Journal of Cosmology and
Astroparticle Physics

20

Celebratingthe
20th annlversary

PAPER

Observational constraints on anisotropies for
bouncing alternatives to inflation

To cite this article: lvan Agullo et al JCAP10(2022)045

View the article online for updates and enhancements.

You may also like

- Trans-Planckian issues for inflationary

cosmology
Robert H Brandenberger and Jérome
Martin

- Large scale anomalies in the CMB and

non-Gaussianity in bouncing cosmologies
Ivan Agullo, Dimitrios Kranas and V
Sreenath

- Viable tensor-to-scalar ratio in a symmetric

matter bounce
Rathul Nath Raveendran, Debika
Chowdhury and L. Sriramkumar

This content was downloaded from IP address 167.96.136.202 on 02/08/2023 at 21:16


https://doi.org/10.1088/1475-7516/2022/10/045

ournal of Cosmology and Astroparticle Physics

An IOP and SISSA journal

Observational constraints on
anisotropies for bouncing alternatives
to inflation

Ivan Agullo,” Javier Olmedo’ and Edward Wilson-Ewing®

Department of Physics and Astronomy, Louisiana State University,
Tower Dr., Baton Rouge, Louisiana 70803, U.S.A.

®Departamento de Fisica Teérica y del Cosmos, Universidad de Granada,
Av. del Hospicio, Granada 18071, Spain

¢Department of Mathematics and Statistics, University of New Brunswick,
MacAulay Lane St., Fredericton, NB E3B 5A3, Canada

E-mail: agullo@Isu.edu, javolmedo@ugr.es, edward.wilson-ewing@unb.ca

Received June 16, 2022
Revised August 24, 2022
Accepted September 26, 2022
Published October 14, 2022

Abstract. We calculate how primordial anisotropies in the background space-time affect the
evolution of cosmological perturbations for bouncing alternatives to inflation, like ekpyrosis
and the matter bounce scenario. We find that the leading order effect of anisotropies in
the contracting phase of the universe is to induce anisotropies in the cosmic microwave
background with a very concrete form: a scale-invariant quadrupolar angular distribution.
Sub-leading effects are the generation of higher-order moments in the angular distribution, as
well as cross-correlations between scalar and tensor modes. We also find that observational
constraints from the cosmic microwave background on the quadrupole moment provide strong
bounds on allowed anisotropies for bouncing alternatives to inflation that are significantly
more constraining than the bounds previously obtained using scaling arguments based on
the conjectured Belinski-Khalatnikov-Lifshitz instability.
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1 Introduction

Cosmological models where the big bang singularity is replaced by a cosmic bounce have
emerged as interesting alternatives to inflation for explaining the origin of the primordial
density perturbations observed in the cosmic microwave background (CMB). But a bounce
on its own is not sufficient: in the most popular proposals, the primordial perturbations
are generated during the contracting phase by a mechanism unrelated to the bounce, and
which varies among models. Perhaps the two most studied cosmologies of this type are
ekpyrosis and the matter bounce scenario. In ekpyrosis, the contraction is dominated by a
form of matter with pressure greater than the energy density, giving a nearly scale-invariant
spectrum of entropy perturbations which can, in turn, source nearly scale-invariant adiabatic
perturbations [1, 2]. For the matter bounce, the scale-invariant primordial power spectrum
is generated during a phase of pressureless matter-dominated contraction [3, 4].

Despite the healthy competition these models provide to the inflationary paradigm, a
challenge all bouncing models must face is the instability to the growth of anisotropies during
the contracting pre-bounce phase. During contraction, the contribution from anisotropic
stresses to the Friedman equation grows very rapidly, much faster than the energy density
of common matter fields like radiation, baryonic matter, and cold dark matter, and will
eventually come to dominate the dynamics in a contracting cosmology over these types of
matter fields. Quantitatively, we can typically expect the ratio of the anisotropic stresses o2
to the total energy density p to eventually become greater than unity in a contracting space-
time, 02/(167 G p) = 1. Once this ratio becomes comparable to 1, it is not possible to assume
the background space-time is (approximately) isotropic. While isotropy is not required for
a perturbative treatment of inhomogeneities, most of the standard tools of cosmological
perturbation theory assume an isotropic background which greatly simplifies the analysis
(see, e.g., [5]) compared to an anisotropic background geometry.



In presence of inhomogeneities, the situation is even more difficult — in this case, the
ratio 02 /(167 G p) (which now will depend on position as well as time) becoming larger than
1 is expected to indicate the onset of the conjectured Belinski-Khalatnikov-Lifshitz (BKL)
chaotic instability [6] and the associated loss of predictivity due to the high sensitivity of
the dynamics to the initial conditions, with neighbouring points eventually following very
different dynamics. If this does occur, the large anisotropies will impact upon the den-
sity fluctuations in a highly inhomogeneous manner and in such a case it seems difficult
to produce the nearly isotropic temperature fluctuations observed in the cosmic microwave
background (unless nearly scale-invariant perturbations can be generated after the bounce,
once anisotropies are small, as may be possible for example in bouncing inflation models).

Different strategies have been proposed to avoid the conjectured BKL instability. The
simplest is to assume that anisotropies were initially zero, or extraordinarily small such
that they always remain subdominant up to and including the bounce, but this obviously
introduces a fine-tuning problem [7, 8]. A less drastic assumption is to assume that the last
stages of contraction included an ekpyrotic phase [1, 9, 10], in which the universe is dominated
by “ultra-stiff” matter with a pressure p that is greater than its energy density p, so the
equation of state w satisfies w = p/p > 1. For such ekpyrotic matter, in a contracting universe
p grows faster than the anisotropic stress o2, so the ratio ¢2/(167 G p) decreases as the
universe contracts, and it is possible for anisotropies to always remain subdominant without
requiring significant fine-tuning, although it is still necessary to choose initial conditions
so the ekpyrotic field starts to dominate the dynamics of the contracting cosmology before
anisotropies do (note that an instability to other sources of anisotropies could still survive
in ekpyrotic models [11]). Finally, modified gravity models have also been proposed as a
possible solution to the unstable growth of anisotropies in bouncing scenarios [12].

In addition to avoiding the BKL instability, there is another good reason to require that
anisotropies always remain small: observational constraints. In this paper, we show that
the CMB provides strong constraints on anisotropies in bouncing cosmological models. Since
these constraints come from observational data, they are more direct than order of magnitude
arguments based on the BKL conjecture. More importantly, we show that the CMB data
provide stronger bounds on primordial anisotropies in bouncing alternatives to inflation, as
compared to simply requiring that the ratio 0/(167 G p) must always remain smaller than
1 [13, 14]. Finally, these observational constraints are also relevant for ekpyrotic cosmology,
which is weakly constrained by the condition o2/(167 G p) < 1.

Cosmological perturbations are a powerful probe of anisotropies in the early universe.
The reason why CMB constraints are stronger is because their anisotropic features do not
necessarily dilute with the expansion. This is in sharp contrast to the anisotropies in the
homogeneous background geometry that are rapidly diluted in an expanding universe (even
if the anisotropies are initially large). Since perturbations retain some memory of any early
anisotropic phase and imprint this in the CMB, the extraordinary isotropy observed in the
CMB provides stringent constraints on anisotropies in bouncing cosmologies.

The main challenge of our analysis is to compute the evolution of cosmological pertur-
bations in anisotropic space-times, a task significantly more tedious than its counterpart in
isotropic scenarios. We overcome this difficulty by taking advantage of recent developments
in the classical [15-18] and quantum theory [17] of cosmological perturbations in anisotropic
Bianchi I space-times. (For earlier work on cosmological perturbations with an anisotropic
background, see [19-23], and for the calculation of the power spectrum for a test scalar field
on an anisotropic contracting background, see [24].) The Bianchi I space-time is a generaliza-



tion of spatially flat Friedman-Lemaitre-Robertson-Walker (FLRW) metrics where the scale
factors in the three Cartesian directions of space evolve independently; this is the simplest
of the family of anisotropic but homogeneous metrics. As could be expected, anisotropies in
the background homogeneous space-time will source anisotropic features in the perturbations,
but the exact way this occurs is rather complicated: it is not only the ratio o2/(167 G p)
that is important, but other powers o™ /p™ also become relevant for the evolution of pertur-
bations. Furthermore, perturbations acquire anisotropic features over time in a cumulative
manner; consequently, the final power spectrum can contain prohibitively large anisotropies
even if the ratio 02/(16m G p) is significantly smaller than unity at all times during the past
history of the universe.

A further goal of this paper is to compute the concrete form of the anisotropic im-
prints expected in the CMB from bouncing cosmologies. In particular, we find that under
mild assumptions, a model-independent prediction of bouncing alternatives to inflation is a
nearly scale-invariant spectrum of anisotropies, with an angular dependence dominated by
a quadrupole —this appears to be a generic fingerprint of these models of the early universe.
Further, the amplitude of the quadrupole has exactly the same red tilt as the scalar power
spectrum. We also find that anisotropies introduce cross-correlations between scalar and
tensor modes, as has already been pointed out [19-21]; the importance of this second effect
depends on the initial amplitude of the tensor modes and therefore is model-dependent.

Note that any cosmological model with a bounce requires some form of new physics,
whether matter fields that violate energy conditions or modifications to general relativity,
perhaps motivated by quantum gravity. The main results derived here do not significantly
depend on the physics of the bounce. Recall that in both ekpyrosis and the matter bounce,
nearly scale-invariant perturbations are generated at a time well before the bounce and the
new physics that causes the bounce can safely be neglected during the contraction phase
when the near scale-invariance is generated. Similarly, the largest part of the anisotropic
features imprinted onto the linear perturbations come from the contracting phase, and it is
independent of the new physics ingredient that causes the bounce. For concreteness, in the
simulations presented in this paper we assume the bounce follows the dynamics predicted by
loop quantum cosmology, but the main constraints are independent of this choice.

The rest of this article is organized as follows. We begin in section 2 with a summary
of the constraints on anisotropies from CMB observations that are most relevant for this
work. In section 3, we describe the dynamics of both the homogeneous background and
perturbations, and explore the evolution of anisotropies with the aid of numerical simulations.
For the background, we consider a contracting Bianchi I universe dominated by three different
matter contents, radiation fluid (w = 1/3), a stiff fluid (w = 1) and an ekpyrotic fluid (with
w = 3), in order to study how the dynamics vary depending on the matter content of the
universe. In section 4 we compare our calculations with the CMB data summarized in
section 2, and extract upper bounds for the anisotropic shear for each of the three types
of matter content considered. Finally, in section 5 we compute the form of the primordial
power spectrum and angular correlation functions in the CMB expected from an anisotropic
bounce. Throughout the paper we work in Planck units where h =c=G = 1.

2 Constraints from the CMB

This section provides a brief summary of constraints from the Planck collaboration on
anisotropic features in the CMB [25, 26]; these constraints will guide the analysis we do
in this paper. (See also [27-35] for earlier constraints on anisotropic features in the CMB.)



One of the goals of the Planck satellite was to test the hypothesis of homogeneity and
isotropy on which the standard cosmological model rests. As usual, in order to extract
quantitative conclusions from data, one first needs to introduce a mathematical model for
the features one is looking for, containing some free parameters to be constrained using
observations. Here we are interested in constraints on anisotropies (i.e., preferred directions)
in the CMB, potentially sourced by an anisotropic background corresponding to a Bianchi
space-time.

