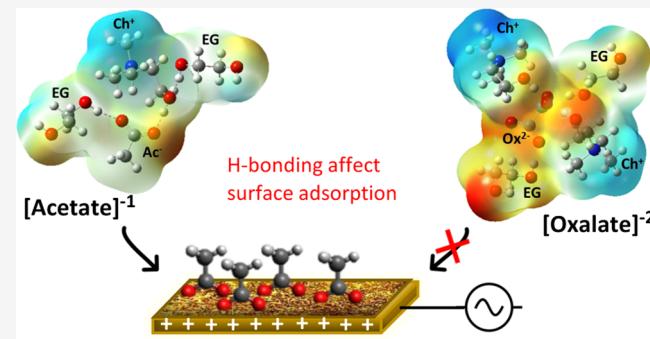


Anion Effects on the Interfacial Structure and Bulk Physical Properties in Choline-Based Hydrogen-Bonded Electrolytes

William Dean, Drace Penley, Yun-Yang Lee, Raziye Ghahremani, Saudagar Dongare,
and Burcu Gurkan*

Cite This: <https://doi.org/10.1021/acs.jpcc.2c01901>

Read Online


ACCESS |

Metrics & More

Article Recommendations

Supporting Information

ABSTRACT: Electrolytes consisting of choline (Ch) salts with acetate (Ac) and oxalate (Ox) anions were studied in mixtures with ethylene glycol (EG), in comparison to chloride (Cl⁻) and bis(trifluoromethylsulfonyl)imide (TFSI⁻)-containing systems to understand the impact of anion size and charge density on the bulk electrolyte and interfacial properties. These represent hydrogen-bonded concentrated electrolytes where the Ch salts are the H-bond acceptors (HBAs) and EG is the H-bond donor (HBD) in 1:2 and 1:4 HBA:HBD ratios. Increased H-bonding in Ch₂Ox with EG compacts the liquid compared to ChAc, consistent with the increased dissociation energies of the HBA:HBD clusters with Ox⁻² calculated by density functional theory (DFT), thus leading to denser and more viscous liquids. Electrochemical impedance spectroscopy (EIS) and surface-enhanced Raman spectroscopy (SERS) were used to investigate interfacial charge density and the electrode surface species. Differential capacitance curves demonstrate weak dependence on potential except for ChAc:EG, where Ac⁻ is found to adsorb on the Au surface, in particular at +0.055 V vs Ag quasi-reference while no specific adsorption was observed on glassy carbon (GC). In situ SERS measurement confirms the formation of a surface layer in the ChAc:EG systems resulting from a Au-acetate interaction. Despite the structural similarities, Ox⁻² did not show specific binding or any dependence of capacitance on potential as a result of strongly solvating EG molecules via H-bonds. This study shows that the charge density of the HBAs impacts both bulk properties and the electrical double-layer formation in concentrated H-bonded electrolytes that is relevant to electrochemical kinetics and morphology in electrodeposition processes and energy storage applications.

INTRODUCTION

Concentrated electrolytes such as ionic liquids (ILs) and deep eutectic solvents (DESs) possess wide electrochemical windows, high solvent strengths, and low volatilities, which make them promising electrolytes for electrochemical applications such as electrodeposition^{1–3} and energy storage devices.^{4–9} DESs have gained increased attention over the past two decades due to their lower costs than ILs and easier synthesis. DESs are commonly composed of salts such as choline chloride (ChCl) that act as hydrogen-bond acceptor (HBA) and neutral molecules such as ethylene glycol (EG) that act as hydrogen-bond donor (HBD).¹⁰ Certain HBA and HBD mixtures at a specific composition yield liquids that have significantly depressed freezing points compared to the parent compounds.¹¹ DESs commonly studied in electrochemical applications contain high concentrations of Cl⁻, and in our previous study, we reported specific adsorption of Cl⁻ on metal electrodes.¹² There have been no comprehensive interfacial studies on DESs or more broadly the eutectic solvents with H-bonding based on organic anions or anions with charges other than -1. This study presents Cl-free organic eutectic solvents

with varying anion structure and charge density to understand the influence of the anion on bulk and interfacial electrolyte properties.

