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ORFanage is asystem designed to assign open reading frames (ORFs) to
known and novel gene transcripts while maximizing similarity to annotated
proteins. The primary intended use of ORFanage is the identification

of ORFsinthe assembled results of RNA-sequencing experiments, a
capability that most transcriptome assembly methods do not have.

Our experiments demonstrate how ORFanage can be used to find novel
protein variants in RNA-seq datasets, and to improve the annotations of
ORFsintens of thousands of transcript models in the human annotation
databases. Through its implementation of a highly accurate and efficient
pseudo-alignment algorithm, ORFanage is substantially faster than other
ORF annotation methods, enablingits application to very large datasets.
When used to analyze transcriptome assemblies, ORFanage can aid in

the separation of signal from transcriptional noise and the identification

of likely functional transcript variants, ultimately advancing our
understanding of biology and medicine.

Approximately 20,000 protein-coding genes have been annotated for
the human genome'>. Although asingle isoform is often the source of
the dominant protein®®, many human gene loci expressisoforms that
encode different protein sequences, some of which may be tissue-
specific’ 2. The NCBIRefSeq database, for example, contains an average
of 6.9 isoforms for each human protein-coding gene, whichencode an
average of 4.4 distinct protein sequences. The RefSeq annotation of
the model organism Arabidopsis thaliana has on average 1.8 isoforms
with 1.5 unique protein variants, respectively.

RNA-sequencing (RNA-seq) technology has allowed an unprec-
edented look at the transcriptome in a wide variety of species, with
multiple studies reporting large numbers of previously unknown
transcripts for protein-coding genes®”°. Consistent with previous
reports aboutalternative splicing events”, most of the novel transcripts
reportedin RNA-seq studies are observedin protein-coding regions'®".
Alternative splicing events can alter the translated protein through
exon skipping, frame-shifting and other changes®. These events and
their effects on translated proteins are an essential component of
genome biology’.

Changes in protein sequences may also be characteristic of disease
states'>*?* or of specific tissues®**?. For example, splicing-induced
changes in protein sequences have been associated with cancer
development and progression, from activation of proto-oncogenes”
to genome-wide splicing alteration in certain cancer types®®?’. One
example of why it is important to annotate all protein isoforms in
the human genome is the widespread usage of exome sequencing in
clinical settings. Exome capture methods have been extensively used
to interrogate genetic variants and their associations with diseases,
such as finding the genetic cause of arare form of pediatric epilepsy™,
or identifying driver mutations in cancer’. The technology is heavily
dependentonthe correct annotation of coding regions, and any exons
that are unannotated will simply be missed by exome studies.

However, many observed novel transcripts are likely to represent
transcriptional noise®’; for example, the original CHESS database
assembled ~29 million transcript variants from 10,000 RNA-seq experi-
ments, of which fewer than 2% were keptin the final annotation**. The
ability to accurately identify non-functional isoforms can be a valu-
able tool in differentiating signal from noise in RNA-seq data, which
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Table 1| Summary of differences between ORFs found
by ORFanage and the originally annotated ORFs for all
transcripts in RefSeq and GENCODE protein-coding genes

Reference annotation RefSeq GENCODE
ORFanage finds the same ORF as reference 17,212 63,966
ORFanage finds a different ORF that matches MANE 2,212 786
perfectly

No ORF annotated on reference transcript, ORFanage 1,194 147

finds an ORF that matches MANE

No ORF annotated on reference transcript, ORFanage 9,240 35,393
finds an ORF that is different from MANE

Other combinations 5,836 27,994
Total number of protein-coding transcripts 135,694 128,286

Comparisons to the MANE annotation refer to the ORFs from the MANE gene set, which is
fully contained within both RefSeq and GENCODE.

is currently complicated by artifacts from computational methods,
suchasalignment and assembly errors, as well as the amount of noise
inherently presentin the data®.

Although many methods have been implemented for searching
and assembling transcripts from RNA-seq data®***, none of themiden-
tifies open reading frames (ORFs) based on similarity to the original
protein at the locus. Anumber of methods, including TransDecoder**
and GeneMarkS-T*>*¢, have been developed for ab initio ORF annota-
tion (Methods and Table 2), but these methods were designed to find
ORFswithoutthe use of reference annotationas aguide. Other previous
approachesonlyidentified the longest ORF, sometimes requiringit to
have the same start or stop codon positions as areference®** None
ofthese approaches consider the similarity of the resulting protein to
previously known translations of the transcript.

In this Article we present ORFanage, a highly efficient and sensi-
tive method to search for ORFs in protein-coding transcripts, guided
by reference annotation to maximize protein similarity within genes.

Results

Accuracy of reference ORF reconstruction

ORFanage utilizes protein-coding gene annotation by identifying ORFs
in query transcripts that have the maximal sequence identity with a
user-provided set of reference ORFs. This approach presumes that
proteins produced by different transcripts at the same locus should be
as similar as possible®*°. In our first set of experiments, we tested the
ability of ORFanage to reconstruct the GENCODE and RefSeq protein-
coding annotation given an annotation that includes one canonical
ORF at each protein-coding gene locus. For these experiments, we used
the MANE database to define the canonical ORFs, because MANE was
created by the developers of GENCODE and RefSeq to be a ‘universal
standard” of human protein-coding genes, and because both GENCODE
and RefSeq containevery gene in MANE. These experimentsillustrate
how ORFanage can produce a set of ORFs at alocus that better agree
with achosenreference annotation, conservingthe protein sequences
and making annotation more internally consistent.

As shown in Fig. 1a, many gene transcripts in both RefSeq and
GENCODE are annotated with ORFs that differ from the canonical
variant; for example, 65% of ORFsin the RefSeq humanannotationand
36% in GENCODE differ from the MANE ORF (Fig. 1a). In principle, the
presence of an ORF that differs from MANE does not imply an error;
however, if another ORF can be found in the same transcript that has
closer identity to MANE, then an error seems possible. Furthermore,
8% of RefSeq and 43% of GENCODE transcripts in protein-coding loci
have no ORFs annotated at all. By re-annotating each of the reference
datasets using ORFanage, we identified numerous cases where a dif-
ferent ORF was more similar to the canonical protein. One example,
fromthe ZNFI80 gene, is shown in Fig. 1f.

Although we found that ORFs in a large majority of transcripts in
the RefSeq human annotation were in agreement with those predicted
by ORFanage (117,212 out 0f 135,694 ), there were some striking differ-
ences, asillustratedin Table 1and Supplementary Table 2. Forexample,
we identified 2,122 transcripts in which an ORF annotated by RefSeq
could bereplaced by the canonical version from MANE without altera-
tions. Similarly, 786 of the ORFs in the GENCODE human annotation
couldbereplaced by their canonical variants from MANE. Even though
alternative translations may be present at those transcripts, because
GENCODE and RefSeq both recognize MANE as a standard®, it seems
appropriateto choose the MANE ORFs over the alternative variantsin
accordance with established curation guidelines®.

