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Investigating open reading frames in known 
and novel transcripts using ORFanage

Ales Varabyou    1,2  , Beril Erdogdu1,3, Steven L. Salzberg    1,2,3,4 & 
Mihaela Pertea    1,2,3 

ORFanage is a system designed to assign open reading frames (ORFs) to 
known and novel gene transcripts while maximizing similarity to annotated 
proteins. The primary intended use of ORFanage is the identification 
of ORFs in the assembled results of RNA-sequencing experiments, a 
capability that most transcriptome assembly methods do not have. 
Our experiments demonstrate how ORFanage can be used to find novel 
protein variants in RNA-seq datasets, and to improve the annotations of 
ORFs in tens of thousands of transcript models in the human annotation 
databases. Through its implementation of a highly accurate and efficient 
pseudo-alignment algorithm, ORFanage is substantially faster than other 
ORF annotation methods, enabling its application to very large datasets. 
When used to analyze transcriptome assemblies, ORFanage can aid in 
the separation of signal from transcriptional noise and the identification 
of likely functional transcript variants, ultimately advancing our 
understanding of biology and medicine.

Approximately 20,000 protein-coding genes have been annotated for 
the human genome1–5. Although a single isoform is often the source of 
the dominant protein6–8, many human gene loci express isoforms that 
encode different protein sequences, some of which may be tissue-
specific9–12. The NCBI RefSeq database, for example, contains an average 
of 6.9 isoforms for each human protein-coding gene, which encode an 
average of 4.4 distinct protein sequences. The RefSeq annotation of 
the model organism Arabidopsis thaliana has on average 1.8 isoforms 
with 1.5 unique protein variants, respectively.

RNA-sequencing (RNA-seq) technology has allowed an unprec-
edented look at the transcriptome in a wide variety of species, with 
multiple studies reporting large numbers of previously unknown 
transcripts for protein-coding genes3,13–16. Consistent with previous 
reports about alternative splicing events17, most of the novel transcripts 
reported in RNA-seq studies are observed in protein-coding regions18,19. 
Alternative splicing events can alter the translated protein through 
exon skipping, frame-shifting and other changes20. These events and 
their effects on translated proteins are an essential component of 
genome biology9.

Changes in protein sequences may also be characteristic of disease 
states10,21–24 or of specific tissues9,25,26. For example, splicing-induced 
changes in protein sequences have been associated with cancer 
development and progression, from activation of proto-oncogenes27 
to genome-wide splicing alteration in certain cancer types28,29. One 
example of why it is important to annotate all protein isoforms in 
the human genome is the widespread usage of exome sequencing in 
clinical settings. Exome capture methods have been extensively used 
to interrogate genetic variants and their associations with diseases, 
such as finding the genetic cause of a rare form of pediatric epilepsy30, 
or identifying driver mutations in cancer31. The technology is heavily 
dependent on the correct annotation of coding regions, and any exons 
that are unannotated will simply be missed by exome studies.

However, many observed novel transcripts are likely to represent 
transcriptional noise32; for example, the original CHESS database 
assembled ~29 million transcript variants from 10,000 RNA-seq experi-
ments, of which fewer than 2% were kept in the final annotation3,4. The 
ability to accurately identify non-functional isoforms can be a valu-
able tool in differentiating signal from noise in RNA-seq data, which 
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Although we found that ORFs in a large majority of transcripts in 
the RefSeq human annotation were in agreement with those predicted 
by ORFanage (117,212 out of 135,694), there were some striking differ-
ences, as illustrated in Table 1 and Supplementary Table 2. For example, 
we identified 2,122 transcripts in which an ORF annotated by RefSeq 
could be replaced by the canonical version from MANE without altera-
tions. Similarly, 786 of the ORFs in the GENCODE human annotation 
could be replaced by their canonical variants from MANE. Even though 
alternative translations may be present at those transcripts, because 
GENCODE and RefSeq both recognize MANE as a standard6, it seems 
appropriate to choose the MANE ORFs over the alternative variants in 
accordance with established curation guidelines41.

In our analysis we purposefully refrained from filtering candi-
date ORFs, opting to report one best candidate ORF for every tran-
script where some sequence similarity was observed to the reference 
annotation. This allowed us to investigate all cases where analyzed 
annotations were inconsistent with the MANE reference at the cost 
of potential false discoveries. However, our software provides users 
with the ability to fine-tune the results through parameter settings 
such as the percent identity score, matching the translation initiation 
site, and other customizable criteria. These options enable users to 
refine the identification of valid ORFs and limit the number of false 
positives.

