-pairs). This is clear from its definition, and also from
the fact that its characteristic function is a generating function for normal-ordered products.
Since normal-order requires a choice of annihilation and creation variables, the P-function
also does. Hence, the P-function measures if a state is squeezed relative to the vacuum singled
out by the choice of annihilation operators made to define it. Similarly, regarding separability,
as already mentioned in footnote 2, the ordinary eigenvalues of o are not symplectic invariant,
because not all symplectic transformations are orthogonal, and hence the eigenvalues only
provide information about the basis of quadratures one is using to write o.

B.2 Wigner function in quantum mechanics

The Wigner function py (z;,p;) does provide a symplectic covariant way of describing the
properties of a Gaussian state, since its definition does not require any additional structure or
choice. As is well-known (see e.g. [66]), the Wigner function of every Gaussian state (pure or
mixed) is a Gaussian probability density function (PDF) in the classical phase space, with
mean and variance given by the first and second moments of the quantum state, i and o.
This PDF has three important properties: (i) It is positive across the entire phase space.
(ii) For quadratic Hamiltonians, its time evolution satisfies Liouville’s classical equation of
motion % pw = —{pw, H}, where the curly brackets represent Poisson brackets. (This is a
consequence of the fact that, for quadratic Hamiltonians, the classical evolution completely
determines the quantum dynamics, as discussed in section 2.5). Hence, the Wigner function
is a bona fide “classical mixed state”, i.e., a stochastic classical state. These properties are
symplectic invariant and true for all Gaussian states, pure or mixed. (iii) The classical average
of any polynomial in x; and p; with respect to the Wigner function py (x;, p;) agrees exactly
with the quantum expectation value of the symmetrically ordered version of the polynomial.
Hence, if we restrict to symmetrically ordered functions of Z; and p;, Gaussian states and
quadratic Hamiltonians, we can completely forget about the quantum formalism, and obtain
all physical predictions by working on a classical theory with a stochastic classical state
pw (x;, pi) — as already emphasized in the context of inflation in [14, 15]. In this precise and
invariant sense, all Gaussian states are “the most classical states in the quantum theory”. The
Wigner function does not distinguish between ground, squeezed, thermal, coherent or other
types of Gaussian states.

B.3 Squeezing, entanglement and quantumness in field theory

For field theory in time-dependent spacetimes, a preferred set of quadratures is not available
in general. In fact, one can always find quadrature-pairs containing arbitrary amounts of
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squeezing or entanglement for all Gaussian states. One is therefore forced to put all Gaussian
states on equal footing and the labels “squeezed” and “entangled” become mere conventions,
based on a choice of quadrature-pairs. All Gaussian states are equally quantum (or equivalently,
equally classical). In special circumstances when physically preferred quadrature-pairs exist,
one commonly links the degree of quantumness of states to them — recall that a preferred
quadrature-pair is equivalent to having a preferred set of annihilation and creation variables
and vacuum state. This is what we do, for instance, in Minkowski spacetime, for which the
Minkowski vacuum and coherent states built from it are considered the most classical states of
the theory. Similarly, one uses the name “squeezed states” for states presenting squeezing or
entanglement for the preferred quadratures-pairs and regards them as highly quantum states.
But in time-dependent spacetimes, where one does not have preferred quadrature-pairs nor
a preferred vacuum state, the difference between coherent and squeezed states dilutes. All
Gaussian states are on equal footing regarding their quantummness or classicality.

Note that one can use the Wigner function to evaluate the quantumness of any state in
a symplectic-covariant way, since the definition of the Wigner function does not require a
choice of quadrature-pairs or basis in the classical phase space (in contrast to, for instance, the
P-function). As for finite-dimensional systems, the Wigner function is positive-definite across
the classical phase space for all Gaussian states, and it satisfies the classical equations of
motion for quadratic Hamiltonians. Moreover, like for finite-dimensional systems, the Wigner
function puts all Gaussian states on equal footing regarding their quantumness or classicality.

C The Bunch-Davies vacuum in Schrédinger’s picture

This section provides some details omitted in subsection 3.1 about the definition of the so-
called Bunch-Davies vacuum in the Poincaré patch of de Sitter spacetime (PdS). In particular,
we discuss how this state is defined in Schrodinger’s picture, and prove some results which
do not commonly arise if one works in Heisenberg’s picture and which we explicitly used in
subsection 3.1.