One way of parameterizing primordial anisotropies is by allowing the scalar power
spectrum of comoving curvature perturbations, PR(E), to depend on the direction of the
wavenumber k, and not only on its modulus k = ||k|. Expanding Pg(k) in spherical har-
monics, one obtains

= > Z (k) Y (k), (2.1)

even L M=

where k = k/||k||. The sum over L must be restricted to even values! as _a consequence of
the homogeneity of the Bianchi I geometry, which implies? P (k) = Pr(—k). Therefore, the
lowest anisotropic multipole is L = 2, and it has the angular dependence of a quadrupole.
We will show in section 5 that this quadrupole is the dominant anisotropic feature arising in
bouncing alternatives to inflation, and consequently we focus on it from now on.

It is convenient to factorize the isotropic (monopolar) contribution, rewriting eq. (2.1) as

PR(E):\; POG) 14 Z Gonr (k) Yonr () + - | (2.2)

where the factor 1/v/4m originates from Ygo(k) = 1/v/4x. The quantities gons(k) describe
the amplitudes of the quadrupolar contributions relative to the isotropic monopole, namely,
PEM (k) = \/% 9201 (k)PR (k). Note that the quadrupolar modulation can be scale-dependent
if gops(k) are allowed to depend on k.

The Planck collaboration searched for such a quadrupolar modulation in the CMB [26].
The possible scale dependence of gops (k) was restricted to a power law of the form gops(k) =
JoM (%)q, with possible values ¢ = 0,+1,+2, and where k, = 0.05Mpc™! is a reference
scale; the case ¢ = 0 corresponds to a scale-invariant quadrupole. The Planck collaboration
reports the best fit for the average amplitude go = /> s [g2n|?/5 for these values of ¢ in
table 17 of ref. [26]. Of particular interest for this paper is the scale-invariant case ¢ = 0, for
which the Planck collaboration reports

93P =7.62 x 1073 (2.3)

The uncertainty in this value is quantified in terms of the so-called p-value, defined as the
percentage of computer-generated random simulations using an isotropic probability distri-
bution with a value of g9 at least as large as the observed one — roughly speaking, the chance

! Consequently, this parameterization cannot describe a dipolar (L = 1) modulation, like the one discussed
in [26]. A different mechanism is required to obtain a sizable dipolar asymmetry in the CMB, for example
large primordial non-Gaussianities [36-39].

2The power spectrum is defined from the two-point function in Fourier space by the equation (RpRp,) =
(27)36(k + K’ )2 PR( k). Recall that the presence of the delta functlon is due to the underlying homogeneity.
This delta function implies that (Rz,Rz) = (27)° 5(K' + k) PR( k). But since [Rz, Rp] = 0 the two

spectra must agree, Pr (k) = Pr(—k).



that the quadrupole (2.3) could be observed in an isotropic universe. For a scale-invariant
quadrupole with ¢ = 0, this p-value is reported to be 51.7. In other words, about half of
the realizations of an isotropic probability distribution for the CMB contains a value of the
quadrupolar modulation as large as the observed one. Consequently, the statistical signifi-
cance of 3P = 7.62 x 10~3 is much too small to claim a detection of primordial anisotropies.
Nonetheless, this value is still useful since it provides an upper bound for how large the
primordial quadrupolar modulation could be in our universe: any cosmological scenario that
predicts a value for go greater than (2.3) is ruled out. We will use this to constrain anisotropic
shears in bouncing alternatives to inflation.

3 Impact of anisotropies

In this section we study quantitatively how anisotropies evolve in bouncing models of the
early universe, both for the background geometry and for perturbations, and use the results
to compute the primordial power spectrum. Our primary aim here is to understand the
role of anisotropies during the contracting phase of the cosmos, just before the bounce, for
different types of matter. We do not consider constraints from observations here; these will
be discussed in the following section.

For concreteness, we will assume a Bianchi I background with the line element

ds? = —dt® + a3(t) da? + a3(t) da? + a2(t) da?, (3.1)

where a;(t) are the three directional scale factors. In addition, we will focus here on three rep-
resentative types of matter fields: radiation, stiff matter, and an ekpyrotic fluid. Anisotropies
are measured by the shears o; = H; — H, which compare the directional Hubble rates
H; = a;/a; to the Hubble rate H = a/a of the mean scale factor a = (ajagas)/?; dots
denote derivatives with respect to t. The three matter fields we consider have an equation of
state p = w p with a constant w, for radiation w, = %, for stiff matter w, = 1, and we take
we = 3 for the ekpyrotic fluid. The way the energy density p and the anisotropic shears o;
evolve under the influence of these fluids is well known:® p oc =3 0+%) while ¢; & a3 and
02 = 0? 4+ 03 + 02 o< a~ % see appendix A for details.

3.1 General cosmological evolution

We start by describing the different cosmological eras we include in the calculations; quanti-
tative results derived from it are reported in the next subsections.

Initial conditions. We set initial conditions in a contracting universe well before the
bounce, assuming the space-time metric can be approximated by a Bianchi I background
with linear perturbations.

For the background, we assume that the anisotropies are initially very small compared
to the energy density. (In principle, initial conditions with large anisotropies are also possible
but, as we shall see, this possibility is ruled out by CMB constraints; therefore, in the following

3This scaling holds in general relativity. In our simulations, the bounce is caused by adding corrections to
general relativity, and these corrections introduce deviations from the well-known scaling in general relativity;
however, these deviations are only sizeable during a short interval around the bounce and do not significantly
affect the scaling given here away from the bounce. The deviations from general relativity do not have any
significant effect on our calculations except creating a bounce.



we only consider initial conditions where the anisotropic shears are subleading, as required
by observations.)

For the perturbations, we assume that the scalar modes (defined below) are nearly
scale-invariant with an appropriate amplitude, while tensor modes are negligibly small and
taken to be zero. By choosing these initial conditions, we are assuming that nearly scale-
invariant scalar perturbations were generated at an earlier time in the contracting universe,
for example during a phase of ekpyrosis or matter-dominated contraction. We also assume
that, at the time we start the evolution deep in the contracting branch, perturbations are
in an isotropic quantum state. This assumption is justified by the strong upper bounds we
will obtain later in this paper for anisotropic shears in the Bianchi I metric; such constraints
imply that, before the time we start the evolution, the universe was almost isotropic. This in
turn implies that any potential anisotropic features the perturbations may have acquired in
the previous evolution must be very small and can safely be neglected. In terms of the power
spectrum given in (2.2), these initial conditions correspond to PR (k) ~ k=€ (with 0 < e < 1)
and PEM (k) = 0 for any L # 0, or equivalently gz = 0 for all L # 0.

In some cases like matter-dominated contraction, nearly scale-invariant tensor modes will
also be generated — this can lead to additional observational constraints on the model [40].
Since our focus here is on the consequences of background anisotropies, for simplicity we set
the initial spectrum for the tensor modes to vanish; importantly, in this way the analysis
is applicable to ekpyrotic scenarios as well, which do not generate significant tensor modes.
Note that in anisotropic space-times, the tensor and scalar modes are coupled, so assuming an
initially vanishing tensor power spectrum is a conservative assumption, since anisotropies will
tend to generate tensor modes; however, allowing for this effect will only strengthen observa-
tional constraints on anisotropies, and for the sake of simplicity we neglect any generation of
tensor modes before the beginning of our numerical simulations. This assumption is further
justified by the strong upper bounds we will obtain later in this paper for anisotropic shears;
such constraints imply that, before the time we start the evolution, the interaction between
tensor and scalar perturbations must have been extremely weak and can safely be neglected.

This summarizes the initial conditions for all of the runs we consider. We give the
precise numbers for the initial conditions below, in the relevant sections.

Pre-bounce evolution. As already mentioned, for the matter content of the universe in
the last stages of contraction before the bounce, we will explore three different possibilities:
radiation, stiff matter, and ekpyrosis. These are perfect fluids with vanishing anisotropic
stress and a constant equation of state w = p/p, with w, = % for radiation, ws = 1 for stiff
matter, and we choose w, = 3 for ekpyrosis.

We assume that during the contracting phase general relativity holds with great accu-
racy, with deviations only becoming important in the immediate vicinity of the bounce. As
a result, the usual Einstein equations can be used for both the background and perturbative
dynamics during contraction.

For simplicity, we mimic the perfect fluid behaviour with a constant equation of state
w by using a scalar field ¢ with an appropriate potential [41, 42]

V(g) = V,exp <— 247 (1 + w) > . (3.2)

In Bianchi I space-times, it is not strictly true that a scalar field with such a potential produces
exactly the required equation of state, but due to the strong constraints on anisotropies



from CMB observations, all of the Bianchi I geometries that we consider have very small
anisotropies, even at the bounce, so the scalar field can mimic a perfect fluid with constant
w to a very good accuracy: the deviation of the value of p/p from a constant value equal to
1/3, 1 or 3 is smaller than 0.01% in the runs we study.

Another reason to take a scalar field as matter is that there already exists a numerical
code (see [43]) that can numerically solve the equations of motion, given in [15, 17|, for
cosmological perturbations on a Bianchi I background minimally coupled to a scalar field —
we will use this already existing code for our simulations. We leave for future work a similar
calculation using instead the equations of motion for cosmological perturbations with perfect
fluid matter on anisotropic backgrounds that are given in appendix A of [44]. Although this
remains to be confirmed in future work, we expect that the main results will be qualitatively
very similar whether using a scalar field or a perfect fluid as matter source, just as they are
in isotropic cosmologies.

The bounce. To carry out our simulations it is necessary to introduce a mechanism to
produce a cosmic bounce. This can be done either by adding an extra suitable matter field
that violates the energy conditions of general relativity, or by introducing corrections to
the gravitational field equations. Our goal is to learn how anisotropies grow in the con-
tracting, pre-bounce phase, and consequently we are interested in a mechanism to create a
bounce which affects as little as possible our conclusions. This can be achieved if the bounce
provides a quick transition between contraction and expansion, fast enough that it does not
significantly change the perturbations or modify the dynamics at times far before the bounce.

A convenient way to achieve a bounce in the Bianchi I background is by using the modifi-
cations to the Einstein equations that appear in loop quantum cosmology (LQC) [45, 46], and
which we summarize in appendix B. LQC is known to be compatible with ekpyrosis [47, 48]
as well as the matter bounce [49, 50], and the predictions of the models are to a large degree
insensitive to the physics of the bounce [51]. LQC is also a convenient way to introduce
a non-singular cosmic bounce for the following reasons. First, the modifications to general
relativity depend on a tunable parameter pp, which controls the value of the space-time cur-
vature at the bounce (and, for small anisotropies, this can be translated into a bound on the
energy density). In the context of quantum gravity, it is natural to expect p, to be of the
order of the Planck scale, but in this article we will treat it as a free parameter. Second,
to maintain a constant equation of state through the bounce, it is possible to appropriately
modify the potential (3.2) to [42]

Vig) = V, exp (—\/247r(1 +w) qb)
1+ ﬂllfﬁ exp (—\/2471'(1 + w) gb)z

As expected, the standard potential is recovered in the limit p, — oco. Third, the deviations
from the Einstein equations are only relevant for a short period of time, of the order of the
time scale determined by p (in natural units). This guarantees that the conclusions we
reach for cosmological perturbations do not strongly depend on the details of LQC, precisely
because these details are important only for a very short time.