As a result, we also found thousands of transcripts for which no 
ORF was listed, even though they were annotated under protein-coding 
genes and even though a candidate ORF was identified by ORFanage 
(examples are provided in Supplementary Figs. 3 and 4). In GENCODE, 
we found an ORF that at least partially overlapped the MANE ORF in 
35,540 out of 55,328 of these transcripts, including 147 transcripts 
that contained a perfect match to the MANE ORF. Although the RefSeq 
database had fewer protein-coding transcripts with no ORF listed, 
we still found 10,434 transcripts for which our method predicted an 
ORF, including 1,194 with a perfect match to MANE (Table 1 and Sup-
plementary Table 2).

We also looked at transcripts where both ORFanage and the ref-
erence annotation differed from MANE (5,301 in RefSeq and 7,957 in 
GENCODE). For these transcripts we computed the percentage of 
in-frame positions shared between the annotated proteins and the 
MANE protein and observed that in 613 RefSeq and 7,005 GENCODE 
transcripts, ORFanage produced a protein that was closer to MANE 
(Fig. 1c,d). In many cases the differences were minor, affecting only 
start coordinates or conserving different segments of the reference 
protein. In some cases, though, such as ZNF180, as shown in Fig. 1f, 
ORFanage identified an ORF that conserved nearly all of the MANE 
protein sequence, while the protein encoded by the GENCODE ORF 
had no overlap with MANE. However, higher similarity of ORFs is not 
the only criterion for assessing ORF validity and other methods may 
be necessary to validate any novel sequences. Yet, in the absence of 
additional data, the similarity criterion can be successfully applied, 
as shown in our evaluation.

When ORFanage found an ORF that differed from the one chosen 
by RefSeq or GENCODE, the ORFanage sequence had an equal or higher 
proportion of codons that matched MANE (Fig. 1c,d), a property that 
is guaranteed by the algorithm. We confirmed these results by per-
forming global alignments of the proteins to the MANE variants using 
EMBOSS Stretcher42. The higher percent identity is a consequence of 
the metric that ORFanage maximizes, which we term ‘in-frame length 
percent identity’ (ILPI). Following ORF identification via the algorithm 
described in Fig. 2, to compute ILPI, our method first computes the 
total number of positions in an ORF that are in the same frame as the 
reference, thus coding for the same codons, which determines the in-
frame length (IL). The ILPI is then computed as the fraction of IL of the 
total length of the reference coding sequence (CDS). As illustrated in 
Fig. 1e, the correlation between ILPI and percent identity computed 
via the Smith–Waterman algorithm is very high.

is currently complicated by artifacts from computational methods, 
such as alignment and assembly errors, as well as the amount of noise 
inherently present in the data32.

Although many methods have been implemented for searching 
and assembling transcripts from RNA-seq data33,34, none of them iden-
tifies open reading frames (ORFs) based on similarity to the original 
protein at the locus. A number of methods, including TransDecoder34 
and GeneMarkS-T35,36, have been developed for ab initio ORF annota-
tion (Methods and Table 2), but these methods were designed to find 
ORFs without the use of reference annotation as a guide. Other previous 
approaches only identified the longest ORF, sometimes requiring it to 
have the same start or stop codon positions as a reference35,37–39. None 
of these approaches consider the similarity of the resulting protein to 
previously known translations of the transcript.

In this Article we present ORFanage, a highly efficient and sensi-
tive method to search for ORFs in protein-coding transcripts, guided 
by reference annotation to maximize protein similarity within genes.

Results
Accuracy of reference ORF reconstruction
ORFanage utilizes protein-coding gene annotation by identifying ORFs 
in query transcripts that have the maximal sequence identity with a 
user-provided set of reference ORFs. This approach presumes that 
proteins produced by different transcripts at the same locus should be 
as similar as possible8,40. In our first set of experiments, we tested the 
ability of ORFanage to reconstruct the GENCODE and RefSeq protein-
coding annotation given an annotation that includes one canonical 
ORF at each protein-coding gene locus. For these experiments, we used 
the MANE database to define the canonical ORFs, because MANE was 
created by the developers of GENCODE and RefSeq to be a ‘universal 
standard’6 of human protein-coding genes, and because both GENCODE 
and RefSeq contain every gene in MANE. These experiments illustrate 
how ORFanage can produce a set of ORFs at a locus that better agree 
with a chosen reference annotation, conserving the protein sequences 
and making annotation more internally consistent.

As shown in Fig. 1a, many gene transcripts in both RefSeq and 
GENCODE are annotated with ORFs that differ from the canonical 
variant; for example, 65% of ORFs in the RefSeq human annotation and 
36% in GENCODE differ from the MANE ORF (Fig. 1a). In principle, the 
presence of an ORF that differs from MANE does not imply an error; 
however, if another ORF can be found in the same transcript that has 
closer identity to MANE, then an error seems possible. Furthermore, 
8% of RefSeq and 43% of GENCODE transcripts in protein-coding loci 
have no ORFs annotated at all. By re-annotating each of the reference 
datasets using ORFanage, we identified numerous cases where a dif-
ferent ORF was more similar to the canonical protein. One example, 
from the ZNF180 gene, is shown in Fig. 1f.