In our analysis we purposefully refrained from filtering candi-
date ORFs, opting to report one best candidate ORF for every tran-
script where some sequence similarity was observed to the reference
annotation. This allowed us to investigate all cases where analyzed
annotations were inconsistent with the MANE reference at the cost
of potential false discoveries. However, our software provides users
with the ability to fine-tune the results through parameter settings
suchasthe percentidentity score, matching the translationinitiation
site, and other customizable criteria. These options enable users to
refine the identification of valid ORFs and limit the number of false
positives.

As aresult, we also found thousands of transcripts for which no
ORF waslisted, eventhough they were annotated under protein-coding
genes and even though a candidate ORF was identified by ORFanage
(examples are provided inSupplementary Figs.3and 4).In GENCODE,
we found an ORF that at least partially overlapped the MANE ORF in
35,540 out of 55,328 of these transcripts, including 147 transcripts
that contained a perfect match to the MANE ORF. Although the RefSeq
database had fewer protein-coding transcripts with no ORF listed,
we still found 10,434 transcripts for which our method predicted an
OREF, including 1,194 with a perfect match to MANE (Table 1 and Sup-
plementary Table 2).

We also looked at transcripts where both ORFanage and the ref-
erence annotation differed from MANE (5,301 in RefSeq and 7,957 in
GENCODE). For these transcripts we computed the percentage of
in-frame positions shared between the annotated proteins and the
MANE protein and observed that in 613 RefSeq and 7,005 GENCODE
transcripts, ORFanage produced a protein that was closer to MANE
(Fig. 1c,d). In many cases the differences were minor, affecting only
start coordinates or conserving different segments of the reference
protein. In some cases, though, such as ZNF180, as shown in Fig. 1f,
ORFanage identified an ORF that conserved nearly all of the MANE
protein sequence, while the protein encoded by the GENCODE ORF
had no overlap with MANE. However, higher similarity of ORFs is not
the only criterion for assessing ORF validity and other methods may
be necessary to validate any novel sequences. Yet, in the absence of
additional data, the similarity criterion can be successfully applied,
asshowninour evaluation.

When ORFanage found an ORF that differed from the one chosen
by RefSeqor GENCODE, the ORFanage sequence had an equal or higher
proportion of codons that matched MANE (Fig. 1c,d), a property that
is guaranteed by the algorithm. We confirmed these results by per-
forming global alignments of the proteins to the MANE variants using
EMBOSS Stretcher*. The higher percent identity is a consequence of
the metric that ORFanage maximizes, which we term ‘in-frame length
percentidentity’ (ILPI). Following ORF identification viathe algorithm
described in Fig. 2, to compute ILPI, our method first computes the
total number of positions in an ORF that are in the same frame as the
reference, thus coding for the same codons, which determines the in-
framelength (IL). The ILPlis then computed as the fraction of IL of the
total length of the reference coding sequence (CDS). As illustrated in
Fig. e, the correlation between ILPI and percent identity computed
viathe Smith-Waterman algorithmis very high.
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Fig.1|Overview of irregularities in reference database ORF annotation.

a,b, Differences in ORFs at MANE loci as currently annotated for RefSeq (a)

and GENCODE (b) annotations. Circular charts show, for each dataset, the
proportions of transcripts annotated with the same ORF as MANE (gray), those
with analternative ORF not matching MANE (yellow), and transcriptsin MANE
loci that lack an annotated ORF (blue). ¢, Percent identity computed between

the MANE protein and alternative ORFs as predicted by GENCODE (dark green)
and ORFanage (light green). d, Histogram of the change in percent identity when
replacing the GENCODE ORF with the ORFanage ORF. e, Pearson correlation
coefficient (r) and Pvalue (two-sided, ¢-distribution) between percentidentity
computed via traditional alignment and ILPI computed by ORFanage, illustrating
the close similarity between the two metrics (10,000 random samples).
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f, A detailed look at alternative ORFs annotated by GENCODE and ORFanage for
the ZNFI180 gene. At the top is the MANE isoform, shaded in pink, withits ORF
showninblue. Below it are two versions of an alternative isoform, with the ORFs
annotated by ORFanage (middle) and GENCODE (bottom). Blue regions show
where the protein sequence matches the MANE isoform, and green and orange
show regions that are additional (green) or out of frame (orange) compared

to MANE. At the bottom is azoomed-in view of the first intron and flanking

ORF regions. g,h, Overview of the impact that completeness of reference
annotation has on the accuracy of ORFanage: percent of correctly inferred ORFs
given different fractions of known reference ORFs for four organisms (g) and
percentage of known ORFs that ORFanage failed to identify for different levels of
reference completeness (h).

We then took a closer look at the 44,532 GENCODE transcripts
where ORFanage found a different ORF. We found that ORFs identi-
fied by ORFanage often contained many novel positions (that is,
not matching MANE). More specifically, nearly 22% of positions in
these novel ORFs are marked as potentially coding only by
our method, and although many of these positions could be arti-
facts of partial transcript models included in the GENCODE annota-
tion, some are likely to represent new functional variants of known
proteins'**,

It is also worth noting here that when guided by protein-cod-
ing annotation such as MANE, ORFanage can reconstruct the ORFs
present in GENCODE or RefSeq faster and more accurately than ab
initio ORF finders like TransDecoder or GeneMarkS-T (Table 2
and Methods).

The large number of missing annotations and overall observed
improvements demonstrate the potential use of ORFanage at finding
consistent ORFs in novel transcripts at protein-coding loci.

Impact of reference transcripts on accuracy

In the next set of experiments, we set out to investigate how well our
method can reconstruct a full set of protein sequences from subsets
of reference data. We wanted to establish (1) how accuracy improves
with anincrease in the number of annotated ORFs at alocus and (2)
the effects of choosing different subsets of known ORF variants onthe
accuracy of prediction. To answer the first question, weincrementally
increased the number of ORFs provided to ORFanage as areference. To
addressthe second question, werepeated the experiment but randomly
chose different sets of reference ORFs.
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Fig.2|Diagramillustrating the algorithmimplemented in ORFanage.
ORFanage begins by computing overlaps between a reference ORF and query
transcript. In the figure, dashed lines are used to connect matching intervals.

For each overlap it extends coordinates towards the 3’ and 5’ ends based on
suitable parameters. During extension, any changes to the exon structure may
introduce shifting of the original frame (as indicated by red arrows). Once all
intervals have been evaluated, ORFanage compares the results and reports the
one with the highest score. In the figure, residues matching the reference are
highlighted in blue, and mismatching residues are highlighted in yellow. In this
example, ORFanage selects the longer ORF on the lower right, which has 10 out of
14 matching residues, compared to the ORF on the lower left, with only 3 out of 14
matching residues.