In summary, we use the equations of LQC as a phenomenological tool to produce a
bounce in the Bianchi I background space-time with a free physical parameter p; that can be
used to select the energy scale of the bounce, but our analysis and conclusions are independent
of the physical assumptions on which LQC rests. Essentially identical constraints would be

(3.3)



obtained for other ways of generating a bounce, so long as the energy scale of the bounce is
the same, and the effect of the new physics causing the bounce are wholly concentrated in a
short time interval around the bounce.

In our calculations below we use p, = 4.54 x 107'2 in Planck units. This number is
far from the Planck scale and is singled out by demanding that the amplitude of the scalar
power spectrum agrees with CMB observations for the radiation-dominated runs we study.
For both stiff and ekpyrotic matter, and in general for fluids with w > 1, the amplitude of
the scalar power spectrum is almost insensitive to the choice of pp, since perturbations freeze
on super-Hubble scales, and we could choose other values of p,. However, we choose to use
the same value, pp, = 4.54 x 107'2, in order to facilitate the comparison between the three
matter contents we consider.

Finally, for the perturbations we continue to use the equations of motion of general
relativity during the bounce. We make this choice for simplicity, and also because it is the
most conservative choice we can make. Although the new physics causing the bounce could
in principle introduce new effects at the perturbative level as well and modify the equations
of motion for the perturbations, any such effects will only be important for the short time
it takes for the bounce to occur and it seems unlikely that they will significantly modify the
main results.

In the numerical simulations described below in more detail, we find that the spectrum
of the perturbations does not change significantly during the bounce, as expected given the
discussion here.

The expanding branch. In FLRW isotropic spacetimes, curvature perturbations with
super-Hubble wavelengths remain constant in an expanding universe. In this phase, per-
turbations are only sensitive to the redshift effect, which measures how much the universe
expands in total, but they are independent of the Hubble rate and other details of the ho-
mogeneous and isotropic matter content of the universe. Although this is no longer true
for Bianchi I geometries in general, we are only studying space-times where the anisotropies
are very small and are bounded by strong constraints in the CMB. In this particular case,
deviations from FLRW are small. For the evolution of super-Hubble perturbations in the
expanding phase they are negligible and these super-horizon modes remain constant (to an
excellent approximation) in the expanding branch. For this reason, our conclusions are in-
sensitive to the matter content of the universe after the bounce, as long as there are no
extra sources of anisotropies (for example, fluids with large anisotropic stresses). In view
of this, and also for simplicity, we assume the universe is dominated by radiation right af-
ter the bounce. We make this choice because the early universe must eventually become
radiation-dominated, and the simplest choice is to transition to radiation right after the
bounce. We ensure that the transition at the bounce to radiation domination is such that
both the background metric and perturbations are continuous and differentiable.

3.2 Anisotropic background geometry

Next, we study the evolution of the anisotropies in contracting Bianchi I space-times, for the
three representative matter contents already mentioned, namely radiation w, = 1/3, a stiff
fluid ws = 1, and an ekpyrotic fluid with w, = 3, denoting these three matter fields by the
indices 7, s and e respectively.

Specifically, we perform numerical simulations and monitor the evolution of the direc-
tional scale factors a;(t), from which we can compute anisotropic shears and the energy
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4.96 x 10718 | 4.15 x 10726 | negative | 0

Table 1. Initial data for the background geometry. The energy density pi, and shear o2, are expressed
in Planck units, and we use three different choices for w, w, = 1/3, ws = 1 and w, = 3. We have
explored different values of ¥ in our simulations and the main results are insensitive to the choice of
V. For concreteness we set W = 0 for the simulations we present here.

density. We present three representative simulations, one for each matter content. In order
to compare the simulations for these different choices of matter in a meaningful manner, we
start the evolution at some arbitrary time in the contracting phase of the universe and use
the same initial conditions for the metric and the energy density of the matter content for
the three simulations; in this way the differences in the subsequent evolution can only be
attributed to the matter content and not to the initial conditions.

We fix the initial conditions in the following way. As described in appendix A, a complete
set of initial data is given by specifying the value of five parameters, namely (i) the energy
density p, (ii) the equation of state w, (iii) the total shear squared o2, (iv) the sign of the mean
Hubble rate and (v) the parameter ¥ that controls how the anisotropies are distributed among
the three principal directions. The values we use for the numerical simulations presented in
this section are given in table 1. Note that we assume that the anisotropies are initially
very small compared to the energy density, 02 /16m < piy. As discussed above, we set
pp = 4.54 x 10712 (in Planck units) for the energy density at the bounce in all our simulations.

With this initial data, we numerically solve the equations for the background metric and
the scalar field using the equations of motion derived from the Hamiltonian constraint (B.10),
as described in appendix B. This is a set of coupled, second-order ordinary differential equa-
tions for the directional scale factors a;(t) and the scalar field mimicking the perfect fluid. We
solve the dynamics using the explicit embedded Runge-Kutta Prince-Dormand (8,9) method
of the GNU scientific library; the main results are summarized in figures 1 and 2.

Some results for the radiation-dominated case are shown in figure 1. The left panel
allows us to compare p(t) and o%(t)/16m, while the right panel shows the three anisotropic
stresses 0;(t) = H;(t) — H(t). Given the initial conditions with a very small shear, the shear
remains subdominant compared to p at all times including the bounce, but it clearly grows
more rapidly than p in the left panel, and reaches a maximum at the bounce, as can be seen
in both the left and right panels. While these results are for a bouncing Bianchi I space-time
dominated by radiation, the other matter fields we have considered give qualitatively very
similar results, with the only difference being that the comparative rate of growth between
the anisotropic shear and the matter energy density changes, as shall be explained next.

Then, we compare the evolution of the matter energy density for radiation w, = 1/3,
a stiff fluid ws = 1, and an ekpyrotic fluid with we = 3; we use the number of (contracting)
e-folds, defined as N = In(ain/agy) in terms of the mean scale factor, as the time variable.
The evolution of the energy density p(t) from the initial time until the time of the bounce is
shown in dashed lines in the left panel of figure 2 for each choice of matter. Since the bounce
happens at the energy scale py, it is not surprising that in each case p increases following a
power law with respect to a(t) until p = pp, at which point the bounce occurs. Of course,
p ~ a3+ increases much more rapidly in a contracting space-time when the equation of
state w is increased, so given identical initial conditions a universe with an ekpyrotic field
will bounce in fewer e-folds than in the case of stiff matter, which in turn bounces in fewer
e-folds than a radiation-dominated universe.
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Figure 1. These plots show results obtained for a radiation-dominated bouncing universe with the
initial data specified in table 1. The results for the other matter fields are qualitatively similar.

Left panel: evolution of p(t) and 02(t)/167 in cosmic time ¢. They both reach a maximum value
at the bounce at ¢t = 0, and in this simulation o2 /167 < pi, at all times. We also plot 3H?(t)/8,
which is equal to p away from the bounce where general relativity holds, but deviates from it at the
bounce. Note that the scale of the vertical axis is always logarithmic, while the scale for the horizontal
axis is logarithmic for |¢| > 10* but linear for || < 10*.

Right panel: evolution of the three anisotropic stresses o;(t) = H;(t)— H(t), all three anisotropic
stresses reach their maximum (in magnitude) near the bounce point. The scales of both axes are linear.
Note that oy is always zero; this is due to the choice of ¥ = 0.

The continuous and dashed lines in the left panel of figure 2 show the evolution of o(t)
and p(t), respectively, while the right panel shows the ratio o2/(167 p) for each of the three
matter fields we consider. These plots show precisely what one would expect from expressions
p ~ a3+ and o2 ~ a6, combined with the information that the bounce occurs when
p = pp. First, since the anisotropies grow at the rate 0> ~ a~% independent of the matter
field (in the absence of viscosity which can modify this relation [52-54]), the curves for o2 are
(before deviations from general relativity arise) identical, the only difference is the number
of e-folds before the bounce occurs. Since the anisotropies stop growing at the bounce (and
decrease during the expanding phase), they will reach a greater maximum for radiation than
for ekpyrosis, as can be seen in the left panel of figure 2 (the curves end at the point where
the bounce occurs).

A simple although important point is that anisotropies, as captured by o2, can grow
significantly in a contracting universe for any type of matter content — the relevant quantity
is the number of e-folds of contraction, not the equation of state w of the matter field.

Second, the results shown by the dashed and solid curves in the left panel of figure 2 are
combined in the right panel of figure 2, where the ratio o2/(167 p) is plotted, showing that
this ratio grows for a radiation-dominated contracting universe, remains nearly constant for
stiff matter, and decreases for ekpyrotic contraction. These are well-known results, commonly
used to argue that an ekpyrotic fluid dilutes anisotropies: if initially the ratio o2/(167 p) is
small, it will become even smaller during ekpyrotic contraction. We will argue below, using
perturbations, that this condition alone is not sufficient to meet all observational constraints
from the CMB.

Note that near the bounce, the scaling behavior expected from general relativity for the
shear ¢? is modified because the departures from Einstein’s theory become large (as they
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Figure 2. These plots show the growth in the energy density of the matter content and in the
anisotropies as a function of the number of e-folds of contraction N from the initial time to the
bounce for different equations of state. For the three matter contents under consideration, we choose
the same value of the energy density initially, as given in table 1, and we set p, = 4.54 x 107'2 in
Planck units. The total number of e-folds from the initial conditions to the bounce is N, = 1.14 for
ekpyrosis (with w = 3), Ns; = 2.29 for stiff matter, and N, = 3.43 for radiation.

Left panel: this plot shows the energy density of the matter field, which grows as a=3(1+w),
denoted by dashed lines. Since the bounce happens at a fixed curvature scale (directly related to
p since anisotropies are small in these simulations), if the equation of state w is smaller, then more
e-folds of contraction are required to reach the bounce. The plot also shows the anisotropies in solid
lines; these grow as a~% (except for a short time close to the bounce where they grow more rapidly
due to departures from general relatively), independently of the matter field. Anisotropies grow at
the same rate in all three cases, but will grow for a longer time if there are more e-folds of contraction.
Therefore, the anisotropies at the bounce will be larger for a smaller equation of state.

Right panel: this plot shows the ratio 02/(167p). In a contracting universe, this ratio grows for
w < 1, is constant for w = 1, and decreases for w > 1 (except potentially in the vicinity of the bounce
where there are departures from general relativity). For radiation and stiff matter, this ratio reaches
a maximum value at the bounce, respectively (*)a? /(167pp) = 6.66 x 1075 and (Vo2 /(167pp) = 6.37 x
107, while for the ekpyrotic case this ratio reaches a minimum near the bounce, (o2 /(167 ppmin) =
5.34 x 107 at N = 1.04, and then (due to departures from general relativity around the bounce)
slightly grows until before reaching the bounce at N, = 1.14.

must to cause a bounce). For instance, we see that around the bounce o2 grows faster than
a~%, while p keeps its classical behavior. This implies, for instance, that the ratio o2/(167p)
is not constant around the bounce for stiff matter. Even for ekpyrotic matter, the ratio
02/(167p) can actually grow for a short time close to the bounce if w < 5. Nonetheless, this
deviation from general relativity happens during a very short time interval, and is therefore
a small effect that does not have a significant impact on our main conclusions.