Table 1 | Summary of differences between ORFs found 
by ORFanage and the originally annotated ORFs for all 
transcripts in RefSeq and GENCODE protein-coding genes

Reference annotation RefSeq GENCODE

ORFanage finds the same ORF as reference 117,212 63,966

ORFanage finds a different ORF that matches MANE 
perfectly

2,212 786

No ORF annotated on reference transcript, ORFanage 
finds an ORF that matches MANE

1,194 147

No ORF annotated on reference transcript, ORFanage 
finds an ORF that is different from MANE

9,240 35,393

Other combinations 5,836 27,994

Total number of protein-coding transcripts 135,694 128,286

Comparisons to the MANE annotation refer to the ORFs from the MANE gene set, which is 
fully contained within both RefSeq and GENCODE.
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We then took a closer look at the 44,532 GENCODE transcripts 
where ORFanage found a different ORF. We found that ORFs identi-
fied by ORFanage often contained many novel positions (that is, 
not matching MANE). More specifically, nearly 22% of positions in  
these novel ORFs are marked as potentially coding only by  
our method, and although many of these positions could be arti-
facts of partial transcript models included in the GENCODE annota-
tion, some are likely to represent new functional variants of known 
proteins14,23.

It is also worth noting here that when guided by protein-cod-
ing annotation such as MANE, ORFanage can reconstruct the ORFs  
present in GENCODE or RefSeq faster and more accurately than ab  
initio ORF finders like TransDecoder or GeneMarkS-T (Table 2  
and Methods).

The large number of missing annotations and overall observed 
improvements demonstrate the potential use of ORFanage at finding 
consistent ORFs in novel transcripts at protein-coding loci.

Impact of reference transcripts on accuracy
In the next set of experiments, we set out to investigate how well our 
method can reconstruct a full set of protein sequences from subsets 
of reference data. We wanted to establish (1) how accuracy improves 
with an increase in the number of annotated ORFs at a locus and (2) 
the effects of choosing different subsets of known ORF variants on the 
accuracy of prediction. To answer the first question, we incrementally 
increased the number of ORFs provided to ORFanage as a reference. To 
address the second question, we repeated the experiment but randomly 
chose different sets of reference ORFs.
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Fig. 1 | Overview of irregularities in reference database ORF annotation. 
a,b, Differences in ORFs at MANE loci as currently annotated for RefSeq (a) 
and GENCODE (b) annotations. Circular charts show, for each dataset, the 
proportions of transcripts annotated with the same ORF as MANE (gray), those 
with an alternative ORF not matching MANE (yellow), and transcripts in MANE 
loci that lack an annotated ORF (blue). c, Percent identity computed between 
the MANE protein and alternative ORFs as predicted by GENCODE (dark green) 
and ORFanage (light green). d, Histogram of the change in percent identity when 
replacing the GENCODE ORF with the ORFanage ORF. e, Pearson correlation 
coefficient (r) and P value (two-sided, t-distribution) between percent identity 
computed via traditional alignment and ILPI computed by ORFanage, illustrating 
the close similarity between the two metrics (10,000 random samples).  

f, A detailed look at alternative ORFs annotated by GENCODE and ORFanage for 
the ZNF180 gene. At the top is the MANE isoform, shaded in pink, with its ORF 
shown in blue. Below it are two versions of an alternative isoform, with the ORFs 
annotated by ORFanage (middle) and GENCODE (bottom). Blue regions show 
where the protein sequence matches the MANE isoform, and green and orange 
show regions that are additional (green) or out of frame (orange) compared 
to MANE. At the bottom is a zoomed-in view of the first intron and flanking 
ORF regions. g,h, Overview of the impact that completeness of reference 
annotation has on the accuracy of ORFanage: percent of correctly inferred ORFs 
given different fractions of known reference ORFs for four organisms (g) and 
percentage of known ORFs that ORFanage failed to identify for different levels of 
reference completeness (h).
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We repeated the iterative selection of reference transcripts ten 
times, providing 25%, 50% and 75% of the reference ORFs as a guide each 
time. We ran our analysis on the human genome annotation as well as  
A. thaliana and Caenorhabditis elegans using the same protocol. For the 
human genome, we evaluated both RefSeq and GENCODE, because the 
two databases differ substantially in their ORF annotations. For each 
test run, we ensured that at least one transcript remained unannotated 
at each locus and that any non-coding transcripts were removed before 
the evaluation.

The diversity of transcripts annotated for A. thaliana and C. elegans 
is much lower than for human reference annotations, with 1.8 and 1.4 
transcripts per coding gene, respectively, compared to six and eight 
for RefSeq and GENCODE human annotations. Worth noting is that 
for C. elegans, only 4,440 suitable loci were identified based on the 
aforementioned criteria.