We repeated the iterative selection of reference transcripts ten
times, providing 25%, 50% and 75% of the reference ORFs as a guide each
time. We ran our analysis on the human genome annotation as well as
A.thaliana and Caenorhabditis elegans using the same protocol. For the
human genome, we evaluated both RefSeq and GENCODE, because the
two databases differ substantially in their ORF annotations. For each
test run, we ensured that at least one transcript remained unannotated
ateachlocusandthatany non-coding transcripts were removed before
the evaluation.

Thediversity of transcripts annotated for A. thalianaand C. elegans
is much lower than for human reference annotations, with1.8 and 1.4
transcripts per coding gene, respectively, compared to six and eight
for RefSeq and GENCODE human annotations. Worth noting is that
for C. elegans, only 4,440 suitable loci were identified based on the
aforementioned criteria.

Asexpected, we observed anincrease inaccuracy as more refer-
ence annotation was provided. For the human genome, if we provided
just a single reference ORF per locus (equivalent to 11% of all ORFs
in RefSeq and 18% of all ORFs in GENCODE), ORFanage was able to
correctly recreate 85% of the RefSeq ORFs and 81% of GENCODE
ORFs. When we provided 75% of the reference ORFs, ORFanage cor-
rectly recreated close to 99% of RefSeq and 95% of GENCODE ORFs
(Fig.1g,h).

Even when ORFs were not identical to the original sources, the
predictions produced by ORFanage were highly similar, averaging
81% for the non-identical predictions in the RefSeq dataset and 77% in
GENCODE, respectively.

Because A. thaliana and C. elegans have fewer annotated reference
OREFs per locus, our random permutations had smaller effects on the
results. Nevertheless, in A. thaliana, ORFanage was able to correctly
identify 91-97% of reference ORFs. For C. elegansthe values were lower,
ranging from 77% when a single random reference ORF was provided
to 90% when guided by more complete annotations.

Finding novel ORFs in assembled RNA-seq data

One of the main applications of ORFanage is to search for ORFs in
datasets containing large numbers of transcripts that have not been
assigned ORFs. ORFanage canannotate transcriptome assemblies from
RNA-seq experiments, which often contain many novel splice variants,
even for well-annotated genomes®**. In these cases, ORFanage can
identify candidate ORFs for protein-coding transcripts based on the

Table 2 | Comparison of the true positive rate (TPR) of
ORF annotation methods based on concordance with the
GENCODE and RefSeq datasets

GENCODE RefSeq

Executiontime (min) TPR Executiontime(min) TPR

Multi- Single- Multi- Single-

threaded threaded threaded threaded
ORFanage 0.28 0.6 0.88 0.33 11 0.94
TransDecoder 115 - 0.65 175 - 0.82
GeneMarkS-T 100 100 0.58 85 85 0

TPR was computed as the percentage of all ORFs in each dataset that were reconstructed
identically by the method. GeneMarkS-T times do not include conversion from reported
format to genomic gene transfer format style.

conservation of known protein sequences at the locus using reference
annotation as a guide.

We next applied ORFanage to search for novel ORFsinexperimen-
tal data, using data from the GTEx project**, a high-quality collection
of poly-A selected RNA-seq samples across multiple human tissue
types. We focused our experiments on1,448 samples from brain tissue
because these represented the most diverse collection of samplesinthe
dataset. Weran ORFanage on the complete, unfiltered set of assemblies
containing 6,674,316 isoforms that were assembled originally for the
CHESS human annotation database®*.

We computed ORFs for all transcripts using the MANE annota-
tion as the guide. For every MANE gene, we first identified all assem-
bled transcripts overlapping that gene using gffcompare® (similarity
codes ‘=, ‘¢, ‘K, ‘m’, ‘n’, §, ‘¢’), yielding 4,256,346 transcripts. We then
computed the total gene expression foreach transcript using the sum
of transcripts per million (TPM) values for that transcript across all
samples.

In our search for novel ORFs, we took a conservative approach: if
a transcript could accommodate an ORF from either RefSeq or GEN-
CODE, we assigned that ORF to the transcript. Additionally, we removed
ORFanage predictions for all transcripts marked as non-coding by
either RefSeq or GENCODE. Because multiple distinct transcripts can
contain the same novel ORF, we simplified our analysis by computing
the total TPM aggregated across transcripts sharing the same ORF.
In transcripts for which no ORF was assigned, we computed the total
TPM as the sum of TPMs for that transcript across all samples. This
selection left us with atotal of 3,046,286 novel transcripts representing
1,006,547 ORF variants.

Next, to focus on highly expressed cases, we considered 4,190
loci where more than 50% of expression came from novel transcripts
and ORFs (Fig. 3a). Many of the transcripts at these loci either had no
valid ORF or else contained an ORF that was highly dissimilar from the
canonical MANE protein. We therefore narrowed our focus to 462 loci
where over 50% of expression was due to a single novel ORF. Of those,
only 24 loci (Supplementary Table 1) were at least 70% identical to the
MANE protein and had cumulative expression greater than1,000 TPM
across all samples (Fig. 3b-d and Supplementary Figs. 1and 3). For
example, in the PLGLB gene, an exon skipping event via anovel intron
leads to the loss of the original start codon and a different, slightly
longer N-terminal amino-acid sequence. Interestingly, we observed
very similar exon skipping eventsin two different paralogs of this gene,
PLGLBI1and PLGLB2,asshowninFig.3c,d.Inbothcases, the alternative
protein contains a different initial coding exon that replaces exon1of
the MANE isoform, and in both cases, the majority of the expression
comes from the alternative (non-MANE) isoform, suggesting that the
MANE isoforms are not the dominant ones.

Another striking example of a novel ORF among these 24 loci
occurs in the ANXA13 gene (Fig. 3b,e), which is a member of the family
of annexingenes responsible for the production of calcium-dependent
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Fig.3|Novel ORFsin the GTEx dataset inferred using ORFanage. a, Overall
distribution of loci by percent gene expression (y axis) that come from novel
(orange) and known (blue) transcripts and azoomed-in view of the region
containing 4,190 loci where >=50% of the total expression comes from transcripts
with novel ORFs or novel transcripts without an ORF. b-d, Sashimi plots
illustrating selected examples of novel ORFs that were identified by ORFanage,
eachdepicting a different type of variation: ANXA13 (b), PLGLBI (c) and PLGLB2
(d).Ineach plot, coverage and splice junction values are cumulative across all
samples®’. The uppermost transcript, highlighted with a pink background, shows

e
Novel: Brain_03416598 (9,237 TPM)

the MANE annotation. Expression levels measured in TPM are shown for each
transcript. b shows an alternative 5’ exon in ANXA13 that changes the start codon
and shortens the ORF. e, 3D alignment of the MANE protein (pink) to the novel
OREF (green) computed by AlphaFold2 and visualized via PyMOL®®, shown with
the N terminilabeled for each. Inc and d, the two plots show similar novel ORFs
for the two paralogous genes PLGLBI and PLGLB2, where skipping of the first
reference coding exon is effectively offset by the introduction of an upstream
novel exon with an alternative start codon.

membrane-binding protein variants*®. Proteins in this family contain two
major domains, one at the C terminus for the Ca? binding effect, and the
otheratthe N terminus that is responsible for membrane interactions.
Although the core domainat the C terminusis highly conserved across
thegene family, the N terminusiis variable”, allowing for tissue-specific
regulation*®*’ and localization®®. The two known forms of the gene differ
onlyinthelength of the last helical structure, where the incorporation
of additional peptides allows for an extension of the first helix.