3.3 Impact of anisotropies on perturbations

The dynamics of cosmological perturbations on a Bianchi I homogeneous background is
considerably more complicated than on FLRW backgrounds. We will follow the analysis of
refs. [17, 55], and summarize in appendix A the information needed for our calculations.
When the matter source is a scalar field with no anisotropic stresses, cosmological
perturbations in Bianchi I geometries are described by three fields I',, with u = 0, 1, 2; these
are the generalization of the familiar scalar and tensor perturbations on FLRW backgrounds
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to Bianchi I geometries. When the anisotropic shears become small at late times in the
expanding branch and the universe isotropizes, I'j becomes proportional to the co-moving
curvature perturbation, Iy = /327 (z/a) - R(k), where z = a ¢/H, while I'; and I'y reduce to
the 4, x polarizations of tensor modes, respectively. The equations of motion for the Fourier
components of the I';, fields are [17]

. o T * S [ R .
Fu(k) + 3 HT,(k) + —5 (k) + — > Uy (k,t) Ty (k) =0, (3.4)
w'=0

where dots denote derivatives with respect to cosmic time ¢, and

K2(t) = a*(t) iy + ks + by (3.5)

U\ EO 0 dm) |
Note that k(¢) now depends on time, unlike on a FLRW background; this is because modes
with different k& will be red-shifted at rates depending on their directional scale factor k- a,
where @ is the vector with components (ai,a2,as). In an anisotropic universe, the modes
with equal modulus k£ today did not necessarily have the same modulus at earlier times —
this is an effect that must be tracked when solving the equations of motion.

In egs. (3.4), the functions Z/{W/(l%,t) play the role of effective potentials, and their
expressions are given in appendix A.2. Importantly, the potentials L{W/(E, t) depend on the
anisotropic shears o; as well as on the unit vector ]Af; this is in addition to their dependence
on isotropic quantities like H and contributions from matter fields like ¢. Note however that
each L{W/(l%,t) does not depend on the modulus k: each potential is the same for all wave
vectors pointing in a given direction.

When the anisotropic shears o; are non-zero, the equations of motion for I';, have two
important properties that distinguish them from the isotropic case: (i) the three fields Fu(l;,:)
are coupled because the potentials L{W/(lz:, t) do not vanish for u # ¢/, and (ii) the potentials
I/IW/(lAc, t) depend on k (but are independent of k), through k - & where @ is the vector with
the components (01, 02, 03). The existence of these two basic properties is easily understood
(although the explicit form of the U, potentials is complicated) and these properties can
have important observational consequences.

The first property arises because rotations are no longer a symmetry in anisotropic space-
times. In isotropic FLRW space-times, the scalar and the two tensor modes decouple precisely
due to the rotational symmetry; see for example appendix A2 of [56] for a proof of this. For an
anisotropic background, although it remains possible to split the three perturbative degrees
of freedom into one scalar and two tensor modes, in the absence of a rotational symmetry
these three degrees of freedom are coupled. A consequence of this coupling is that it will
typically introduce cross-correlations between scalar and tensor perturbations.

The second property is due to the cosmological perturbations depending on the di-
rectional Hubble rates, not only the mean Hubble rate. For example, two modes with
wave-numbers of the same magnitude but pointing in different directions experience dif-
ferent potentials, and end up with different amplitudes. This directional dependence will
generate anisotropies in the CMB, in particular a non-zero quadrupole moment go; this sec-
ond property is the origin of the quadrupole moment which provides the strongest bounds
on anisotropies from CMB data.

Note that anisotropies in perturbations are acquired continuously throughout the evo-
lution — even if the shears always remain small, anisotropic features in the perturbations
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can nonetheless become significant as a result of the integration over time. In particular,
even if 02 /(167p) decreases during the contraction, anisotropic features in perturbations can
grow. Further, note that although the relative importance of anisotropies for the homoge-
neous background is given just by the ratio 02 /(167p), in contrast perturbations are sensitive
to other components of the shear as well. As can be seen in appendix A.2, the potentials
Uy (E, t) depend on the components of the shear in a complicated manner, and some of these
quantities can increase in time even when 02 /(167p) decreases. Because of this complexity, it
is difficult to estimate how anisotropies in perturbations behave without numerical solutions
on a case by case basis.

Finally, our main goal in this subsection is to compute the multipolar components of
the primordial scalar power spectrum gras(k), as defined in eq. (2.2), at late times after
the bounce. Note that by definition each gras(k) depends only on the modulus of E; the
dependence on the direction is fully captured in YLM(l%). The primordial power spectrum
P (k) is anisotropic if any of the functions gz (k) are different from zero for L > 2. The
k dependence of gras(k) determines the amplitude of anisotropies at different scales in the
CMB; for example, if gras(k) is independent of k, then the anisotropies in the perturbations
are scale-invariant.

The evolution of perturbations requires a choice of initial data. We will assume that, at
the time at which we initiate our simulations, the wave-numbers of interest for the CMB are
all super-Hubble (i.e., kH/a < 1), scalar perturbations have an almost scale-invariant power
spectrum, and tensor perturbations are vanishingly small.

As an aside, note that in this paper we are not concerned with how the primordial
perturbations are generated. Rather, we want to use perturbations as probes of anisotropies.
This is why we simply assume that the primordial perturbations (nearly scale-invariant with
a slight red tilt) have already been generated at an instant t;, by means of one of the
well-known mechanisms in bouncing alternatives to inflation, whether during a period of
ekpyrosis [57-59] or of matter contraction [3, 60]. We focus our investigations on the imprints
that anisotropies induce, assuming that perturbations have already been generated by some
appropriate mechanism.

More specifically, we assume that scalar perturbations, at the initial time ti,, have a
power spectrum

. k ns—1
Pr(tin, F) = Aun (k) , (3.6)
ref

where Aj, is the value of the amplitude at a reference wavenumber k..¢, and n, is the usual
spectral index with a small red tilt. For each scenario, Aj, is chosen to match the ob-
served amplitude of the temperature-temperature correlations in the CMB, and in all cases
ng — 1 = —0.036.

With this initial condition the scalar perturbations are initially in an exactly isotropic
state, while the background is nearly isotropic. Hence, all anisotropic features in the per-
turbations will be generated during the evolution, sourced by the anisotropic background
at times later than ¢;,. Note that at ¢;,, since there are (small) anisotropies in the back-
ground it would be reasonable to expect (small) anisotropic features in the perturbations
as well, rather than the perturbations being exactly isotropic as in eq. (3.6). However, any
anisotropic features in the perturbations should be small (given the almost-isotropic back-
ground space-time) and can safely be neglected — i.e., adding small anisotropic features to
the initial conditions for the scalar perturbations will just give slightly stronger constraints
on anisotropies.
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For tensor modes, for simplicity we set I't (tin) = I'a(tin) = 0, as would be expected for
example in ekpyrosis models. In principle, any initial condition respecting the observational
constraint from the CMB on the tensor-to-scalar ratio that » < 0.036 [61] is possible, although
satisfying this bound may be a challenge for matter bounce scenarios [40]. Setting the tensor
modes to initially vanish will not significantly affect the predictions for scalar modes (and
in particular for its quadrupole moment g2) because although anisotropies couple the three
I',, fields, this coupling is driven by the anisotropies which remain small and so this effect
is subleading (note also that due to this coupling I'y will be a source for I'; and I'y, which
will not remain zero). Nonetheless, if one wishes to calculate anisotropic features in tensor
perturbations (and cross correlations involving the tensor modes) in anisotropic bouncing
cosmologies, the results will depend on the initial conditions for the tensor modes.

Given these initial conditions, we solve eqs. (3.4) for the perturbations, using the values
of a;(t), a(t) and H(t) derived in the previous subsections for each of the three types of
matter fields sourcing the Bianchi I geometry. We focus on the range of wave-vectors k
that can be observed in the CMB, namely k/k. € [0.002,4] (at the present time) with k.
the wave-number whose physical value today is 0.05 Mpc~!. Contrary to the isotropic case,
though, it is necessary to explore different directions of k and this requires significantly more
computational power.

Concretely, for each simulation we express k using polar coordinates, in terms of its
modulus k£ and polar angles 8y, and ¢;. We then discretize k in steps of constant logarithmic
size, and for each k, the polar angles take values on a 20 x 40 lattice with uniform spacing
in the coordinates uy = cosf; and ¢, that covers the upper half of the unit sphere. The
power spectrum in the lower half of the unit sphere is computed from the upper half by
using the following properties of the power spectra: PWI(E) = PH/H(—E), 75W(l;) = PMM(_E)7
7501(12) = Plo(—g), 7502(E) = —’Pgo(—/;), and 7512(/2) = —P21(—E) (where the bar indicates
complex conjugation); invariance under parity further implies Po; (k) = Po1(—Fk), Poa(k) =
—Poz(—k) and Pia(k) = —Pia(—Fk); see [17, 55] for a derivation of these properties. With

—. - - —. -,

these symmetries, it is sufficient to only calculate Poo(k), Po1(k), Poz(k), P11(k), P12(k) and
7322(1_5) for k in the upper half of the unit sphere; all remaining PHZ,(E) can be derived from
these six using the properties listed above.

The calculation of each individual wave-vector k takes about half a minute, although
the exact time depends on the concrete value of k£ and the strength of the anisotropies.
We run the evolution of all wave-numbers in parallel, and in a machine using 60 cores the
entire calculation takes about three days. Once the power spectra PWI(E) are computed,
we expand them in spin-weighted spherical harmonics to extract their angular multipole
components [17].

The leading order contribution to the gr,s is a quadrupolar term with L = 2; we have
verified that higher-order terms g 5; with L > 4 are at least an order of magnitude smaller for
the radiation and stiff matter cases, and although we expect a similar result for the ekpyrotic
case, numerical limitations do not allow us to accurately calculate higher-order gz (a finer
angular lattice in Fourier space is needed to resolve the gras with L > 4 in this case). Due
to this, we only report results for go here.

The results of these numerical simulations show two important features worth empha-
sizing. First, as expected, we observe that larger anisotropies in the background generate

-

“In short, they are derived from the fact that under Hermitian conjugation F:g(l;) =To(—k) and FI(E) =
Iy (—Fk), while instead T'}(k) = —T'a(—k) (note the extra minus sign); and under parity T, (k) — FL(I;) for
©=0,1,2[17).
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Observational upper bound | Radiation | Stiff matter | Ekpyrosis (w = 3)
g2 7.62 x 1073 6.00 x 1073 | 2.65 x 1074 3.53 x 107°

Table 2. Numerical results for the amplitude of the scale-invariant quadrupolar component of the
primordial power spectrum using a background geometry corresponding to the initial data specified
in table 1; and comparison with the upper bound obtained by the Planck collaboration [26].

larger anisotropies in the perturbations. Second, our numerical calculations reveal that the
multipoles gras(k) of the primordial power spectrum evaluated after the bounce are exactly
scale invariant. Since all these coefficients are exactly zero for the initial state we use, the
value of grar(k) after the bounce must be attributed to the evolution. The scale invariance
of the multipoles gras(k) is an important result of our analysis and, because it is surprising
at first, we provide below an explanation based on the form of the equations of motion.
Given these results, the relevant observational constraint is the scale-invariant ¢ = 0 upper
bound ¢$™ = 7.62 x 1073 [26], as discussed in section 2. For the initial conditions given
above, the results of the numerical simulations for g are summarized in table 2. Notice that,
even for the small initial value of the shear squared o2 considered in these calculations of
02 /(167 pin) ~ 1078, the value of gy is not far from the observational constraint.