As expected, we observed an increase in accuracy as more refer-
ence annotation was provided. For the human genome, if we provided 
just a single reference ORF per locus (equivalent to 11% of all ORFs 
in RefSeq and 18% of all ORFs in GENCODE), ORFanage was able to 
correctly recreate 85% of the RefSeq ORFs and 81% of GENCODE 
ORFs. When we provided 75% of the reference ORFs, ORFanage cor-
rectly recreated close to 99% of RefSeq and 95% of GENCODE ORFs  
(Fig. 1g,h).

Even when ORFs were not identical to the original sources, the 
predictions produced by ORFanage were highly similar, averaging 
81% for the non-identical predictions in the RefSeq dataset and 77% in 
GENCODE, respectively.

Because A. thaliana and C. elegans have fewer annotated reference 
ORFs per locus, our random permutations had smaller effects on the 
results. Nevertheless, in A. thaliana, ORFanage was able to correctly 
identify 91–97% of reference ORFs. For C. elegans the values were lower, 
ranging from 77% when a single random reference ORF was provided 
to 90% when guided by more complete annotations.

Finding novel ORFs in assembled RNA-seq data
One of the main applications of ORFanage is to search for ORFs in 
datasets containing large numbers of transcripts that have not been 
assigned ORFs. ORFanage can annotate transcriptome assemblies from 
RNA-seq experiments, which often contain many novel splice variants, 
even for well-annotated genomes3,4,43. In these cases, ORFanage can 
identify candidate ORFs for protein-coding transcripts based on the 

conservation of known protein sequences at the locus using reference 
annotation as a guide.

We next applied ORFanage to search for novel ORFs in experimen-
tal data, using data from the GTEx project44, a high-quality collection 
of poly-A selected RNA-seq samples across multiple human tissue 
types. We focused our experiments on 1,448 samples from brain tissue 
because these represented the most diverse collection of samples in the 
dataset. We ran ORFanage on the complete, unfiltered set of assemblies 
containing 6,674,316 isoforms that were assembled originally for the 
CHESS human annotation database3,4.

We computed ORFs for all transcripts using the MANE annota-
tion as the guide. For every MANE gene, we first identified all assem-
bled transcripts overlapping that gene using gffcompare45 (similarity 
codes ‘=’, ‘c’, ‘k’, ‘m’, ‘n’, ‘j’, ‘e’), yielding 4,256,346 transcripts. We then 
computed the total gene expression for each transcript using the sum 
of transcripts per million (TPM) values for that transcript across all 
samples.

In our search for novel ORFs, we took a conservative approach: if 
a transcript could accommodate an ORF from either RefSeq or GEN-
CODE, we assigned that ORF to the transcript. Additionally, we removed 
ORFanage predictions for all transcripts marked as non-coding by 
either RefSeq or GENCODE. Because multiple distinct transcripts can 
contain the same novel ORF, we simplified our analysis by computing 
the total TPM aggregated across transcripts sharing the same ORF. 
In transcripts for which no ORF was assigned, we computed the total 
TPM as the sum of TPMs for that transcript across all samples. This 
selection left us with a total of 3,046,286 novel transcripts representing 
1,006,547 ORF variants.

Next, to focus on highly expressed cases, we considered 4,190 
loci where more than 50% of expression came from novel transcripts 
and ORFs (Fig. 3a). Many of the transcripts at these loci either had no 
valid ORF or else contained an ORF that was highly dissimilar from the 
canonical MANE protein. We therefore narrowed our focus to 462 loci 
where over 50% of expression was due to a single novel ORF. Of those, 
only 24 loci (Supplementary Table 1) were at least 70% identical to the 
MANE protein and had cumulative expression greater than 1,000 TPM 
across all samples (Fig. 3b–d and Supplementary Figs. 1 and 3). For 
example, in the PLGLB gene, an exon skipping event via a novel intron 
leads to the loss of the original start codon and a different, slightly 
longer N-terminal amino-acid sequence. Interestingly, we observed 
very similar exon skipping events in two different paralogs of this gene, 
PLGLB1 and PLGLB2, as shown in Fig. 3c,d. In both cases, the alternative 
protein contains a different initial coding exon that replaces exon 1 of 
the MANE isoform, and in both cases, the majority of the expression 
comes from the alternative (non-MANE) isoform, suggesting that the 
MANE isoforms are not the dominant ones.

Another striking example of a novel ORF among these 24 loci 
occurs in the ANXA13 gene (Fig. 3b,e), which is a member of the family 
of annexin genes responsible for the production of calcium-dependent 

Reference

Query

Fig. 2 | Diagram illustrating the algorithm implemented in ORFanage. 
ORFanage begins by computing overlaps between a reference ORF and query 
transcript. In the figure, dashed lines are used to connect matching intervals. 
For each overlap it extends coordinates towards the 3′ and 5′ ends based on 
suitable parameters. During extension, any changes to the exon structure may 
introduce shifting of the original frame (as indicated by red arrows). Once all 
intervals have been evaluated, ORFanage compares the results and reports the 
one with the highest score. In the figure, residues matching the reference are 
highlighted in blue, and mismatching residues are highlighted in yellow. In this 
example, ORFanage selects the longer ORF on the lower right, which has 10 out of 
14 matching residues, compared to the ORF on the lower left, with only 3 out of 14 
matching residues.