Inour results, most of the expression of ANXA13 came from anovel
variant of the gene characterized by amutually exclusively alternative
splicing event that results in the switching of the start-codon-harboring
exonforanother one downstream, as showninFig.3b. The novel variant
hasanalternative methionine, followed by aglycine, which serves as its
startcodon, preserving much of the protein sequence with anew N ter-
minus. We also observed that thisisoform was dominantinbrain tissue,
whereas the MANE isoform was dominant in testis (and other tissues).

Weinvestigated how the change would impact the protein’s struc-
ture by folding it with AlphaFold2 via ColabFold**?. We observed an
increase in the pLDDT score from 94 to 97, suggesting an even more
stable structure for the new isoform, due to the removal of an unstruc-
tured segment at the N terminus of the MANE isoform (Fig. 3e). The
alternative protein identified here matches a variant that was previ-
ously annotated as the third isoform of AXNA13 in Pan troglodytes™
and Papio anubis™.

Discussion

Our understanding of the transcriptional complexity of eukaryotic
genomes has expanded dramatically over the years, but the full extent
and functional implications of alternative splicing are not yet entirely
understood. A comprehensive evaluation of the proteome generated

by alternative splicing is critical not only for identifying anomalies
in disease states but also for identifying novel protein variants with
distinct functions.

Our experiments demonstrate the effectiveness of ORFanage for
identifying ORFsinaset of transcripts by using reference annotation as
aguide. ORFanage can recover most of the original annotation of the
human genome using any of several widely used annotation databases,
and it can also identify inconsistencies in those databases. More spe-
cifically, we have shown thatit canidentify likely novel translations of
transcripts with no previously assigned ORFs and find cases where an
annotated ORF canbe adjusted to match a canonical protein sequence.
Althoughincreased similarity of ORFsto the reference is not a proof of
correctness, our experiments demonstrate multiple examples where
annotations can be improved via our method.

However, despite demonstrating the accuracy of our approach
within the scope of this study, some important challenges remain. First,
as previously discussed, ORFanage is designed to identify ORFsinaset
of transcripts by using reference annotationasaguide. Therefore, itis
incapable of finding translations at loci with no prior protein-coding
annotationsin thereference. Although few protein-coding genes likely
remain to be discovered in well-studied model organisms, signs of
translation are being routinely reported at non-reference loci, and
our method would not be suitable for protein discovery at such loci.
This raises another important consideration, namely that non-model
organisms may have fewer proteins annotated. Although our experi-
ments do demonstrate high accuracy of ORF reconstruction even in
the presence of limited reference data, the low quality or absence of
reference protein annotationinnon-model organisms can present addi-
tional challenges. Although not explicitly tested here, future research
could combine our protocol with programs like Liftoff> to facilitate
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comprehensive annotations of genomes of various ancestries that
include not only transcripts but coding regions as well.

ORFanage can be used in conjunction with RNA-seq alignment
and assembly to identify ORFs in novel transcripts, and to guarantee
that those ORFs match the reference annotation as closely as pos-
sible. Whether using long-read alignments directly or assembled
transcripts, this approach can uncover valuable insights intoisoforms
within protein-coding regions, leading to a better understanding of
their effects on biological systems. And because RNA-seq datasets
often produce large numbers of novel transcripts, the efficiency
and scalability of ORFanage make it suitable for datasets of any size.
We have recently applied our method to annotate ORFs in novel
transcripts for the revised CHESS 3* catalog, and to help identify
novel structurally stable isoforms that were then confirmed using
AlphaFold2%.

ORFanage can also be a valuable aid to isolating the true signal
from noisy transcriptome data. Assuming that proteins produced
from alternative transcripts need to remain similar for genes to func-
tion correctly®, the ORF structures in the observed isoforms should
be similar as well. Our approach can identify transcripts that cannot
accommodate asimilar ORF to thereference, serving as a noise-filtering
step in RNA-seq analysis.

Methods

ORFanage is based on the direct comparison of intervals that make up
the exonicstructures of query and reference transcripts. This optimiza-
tiontechnique does not require sequence alignment or pre-computed
genomeindices, greatly reducing the computational burden of running
the tool and making the analysis far more efficient than an alignment-
based approach. We have tested ORFanage on datasets comprising
tens of millions of transcripts assembled from thousands of RNA-seq
experiments® and found that it runs robustly on these data.

Creating bundles of transcripts

ORFanage operates on ‘bundles’ of data, defined as the union of a set
of overlapping reference ORFs with a set of query transcripts that
overlap one or more of the reference ORFs. To reduce the impact of
annotation errors such as readthrough transcription, ORFanage only
loads CDS coordinates for each reference transcript, discarding non-
coding exonic coordinates.

Onceboththereference and query datasets areloaded into mem-
ory and sorted internally, bundling is done in linear time by iterating
over transcripts and collecting groups of all overlapping transcripts.
This technique is insensitive to any information on gene boundaries,
andreadthrough transcription, commonly presentin RNA-seq assem-
blies, may lead to several genes being combined into asingle locus. In
some cases, genes may genuinely overlap, and insuchinstances ORFa-
nage might compare the ORFs of unrelated genes, possibly leading to
incorrect inferences. To combat this problem, ORFanage gives users
the option to group transcripts by gene IDs.

Interval comparison

For each query transcript in a bundle, ORFanage performs a com-
parisonto eachreference CDS. For each pair being compared, aninter-
section is computed to identify all intervals that belong to both the
query and the reference. The process is performed for all reference
transcripts, and duplicate intervals are removed.

After asetof candidate overlapsisidentified, ORFanage continues
to search for the optimal start and end coordinates for each interval,
discarding any incomplete ORFsinthe process. We define a valid ORF
as an uninterrupted sequence of three-base codons that begins with
astart codon (usually ATG in humans), ends with a stop codon (TAA,
TAG and TGA inhumans), and does not contain any other stop codons
other than the final one. Although only one valid stop codon can be
found by extending any given ORF, multiple start (ATG) codons may

be presentin asingle ORF. In ORFanage, an optimal start codonis the
one that maximizes the number of bases that are in the same frame as
the reference ORF while minimizing the number of coordinates that
do not match or that match out-of-frame (Fig. 2).