C.1 How to define a Fock-vacuum in Schrodinger’s picture

In quantum field theory on curved spacetimes, there are infinitely many states which can
play the role of the Fock vacuum. They are commonly referred to as quasi-free states, and
can be characterized as pure Gaussian states with zero mean (i.e. (®(Z)) = 0 = (II(Z))).
These states are fully characterized by their covariance matrix o(Z, ') specified at a given
instant. Therefore, there are as many Fock vacua as inequivalent covariant matrices describing
pure Gaussian states. In practice, one can select a Fock vacuum by choosing a basis in the
complexified classical phase space, as follows.

Let I" be the classical phase space of the field theory, and let I'c be its complexification —
obtained by taking all possible linear combinations of elements of I' with complex coefficients.
The classical symplectic structure allows us to define a “product” in I'c: given two elements

—

in ¢, v(%) = (e(¥), p(¥)) and 7(£) = (é(F), p(Z)), their product is'*

B [ dPx

(v, 7) =i Vo (e*(7) p(Z) — p* () &(7)) - (C.1)

14 As in appendix A, we will work with a universe of finite volume Vo, and send Vo — oo only at the end of
the calculations. This avoids the mathematical awkwardness of working with mode functions normalized to
the Dirac delta distribution.
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This product satisfies all the properties of a Hermitian inner product in I'c, except one — it
is not positive definite. Yet, one can always decompose ['c into a direct sum of a subspace I';
on which the product is positive definite, and its orthogonal complement I'_ (which happens
to be the subspace complex conjugated to I';, and on which the product is guaranteed to
be negative definite). The important statement is that such splitting of I'c in subspaces of
positive and negative norm vectors, I'c = 'y @ I'_, is equivalent to a choice of Fock vacuum.
The relation is as follows: given any orthonormal basis in T'y, {7,(%)}22,, the covariance
matrix of the Fock vacuum is

o(Z,&) = Y (@ (@) + (@ (@) (C.2)

where i, j = 1, 2 label the field- and conjugate momentum-components of phase space elements
8 15 Tt is straightforward to show that this covariant matrix does not depend on the concrete
basis we use within I';.. Hence, there is a one-to-one correspondence between positive norm
subspaces ['; and covariance matrices of pure Gaussian states.

Obviously, since there are infinitely many different splittings I'c = 'y @ ', there is a
huge ambiguity in the definition of a Fock vacuum. If additional symmetries are present, one
can use these to narrow down the ambiguity. Below, we will study the way the symmetries
of PdS affect this ambiguity. At the technical level, we will do this by studying the way
a positive-norm subspace I' changes under the transformations within the PdS symmetry
group, by applying the transformations to a basis. The Fock vacuum is invariant under a
group of transformations if I'y is left invariant.

A more direct, although equivalent way of understanding the symmetries of the vacuum
is by looking at the symmetries of the covariant matrix itself. However, in practice it is more
convenient to work directly with a basis in ' to understand the restriction the symmetries
impose on the choice of vacuum. We follow the latter route in this section.

C.2 The isometries of PdS

The de Sitter group in four spacetime dimensions has ten independent Killing vectors fields,
and all of them, locally, are isometries of PdS. But since the PdS is only a portion of de Sitter
space, not all these transformations are global isometries of PdS. Only the subgroup of the de
Sitter group which leaves the Poincaré patch invariant describes the global isometries of PdS
(see [39, section IV C]). The global isometries of the PdS form a seven-dimensional group,
generated by three spatial translations and three rotations (these are common to all spatially
flat FLRW spacetimes), and one additional isometry defined by the Killing vector field

Kt=—-Hnoj —Hx0l —Hydlj — H=z0,. (C.3)

The orbits of this vector field passing through an arbitrary point (ng, zo, yo, 20) are the
curves ct(\) = e HA (10, o, Yo, 20). We see that these orbits combine a translation forward
in time gy — e H 5y (in cosmic time this reads tg — to + A\) with a spatial contraction
Zo — e H A #). These transformations leave the metric invariant, since this spatial contraction

exactly compensates for the cosmic expansion occurring during the time translation tg — tg+ .