Table 2 | Comparison of the true positive rate (TPR) of 
ORF annotation methods based on concordance with the 
GENCODE and RefSeq datasets

GENCODE RefSeq

Execution time (min) TPR Execution time (min) TPR

Multi- 
threaded

Single- 
threaded

Multi- 
threaded

Single- 
threaded

ORFanage 0.28 0.6 0.88 0.33 1.1 0.94

TransDecoder 115 – 0.65 175 – 0.82

GeneMarkS-T 100 100 0.58 85 85 0.71

TPR was computed as the percentage of all ORFs in each dataset that were reconstructed 
identically by the method. GeneMarkS-T times do not include conversion from reported 
format to genomic gene transfer format style.
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membrane-binding protein variants46. Proteins in this family contain two 
major domains, one at the C terminus for the Ca2+ binding effect, and the 
other at the N terminus that is responsible for membrane interactions. 
Although the core domain at the C terminus is highly conserved across 
the gene family, the N terminus is variable47, allowing for tissue-specific 
regulation48,49 and localization50. The two known forms of the gene differ 
only in the length of the last helical structure, where the incorporation 
of additional peptides allows for an extension of the first helix.

In our results, most of the expression of ANXA13 came from a novel 
variant of the gene characterized by a mutually exclusively alternative 
splicing event that results in the switching of the start-codon-harboring 
exon for another one downstream, as shown in Fig. 3b. The novel variant 
has an alternative methionine, followed by a glycine, which serves as its 
start codon, preserving much of the protein sequence with a new N ter-
minus. We also observed that this isoform was dominant in brain tissue, 
whereas the MANE isoform was dominant in testis (and other tissues).

We investigated how the change would impact the protein’s struc-
ture by folding it with AlphaFold2 via ColabFold51,52. We observed an 
increase in the pLDDT score from 94 to 97, suggesting an even more 
stable structure for the new isoform, due to the removal of an unstruc-
tured segment at the N terminus of the MANE isoform (Fig. 3e). The 
alternative protein identified here matches a variant that was previ-
ously annotated as the third isoform of AXNA13 in Pan troglodytes53 
and Papio anubis54.

Discussion
Our understanding of the transcriptional complexity of eukaryotic 
genomes has expanded dramatically over the years, but the full extent 
and functional implications of alternative splicing are not yet entirely 
understood. A comprehensive evaluation of the proteome generated 

by alternative splicing is critical not only for identifying anomalies 
in disease states but also for identifying novel protein variants with 
distinct functions.

Our experiments demonstrate the effectiveness of ORFanage for 
identifying ORFs in a set of transcripts by using reference annotation as 
a guide. ORFanage can recover most of the original annotation of the 
human genome using any of several widely used annotation databases, 
and it can also identify inconsistencies in those databases. More spe-
cifically, we have shown that it can identify likely novel translations of 
transcripts with no previously assigned ORFs and find cases where an 
annotated ORF can be adjusted to match a canonical protein sequence. 
Although increased similarity of ORFs to the reference is not a proof of 
correctness, our experiments demonstrate multiple examples where 
annotations can be improved via our method.

However, despite demonstrating the accuracy of our approach 
within the scope of this study, some important challenges remain. First, 
as previously discussed, ORFanage is designed to identify ORFs in a set 
of transcripts by using reference annotation as a guide. Therefore, it is 
incapable of finding translations at loci with no prior protein-coding 
annotations in the reference. Although few protein-coding genes likely 
remain to be discovered in well-studied model organisms, signs of 
translation are being routinely reported at non-reference loci, and 
our method would not be suitable for protein discovery at such loci. 
This raises another important consideration, namely that non-model 
organisms may have fewer proteins annotated. Although our experi-
ments do demonstrate high accuracy of ORF reconstruction even in 
the presence of limited reference data, the low quality or absence of 
reference protein annotation in non-model organisms can present addi-
tional challenges. Although not explicitly tested here, future research 
could combine our protocol with programs like Liftoff55 to facilitate 
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Fig. 3 | Novel ORFs in the GTEx dataset inferred using ORFanage. a, Overall 
distribution of loci by percent gene expression (y axis) that come from novel 
(orange) and known (blue) transcripts and a zoomed-in view of the region 
containing 4,190 loci where >=50% of the total expression comes from transcripts 
with novel ORFs or novel transcripts without an ORF. b–d, Sashimi plots 
illustrating selected examples of novel ORFs that were identified by ORFanage, 
each depicting a different type of variation: ANXA13 (b), PLGLB1 (c) and PLGLB2 
(d). In each plot, coverage and splice junction values are cumulative across all 
samples60. The uppermost transcript, highlighted with a pink background, shows 