Afterallintervals have been examined, if multiple distinct ORFs are
plausible, ORFanage performs a heuristic selection of the optimal ORF
based onaseries of configurable steps. Internally, for every unique ORF,
the software computesthree scores, which are applied successively to
each set of candidate ORFs to find the best result:

* Thell, defined as the number of positions that are shared with
the reference in the same coding frame

« ILPI, defined as the fraction of IL with respect to the length of the
reference ORF

» Thelength of the ORF

When maximizing ILPI, ORFanage will prioritize ORFs that have
aslittle novel sequence present as possible, where ‘novel’ is defined as
sequencethatisnot presentinthe reference ORF. When maximizing IL
instead, ORFanage might select longer ORFs with more novel sequence
if that choice increases the number of matches with the reference.
Alternatively, users may specify via optional parameters that conserv-
ing the position of the start codon takes priority over conservation of
theremaining proteinsequence, forcing the algorithmto select ORFs
whose start codon matches the reference protein whenever possible.
Worth noting hereis that 568 out 0f 19,058 ORFsin the MANE database
use a start codon thatis not the longest ORF.

Additional parameters

As shown in our analysis, the ILPI metric is an effective function to
assess which ORF to pick for agivenisoformand corresponds closely
to percent identity. It is not identical to the familiar percent identity
measure, which would be more expensive to compute. For applica-
tions that might require it, ORFanage includes support for comput-
ing a Smith-Waterman alignment between the reference ORF and
the ORFs identified by ORFanage, as part of the final validation of
the ORFs. ORFanage also includes an option to measure evolution-
ary conservation of any ORF by computing PhyloCSF scores. This
option is implemented via an integrated PhyloCSF++ module®”s,
Finally, ORFanage contains a multi-threading option, under
which it can process each bundle in parallel, further speeding its
runtime. In our tests, ORFanage was able to process 4,256,346 col-
lected from 1,448 brain samples of the GTEx dataset, using the MANE
annotation as a reference, in 7 min using 24 cores of an Intel Xeon
6248R 3-GHz processor, with all other parameters set to defaults.
Arandomindividual sample from the same dataset (SRR598396) was
processedin8s.

Datasets

Studies of the human genome account for a large proportion of tran-
scriptomic data being generated today, and several annotation data-
bases are available for these studies. For our evaluation of ORFanage
on the human genome, we used both the RefSeq (release 110) and
GENCODE (release 41) annotations™

To investigate the utility of ORFanage on other organisms, we
focused onthe well-studied A. thaliana and C. elegans genomes, both
of which have highly curated annotations of the transcriptome and pro-
teome. Because, for each of these two genomes, only asingle reference
annotation was available, we chose to investigate how well ORFanage
could reconstruct the ORFs using a bootstrapping technique, which
allowed us to evaluate the concordance of annotated ORFs with the
onesinferred by ORFanage.

For our evaluations on GTEx data, we used 1,448 poly-A selected
RNA-seq samples representing 13 brain regions (age > 20 years) from
GTEx release 7**. Samples were aligned with HISAT2%, assembled
with StringTie 2%, and merged with gffcompare. Coverage and splice
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junction summaries were extracted using the TieBrush suite®.

Data preparation

Although ORFanage can handle several types of exception to the nor-
malrules governing ORFs, such as alternative (non-ATG) start codons,
selenoproteins and otherwise overlapping genes, for our evaluations
we removed these exceptions so as to measure the accuracy on genes
that conform to standard rules.

We began by choosing a set of genes to be used as a reference for
human annotation. The MANE database® was created by the develop-
ers of RefSeqand GENCODE as aresource of human genes where both
databases agree precisely on the complete exon-intron structure as
well as on the CDS of every gene in the database. MANE contains one
canonical transcript for nearly every protein-coding gene, plus a small
number (62inrelease 1.0) of medically relevant transcripts that differ
from the canonical ones. In our reference set, we included all genesin
MANE except for (1) genes with non-ATG start codons, (2) selenopro-
teins and (3) polycistronic genes. For our evaluations of both RefSeq
and GENCODE, we retained only transcripts corresponding to the
remaining MANE genes.

In some cases, manual curation might have altered RefSeq or
GENCODE to create unusual ORFs. For example, some partial tran-
scripts have been manually curated to show usage of an alternative
start codon, despite other ORFs at the locus containing a canonical
start codon. Because we do not know whether such exceptions are
intentional, we decided to avoid penalizing RefSeq or GENCODE and
filtered out such cases, as follows. First, we used gffread* to identify
and remove all transcripts that did not contain valid start and stop
codons. Second, we searched for all pairs of overlapping ORFs that
were labeled with different gene IDs and removed all such occurrences.
In addition, for the RefSeq dataset we also removed 846 genes that
had transcripts with known exceptions as annotated by NCBI. In the
end, our filtering resulted in the removal of 1,423 genes out 0of 20,442
genes from RefSeq (release 110) and 1,869 genes out of 20,427 from
GENCODE (version 41).

FortheA. thalianaand C. elegans annotation datasets®**, we used the
primary model organism annotation as the reference, after filtering out
geneswith non-ATGstart codons, selenoproteins and polycistronic genes.

61,62

Comparison of ORF-finding methods

To evaluate the various ORF annotation methods against ORFanage, we
generated two transcript sets from the GENCODE and RefSeq datasets
using the process outlined in the Data preparation section. For each
set, we created two files: one with the original ORFs preserved, and
another with only transcript models, devoid of any CDS records. The
firstfile served as our control, and the second was used as input for all
ORF annotation methods. The detailed results of this comparison are
providedin Table 2.

Worth noting here is that both TransDecoder and GeneMarkS-T
ORF-finding methods used in our comparison are designed for finding
ORFsdenovo, without aneed for guide annotation,andassuchservea
different niche of applications than ORFanage (for example, annotation
of species for which no previous annotationis available).

TransDecoder. TransDecoder, part of the Trinity package®*, can also
find ORFsinasetof transcripts. Although originally intended as an ab
initio method for finding ORFs in de novo transcriptome assemblies,
the results can be improved by using homology searching against a
protein database of choice. Sinceits original release, the software has
been adapted for use with transcript models that are assembled by
programs such as StringTie** or Cufflinks®*.

Because all transcriptsin our analysis had confident strand assign-
ment, we made sure to use the-S’ option to ensure the software did not
consider ORFs on the opposite strand to the one annotated. Second,
we built a protein database using the MANE dataset for blastp search

against the candidate ORFs predicted by TransDecoder. These protein
alignments were used to select the best candidate ORF during the
second stage of the TransDecoder execution.

GeneMarkS-T. GeneMarkS-T**is another ab initio ORF finding method
included in several prominent pipelines for annotating ORFs in tran-
scriptome assemblies. Contrary to the TransDecoder, the method relies
lessonthelongest ORFstoinitiate search and more on other features,
refining its choice the 5’ AUG as the translation initiation site.