The liquid structure of DESs is governed by a complex hydrogen-bonding network as well as Coulombic interactions due to the high salt content.^{13,14} Experimental and computational studies have shown that the formation of the H-bonding network within DESs has a large impact on their physical properties, liquid structure,¹⁴ solvation dynamics,¹⁵ and charge transfer phenomena in electrochemical systems.¹⁶ The physical properties of eutectic solvents have been shown to be highly dependent on their components,^{17–19} molar composition,^{20,21} and water contents.^{15,22,23} DESs typically have high viscosities and high salt concentrations^{24,25} and researchers continue to

Received: March 18, 2022

Revised: July 31, 2022

61 look for DES systems with low viscosity, as it contributes to
62 low transport resistance for charge carriers within the
63 electrolyte.^{26,27} Ethaline, a mixture of ChCl and EG at a 1:2
64 molar ratio, has been the subject of many studies due to its
65 relatively low viscosity (36–52 cP).²⁴ Klein et al.²¹ studied
66 changes in the physical properties of the hydrogen-bonded
67 electrolyte with compositional changes of ChCl and EG.
68 Interestingly, the 1:4 ChCl:EG mixture was the most ionically
69 conductive despite its higher viscosity compared to 1:2 and 1:6
70 mixtures, highlighting the importance of microscopic environ-
71 ments in DESs and H-bonded solvents. It has been shown that
72 hole theory, a mechanism of transport where ions move
73 through holes in the solvent structures in ILs, is also applicable
74 to changes in viscosity and conductivity in DESs.^{17,21} Tuning
75 DES components to lower the viscosity while maintaining the
76 beneficial aspects they have to offer is critical for practical
77 applications of these electrolytes for energy storage.^{24,25}

78 A recent study by Spittle et al.²⁸ showed that the addition of
79 ChCl salt to the H-bonding network of glycerol (Gly) and EG
80 induces microscopic structural heterogeneities in the liquid
81 that correlate with bulk properties. They report that in HBDs
82 with a strong H-bonding network such as Gly, the Ch^+ cation
83 is caged in the network while the Cl^- anion weakens the self-
84 interactions of Gly–Gly. This study motivated us to examine
85 the impact of anion size and charge density in these DESs and
86 similar mixtures where H-bonding plays an important role in
87 determining the physical properties.

88 While the transport properties such as viscosity and
89 conductivity of an electrolyte are directly related to perform-
90 ance in electrochemical processes, interfacial properties such as
91 the double-layer structure and electrode surface species are
92 also important as they relate to the mechanism and kinetics of
93 electron transfer reactions. Species complexation²⁹ and
94 solvation²¹ affect electron transfer reactions; therefore, kinetic
95 studies by classical electroanalytical techniques require caution
96 and understanding of the structure and interfacial spe-
97 cies.^{16,27,29,30} To develop concentrated DES-like electrolytes
98 with high energy density, it is critical to understand not only
99 the bulk liquid properties but also the interfacial properties.
100 Specifically, the liquid structure near the electrode surface and
101 the surface species that play a role in electron transfer are not
102 generally as well understood in these systems.

103 Most studies thus far have focused on ChCl-based DESs,
104 and they indicate that some degree of ordered structure forms
105 with surface adsorption playing a dominant role in the
106 electrode-DES interface. Vieira et al.³¹ used polarization
107 modulation infrared reflection absorption spectroscopy (PM-
108 IRRAS) to study ethaline on a glassy carbon electrode. They
109 observed surface adsorption of Ch^+ at negative potentials and
110 saw evidence of reorientation of Ch^+ with increased negative
111 polarization to allow closer packing. Chen et al.³² performed
112 potential-dependent atomic force microscopy (AFM) measure-
113 ments on a highly ordered graphite electrode, showing a
114 structured inner layer that was cation-rich at negative
115 potentials and changed to anion-rich at positive potentials.
116 Figueiredo et al.³³ used electrochemical impedance spectro-
117 copy (EIS) to show that the DES glycine (ChCl:Gly, 1:2
118 molar ratio) behaves very differently on different electrode
119 surfaces. In our previous study, we investigated the potential-
120 dependent capacitance for several ChCl:EG systems at glassy
121 carbon (GC), Au, and Pt electrode surfaces using the EIS
122 technique.¹² Shallow U-shaped capacitance was observed for
123 the systems on GC; interestingly, this is similar to what has

been seen for dilute electrolytes. Using a modified Gouy–
124 Chapman model, the interface on a GC electrode was modeled
125 as a diffuse layer of charge extending to the bulk electro-
126 lyte.^{34,35} Au and Pt showed much more complex differential
127 capacitance behavior, attributed to the surface adsorption of
128 Cl^- . Wu et al.³⁶ observed similar behavior in capacitance
129 curves for ethaline and confirmed Cl^- adsorption using shell-
130 isolated nanoparticle enhanced Raman spectroscopy
131 (SHINERS). Additionally, they investigated a ChCl-based
132 DES with lactic acid as the HBD, and they found evidence of
133 HBA adsorption, but that surface adsorption of the Cl^- anion
134 still dominated capacitive behavior.³⁷