the MANE annotation. Expression levels measured in TPM are shown for each 
transcript. b shows an alternative 5′ exon in ANXA13 that changes the start codon 
and shortens the ORF. e, 3D alignment of the MANE protein (pink) to the novel 
ORF (green) computed by AlphaFold2 and visualized via PyMOL68, shown with 
the N termini labeled for each. In c and d, the two plots show similar novel ORFs 
for the two paralogous genes PLGLB1 and PLGLB2, where skipping of the first 
reference coding exon is effectively offset by the introduction of an upstream 
novel exon with an alternative start codon.
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comprehensive annotations of genomes of various ancestries that 
include not only transcripts but coding regions as well.

ORFanage can be used in conjunction with RNA-seq alignment 
and assembly to identify ORFs in novel transcripts, and to guarantee 
that those ORFs match the reference annotation as closely as pos-
sible. Whether using long-read alignments directly or assembled 
transcripts, this approach can uncover valuable insights into isoforms 
within protein-coding regions, leading to a better understanding of 
their effects on biological systems. And because RNA-seq datasets 
often produce large numbers of novel transcripts, the efficiency 
and scalability of ORFanage make it suitable for datasets of any size. 
We have recently applied our method to annotate ORFs in novel 
transcripts for the revised CHESS 34 catalog, and to help identify 
novel structurally stable isoforms that were then confirmed using 
AlphaFold256.

ORFanage can also be a valuable aid to isolating the true signal 
from noisy transcriptome data. Assuming that proteins produced 
from alternative transcripts need to remain similar for genes to func-
tion correctly56, the ORF structures in the observed isoforms should 
be similar as well. Our approach can identify transcripts that cannot 
accommodate a similar ORF to the reference, serving as a noise-filtering 
step in RNA-seq analysis.

Methods
ORFanage is based on the direct comparison of intervals that make up 
the exonic structures of query and reference transcripts. This optimiza-
tion technique does not require sequence alignment or pre-computed 
genome indices, greatly reducing the computational burden of running 
the tool and making the analysis far more efficient than an alignment-
based approach. We have tested ORFanage on datasets comprising 
tens of millions of transcripts assembled from thousands of RNA-seq 
experiments3,4 and found that it runs robustly on these data.

Creating bundles of transcripts
ORFanage operates on ‘bundles’ of data, defined as the union of a set 
of overlapping reference ORFs with a set of query transcripts that 
overlap one or more of the reference ORFs. To reduce the impact of 
annotation errors such as readthrough transcription, ORFanage only 
loads CDS coordinates for each reference transcript, discarding non-
coding exonic coordinates.

Once both the reference and query datasets are loaded into mem-
ory and sorted internally, bundling is done in linear time by iterating 
over transcripts and collecting groups of all overlapping transcripts. 
This technique is insensitive to any information on gene boundaries, 
and readthrough transcription, commonly present in RNA-seq assem-
blies, may lead to several genes being combined into a single locus. In 
some cases, genes may genuinely overlap, and in such instances ORFa-
nage might compare the ORFs of unrelated genes, possibly leading to 
incorrect inferences. To combat this problem, ORFanage gives users 
the option to group transcripts by gene IDs.

Interval comparison
For each query transcript in a bundle, ORFanage performs a com-
parison to each reference CDS. For each pair being compared, an inter-
section is computed to identify all intervals that belong to both the 
query and the reference. The process is performed for all reference 
transcripts, and duplicate intervals are removed.

After a set of candidate overlaps is identified, ORFanage continues 
to search for the optimal start and end coordinates for each interval, 
discarding any incomplete ORFs in the process. We define a valid ORF 
as an uninterrupted sequence of three-base codons that begins with 
a start codon (usually ATG in humans), ends with a stop codon (TAA, 
TAG and TGA in humans), and does not contain any other stop codons 
other than the final one. Although only one valid stop codon can be 
found by extending any given ORF, multiple start (ATG) codons may 

be present in a single ORF. In ORFanage, an optimal start codon is the 
one that maximizes the number of bases that are in the same frame as 
the reference ORF while minimizing the number of coordinates that 
do not match or that match out-of-frame (Fig. 2).