15Because we have not smeared out the fields, o/ (&, #') must be understood in the distributional sense.
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C.3 Bunch-Davies vacuum at instant 7

It will be convenient to consider the following elements of I'c:

. e2P (o, ©) it HY (~k o) € F7
1B o, ) = ( Epl 00 [V aa e k) e (C.4)
Pr Voa (770)6177|770€* (n, ©)

where H ﬁl)(—k no) is a Hankel function with index p? = % —m 12£. One can easily check

that these modes are orthonormal, <7§D, VBD> = 0z - The set {VEBD (10, )}, for all k, defines
a vacuum, and we will show in the followmg that it is the only vacuum state that is both
PdS invariant and Hadamard at 7.

Consider a more general family of modes, defined as
i = ap e (0, @) + By R (o, ) (C.5)

with o and §; arbitrary complex numbers satisfying |az|? — |8z|> = 1. Given a choice for

aj and f; for all values of k, the set {75(%)}; defines a Fock vacuum with the following
properties:

Theorem 1. The vacua defined by any of the sets {v;(%)}; are all invariant under transla-
tions.

Proof. The proof is rather trivial; because the Z-dependence in 7]—5(55’) is of the simple form

eiF T , a translation & — Z + X changes V() — eif X 7;(Z), and obviously these phases leave

the vector space I'y. = span{v;(Z)} invariant. O

Theorem 2. The vacua defined by any of the sets {vz(¥)}; are invariant under rotations if
and only if ap = ag and Py = By for all /%’, that is, if these coefficients do not depend on the

direction of k.

Proof. Under a rotation R, vz(%) — vz(R - ) = ap ’VRT (10, ) + By 7BD* (10, ).
Then, if ap = a; and B; = B the transformed modes are equal to Yp7.5(¥), and
consequently the vector space I'y = span{~y;(¥)} is left invariant.

Conversely, if the vector space I'y = span{y;(¥)}; is invariant under rotations, then
ag ’yRT (1m0, T) + B 'yBgi k(no, #) must belong to it, for any rotation R and for all k. This

implies that there must exist some complex coefficient A7z, satisfying

ap Vo2 (00, 8) + By or 20, &) =D A v (E) - (C.6)
E/

Using (C.5) and the orthonormality of ’yEBD, we deduce that Apr, must be of the form

e = Ao Og With this, equation (C.6) further implies that ap = A and

K, RT -k’ RTE “RT K
ﬁ ApT £ BRT. i for all rotatins R and for all k which in turn implies A\ =1, ap = aj and
Br = By for all k. O
What about invariance under the orbits of K#? These transformations combine a time
translation g — e # 1y and a contraction & — e~ * Z, hence:
7 (@) = ar PP (7 g, e E) + BAPR (e g, e A E) (C.7)
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Using the analytical form of 'yED given in (C.4), and the fact that the scale factor is a(n) =

—1/(Hn) in PdS spacetimes, with H a constant, we have that wg’D(e_H/\no,e_H)‘:E) =

’yEB,D (no, &), with K = e HME. In other words, the effect of a K*-transformation is simply to
change k — K = e "Xk With this, we find that along the orbits of K*, v;(¥) transforms as

(@) = ar g (0, B) + B2 (no, ) (C.8)

with ¥ = e #* k. The transformed mode belongs to'® /T, = span{v;(7)}; if and only if
ar = apr and P = By for all A and all k. This implies that aj and [ must be independent
of k.

Hence, the family of vacua defined from the set {v;}z, with 7z = a’yEBD(no,f) +

B ’Y,]?D*(Uo,f), and a and B k-independent complex numbers satisfying |a|? — |32 = 1,
is invariant under the symmetries of the PdS spacetime. This is the family of the so-called
a-vacua.

On the other hand, the Hadamard condition imposes that the modes 7 defining the
vacuum must approach positive frequency modes e "7 in the limit k& — oo. This imposes
an additional condition on the coefficients, namely that  — 0 and |a| — 1 as k — co. This
implies that, among all a-vacua at instant 7, there is only one which is a Hadamard state,
namely the one for which § = 0, or in other words, the Fock vacuum defined from the modes
’Y,;BD(UO, %) themselves. This is the so-called Bunch-Davies vacuum at 7y [40-42], which we
denote as |BD, n).