As expected, for the same o2, the value of ¢y is larger for radiation, intermediate

mn»
for a stiff fluid, and smaller for an ekpyrotic fluid, showing that an ekpyrotic fluid can
indeed alleviate the problem with anisotropies in bouncing models. Nonetheless, the value
of go for ekpyrotic matter (with w = 3) is only two orders of magnitude smaller than for
radiation, even when the corresponding values of the shear squared at the bounce differ by six
orders of magnitude (as shown in the left panel of figure 2). Even for ekpyrotic cosmologies,
observational constraints can be quite strong.

The predicted scale-invariance of go is a key result. Its origin is due to the two facts
that (i) the initial conditions are chosen, motivated by the assumption of an earlier (nearly)
isotropic phase of ekpyrotic or dust contraction, such that go = 0 initially, and (ii) that the
observationally relevant modes k for the CMB are all super-Hubble (k/a < H) in the late
contraction (and bounce) phase of the universe when anisotropies are non-negligible — in the
limit k/a < H the equations of motion for I';, become independent of the modulus k, and the
only remaining dependence is on the direction k which appears in the potentials Uuﬂ/(l%,t)
(recall that these potentials are independent of k). Consequently, due to isotropic and scale-
invariant initial conditions, and scale-invariant (but not isotropic) dynamics, the anisotropies
acquired by long-wavelength perturbations are scale-invariant. Stated in a different way,
given the point (ii) above, the dynamics for the CMB modes of interest during the time
anisotropies are non-negligible are scale-invariant, namely independent of k. Combined with
the first fact that the initial conditions P5M (k) = 0 for L # 0, it follows that the anisotropies
will generate non-zero P5M (k) for L # 0, essentially sourced by P (k) and therefore all
PEM (k) will have exactly the same scale-dependence as P (k): a slight red tilt. Then, when
P (k) is factored out to define the gz (k) as is done in (2.2), the identical small red tilt in
each P5M (k) is entirely captured by the PY (k) prefactor, with the result that all gz (k) are
exactly scale-invariant. As a result, anisotropies in these bouncing cosmologies are dominated
by a scale-invariant quadrupolar contribution. (As an aside, note that this would not have
been the case if anisotropies were large at the time the observable modes exited the Hubble
radius, but this possibility would require much larger anisotropies in the background and is
ruled out by observations. In the same way, shorter-wavelength modes in these models that
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are super-Hubble for only a portion of the time anisotropies are significant will not have a go
that is scale-invariant, but these modes are not relevant for the CMB.)

This scale invariance has an important consequence: since go is independent of k, it
is impossible to ‘erase’ anisotropies in the perturbations during the post-bounce expansion
by red-shifting modes with large go to super-Hubble scales today. This is an important
difference with anisotropies in the background space-time, which scale as 62 o a~% and
therefore are rapidly diluted in an expanding universe. In other words, the expansion of the
universe isotropizes the homogeneous metric, but not the perturbations — this is the reason
observational constraints are so strong.

The scale-invariance is also an important difference with inflationary cosmology. Aniso-
tropies can in principle be important during the early stages of inflation, and generate
anisotropies in the CMB as well; however, since anisotropies are only imprinted on super-
horizon perturbations and anisotropies rapidly decay in an inflationary universe, the predicted
scale-dependence for go is strongly red, with an approximate scaling of go ~ k! [43].

Therefore, a hallmark of bouncing alternatives to inflation is a scale-invariant anisotropy
in the CMB with the dominant contribution being the quadrupolar moment go; this scale-
invariance offers a potential observational test that could differentiate these models from
inflationary cosmology. In section 5, we also compute the predictions for angular correlation
functions.

4 Observational constraints on anisotropies

In this section, we revisit the same type of calculations we presented in the previous section,
but from a different perspective and with a few changes to the initial conditions.

In section 3, we compared numerical solutions for background geometries with different
matter fields that have the same initial conditions for both the energy density and for the
shears. Here, we will allow the initial conditions for the shears to vary, selecting its initial
value o2, so that the predicted g is comparable to the observational limit (2.3) — of course,
this means that o, will vary for different matter fields. This calculation will inform us about

; r) 2 s) +2 e) +2 :
the maximum value of ( )aimmax, ( )O'immax and )O'inymax, namely, the maximum value that

the shear squared can take at the time when the energy density equals pj, = 4.96 x 10718 for a
contracting universe dominated by radiation, stiff matter, or an ekpyrotic fluid, respectively.
(The maximum value for the shear at other values of p can be calculated using their respective
scalings, 02 ~ a~% and p ~ a=3(1T®)))

The results of the simulations are presented in figure 3, which are analogous to the plots
shown in figure 2 except with different initial conditions for the shears (as explained above).
For the runs presented here, the predicted value for gs is smaller than the observational
bound (2.3), but of the same order of magnitude — specifically for the radiation run go =
6.00 x 1073, while for the stiff matter run go = 7.50 x 1073, and for the ekpyrotic (w = 3)
case, go = 7.11 x 1073, The main features we find are the following.

First, since both the value of the energy density at the initial time of our simulations,
pin, as well as its value at the bounce, py, are unchanged, the energy density (shown as dashed
lines in the left panel of figure 3) evolves in exactly the same way as in the previous section.

On the other hand, the initial conditions for ¢ have changed, and the solid lines in
the left panel of figure 3 show two important results. First, observational constraints give
different bounds on the possible initial values for the shear, with
< ©g2 (4.1)

in,max »

2

in,max

(Ng2 < (g
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Figure 3. These plots show the numerical solutions for the background space-time with initial
conditions that saturate the observational upper bound for go, given the same initial energy density
pin as for figure 2, and the same p,. As in figure 2, the total number of e-folds to the bounce is
N, =1.14, Ny, = 2.29 and N,. = 3.43, for ekpyrosis, stiff matter, and radiation, respectively.

Left panel: this plot shows p (dashed lines) and o2 /(167) (solid lines) as a function of the number
of e-folds of contraction from the initial time to the bounce. The initial values of p are the same as in
figure 2, while those of o2/(167) are o2, .. /(167) =8.36x 10726, )2 . /(167) = 5.10 x 1072,
and (e)afn’max/(l&r) = 2.30 x 10723, while the maximum values of o2/(167) are reached at the
bounce, and are of . /(16m) =2.90x 10716, g /(167) = 1.89 x 107 and o . /(167) =
8.61 x 1072%, all in Planck units.

Right panel: this plot shows the ratio 02/(16mp) as a function of the number of e-folds of
contraction from the initial time to the bounce. For radiation this ratio grows monotonically, reaching
the maximum value (’")Uf/(167rpb’max) = 6.37 x 1075 at the bounce, while for stiff matter the ratio is
constant except near the bounce where it grows slightly (due to departures from general relativity) to
(S)af’max /(16mp,) = 4.16 x 107, This ratio decreases in the ekpyrotic scenario to a minimum value of
©)g2. /(167 pmin) = 1.46 x 1078 at N = 1.04, and then slightly grows just before the bounce (again,
due to departures from general relativity near the bounce).

so the initial value of o2 can be larger if the subsequent evolution is dominated by an ekpy-
rotic fluid. This result may not be surprising, but this relation is inverted closer to the
bounce where
2 2 2
(T)Ub,max > (S)Ub,max > (E)Jb,maxv (4'2)

where the subscript b denotes the bounce. In other words, given observational constraints
on g9, shear anisotropies at the bounce can be larger in a radiation-dominated universe than
in ekpyrosis. Note that it is not the maximal value of o or 0?/p that is constrained; the
relation is richer and more complex than this, since anisotropies in perturbations are acquired
continuously throughout the evolution. (It is tempting to look for other simple measures of
anisotropies that could be used, for example [dt o2 or [dt 0?/(167p), but these and other
relatively simple measures fail to capture the complexity of the dynamics for perturbations
in an anisotropic background.)

Also, the right panel shows the ratio 02/(167 p) for each of the three runs. Keeping in
mind that these runs have the maximal anisotropies allowed (for the matter fields we con-
sider) given CMB data, note that the observational constraints are much stronger than simply
requiring 02/(167 p) < 1. Instead, CMB data implies for these runs that o2/(167 p) < 10~*
at all times, and the constraints are even stronger for ekpyrosis and stiff matter. Clearly, per-
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turbations (combined with observations) provide a powerful probe of anisotropies in bouncing
universes.

Finally, it is also interesting to compute the maximum allowed value of o2/(167 p) at
the time of horizon exit for the primordial perturbations in the contracting phase. This
calculation requires an assumption about the dominant matter content of the universe from
horizon exit to the time at which we start our simulations, t¢;,. For completeness, we report
here the result for two possibilities, matter-dominated and radiation-dominated contraction.
Let us focus on the reference scale k, whose physical value today is 0.05 Mpc™!, and denote
by text the time at which it exited the Hubble radius in the contracting phase. For a matter-
dominated universe between tqy to ti,, there must be 120 e-folds of contraction between these
two times and, consequently, the maximum value of 02/(167 p) at tey is about 157 orders of
magnitude smaller than at ¢, in general agreement with earlier estimates [8]. If the universe
were dominated by radiation between these two instants, then there would be 60 e-folds of
expansion in between, and the maximum value of 02 /(167 p) at tex; would be about 53 orders
of magnitude smaller than at ¢;;,. These numbers slightly overestimate the upper bound for
02 /(167 p) at texs, since in obtaining them we have neglected the anisotropies induced in the
perturbations during the evolution between teyt and tj,. These anisotropies should be very
small though, since the values of 02(t) are constrained to be extraordinarily small.

5 Predictions for the CMB: angular correlation functions

We found in the previous section that the main signature of anisotropies in bouncing al-
ternatives to inflation is a scale-invariant quadrupolar modulation in the primordial scalar
power spectrum; subleading effects are higher-order modulations, as well as cross-correlations
between scalar and tensor modes. For completeness, in this section we compute some of
the imprints these anisotropies leave in the angular correlation functions in the CMB. We
present results for the background radiation-dominated Bianchi I space-time with maximal
anisotropies compatible with the observational constraints, with the initial conditions for the
background and for the perturbations as given in section 4, for which go ~ g§P® = 7.62 x 1073,
(For the radiation-dominated case, the same initial conditions are used in both of sections 3
and 4.)

Specifically, we set the initial data for the background as given in table 1 for a radiation-
dominated universe at t = t;,, and assume that scalar perturbations are initially in a state
with a power spectrum of the form of eq. (3.6), with A;, = 8.78 x 10717 and kyer = 1.29x 10733
(in Planck units).