After all intervals have been examined, if multiple distinct ORFs are 
plausible, ORFanage performs a heuristic selection of the optimal ORF 
based on a series of configurable steps. Internally, for every unique ORF, 
the software computes three scores, which are applied successively to 
each set of candidate ORFs to find the best result:

•	 The IL, defined as the number of positions that are shared with 
the reference in the same coding frame

•	 ILPI, defined as the fraction of IL with respect to the length of the 
reference ORF

•	 The length of the ORF

When maximizing ILPI, ORFanage will prioritize ORFs that have 
as little novel sequence present as possible, where ‘novel’ is defined as 
sequence that is not present in the reference ORF. When maximizing IL 
instead, ORFanage might select longer ORFs with more novel sequence 
if that choice increases the number of matches with the reference. 
Alternatively, users may specify via optional parameters that conserv-
ing the position of the start codon takes priority over conservation of 
the remaining protein sequence, forcing the algorithm to select ORFs 
whose start codon matches the reference protein whenever possible. 
Worth noting here is that 568 out of 19,058 ORFs in the MANE database 
use a start codon that is not the longest ORF.

Additional parameters
As shown in our analysis, the ILPI metric is an effective function to 
assess which ORF to pick for a given isoform and corresponds closely 
to percent identity. It is not identical to the familiar percent identity 
measure, which would be more expensive to compute. For applica-
tions that might require it, ORFanage includes support for comput-
ing a Smith–Waterman alignment between the reference ORF and  
the ORFs identified by ORFanage, as part of the final validation of  
the ORFs. ORFanage also includes an option to measure evolution-
ary conservation of any ORF by computing PhyloCSF scores. This  
option is implemented via an integrated PhyloCSF++ module57,58. 
Finally, ORFanage contains a multi-threading option, under  
which it can process each bundle in parallel, further speeding its 
runtime. In our tests, ORFanage was able to process 4,256,346 col-
lected from 1,448 brain samples of the GTEx dataset, using the MANE 
annotation as a reference, in 7 min using 24 cores of an Intel Xeon 
6248R 3-GHz processor, with all other parameters set to defaults.  
A random individual sample from the same dataset (SRR598396) was 
processed in 8 s.

Datasets
Studies of the human genome account for a large proportion of tran-
scriptomic data being generated today, and several annotation data-
bases are available for these studies. For our evaluation of ORFanage 
on the human genome, we used both the RefSeq (release 110) and 
GENCODE (release 41) annotations1,2.

To investigate the utility of ORFanage on other organisms, we 
focused on the well-studied A. thaliana and C. elegans genomes, both 
of which have highly curated annotations of the transcriptome and pro-
teome. Because, for each of these two genomes, only a single reference 
annotation was available, we chose to investigate how well ORFanage 
could reconstruct the ORFs using a bootstrapping technique, which 
allowed us to evaluate the concordance of annotated ORFs with the 
ones inferred by ORFanage.

For our evaluations on GTEx data, we used 1,448 poly-A selected 
RNA-seq samples representing 13 brain regions (age ≥ 20 years) from 
GTEx release 744. Samples were aligned with HISAT259, assembled 
with StringTie 233, and merged with gffcompare. Coverage and splice 
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junction summaries were extracted using the TieBrush suite60.

Data preparation
Although ORFanage can handle several types of exception to the nor-
mal rules governing ORFs, such as alternative (non-ATG) start codons, 
selenoproteins and otherwise overlapping genes, for our evaluations 
we removed these exceptions so as to measure the accuracy on genes 
that conform to standard rules.

We began by choosing a set of genes to be used as a reference for 
human annotation. The MANE database6 was created by the develop-
ers of RefSeq and GENCODE as a resource of human genes where both 
databases agree precisely on the complete exon–intron structure as 
well as on the CDS of every gene in the database. MANE contains one 
canonical transcript for nearly every protein-coding gene, plus a small 
number (62 in release 1.0) of medically relevant transcripts that differ 
from the canonical ones. In our reference set, we included all genes in 
MANE except for (1) genes with non-ATG start codons, (2) selenopro-
teins and (3) polycistronic genes. For our evaluations of both RefSeq 
and GENCODE, we retained only transcripts corresponding to the 
remaining MANE genes.

In some cases, manual curation might have altered RefSeq or 
GENCODE to create unusual ORFs. For example, some partial tran-
scripts have been manually curated to show usage of an alternative 
start codon, despite other ORFs at the locus containing a canonical 
start codon. Because we do not know whether such exceptions are 
intentional, we decided to avoid penalizing RefSeq or GENCODE and 
filtered out such cases, as follows. First, we used gffread45 to identify 
and remove all transcripts that did not contain valid start and stop 
codons. Second, we searched for all pairs of overlapping ORFs that 
were labeled with different gene IDs and removed all such occurrences. 
In addition, for the RefSeq dataset we also removed 846 genes that 
had transcripts with known exceptions as annotated by NCBI. In the 
end, our filtering resulted in the removal of 1,423 genes out of 20,442 
genes from RefSeq (release 110) and 1,869 genes out of 20,427 from 
GENCODE (version 41).

For the A. thaliana and C. elegans annotation datasets61,62, we used the 
primary model organism annotation as the reference, after filtering out 
genes with non-ATG start codons, selenoproteins and polycistronic genes.