We applied GeneMarkS-T toboth RefSeq and GENCODE datasets,
similarly ensuring that the strand information is kept true to the refer-
enceviathe ‘—strand direct’ option.

Execution time

Some methods include multiple separate steps and commands that
need to be executed to annotate ORFs. When measuring runtime, we
recorded the total time it took to run all commands specified by each
method. However, because GeneMarkS-T reports CDS coordinates
relative to the transcriptin which they were found, we developed our
own custom scriptto convert transcriptomic coordinates to genomic
ones. Although we did notadd the conversion time to the total runtime
of the method, depending on the implementation, this step could
considerably increase the runtime.

Both ORFanage and the costly blastp alignment step in Trans-
Decoder can make proper use of multi-threading, yet GeneMarkS-T
cannot. Nonetheless, primarily because of how slow TransDecoder
was without multi-threading enabled, we allowed both ORFanage
and TransDecoder to use 30 threads concurrently. For ORFanage we
provide both single and multi-threaded performance measurements
(Table 2).

Reporting summary
Furtherinformation onresearch designisavailableinthe Nature Port-
folio Reporting Summary linked to this Article.

Data availability

No new sequencing data were created for this study. The sequenc-
ing data used in this study are available through the GTEX project
(phs000424.v7.p2). GTEx datawerefirstanalyzed as part of the CHESS
project and the details can be found in the corresponding resources
and publications (http://ccb.jhu.edu/chess/). The datasets analyzed
in this study are (1) GENCODE annotation build version 41 (https://
www.gencodegenes.org/human/release_41.html); (2) RefSeq annota-
tion build 110 (https://www.ncbi.nlm.nih.gov/genome/annotation_
euk/Homo_sapiens/110/); (3) MANE joint annotation build version
1.0 (https://ftp.ncbi.nlm.nih.gov/refseq/MANE/MANE_human/); (4)
A.thaliana annotation (https://ftp.ncbi.nlm.nih.gov/genomes/refseq/
plant/Arabidopsis_thaliana/all_assembly_versions/GCF_000001735.3_
TAIR10/); and (5) C. elegans genome annotation (https://ftp.ncbi.nlm.
nih.gov/genomes/refseq/invertebrate/Caenorhabditis_elegans/all_
assembly_versions/GCF_000002985.6_WBcel235/). Source data are
provided with this paper.

Code availability

All code required to reproduce the data generated within the study
from public sources is provided at https://github.com/alevar/ORFa-
nage_tests. The core method isimplemented in C++and based on the
GFFutils* and KSW2%** libraries. The code and test data are avail-
able for download at https://github.com/alevar/ORFanage/releases/
tag/1.0 (https://doi.org/10.5281/zenod0.8102912). Jupyter notebooks
used to generate all results described in the manuscript are provided
separately at https://github.com/alevar/ORFanage_tests (https://doi.
org/10.5281/zenod0.8102918)%. All additional software methods used
in this study and their versions and appropriate references are listed
inMethods.
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Statistics

For all statistical analyses, confirm that the following items are present in the figure legend, table legend, main text, or Methods section.
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|Z| The exact sample size (n) for each experimental group/condition, given as a discrete number and unit of measurement
|:| A statement on whether measurements were taken from distinct samples or whether the same sample was measured repeatedly

The statistical test(s) used AND whether they are one- or two-sided
Only common tests should be described solely by name; describe more complex techniques in the Methods section.

A description of all covariates tested
A description of any assumptions or corrections, such as tests of normality and adjustment for multiple comparisons

A full description of the statistical parameters including central tendency (e.g. means) or other basic estimates (e.g. regression coefficient)
AND variation (e.g. standard deviation) or associated estimates of uncertainty (e.g. confidence intervals)

For null hypothesis testing, the test statistic (e.g. F, t, r) with confidence intervals, effect sizes, degrees of freedom and P value noted
Give P values as exact values whenever suitable.

For Bayesian analysis, information on the choice of priors and Markov chain Monte Carlo settings

For hierarchical and complex designs, identification of the appropriate level for tests and full reporting of outcomes
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Estimates of effect sizes (e.g. Cohen's d, Pearson's r), indicating how they were calculated

Our web collection on statistics for biologists contains articles on many of the points above.

Software and code

Policy information about availability of computer code

Data collection  No software was used for collecting data in this study.

Data analysis ORFanage (v1.0, https://doi.org/10.5281/zenodo.8102912), HISAT2 (v2.2), TieBrush (v0.0.6), TieCov (v0.0.6) and Sashimi package (v0.0.6),
StringTie (v2.2.1), PhyloCSF++ (v1.2.0), gffcompare (0.12.6), gffread (v0.12.7), STRETCHER (v6.6.0.0), transdecoder (v5.7.0), GeneMarkS-T
(3.20) and ColabFold (v1.3.0) were used in this study. All additional code used to generate and analyze the results of the study is available at:
https://github.com/alevar/ORFanage_tests (https://doi.org/10.5281/zenodo.8102918).

For manuscripts utilizing custom algorithms or software that are central to the research but not yet described in published literature, software must be made available to editors and
reviewers. We strongly encourage code deposition in a community repository (e.g. GitHub). See the Nature Portfolio guidelines for submitting code & software for further information.

Data

Policy information about availability of data
All manuscripts must include a data availability statement. This statement should provide the following information, where applicable:

- Accession codes, unique identifiers, or web links for publicly available datasets
- A description of any restrictions on data availability

- For clinical datasets or third party data, please ensure that the statement adheres to our policy

Sequencing data used in this study is available through the GTEx project (phs000424.v7.p2). GTEx data was first analyzed as part of the CHESS project and the




details can be found in the corresponding resources and publications (http://ccb.jhu.edu/chess/). The datasets analyzed in this study are 1. GENCODE annotation

build version 41 (https://www.

gencodegenes.org/human/release_41.html); 2. RefSeq annotation build 110 (https://www.ncbi.nIm.nih.gov/genome/

annotation_euk/Homo_sapiens/110/); 3. MANE joint annotation build version 1.0 (https://ftp.ncbi.nIm.nih.gov/refseq/MANE/MANE_human/); 4. A. thaliana
annotation https://ftp.ncbi.nIm.nih.gov/genomes/refseq/plant/Arabidopsis_thaliana/all_assembly_versions/GCF_000001735.3_TAIR10/) and 5. C. elegans genome

annotion (https://ftp.ncbi.nlm.

nih.gov/genomes/refseq/invertebrate/Caenorhabditis_elegans/all_assembly_versions/GCF_000002985.6_WBcel235/).
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Ethics oversight

N/A

N/A

N/A

Note that full information on the approval of the study protocol must also be provided in the manuscript.
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study design

All studies must disclose on

these points even when the disclosure is negative.

Sample size This is a computational methods paper and this point is not applicable here.