Recall that, as discussed in the previous section, the amplitude of tensor perturbations
generated before the bounce is model dependent (with ekpyrosis not producing significant
tensor modes, while the matter bounce typically produces a large amplitude of tensor modes).
For this reason, we have focused so far on scalar perturbations, and set initial conditions for
the tensor modes to be I'y(tin) = T2(tin) = 0. We will use the same initial conditions for
tensor modes in this section as well, but even with these initial conditions, it is illustrative
to show the angular correlation functions for tensor modes as well, since tensor modes are
excited dynamically through a coupling to scalar perturbations in anisotropic space-times.
For the background radiation-dominated Bianchi I space-time given in section 4, this coupling
generates scale-invariant tensor modes with a tensor-to-scalar ratio r = 5.18 x 10~7. (Of
course, if tensor modes are excited during the contraction phase before anisotropies become

~ 18 —



important, as is the case for the matter bounce scenario, then the tensor-to-scalar ratio can be

much larger than this, although it must respect the observational constraint r < 0.036 [61].)

The angular correlation functions of temperature anisotropies 7'(7) and the electric

and magnetic components of the polarization fields of CMB photons, E(n) and B(fn), are
defined as

cXX = <a£fna§;1,>, (5.1)

2 mm/

where a;\, are the angular-Fourier components of the fields X (d) = {T'(R), E(7), B(R)},
iy = [AQX(0) Veni), X = (T, B}, (52)

and Yy, (7) are the usual (scalar) spherical harmonics (see section V in [55] for details omitted
here). The amplitudes agm can be obtained from the primordial scalar and tensor perturba-

tions as e k:
o = / CS AKE)TA(R) oY () (5.3)
( s=0,£2

where sng(l%) denote spherical harmonics with spin-weight s. For convenience, we have
changed the basis in the tensor perturbations from I'; and I's associated with the + and x
polarizations to I'1o associated with circular polarization, with

Tio(k) = \}5 (Fl(E) ¥ZT2(E)> : (5.4)

We use the sub-index s = 0,+2 rather than u = 0,1,2 to emphasize that we work with
circularly polarized tensor modes.

The functions ;AX (k) in eq. (5.3) are the transfer functions that encode the complex
physics involved in the process of evolving the fields I's across the radiation dominated era
from the time observable modes re-enter the Hubble radius to the formation of the CMB.
They can be obtained, for instance, by using a Boltzmann code such as CLASS [62]. Note
from eq. (5.3) that each amplitude a;* = can be sourced from the three primordial perturbations
T'g, I'to. The scalar perturbations I'g do not contribute to the B-polarization in the CMB
because (AP (k) = 0.

Also note that we are using isotropic transfer functions here (for anisotropic transfer
functions see [35]). The transfer functions used to propagate linear perturbations depend on
the background metric, but not on the state of perturbations themselves, due to the absence
of backreaction in the approximation of linear perturbation theory. Since the expansion
isotropizes the metric, for the space-times considered here, at the time observable modes
re-enter the horizon the shears are extraordinarily small, and the use of isotropic transfer
functions is an excellent approximation.

Using eq. (5.3), the angular correlation functions CM X' can be written in terms of

,mm

the primordial power spectra Py (k ),

/ d k . U ! 27{'2 - — ~ — ~
Citl it = (=)D AT R) o AF (8) TP s (B) Y 1 (R) oY e () (5.5)

The parity invariance of the quantum state describing the perturbations implies that Cﬁ,’ﬁm,
are also parity-invariant, and therefore

Ca/ mm! — Cee/ mm! — Cge/ mm! — Cu/ mm! — =0 if ¢ + B’ Odd, (56)
Cﬁgl mm! = C€£’7mm’ = 0 lf 6 —+ €, even . (57)
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For cosmological perturbations on FLRW space-times, isotropy would further impose the
condition that all angular correlation functions vanish unless ¢ = ¢/. But in anisotropic
Bianchi I spacetimes, the cross-correlations Cgl;’l?mm’ and Cg/?mm, can be non-zero, although
only when the combination £ + ¢’ is odd. Correlations of this type are therefore a smoking
gun signature for anisotropies in the early universe.

Since anisotropies are small, it is to be expected that the largest correlation functions
will be T-T, then E-T and E-E, all for the case £ = ¢/. Smaller correlations are found for
B-B, as well as off-diagonal ¢ # ¢’ correlations, which are non-vanishing in contrast to the
isotropic case. In particular, T-B and E-B off-diagonal cross-correlations are non-vanishing
for odd ¢+ ¢'.

First, the T-T angular correlation function is shown in figure 4, with the left panel
showing the diagonal ¢ = ¢’ case, specifically the quantity

_TFe(C+1)

TT
Dy 2

it (5.8)

where Tp is the CMB average temperature and Cf 7 = ﬁ S (=) Although

m—m:*
all primordial power spectra Pss/(E), with s,s' = 0,4£2, contribute to Cejz;/Tmm': the scalar
one s = 0 = ¢ gives the dominant contribution. We also show Planck’s observations [63]
for comparison as data points in the left panel; since the differences are smaller than cosmic
variance (indicated by the shaded region) this correlation function cannot be used to detect
small primordial anisotropies; rather it is necessary to consider other correlation functions.

One possible example of a correlation function that is sensitive to small primordial
anisotropies is the first non-trivial off-diagonal T-T correlation function for £ = ¢’ 4+ 2. The

right panel of figure 4 shows the quantity

T2l +1)
DeTejJZQ,oo =2 Chia00- (5.9)

This correlation function would be identically zero in FLRW spacetimes and consequently it
is a powerful probe for primordial anisotropies. It is also possible to compute other angular
correlation functions, for instance with ¢ = ¢ + 4, ¢/ = { + 6, etc., or different values of m
or m’. But DZ£2’00 is a good representative example of the anisotropic correlation functions
expected in bouncing models, which are dominated by a quadrupolar angular distribution.
Note that since this observable (and others like it defined below) selects the specific values of
m =m/ = 0, it is not invariant under coordinate rotations and its predicted spectrum is un-
derstood to be for the set of coordinates for the Bianchi I background spacetime where ¥ = 0.

Second, we calculate E-E correlation functions. The largest correlations are for the
¢ = /(' case, and the quantity

e+ 1)
DfE = 20 L/ OFF 5.10
where CEE = ﬁ Zz _ (=)™ ﬁ%nfm, is plotted in the left panel of figure 5, and compared

with the Planck collaboration’s data points [63], with the shaded region representing the
uncertainty due to cosmic variance. Similarly to the T-T correlations, the effect of primordial
anisotropies is negligibly small in DEZE.

In the right panel of figure 5, we show the anisotropic correlation function

TR0+ 1)
DZE@EZOO =0 CeEhEm,oo; (5-11)
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Figure 4. T-T angular correlation functions for perturbations on a radiation-dominated Bianchi I
background with the initial conditions described in section 4. The vertical dashed line denotes the
transition from a linear scale for £ (on its left) to a logarithmic scale (on its right).

Left panel: the temperature-temperature angular correlation function D;;FT is shown by the solid
line, while the dots (and uncertainties) are the observations from the Planck collaboration [63], with
the shaded region showing the cosmic variance uncertainty.

Right panel: the temperature-temperature angular correlation function D{Z£2,OO' This correla-
tion function would be identically zero in the absence of primordial anisotropies.
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Figure 5. E-E angular correlation functions for perturbations on a radiation-dominated Bianchi I
background with the initial conditions described in section 4. The vertical dashed line denotes the
transition from a linear scale for £ (on its left) to a logarithmic scale (on its right).

Left panel: the E-E angular correlation function DZEE is shown by the solid line, while the dots
(and uncertainties) are the observations from the Planck collaboration [63], and the shaded region
shows the cosmic variance uncertainty.

Right panel: the E-E angular correlation function D?Eyz,oo- This correlation function would be
identically zero in the absence of primordial anisotropies.

which vanishes in the isotropic case, while here it takes values of about 0.1% with respect to
DEE. This correlation function is given as a representative example; other angular correlation
functions with ¢/ = ¢ + 4, ¢/ = ¢ + 6, etc., and different values of m or m’ are also non-zero.

Third, T-E cross-correlation functions are shown in figure 6. The left panel shows the
diagonal angular correlation function

T20(0+1)

TE
D™= 2

o, (5.12)

— 21 —



| — D" -1 TE
! ! 10 — Diian

10t | H 1 10-2
|
|
i
1
-1072

& —107'+

L
10! 10° 10! 10°

(K]

(1K)

—10't

—10%F

Figure 6. T-E angular cross-correlation functions for perturbations on a radiation-dominated
Bianchi I background with the initial conditions described in section 4. The vertical dashed line
denotes the transition from a linear scale for ¢ (on its left) to a logarithmic scale (on its right).

Left panel: the T-E angular correlation function DEE is shown by the solid line, while the dots
(and uncertainties) are the observations from the Planck collaboration [63], and the shaded region
shows the cosmic variance uncertainty.

Right panel: the T-E angular correlation function Dgﬁz,oo This correlation function would be
identically zero in absence of primordial anisotropies.

where CIE = ﬁ S (=)™ elz?nfm, together with the data points from the Planck
collaboration [63], and the shaded region shows the uncertainty due to cosmic variance.

Additionally, the right panel contains a plot of the off-diagonal angular correlation function

T2(0+1)
DeTe-Em,oo = OT Cltta.00» (5.13)

that vanishes in the isotropic case. As in the previous angular correlation functions, other
off-diagonal components of these correlation functions with ¢ = ¢ + 4, ¢/ = / + 6, etc., and
different values of m or m’ are also non-zero.

Fourth, B-B correlation functions are shown in figure 7. Since only the purely tensorial
primordial spectra Pﬂﬂ(/%') and P:ngg(lg) contribute to these correlations, the result will
clearly depend on the initial pre-bounce amplitude of the tensor modes. Here we present
results for the case when the tensor modes are initially vanishing (this initial condition is
most relevant for ekpyrotic models), but these calculations can easily be extended to the case
where primordial tensor modes are generated during the contracting phase (for example in a
matter bounce scenario).

The left panel of figure 7 shows

TR0l +1
DpB =0~ ) cph, (5.14)
27
where CPB = ﬁ S —_(=1)m ZBZim—m’ together with the uncertainty due to cosmic vari-

ance. As stated above, this corresponds to a tensor-to-scalar ratio of 7 ~ 5x 10~7. The right
panel shows one of the off-diagonal elements of this correlation function, specifically

TR0+ 1)
Dz‘ﬁzoo = OT 0252,00' (5.15)

- 29 —



3x107

JR— BB

[1K?]

Figure 7. B-B angular correlation functions for perturbations on a radiation-dominated Bianchi I
background with the initial conditions described in section 4. The vertical dashed line denotes the
transition from a linear scale for £ (on its left) to a logarithmic scale (on its right).
Left panel: the B-B angular correlation function D?B is shown by the solid line, while the shaded
region shows the cosmic variance uncertainty. This gives a tensor-to-scalar ratio of 7 ~ 5 x 1077,
Right panel: the B-B angular correlation function Dﬁ]izoo. This correlation function would be
identically zero in absence of primordial anisotropies.

Other off-diagonal elements of the correlation function are nonvanishing, like ¢ = £+ 4,
¢ =+ 6, etc., and for any m or m/’.