In the cosmology literature it is common to use the name “Bunch-Davies vacuum” in a
different way, namely to refer to any state that looks like the Minkowski vacuum at short
distances. We emphasize that such condition is already captured by the Hadamard condition
in a mathematically precise manner, and it does not single out a unique state. It is better
to reserve the name Bunch-Davies vacuum for the unique state that is PdS invariant and
Hadamard, as originally investigated in [40-42].

C.4 Comparing Bunch-Davies vacua at different times in Schrodinger’s picture

In the previous section, we reached the conclusion that |BD,ng) is the only Hadamard
state invariant under the PdS isometries. It is defined from the positive-norm subspace
I, = span{’yl]-?D (1o, f)}];; If we were to repeat the construction at a different time, 71, we

would proceed similarly but using instead the modes VEBD(
P(

n1, ). Since these are different
phase space elements than W,]? Mo, &), they potentially define a different state, which we will

denote as |BD,7), and which is guaranteed, by construction, to be Hadamard and de PdS
invariant at n;. This raises the following questions:

1. Are |BD,n;) and |BD,n9) indeed different states? (We will show the answer is in the
affirmative.)

16Because the transformations generated by K* change the volume Vp, the conventions regarding Vo in
equations (A.1) and (C.4) must be appropriately chosen, in such a way that Hamilton’s equation remain
invariant under the transformation. If this is not the case, one cannot blindly compare the phase space elements
~(Z) before and after the transformation, since they represent initial data for different equations. We have
made a choice of factors Vj which makes the comparison meaningful. This remark would be unnecessary had we
decided to work in the covariant phase space, although other aspects of our discussion would be more obscure.
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2. If they are different, and since |BD, 7)) is the only Hadamard and PdS invariant state
at 1, |[BD,n1) cannot satisfy both these two properties at 79. We will show below that
IBD,m) is in fact neither Hadamard nor PdS invariant at instant 7.

3. We will also show that the states |[BD, ng) and |BD, ;) are connected by time evolution:
Unimo IBD, m0) = [BD, ).

Therefore, we will reach the conclusion that in Schrodinger’s picture there exists a one-

parameter family of states, |BD,n), each of which is Hadamard and PdS invariant only at

time 7, and which are related to each other by time evolution. In Heisenberg’s picture, we

simply pick one representative in this family of states, and call it the Bunch-Davies vacuum.
In the remaining of this section we prove these statements.

Proof. To show that |BD,n;) and |BD, ) are different states, we simply need to prove that
the phase space elements ’yEBD (m, Z) do not belong to span{vED(no, #)}. This can be done

by writing ’yg’D (m,Z) as

VEP (1, &) = i vEP (0, &) + B A" (no, E) , (C.9)

and showing that the coefficients §; are different from zero. The expressions for [ are
lengthy and not particularly interesting, and we do not write them explicitly. The important
information is that these coefficients are different form zero and k-dependent. This implies
that |BD,n;) is not PdS invariant at 7o, since we proved above that for all PdS invariant
states ) should be k-independent. Furthermore, we find that 5, approaches a constant value
when k — oo; this value is different from zero whenever 1; # 79, which shows that |BD, ;)
is not a Hadamard state at 79. To prove that Ummo|BD, no) = |BD, n1) it suffices to notice
that the classical time evolution from 7y to 17 brings the phase space element ’yl]—E’D (10, ) to

'yEBD (m,Z) —because the expression in terms of Hankel functions written in (C.4) are exact

P (o, )} 1
from 7 to 1 produces span{’ygD(m,f)}E, and consequently that the Fock vacuum state

IBD, n9) evolves to |BD, 7). O

solutions to the equations of motion. This implies that the evolution of span{yg

That |BD,n;) is not a Hadamard state at ng is not surprising, since the Hadamard
condition involves the form of the spacetime geometry, and the metric tensor of PdS spacetimes
changes in time. So, if |BD, n;) is Hadamard at 7, it cannot be at 7. But, how to understand
that |BD,n;) is PdS invariant at 1; but not at n9? The reason is that the Killing vector field
K* is time dependent. As a result, K* does not generate the same transformations at 7y and
71. In other words, K* does not define a unique transformation in the phase space of our field
theory, but rather a two-parameter family of transformations, parameterized by the initial
and final times, 79 and 19 + An (this is equivalent to saying that these transformations are
generated by a time-dependent “Hamiltonian”). The state |BD,7;) is designed to be invariant
under the K-flow starting at 71, and this makes it not invariant under the K-flow starting at ng.
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