Data exclusions  N/A
Replication N/A
Randomization  N/A

Blinding N/A

Behavioural & social sciences study design

All studies must disclose on

Study description

Research sample

Sampling strategy

Data collection

Timing

these points even when the disclosure is negative.

Briefly describe the study type including whether data are quantitative, qualitative, or mixed-methods (e.g. qualitative cross-sectional,
quantitative experimental, mixed-methods case study).

tate the research sample (e.g. Harvard university undergraduates, villagers in rural India) and provide relevant demographic
information (e.g. age, sex) and indicate whether the sample is representative. Provide a rationale for the study sample chosen. For
studies involving existing datasets, please describe the dataset and source.

Describe the sampling procedure (e.g. random, snowball, stratified, convenience). Describe the statistical methods that were used to
predetermine sample size OR if no sample-size calculation was performed, describe how sample sizes were chosen and provide a
rationale for why these sample sizes are sufficient. For qualitative data, please indicate whether data saturation was considered, and
what criteria were used to decide that no further sampling was needed.

Provide details about the data collection procedure, including the instruments or devices used to record the data (e.g. pen and paper,
computer, eye tracker, video or audio equipment) whether anyone was present besides the participant(s) and the researcher, and
whether the researcher was blind to experimental condition and/or the study hypothesis during data collection.

Indicate the start and stop dates of data collection. If there is a gap between collection periods, state the dates for each sample
cohort.
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Data exclusions If no data were excluded from the analyses, state so OR if data were excluded, provide the exact number of exclusions and the
rationale behind them, indicating whether exclusion criteria were pre-established.

Non-participation State how many participants dropped out/declined participation and the reason(s) given OR provide response rate OR state that no
participants dropped out/declined participation.

Randomization If participants were not allocated into experimental groups, state so OR describe how participants were allocated to groups, and if
allocation was not random, describe how covariates were controlled.
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Ecological, evolutionary & environmental sciences study design

All studies must disclose on these points even when the disclosure is negative.

Study description Briefly describe the study. For quantitative data include treatment factors and interactions, design structure (e.g. factorial, nested,
hierarchical), nature and number of experimental units and replicates.

Research sample Describe the research sample (e.g. a group of tagged Passer domesticus, all Stenocereus thurberi within Organ Pipe Cactus National
Monument), and provide a rationale for the sample choice. When relevant, describe the organism taxa, source, sex, age range and
any manipulations. State what population the sample is meant to represent when applicable. For studies involving existing datasets,

describe the data and its source.

Sampling strategy Note the sampling procedure. Describe the statistical methods that were used to predetermine sample size OR if no sample-size
calculation was performed, describe how sample sizes were chosen and provide a rationale for why these sample sizes are sufficient.

Data collection Describe the data collection procedure, including who recorded the data and how.
Timing and spatial scale |/ndicate the start and stop dates of data collection, noting the frequency and periodicity of sampling and providing a rationale for
these choices. If there is a gap between collection periods, state the dates for each sample cohort. Specify the spatial scale from which

the data are taken

Data exclusions If no data were excluded from the analyses, state so OR if data were excluded, describe the exclusions and the rationale behind them,
indicating whether exclusion criteria were pre-established.

Reproducibility Describe the measures taken to verify the reproducibility of experimental findings. For each experiment, note whether any attempts to
repeat the experiment failed OR state that all attempts to repeat the experiment were successful.

Randomization Describe how samples/organisms/participants were allocated into groups. If allocation was not random, describe how covariates were
controlled. If this is not relevant to your study, explain why.

Blinding Describe the extent of blinding used during data acquisition and analysis. If blinding was not possible, describe why OR explain why
blinding was not relevant to your study.

Did the study involve field work? |:| Yes |:| No

Field work, collection and transport

Field conditions Describe the study conditions for field work, providing relevant parameters (e.g. temperature, rainfall).

Location State the location of the sampling or experiment, providing relevant parameters (e.g. latitude and longitude, elevation, water depth).
Access & import/export |Describe the efforts you have made to access habitats and to collect and import/export your samples in a responsible manner and in
compliance with local, national and international laws, noting any permits that were obtained (give the name of the issuing authority,

the date of issue, and any identifying information).

Disturbance Describe any disturbance caused by the study and how it was minimized.

Reporting for specific materials, systems and methods

We require information from authors about some types of materials, experimental systems and methods used in many studies. Here, indicate whether each material,
system or method listed is relevant to your study. If you are not sure if a list item applies to your research, read the appropriate section before selecting a response.
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Antibodies used Describe all antibodies used in the study; as applicable, provide supplier name, catalog number, clone name, and lot number. =
o

Validation Describe the validation of each primary antibody for the species and application, noting any validation statements on the =

manufacturer’s website, relevant citations, antibody profiles in online databases, or data provided in the manuscript.

Eukaryotic cell lines

Policy information about cell lines and Sex and Gender in Research

Cell line source(s) State the source of each cell line used and the sex of all primary cell lines and cells derived from human participants or
vertebrate models.

Authentication Describe the authentication procedures for each cell line used OR declare that none of the cell lines used were authenticated.

Mycoplasma contamination Confirm that all cell lines tested negative for mycoplasma contamination OR describe the results of the testing for
mycoplasma contamination OR declare that the cell lines were not tested for mycoplasma contamination.

Commonly misidentified lines  yome any commonly misidentified cell lines used in the study and provide a rationale for their use.
(See ICLAC register)

Palaeontology and Archaeology

Specimen provenance Provide provenance information for specimens and describe permits that were obtained for the work (including the name of the
issuing authority, the date of issue, and any identifying information). Permits should encompass collection and, where applicable,

export.

Specimen deposition Indicate where the specimens have been deposited to permit free access by other researchers.

Dating methods If new dates are provided, describe how they were obtained (e.g. collection, storage, sample pretreatment and measurement), where
they were obtained (i.e. lab name), the calibration program and the protocol for quality assurance OR state that no new dates are
provided.

|:| Tick this box to confirm that the raw and calibrated dates are available in the paper or in Supplementary Information.

Ethics oversight Identify the organization(s) that approved or provided guidance on the study protocol, OR state that no ethical approval or guidance
was required and explain why not.

Note that full information on the approval of the study protocol must also be provided in the manuscript.

Animals and other research organisms

Policy information about studies involving animals; ARRIVE guidelines recommended for reporting animal research, and Sex and Gender in
Research

Laboratory animals For laboratory animals, report species, strain and age OR state that the study did not involve laboratory animals.

Wild animals Provide details on animals observed in or captured in the field; report species and age where possible. Describe how animals were
caught and transported and what happened to captive animals after the study (if killed, explain why and describe method; if released,
say where and when) OR state that the study did not involve wild animals.

Reporting on sex Indicate if findings apply to only one sex; describe whether sex was considered in study design, methods used for assigning sex.
Provide data disaggregated for sex where this information has been collected in the source data as appropriate; provide overall
numbers in this Reporting Summary. Please state if this information has not been collected. Report sex-based analyses where
performed, justify reasons for lack of sex-based analysis.