Finally, in an anisotropic background cross-correlations between B-mode polarization
and the temperature or E-mode polarization will also be non-zero when ¢+/¢ is odd. Further,
only the primordial cross-correlations Pingg(E), POj:Q(I_{;) and Pigo(E) contribute, with all of
these terms involving tensorial modes. As a result, the amplitude of these cross-correlations
is model-dependent, with models that generate significant tensor modes during contraction
(like the matter bounce) expected to lead to larger cross-correlations than what is presented
here for the case where the tensor modes are vanishing a few e-folds before the bounce.

In figure 8, we present two examples of angular cross-correlation functions, in the left
panel is plotted

T30+ 1)
Dif100 = ———=Cli¥1.00 (5.16)
and the right panel shows
TR0+ 1)
D100 = 2——=Ci%1 00 (5.17)

where we have chosen ¢/ = £+ 1 and m = m/ = 0 as a representative case for both of the
cross-correlation functions. Other correlation functions with ¢/ = ¢+ 3, ¢/ =/ + 5, etc., and
other values of m,m’ are non-zero. Moreover, all T-B and E-B cross-correlations would be
identically zero if the power spectra of perturbations were isotropic.

In summary, primordial anisotropies leave distinct signatures in the CMB, in particular
non-zero off-diagonal T-T, T-E, E-E and B-B correlation functions (with ¢/ = ¢ + 2n), as
well as off-diagonal T-B and E-B cross-correlation functions (with ¢ = ¢+ 2n + 1). Given
observational constraints on the amplitude of B-B correlations and on anisotropic features in
the CMB, the largest effect is the ¢/ = £ + 2 off-diagonal T-T correlation function, shown in
the right panel of figure 4, which would be identically zero for an isotropic background. This
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Figure 8. T-B and E-B angular cross-correlation functions for perturbations on a radiation-
dominated Bianchi I background with the initial conditions described in section 4. The vertical
dashed line denotes the transition from a linear scale for ¢ (on its left) to a logarithmic scale (on
its right).

Left panel: the T-B angular correlation function Dgﬁmo. This correlation function would be
identically zero in absence of primordial anisotropies.

Right panel: the E-B angular correlation function Dﬁfmo. This correlation function would be
identically zero in absence of primordial anisotropies.

effect is largely captured by the quadrupole moment g, which we focused on in sections 3
and 4.

6 Conclusion and discussion

Since anisotropies grow in a contracting universe, some degree of anisotropy is expected to be
unavoidable in cosmological scenarios with a cosmic bounce. In this paper, we have performed
a detailed study of how these anisotropies have an impact on cosmological perturbations, and
on predictions for the cosmic microwave background for bouncing alternatives to inflation.
The general features we find are generated in the contracting phase before the bounce, and
are therefore to a large degree independent of the physics of the bounce.

Previously, constraints on the allowed growth of anisotropies in a contracting universe
have been derived by requiring that the ratio 02/(16mp) must always remain smaller than
one. We have found that CMB observations provide considerably stronger constraints on
anisotropies than simply considering this ratio. One reason for this is that, while anisotropies
in the background geometry rapidly decrease in an expanding universe, perturbations retain
a memory of the primordial anisotropies, in the sense that the amplitude of anisotropic
features in the perturbations does not decrease as the universe expands. (The expansion will
redshift the wavelengths of the Fourier modes of the perturbations, but this does not affect
the amplitude of a scale-invariant quantity.) Also, even small anisotropies in the background
space-time can, over a sufficiently long time, generate observationally significant effects in
the perturbations — it is not only the relative amplitude of anisotropies that is relevant, but
the timescale is important as well.

The leading order effect is a scale-invariant quadrupolar modulation go of the primor-
dial power spectrum (there is no dipole due to parity invariance). Due to the predicted
scale-invariance of this effect, CMB observations provide strong constraints on anisotropies.
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This is in contrast to inflationary models, where primordial anisotropies can also generate a
quadrupole moment in the CMB, but for inflationary models the quadrupole moment is pre-
dicted to decay rapidly for large k. For this reason, observational constraints on primordial
anisotropies are stronger for bouncing alternatives to inflation. Also, if a quadrupole moment
is observed, its scale-dependence can be used to distinguish between inflation and bouncing
alternatives to inflation.

The constraints on primordial anisotropies, based on the quadrupole moment gz, depend
on the dominant matter field, especially during the bounce. As expected, these constraints
are in some ways weaker for ekpyrotic models, but the bounds remain surprisingly strong even
for ekpyrosis. This is because the perturbations are sensitive to the directional anisotropies
o; (which grow in a contracting universe, independently of the matter content), and the
amplitude of anisotropic features in the perturbations remains constant in an expanding
universe after the bounce (in stark contrast to the shear ¢ which rapidly decays).

Also, the perturbations depend on the anisotropies in a rather complicated way, in par-
ticular depending on their history and not only on the maximal value of ratios like o2 /167p.
This makes it difficult to obtain universal constraints on anisotropies that could be extended
to other models — as far as we can tell, to obtain constraints for any particular cosmologi-
cal scenario it is necessary to solve the dynamics for the perturbations from scratch in that
specific case.

We note that the simulations indicate that g depends on o2, and that gs is independent
of how its amplitude is distributed among the o; as determined by W¥; however, the value of ¥
does have an effect on some other observables like the angular correlation functions C’l)ﬁ}:nm,.

Another effect of anisotropies is to introduce an effective coupling between the scalar and
the two tensor modes. Given observational constraints on the possible amplitude of tensor
modes, and on the strength of primordial anisotropies, the effects due to this coupling are
subleading compared to the quadrupole moment go. One effect of this coupling is to excite
tensor modes, although the tensor-to-scalar ratio remains small for observationally allowed
primordial anisotropies (assuming the tensor modes are initially vanishing, as is predicted by
ekpyrotic models).

Anisotropies can also generate non-zero angular correlation functions in the CMB that
would otherwise vanish in an isotropic background. For example, off-diagonal correlation
functions CJ,7 for £/ = ¢+ 2 are non-zero (while the more familiar diagonal £ = ¢’ correlation
functions are not significantly impacted). Another smoking gun signal are T-B and E-B cross-
correlations for odd £+ ¢; they must be small due to constraints on primordial gravitational
waves and on primordial anisotropies, but nonetheless these are otherwise unexpected signals
that can be generated in an anisotropic background.

In summary, by studying cosmological perturbations it is possible to understand the
concrete imprints that anisotropies would leave in the CMB for bouncing alternatives to
inflation, and obtain much stronger observational constraints on anisotropies than would
otherwise be possible. Our analysis in this paper has been deliberately broad; it would
be interesting to use these tools to constrain particular cosmological models of interest,
whether specific realizations of ekpyrosis, the matter bounce, or other bouncing alternatives
to inflation.
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A Cosmological perturbations on Bianchi I space-times

In this appendix we review the dynamics of the Bianchi I space-time in general relativity,
and then discuss cosmological perturbation theory on a Bianchi I background.
A.1 Background Bianchi I geometry

We focus on Bianchi I space-times for which there exists a coordinate system in which the
line element takes the diagonal form

ds® = —dt* + a?(t) da? + a3(t) do3 + a3 (t) dad, (A1)

where a1, as and ag are independent directional scale factors, and for the matter sector we
consider a scalar field ¢ driven by a potential V' (¢).
The equations of motion for the four degrees of freedom a;(t) and ¢(t) can be simplified

by separating the geometric variables into the mean scale factor a = (alagag)l/ 3 and purely
anisotropic degrees of freedom given by the shears
g; = Hz — H, (A2)

where H = d};a and H; = % are the mean and directional Hubble rates, respectively. It
is also often convenient to introduce the total shear squared 02 = 0% + 03 +o2. Note that the
definition of o; implies that o1 + 02 4+ 03 = 0, so only two of these variables are independent.

The equations of motion for these degrees of freedom can be derived from the Einstein
equations. The off-diagonal components of these equations imply that &;(t) = —3 H 04, and
therefore a® o; are constants of the motion. The two independent constants of the motion
can be conveniently encoded in two constant non-negative real numbers, ¥ and ¥, in the

following way (see, e.g., [17])

o2(t) = ¥?/a5(1), o1(t) =o(t) \/z sin, (A.3)

oa(t) = o(t) /3 sin (¥ + %) o3(t) = o(?) \/g sin (qu + 4;) .

As can be seen from these expressions, ¥ controls the amplitude of the anisotropies, while ¥
determines how the anisotropies are distributed among the principal directions.

The equations of motion for the isotropic degrees of freedom a(t) and ¢(t) come from
the diagonal components of Einstein’s equations, which give two dynamical equations

2T o2

a . . a . dV(e) B
o= g (P+3p) - o o3 0+ g =0, (A.4)
and one constraint )
8 o
H?>="—"p+— A5
5Pt (A.5)

where p = %(;52 +V(¢) and p = %(;52 —V(9).
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To solve these equations, we need to provide ¥ and ¥ as well as initial data for a, a, ¢,
and ¢ that are compatible with the constraint. The initial value for the scale factor a can
be chosen freely, since this is not a physical observable and the value of a can be arbitrarily
changed by a rescaling of the coordinates x;. Because of this, the physical input for the
initial conditions (for given ¥ and W) can be determined from p, w, and the sign of a, by
using (A.5).

In summary, a unique solution for the background geometry and the scalar field can be
obtained by specifying the initial values for p, w, and the sign of H together with ¥ and ¥ for
the anisotropies. From this, o;(t) can be calculated from (A.3), and solving the differential
equations (A.4) gives a(t) and ¢(t). The constraint (A.5) is guaranteed to be preserved
dynamically by the consistency of Einstein equations, while the evolution of the directional
scale factors can be easily obtained by solving the differential equation Z—z =H; =0;(t)+H(1).

A.2 Cosmological perturbations

As stated in section 3.3, linear perturbations on a Bianchi I background spacetime can be
written in terms of three gauge-invariant fields I',(Z), with p = 0,1,2, that reduce to the
familiar scalar and tensor perturbations in the isotropic limit — more precisely, Iy becomes
V32m 2 R(k), where R(k) is the familiar comoving curvature perturbation and z = a %, while
I'y and I's reduce to the +, x polarizations of tensor modes, respectively.