Comparison of ORF-finding methods
To evaluate the various ORF annotation methods against ORFanage, we 
generated two transcript sets from the GENCODE and RefSeq datasets 
using the process outlined in the Data preparation section. For each 
set, we created two files: one with the original ORFs preserved, and 
another with only transcript models, devoid of any CDS records. The 
first file served as our control, and the second was used as input for all 
ORF annotation methods. The detailed results of this comparison are 
provided in Table 2.

Worth noting here is that both TransDecoder and GeneMarkS-T 
ORF-finding methods used in our comparison are designed for finding 
ORFs de novo, without a need for guide annotation, and as such serve a 
different niche of applications than ORFanage (for example, annotation 
of species for which no previous annotation is available).

TransDecoder. TransDecoder, part of the Trinity package34, can also 
find ORFs in a set of transcripts. Although originally intended as an ab 
initio method for finding ORFs in de novo transcriptome assemblies, 
the results can be improved by using homology searching against a 
protein database of choice. Since its original release, the software has 
been adapted for use with transcript models that are assembled by 
programs such as StringTie33 or Cufflinks63.

Because all transcripts in our analysis had confident strand assign-
ment, we made sure to use the ‘-S’ option to ensure the software did not 
consider ORFs on the opposite strand to the one annotated. Second, 
we built a protein database using the MANE dataset for blastp search 

against the candidate ORFs predicted by TransDecoder. These protein 
alignments were used to select the best candidate ORF during the 
second stage of the TransDecoder execution.

GeneMarkS-T. GeneMarkS-T36 is another ab initio ORF finding method 
included in several prominent pipelines for annotating ORFs in tran-
scriptome assemblies. Contrary to the TransDecoder, the method relies 
less on the longest ORFs to initiate search and more on other features, 
refining its choice the 5′ AUG as the translation initiation site.

We applied GeneMarkS-T to both RefSeq and GENCODE datasets, 
similarly ensuring that the strand information is kept true to the refer-
ence via the ‘—strand direct’ option.

Execution time
Some methods include multiple separate steps and commands that 
need to be executed to annotate ORFs. When measuring runtime, we 
recorded the total time it took to run all commands specified by each 
method. However, because GeneMarkS-T reports CDS coordinates 
relative to the transcript in which they were found, we developed our 
own custom script to convert transcriptomic coordinates to genomic 
ones. Although we did not add the conversion time to the total runtime 
of the method, depending on the implementation, this step could 
considerably increase the runtime.

Both ORFanage and the costly blastp alignment step in Trans-
Decoder can make proper use of multi-threading, yet GeneMarkS-T 
cannot. Nonetheless, primarily because of how slow TransDecoder 
was without multi-threading enabled, we allowed both ORFanage 
and TransDecoder to use 30 threads concurrently. For ORFanage we 
provide both single and multi-threaded performance measurements 
(Table 2).

Reporting summary
Further information on research design is available in the Nature Port-
folio Reporting Summary linked to this Article.

Data availability
No new sequencing data were created for this study. The sequenc-
ing data used in this study are available through the GTEx project 
(phs000424.v7.p2). GTEx data were first analyzed as part of the CHESS 
project and the details can be found in the corresponding resources 
and publications (http://ccb.jhu.edu/chess/). The datasets analyzed 
in this study are (1) GENCODE annotation build version 41 (https://
www.gencodegenes.org/human/release_41.html); (2) RefSeq annota-
tion build 110 (https://www.ncbi.nlm.nih.gov/genome/annotation_
euk/Homo_sapiens/110/); (3) MANE joint annotation build version 
1.0 (https://ftp.ncbi.nlm.nih.gov/refseq/MANE/MANE_human/); (4)  
A. thaliana annotation (https://ftp.ncbi.nlm.nih.gov/genomes/refseq/
plant/Arabidopsis_thaliana/all_assembly_versions/GCF_000001735.3_
TAIR10/); and (5) C. elegans genome annotation (https://ftp.ncbi.nlm.
nih.gov/genomes/refseq/invertebrate/Caenorhabditis_elegans/all_
assembly_versions/GCF_000002985.6_WBcel235/). Source data are 
provided with this paper.

Code availability
All code required to reproduce the data generated within the study 
from public sources is provided at https://github.com/alevar/ORFa-
nage_tests. The core method is implemented in C++ and based on the 
GFFutils45 and KSW264,65 libraries. The code and test data are avail-
able for download at https://github.com/alevar/ORFanage/releases/
tag/1.0 (https://doi.org/10.5281/zenodo.8102912)66. Jupyter notebooks 
used to generate all results described in the manuscript are provided 
separately at https://github.com/alevar/ORFanage_tests (https://doi.
org/10.5281/zenodo.8102918)67. All additional software methods used 
in this study and their versions and appropriate references are listed 
in Methods.
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