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Event horizons are tunable factories of quantum entanglement
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Abstract

That event horizons generate quantum correlations via the Hawking effect is
well known. We argue, however, that the creation of entanglement can be modu-
lated as desired, by appropriately illuminating the horizon. We adapt techniques
from quantum information theory to quantify the entanglement produced during
the Hawking process and show that, while ambient thermal noise (e.g., CMB
radiation) degrades it, the use of squeezed inputs can boost the non-separability
between the interior and exterior regions in a controlled manner. We further
apply our ideas to analog event horizons concocted in the laboratory and insist
that the ability to tune the generation of entanglement offers a promising route

towards detecting quantum signatures of the elusive Hawking effect.
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The allure of black holes has captivated physicists for nearly a century, partly due
to the fact that their internal mechanisms are completely concealed by a dark cloak
—the black hole’s event horizon. The mystique of black holes was amplified when, in
a set of seminal papers in the early 1970’s [1,2], Stephen Hawking showed that, once
quantum fluctuations are accounted for, a black hole is not actually black but, instead,
emits radiation as a hot body, gradually losing its mass in what has been dubbed as
the Hawking evaporation process. Even more, Hawking’s calculations imply that the
evaporation products are quantum mechanically entangled with the bowels of the black
hole.

Understanding the generation of entanglement by a black hole, with relation to its
surrounding (perhaps even “noisy”) environment, elicits deeper knowledge about the
black-hole evaporation phenomenon. In the past, entanglement entropy between the
interior and exterior of the event horizon has been extensively used for these purposes
[3], but this quantity only quantifies entanglement when the global state of the system
is pure. This is not the case, for instance, if a black hole is immersed in a thermal bath,
e.g., the cosmic microwave background (CMB). In this essay, we leverage techniques
from quantum information theory to compute and interpret the entanglement generated
during the Hawking process for an evaporating black hole in a nontrivial environment.

Specifically, we apply the theory of Gaussian states for continuous variable systems
with a finite number of interacting modes [4]. At first glance, our task may seem barren,
since the Hawking effect is formulated in the context of field theory with its infinitely
many degrees of freedom. In Hawking’s original derivation, this is manifested in the
fact that the Hawking mode reaching future null infinity (as a normalized wave-packet
sharply peaked on a positive frequency mode e~**“*“), when propagated backwards in

time to past null infinity, consists of a superposition of modes e~*%" over all frequencies

w (u and v are the standard retarded and advanced null coordinates, respectively). In



other words, the evolution mixes infinitely many “in” modes with well defined frequen-
cies w to produce one “out” mode with frequency w. However, as was noticed in [5],
by appropriately combining “in” modes e *¥¥ with positive frequency, one can find
the progenitors of the Hawking modes. These progenitors are two normalized modes
Fi(w) and Fy;(w) at past null infinity, which define the same “in” vacuum and, conve-
niently, have the property that their evolution produces exactly a single “out” Hawking
mode e*“* and a single partner mode falling into the black hole. The explicit form
of Fr(w) and Fyr(w) is not important for our purposes and can be found in [5 6] [
However an important observation —not often appreciated— is that this choice of “in”
modes factorizes the evolution into uncoupled w-sectors, in the sense that pairs of modes
Fr(w) and Frr(w) do not mix with other pairs labelled by different w. This decoupling
of w-modes allows one to straightforwardly apply techniques from Gaussian quantum
information theory, as we now explain.

The evolution of the Fr(w) and Fj;(w) “in” modes is made of two contributions
of distinct physical origin, which we wish to differentiate. Let a*(w) and a%(w) be
annihilation operators defined from normalized wave-packets sharply peaked on the
modes Fr(w) and Fir(w) at past null infinity, and a2 and a(w) be annihilation
operators similarly defined from Hawking modes of frequency w at future null infinity

and their partner crossing the horizon, respectively. The first contribution —which

constitutes the core of the Hawking effect— is the transformation
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“We remark that both Fr(w) and Fyr(w) are made mostly of modes e *®" with ultrahigh-
frequencies w at past null infinity [5,[7]. This is the origin of the well-known trans-Planckian prob-
lem [8}|9].
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Figure 1: Various depictions of the Hawking process. The main ingredients —a two-
mode squeezer associated with pair-production at the event horizon and a beam-splitter
induced by the potential barrier surrounding the horizon— are emphasized in the middle
and right panels. We illustrate the difference between low and high frequency modes
by their wavelengths. The right panel represents the process in the form of a quantum
circuit.