Field-collected samples | For laboratory work with field-collected samples, describe all relevant parameters such as housing, maintenance, temperature,
photoperiod and end-of-experiment protocol OR state that the study did not involve samples collected from the field.

Ethics oversight Identify the organization(s) that approved or provided guidance on the study protocol, OR state that no ethical approval or guidance
was required and explain why not.

Note that full information on the approval of the study protocol must also be provided in the manuscript.

Clinical data

Policy information about clinical studies

All manuscripts should comply with the ICMJE guidelines for publication of clinical research and a completed CONSORT checklist must be included with all submissions.

Clinical trial registration | Provide the trial registration number from ClinicalTrials.gov or an equivalent agency.
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Study protocol Note where the full trial protocol can be accessed OR if not available, explain why.
Data collection Describe the settings and locales of data collection, noting the time periods of recruitment and data collection.
Outcomes Describe how you pre-defined primary and secondary outcome measures and how you assessed these measures.

Dual use research of concern

Policy information about dual use research of concern

Hazards

Could the accidental, deliberate or reckless misuse of agents or technologies generated in the work, or the application of information presented
in the manuscript, pose a threat to:

Yes

[] Public health

|:| National security

|:| Crops and/or livestock

|:| Ecosystems
|:| Any other significant area
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Demonstrate how to render a vaccine ineffective

Confer resistance to therapeutically useful antibiotics or antiviral agents
Enhance the virulence of a pathogen or render a nonpathogen virulent
Increase transmissibility of a pathogen

Alter the host range of a pathogen

Enable evasion of diagnostic/detection modalities

Enable the weaponization of a biological agent or toxin
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Any other potentially harmful combination of experiments and agents

ChlP-seq

Data deposition
|:| Confirm that both raw and final processed data have been deposited in a public database such as GEO.

|:| Confirm that you have deposited or provided access to graph files (e.g. BED files) for the called peaks.

Data access links For "Initial submission" or "Revised version" documents, provide reviewer access links. For your "Final submission" document,
May remain private before publication. | provide a link to the deposited data.

Files in database submission Provide a list of all files available in the database submission.

Genome browser session
(e.g. UCSC)




Provide a link to an anonymized genome browser session for "Initial submission" and "Revised version" documents only, to
enable peer review. Write "no longer applicable" for "Final submission" documents.

Methodology
Replicates Describe the experimental replicates, specifying number, type and replicate agreement.
Sequencing depth Describe the sequencing depth for each experiment, providing the total number of reads, uniquely mapped reads, length of reads and
whether they were paired- or single-end.
Antibodies Describe the antibodies used for the ChlP-seq experiments; as applicable, provide supplier name, catalog number, clone name, and lot

number.

Peak calling parameters |Specify the command line program and parameters used for read mapping and peak calling, including the ChIP, control and index files
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Data quality Describe the methods used to ensure data quality in full detail, including how many peaks are at FDR 5% and above 5-fold enrichment.
Software Describe the software used to collect and analyze the ChIP-seq data. For custom code that has been deposited into a community

repository, provide accession details.

Flow Cytometry

Plots
Confirm that:
|:| The axis labels state the marker and fluorochrome used (e.g. CD4-FITC).

|:| The axis scales are clearly visible. Include numbers along axes only for bottom left plot of group (a 'group' is an analysis of identical markers).
|:| All plots are contour plots with outliers or pseudocolor plots.

|:| A numerical value for number of cells or percentage (with statistics) is provided.

Methodology

Sample preparation Describe the sample preparation, detailing the biological source of the cells and any tissue processing steps used.

Instrument Identify the instrument used for data collection, specifying make and model number.

Software Describe the software used to collect and analyze the flow cytometry data. For custom code that has been deposited into a
community repository, provide accession details.

Cell population abundance Describe the abundance of the relevant cell populations within post-sort fractions, providing details on the purity of the
samples and how it was determined.

Gating strategy Describe the gating strategy used for all relevant experiments, specifying the preliminary FSC/SSC gates of the starting cell

population, indicating where boundaries between "positive" and "negative" staining cell populations are defined.

|:| Tick this box to confirm that a figure exemplifying the gating strategy is provided in the Supplementary Information.

Magnetic resonance imaging

Experimental design

Design type Indicate task or resting state; event-related or block design.

Design specifications Specify the number of blocks, trials or experimental units per session and/or subject, and specify the length of each trial
or block (if trials are blocked) and interval between trials.

Behavioral performance measures State number and/or type of variables recorded (e.g. correct button press, response time) and what statistics were used
to establish that the subjects were performing the task as expected (e.g. mean, range, and/or standard deviation across
subjects).
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Preprocessing

Preprocessing software Provide detail on software version and revision number and on specific parameters (model/functions, brain extraction,
segmentation, smoothing kernel size, etc.).
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Normalization If data were normalized/standardized, describe the approach(es): specify linear or non-linear and define image types used for
transformation OR indicate that data were not normalized and explain rationale for lack of normalization.

Normalization template Describe the template used for normalization/transformation, specifying subject space or group standardized space (e.g.
original Talairach, MNI305, ICBM152) OR indicate that the data were not normalized.

Noise and artifact removal Describe your procedure(s) for artifact and structured noise removal, specifying motion parameters, tissue signals and
physiological signals (heart rate, respiration).

Volume censoring Define your software and/or method and criteria for volume censoring, and state the extent of such censoring.

Statistical modeling & inference

Model type and settings Specify type (mass univariate, multivariate, RSA, predictive, etc.) and describe essential details of the model at the first and
second levels (e.g. fixed, random or mixed effects; drift or auto-correlation).

Effect(s) tested Define precise effect in terms of the task or stimulus conditions instead of psychological concepts and indicate whether
ANOVA or factorial designs were used.

Specify type of analysis: [ | Whole brain [ | ROI-based [ ] Both

Statistic type for inference

Specify voxel-wise or cluster-wise and report all relevant parameters for cluster-wise methods.
(See Eklund et al. 2016)

Correction Describe the type of correction and how it is obtained for multiple comparisons (e.g. FWE, FDR, permutation or Monte Carlo).

Models & analysis

n/a | Involved in the study
D D Functional and/or effective connectivity

|:| D Graph analysis

|:| D Multivariate modeling or predictive analysis

Functional and/or effective connectivity Report the measures of dependence used and the model details (e.g. Pearson correlation, partial correlation,
mutual information).

Graph analysis Report the dependent variable and connectivity measure, specifying weighted graph or binarized graph,
subject- or group-level, and the global and/or node summaries used (e.g. clustering coefficient, efficiency,
etc.).

Multivariate modeling and predictive analysis | Specify independent variables, features extraction and dimension reduction, model, training and evaluation
metrics.
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