The equations for the I', on a Bianchi I background are [15, 17]

- T . 1 2 . .
Fu(k) + 3 HT,(k) + —5 (k) + — > Uy (k,t) Ty (k) =0, (A.6)

where dots denote derivatives with respect to ¢, and

2 2 2
k(1) = a?(t) <a§(1t) + ag(zt) + agg’t)) : (A7)

The effective potentials U“M/(l%, t) are

2k p2 Fa Ko P

_ 2 ¢ pLra

Upo = a” Vg — e + 2k F1 (— 34 +2Vype |, (A.8)
2\/K K

Upr = Uy = ;Qf (—(12%0(5) ]:2+(15V¢U(5) Fi—a’pyGs Fi + 6 PoPad(5) fl) ’
2k K

Upa = Usg = ;{ (—a2p¢0'(6) .7-"2—|—a5 V¢O’(6) Fi —a2p¢g6]:1 + gpdupa 0(6) ]:1> )

2
Uy = U = 20(5)0() (GQ— a’ Fo + 3/%617@]:1) - (2a30(6) Gs + 2a30(5) 96) F1,

KPa O
Uy = —2a? 0(26) + @)

2 4
—a® \/;gz + §/<capaa(25) Fi — 4(130(5) F1Gs — 2a30(25) Fa,

KD,
Z/f22 = —2&20'(25) + ¢

9 4
St \/;92 + §/~eapa0'(26) Fi —4a’ o) F10s — 2a° ofg) o,
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with Vy = dV/de, Vs = d*V/d¢?, and
_fbe 4 /37
A i+ y/3 (A9)

2mp+0( 3) +a(4)+ 0(5) +a( )

F MY TR + 1% - [ 4 200 G + 200 Gt 2009 G5 + 2010 G
2 = )
2/<;p+0( 3) +0(4)+ 0(5) +U( 6)

_ KPa0(2) 3( o 2
92 = a2 ‘\g(%ﬁ"w)’

KPa 0(3 1

g3 = 2a2( ) + ﬁ (\/30(2)0-(3)70—(3)0(5)70—(4)0—(6)) ,
KPa0 (4 1

Gy = 2a2( )+ﬁ (\/30(2)0—(4)—'_0(4)0(5)_0(3)0(6)) ,
K Pa0 (5) 1 9 9

Gs = 2 a2 ﬁ(o(g)_g(zi))a

K Do
Ge = 5 2(6) —|—\/§0'(3)0'(4).
a
In these expressions, py = a® o, po = —% a’?H and k = 87 G. The quantities O(n) can be
calculated from the shear tensor o;; = diag(a? o1, a3 02, a3 03); specifically, T(n) = i Azfl )
(withn =1,...,6) are the projections of the shear tensor o;; on the matrices Azfz commonly

used to implement the scalar-vector-tensor decomposition for cosmological perturbations on
FLRW backgrounds in Fourier space:

1 hij 4 Lo 2
A =75 A7 = 75 (hedy + kst )
2 3 ~oA h’L 5 ]' A~ A A A
AZ(]) = 3 (kikj—gj>a Az]) = E (‘Tlxj - yiy])’
3 1 ~ 6 1 A A A A
AE]) = ﬁ (kz-rj + k;sz)v AE]) = E (xiy]' + J:Jyl) (A.lO)

The 4, j are spatial indices that are raised and lowered with the spatial part of the Bianchi I
metric, h;; = diag(a?, a3, a3). In addition, k is the unit vector in the direction of &, normalized
with respect to h;;. & and § are two unit vectors which, together with k, form (a time-
dependent) orthonormal triad, with an orientation satisfying & x § = k.

(n)

Note that o(,) depends on l%, since the matrices Aij do, and it is because of this

dependence that the potentials ¢/, depend on k. Note however that the potentials U, are
independent of the modulus £ of the wavevector. Note also that o, should not be identified
as the Fourier components of the tensor o;;, since o;; is position independent and its Fourier
transform is trivial. The quantities a(n)(l%) are just a convenient way of decomposing the
shear tensor, adapted to the equations of motion for the perturbations I',.

For further details regarding cosmological perturbation theory on an anisotropic Bian-
chi I background, see refs. [15, 17].

B Loop quantum cosmology

This appendix provides a brief summary on the effective equations of loop quantum cosmology
(LQC) for Bianchi I space-times. Although we use LQC to generate the bounce in the
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simulations, the focus of this work is on the contracting pre-bounce phase. For this reason,
we will only briefly summarize the equations that we solve, in order to make our article self-
consistent. For further details about the physics of LQC and the equations we show below,
see [45, 46, 64].

In LQC, the spacetime geometry is quantum, and it is describe by a wave function
U belonging to a suitable Hilbert space. The metric tensor, curvature, etc., are operators
acting on these states. To make contact with semi-classical physics, it is of interest to consider
quantum states ¥ that are sharply peaked on a classical geometry at late times, when general
relativity becomes an excellent approximation. It turns out that for this class of states, the
expectation values of observables follow trajectories given by the so-called effective dynamics
that can be derived from an effective Hamiltonian that includes some A corrections [65, 66].
While studies of the validity of the LQC effective equations as an approximation to the full
quantum dynamics of sharply-peaked states have focused on isotropic FLRW space-times,
LQC effective equations are also expected to hold for anisotropic space-times, since their
validity is due to the fact that the phase space variables correspond to large-scale degrees of
freedom [67, 68].

Since these effective equations of motion in LQC are derived in a Hamiltonian formalism,
it is helpful to briefly summarize the Hamiltonian framework in standard general relativity,
applied to Bianchi I space-times. The phase space for Bianchi cosmologies (coupled to a scalar
field) is coordinatized by four pairs of canonically conjugate variables, namely ay, as, as, ¢ and
their conjugate momenta 7, , T4, , Tas, Py, for which the non-vanishing Poisson brackets are

1 1
{6:pp} = Vo {ai,ma;} = v dij (B.1)

where V) is the (coordinate) volume of space.” The dynamics of the Bianchi I geometry and
the scalar field can be obtained from Hamilton’s equations, with the Hamiltonian given by
the constraint (A.5)

2,2 2,2 2,2
Vo aim asm asm,
1 2%ag 3'"as

Hpr = 4+
BI 2\/E

2 2 2 - alﬂ'alaQﬂ-ag - a277a2a37ra3 - a377a3a17ra1>

+ 5+ 2h V(¢)1 : (B.2)

where h = (ajazasz)? is the determinant of spatial metric hij, and K = 8wG. Hamilton’s
equations

a; = {a;, Hpi}, Ta; = {Ta;» Hp1} (B.3)
¢ = {6, Hp1}, P = {pg: "},
are equivalent to Einstein’s equations for Bianchi I space-times, described in appendix A.1.

The equations of LQC are written in terms of a different set of variables, due to the
use of a connection rather than a metric tensor to describe the gravitational field — these

5Because of the homogeneity of space, the integrals involved in the definition of the Hamiltonian and the
symplectic form diverge if the spatial slice is non-compact. But this divergence is spurious, and it can be
regularized by restricting integrals to a box of arbitrarily large but finite coordinate volume V. It is convenient
to choose the sides of the box to be aligned with the three principal axes x;, and of length L;, so Vo = LiL2Ls.
This volume is an infrared regulator, which can be taken to infinity at the end of the calculation.
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are the Ashtekar-Barbero variables [69, 70]. For Bianchi I geometries, these variables reduce
to three pairs of canonically conjugate variables ¢; and p;, with ¢ = 1,2, 3, for the geometric
degrees of freedom. The non-vanishing Poisson brackets are

Ky 1
1 Pjsr = (51“7 ) = ) B.4
{ciipj} Vo % {¢.po} Ve (B.4)

where v is a constant known as the Barbero-Immirzi parameter; v has no effect on classical
physics, but its value does have an impact on some quantum gravity effects.
The relation between ¢; and p; and the metric variables a; and 7, is

W a3

pi = L, @

1
. ci=—kyLia 3a (ai Ta; = 5 Zajﬂaj) ,  (nosum in 7). (B.5)
J

The classical Hamiltonian constraint (B.2), when written in terms of ¢; and p;, takes the form

-1 Vsp;,
Hpr = ["1’720 (0162]91102 + cic3pips + 62032?2]93) + Wd) +o V(o) |, (B.6)

where v = /p1p2p3. A physical solution to the equations of motion

¢ = {ci, Hei}, pi = {pi, Hei}, (B.7)
¢ ={¢, Hp1}, Po = {pe, Hp1}, (B.8)

is uniquely singled out by specifying ¢(to), ci(to) for i = 1,2,3, and the sign of pg(to)
at any instant ty. (In exactly the same way as for the directional scale factors a;, the
concrete numerical values of p;(tg) are not observable as they change under rescalings of the
coordinates x;, and different choices for p;(tp) produce physically equivalent solutions.) So
far this is completely equivalent to general relativity, merely written in other variables.

The leading order quantum effects in LQC can be incorporated through the replace-
ment [64]
_, sinlc) (B.9)

Hi

where fi = VA \/p1 /p2 p3, and similarly for jiz and i3, where A = 4/37yGh is the smallest
non-zero eigenvalue of the area operator in LQG. These trigonometric functions capture
in a precise way the dominant quantum effects in LQC. As a result, the LQC effective
Hamiltonian is

—1 sin(fi1 ¢1) sin( g ¢ sin(fu1 c3) sin(jug c3
HiaC _ | < (fia c1) sin(ji )plp2 . Sin(fi cs) sin(f )plp3
rRy*v M1 w2 251 M3
. . 2,2
sin co) sin C Vop
. SinAa cz) sin(/y 3)p2p3> 4+ 27 +vV(¢)1. (B.10)
2 K3 2v

The solutions to Hamilton’s equations (B.7) derived from this Hamiltonian are the effective
equations of LQC for Bianchi I space-times. Once a solution is obtained, the directional
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Hubble parameters are given by

Hy = = [sin (fnes — faca) + sin (e — figes) + sin (1aca + fiscs) |
1= ——|SIn 1C1 — U2C2 S1n 1C1 — U3C3 Sin 2C2 3C3) |,
/AL Iz Iz B B T fizcs) |

r 7. _ . _ . _ T
Hy = VA sin (f1gco — p1c1) + sin (figea — figes) + sin (fye1 + fiscs) | (B.11)

Hy = ——[sin (jises — firer) + sin (fiscs — finca) + sin (e + fizes)
3 = ———|Sln 3C3 — U1C1 Sin 3C3 — U2Co Sin 1C1 2C2) |,
/AL Iz Iz Iz B [ fizc2) |

and these can be integrated to find the scale factors a;. Also from these expressions, it is
possible to calculate the mean Hubble rate H = % zg’;l H;, as well as the components of the
directional shears o; = H; — H. The equations of motion for ¢ and its momentum py are the
same as in classical general relativity.

One consequence of the LQC corrections is that the shears ¢; no longer scale exactly
as a3, and therefore 02 = Y, 02 also no longer scales exactly as ¥.2/a% with ¥ a constant.
Rather, defining X2 = @502, it can be checked that 2 starts to vary during the bounce,
but rapidly approaches the same constant value £? either side of the bounce in the classical
limit [71]; this result holds whether anisotropies are large or small.

Denoting the classical limit of $2 as 32, it is possible to derive a modified Friedman
equation for the LQC effective dynamics of Bianchi I space-times [71]

2

871G <1 ,0) 2 3% 2754
="

3 _

- (B.12)

ab  abp,  8wGal’p,’
up to higher order terms in ¥2/a® that are negligible for the runs of interest here that have
small anisotropies. Here py is the critical energy density; it determines the curvature scale
that the bounce occurs at (note that the presence of the last three terms in (B.12) implies
that the energy density at the bounce does not necessarily coincide with p. if ¥ is different
from zero).

In this paper, since ¥2/a® < p in all our simulations (since otherwise the anisotropies
would violate observational constraints), the cosmic bounce happens when the energy density
is extremely close to pp. Note that the departures from general relativity due to LQC cause
a cosmic bounce to occur, but the LQC effects are entirely negligible away from the bounce.
Specifically, the departures from general relativity are significant only for the very short time
interval around the bounce, of the order of the time ~ pb_l/ % in Planck units.

For studies of the LQC bounce for Bianchi space-times with large anisotropies, see [72-74].
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