where ry = tanh™! ¢ 77 and Ty is Hawking’s temperature. Here, we have omitted
the label w and the angular quantum numbers ¢ and m for brevity. In the terminology
of quantum optics, this transformation is precisely a process of two-mode squeezing |10],
which is responsible for the creation of entangled Hawking pairs.

A second contribution of the Hawking process is “back-scattering”, which occurs as
Hawking radiation tries to escape to infinity. In doing so, the outgoing radiation meets
and scatters off the gravitational potential barrier surrounding the black hole —leading
to a portion of the wave-packet being reflected (or scattered back) into the black hole;
the remaining portion gets transmitted to future null infinity. This classical scattering
—iW v

phenomenon involves a third “in” mode, made of wave-packets centered on e at past

null infinity, with frequency w ~ w (i.e., back-scattering does not involve an ultrahigh

blue-shift), and a second “int” mode falling into the horizon, centered on e~*®?, also

with @ ~ w (see Fig. . If we denote by b and 5™ the annihilation operators defined



for these wave-packets, respectively, back-scattering induces the transformation,

b — b cos® + ad™ sind,

~out ~out 7int _:
ag® — apt cosf — bl sind, (2)

where I' = cos?@ is the probability to transmit across the potential barrier, which
depends on w, ¢, m and the spin s of the field under consideration. In the terminology
of quantum optics, this is the action of a beam splitter.

Thus, for each individual frequency w, the Hawking process can be understood
as an evolution from three modes to three modes, G, a, bin — ot aint pint —oply
one of which escapes to infinity— made by concatenating a two-mode squeezer and
a beam splitter, as depicted in Fig. [I The beam-splitter divides both the intensity
and the entanglement generated by the squeezer, in such a way that the a2" mode
reaching infinity is generically entangled with both, the high frequency mode a'™, and
the low frequency one I;;Bt (frequencies measured by freely falling observers crossing the
horizon). Describing the Hawking process in this way is advantageous, as such allows
us to compute the resulting evolution of various input Gaussian states in a few simple
lines.

Recall that the information in a quantum Gaussian state is exhaustively encoded in
its first moments and its covariance matrix (defined below). For each “in” mode, define
a pair of canonically conjugate operators &, = \%(da +al), pa = \’/—%(&a —al), where
the index « labels the three “in” modes. Let 7' = (&1, 1, &2, P2, T3, P3) be the vector of
canonical operators. The first moments of a Gaussian state p are p’ = Tr[p7'], and its
covariance matrix o = Tr[p {7’ — ', 77 — p/}], where the curly brackets indicate an

anti-commutator.

The Hawking process is a linear evolution, as is evident from and ; hence it



preserves Gaussianity: i.e., the evolution maps an initial Gaussian state with ('™, o™)
to another Gaussian state with (ji°"*, 0°"*). Specifying the input moments and the evo-
lution, we can obtain any desired information about the Hawking effect. For instance,
the mean number of quanta on any “out” mode is (f,) = $Tr[oo] + gos T - o — 1,
where the subscript “red” stands for “reduced”, and indicates the components corre-
sponding to the concrete mode under consideration.

Another quantity that we are particularly interested in is the entanglement between
the interior and exterior regions of the black hole. Entanglement can be conveniently
quantified by means of the logarithmic negativity (LogNeg) [11,{12]. LogNeg has im-
portant advantages for our purposes, as compared to other entanglement quantifiers or
witnesses. On the one hand, it can be easily computed from the covariance matrix o/f
of any bi-partite system. On the other hand, if either subsystem A or B is made of
a single mode, LogNeg is a faithful quantifier of entanglement, even for mixed states
(see, e.g., [4] for further details). We note that entanglement is encoded entirely in the
covariance matrix, with no reference to the first moments.

We apply these tools to a few examples. The simplest case is when the “in” state
consists of only vacuum fluctuations, in which case the first moments are i = 0 and
the covariance matrix is o', = T, where I is the 6 x 6 identity matrix. Straightforward
application of and produces (fioy(w)) = T'(w) sinh® rg(w) for the out mode
reaching infinity, where we can distinguish the contribution from both the two-mode
squeezer and the beam splitter. This is a well known result for the spontaneous Hawking

effect [2].

As an example of the entanglement in the final state for vacuum input, the LogNeg

out

between the Hawking mode ag,

and the two modes falling into the black hole is given

by the following expression, which, although not particularly illuminating, shows that



this quantity can be analytically expressed in closed form

LogNeglag"|(af", by")] = Max [07
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By plotting this expression, one can check that the presence of the potential barrier
degrades the entanglement carried out to infinity. For example, entanglement vanishes
in the limit 6 — 7/2 (I' — 0), since, in that limit, the barrier completely blocks the
outgoing Hawking radiation. This in turn implies that, for a fixed frequency w, modes
with the lowest angular multipoles ¢ carry most of the entanglement (as well as most
of the energy).

If we replace the initial vacuum by an excited state, we are in the realm of the
stimulated Hawking process. A simple scenario here is when the initial state is a coher-
ent state. Coherent states are “displaced vacua”, in the sense that they are Gaussian
states with the same covariance matrix as the vacuum, but have different first moments:

(fioon # 0, Ocon = ). Using the expression for (n,) given above, we quickly see that

out
w

the mean number of quanta in the Hawking mode a2 gets amplified, as expected.
However, the entanglement structure in the final state remains ezactly the same as for
vacuum input, as the covariance matrices for each are identical. Hence, seeding the
process with coherent states does not change quantum aspects of the final state. This
justifies the common lore about the intrinsically classical character of the stimulated
Hawking effect. We now argue, contrary to the common lore, that such is not true for

other input states.

By illuminating the black hole with, e.g., a single-mode squeezed state in either of
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Figure 2: Left Panel: LogNeg[ac™|(ai™, bint)] measuring the entanglement between the
Hawking mode reaching infinity and the interior of a Schwarzschild black hole, for
photons with w = 6.25Ty, ¢ = 1, m = 0 (the mode which emits the maximum amount
of energy in electromagnetic radiation, and for which I' = 0.4689 [14]) as a function of
the squeezing intensity r; in the “in” mode a'". Right Panel: Same quantity versus the
environment temperature (no initial squeezing; r; = 0).

the modes @' or a, we find that both the number of final quanta in the Hawking
modes a0™ and its entanglement with the interior modes are amplified. Consider a
squeezed vacuum in the @i mode, (fisgy, = 0, Osqy = €722"7 @ Iy), where o, is the
familiar z-Pauli matrix and r; is the initial squeezing intensity. Fig. 2| shows that the
entanglement between the black hole interior and the exterior (formally quantified by
LogNeg[a2"|(alr*, o%)]), for a given frequency w, grows with 7. Note that a single-mode
squeezed state does not contain any entanglement among each of the three “in” modes,
so the final entanglement is entirely generated during pair-production in the Hawking
process. Hence, by tuning the initial squeezing r;, one can enhance the entanglement
generated by black holes. There are multiple reasons that make the implementation of
this idea impossible for astrophysical black holes; the most prominent being that the
two “in” modes a\* and a'% are made of ultrahigh-frequency modes at past null infinity.
However, as we argue below, the implementation in analog event horizons produced in

the lab is feasible with present technology, since the blue-shift between frequencies of

“In” and “out” modes is not exponentially large, as in the astrophysical case [13].



Let us next consider thermal input radiation. This is of obvious interest since all
astrophysical black holes are immersed in the CMB. Thermal states are mixed Gaussian
states, with zero mean, no correlations among modes, and covariance matrix for each
individual mode equal to (2n%,, + 1) I, where ng , is the number of thermal quanta in
the mode a. Since the modes al* or @iy are ultrahigh-frequency modes (see footnote ),
and assuming the temperature is small compared to the Planck scale, it is reasonable to
substitute nen, &~ 0 for them. The relevant thermal quanta in the initial state occupy
only the low frequency mode 13;;‘ The initial state is thus characterized by i} = 0 and
ot ~ Iy B (2Neny + 1) Iy, from which we find (Rout) = Neny (1 =) + T sinh? ry; quanta
reaching infinity. This is the same result that we would obtain for vacuum by simply
adding the thermal quanta scattered back to infinity by the potential barrier. From
here, we see that if Ny, is equal to sinh? 7y (i.e., Ty = Tupy) We have (fout) — Neny = 0
for all w, and the black hole is in equilibrium, as expected from thermodynamical
arguments. Note that the black hole loses mass only if Ty > Ty,,.

It is intriguing to wonder how the entanglement between the interior and exterior
regions of the black hole is modified when the black hole is immersed in a thermal bath;
so we compute the entanglement in this scenario and plot the results in Fig. 2 We
see that thermal fluctuations of the bath are detrimental to the quantum entanglement
between the emitted Hawking quanta and the black hole. Hence, although the mode
l;ful is only involved in the process of back-scattering, thermal fluctuations present in
this mode degrade the entanglement produced in the Hawking process. A physical
consequence of this is that, since astrophysical black holes have Hawking tempera-
tures several orders of magnitude lower than the CMB temperature, the faint Hawking
quanta they emit are barely entangled with the black hole’s interior. This can be seen
quantitatively in the right panel of Fig. [2| where we observe a sharp transition in the

entanglement as T.,, = Ty. Remarkably though, for arbitrarily high environmental



temperatures, the entanglement saturates to a small —but still non-zero— value. (We
note that astrophysical black holes are also immersed in noisy backgrounds of other
fields that contribute significantly to the Hawking process, like the cosmic background
of neutrinos and the stochastic background of gravitational waves. Both will generically
degrade the generation of entanglement for these fields, especially for neutrinos due to
their fermionic character.)

We finish this essay by arguing that the ideas thus presented have direct applicability
for analog event horizons manufactured in the laboratory. We highlight this with a
popular scenario to recreate the physics of the Hawking process: optical systems [13|
15-27]. In an optical analog, an electromagnetic pulse in a dielectric material locally
modifies the refractive index via the so-called Kerr effect. Hence, by introducing a
strong pulse in a dielectric material, the speed of weak probes propagating thereon
can be tuned. Probes that are initially faster than the pulse will slow down when
trying to overtake it, and if the pulse is strong enough, its rear end acts as an (moving)
impenetrable barrier. This is the analog of the horizon of a white hole. Similarly, an
analog black hole horizon appears in the front end of the pulse. The creation of these
white-black holes has been experimentally carried out, and the stimulated radiation
with coherent inputs has been recently demonstrated in [23]. Optical systems offer a
great advantage to generate, manipulate, and observe quantum states as well as their
entanglement structure [28] —tasks that are routinely done with present technology.

The decomposition of the Hawking process in terms of two-mode squeezers and
beam-splitters, as described in this essay, can be repeated for these optical systems [29],
and although the scenario is richer than that of astrophysical black holes, due to non-
trivial dispersion relations of the media, the conclusions are similar. Namely, the gen-
eration of entanglement in the Hawking process can be tuned, either degrading it by

illuminating the system with noisy thermal photons or amplifying it using squeezed
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Figure 3: Left panel: Illustration of the structure of modes for an optical analog white-
black hole in the frame comoving with the pulse; the modes k; shown are the solutions to
the dispersion relation k(w) for a fixed frequency w. Right Panel: LogNeg between the
outgoing white-hole Hawking-pair k{"* and k$"™ versus the initial squeezing intensity
r}g, for w = 2Ty. We assume isotropic thermal noise, fieny = (/%o — 1)~1 with
Teny = T, and 10% losses.

inputs. Some quantitative results of our recent detailed analysis [29] are shown in the
right panel of Fig. These calculations incorporate the effects of ambient noise and
losses, both ubiquitous in real experiments. The ability of tuning the input quantum
state provides a sharp tool to test the two defining aspects of the Hawking process,

namely the generation of quanta with a black body distribution and a concrete entan-

glement structure, and a protocol to observe these features has been put forth in [29].
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