135 Computational studies of ChCl-based DES have also
136 supported the formation of surface-normal nanostructures at
137 the electrode–electrolyte interface in H-bonded electrolytes
138 and DESs. Atilhan et al.³⁸ simulated mixtures of ChCl-levulinic
139 acid on uncharged electrode surfaces using classical molecular
140 dynamics, finding that both ions and solvent molecules form a
141 strongly adsorbed layer on the electrode surface. Mamme et
142 al.³⁹ observed the formation of an adsorbed layer of urea
143 molecules and counterions in a mixture of ChCl:urea (1:2
144 molar ratio) under both positive and negative polarization, and
145 the absorbed layer was followed by a mixed structured layer of
146 Ch^+ , Cl^- , and urea. Studies thus far have provided some insight
147 into common phenomena that can occur at electrochemical
148 interfaces in DESs, but most of these studies have been limited
149 to ChCl-based systems, and thus knowledge outside of these
150 systems is limited.

151 Adsorbed species at the electrode surface have been shown
152 to have a large effect on the morphology in electrodeposition.
153 Additives are frequently used to improve electrodeposition in
154 aqueous mixtures by adsorbing to the electrode surface and
155 occupying nucleation sites but are only recently investigated
156 for DESs. In the DES ethaline, it has been suggested that
157 strongly adsorbed Cl^- causes 2D deposited structures to form
158 perpendicular to the surface during zinc deposition.² Small-
159 molecule additives such as boronic acid and nicotinic acid have
160 been used to improve uniformity by adsorbing to the electrode
161 surface and displacing surface-adsorbed Cl^- .^{2,40} Substituting
162 the Cl^- with other anions in these Ch-based mixtures could
163 eliminate the need for additives to achieve smooth depositions.
164

165 In this study, we investigated the impact of the anion on
166 electrolyte properties and interfacial structure of concentrated
167 H-bonded electrolytes consisting of HBAs of choline acetate
168 (ChAc), choline oxalate (Ch₂Ox), and choline bis-
169 (trifluoromethylsulfonyl)imide (ChTFSI) in EG with 1:2 and
170 1:4 molar ratios (structures shown in Table 1), similar to the
171 DES, ethaline. As the anions are of different sizes and charges,
172 we anticipate that the strength of the H-bonding network and
173 the liquid structure would be effectively altered. Infrared
174 spectroscopy and NMR spectroscopy were used to probe the
175 changes in hydrogen bonding and the temperature-dependent
176 densities, viscosities, and conductivities are reported as
177 descriptors for changes in the microenvironment of the liquid.
178 The surface tension of these samples was also measured to
179 estimate the size of entropic voids according to the hole theory
180 that is often applied for DESs and ILs to probe fluidity and
181 species transport.^{17,21} As both transport and interfacial
182 properties are influenced by the solvation environment, we
183 performed geometry optimization and calculation of energetics
184 for possible anion solvation by EG and/or complexation with
185 Ch^+ cation using density functional theory (DFT). EIS was
186 used to determine potential-dependent differential capacitance

Table 1. Structures of HBAs Investigated^a

Chemical Structure	HBA	Water content (ppm)
	ChCl	460–550 ¹²
	ChAc	550–730
	Ch ₂ Ox	230–410
	ChTFSI	290–320

^aThe water contents are for the HBA:HBD (1:2 and 1:4) mixtures. EG was used as the HBD.

187 for these mixtures, which can be related to the general
 188 interfacial charge density. Potential-dependent changes in the
 189 inner surface layer of ions at the interface were studied on the
 190 Au surface by surface-enhanced Raman spectroscopy (SERS).
 191 SERS is highly sensitive and is commonly employed to study
 192 changes of species in proximity (<10 nm) to the electrode
 193 surface including surface adsorption,^{41–44} molecular reorienta-
 194 tions of ions,⁴⁵ and solute–solvent interactions.²¹ Combining
 195 the EIS and SERS techniques allows for a more complete
 196 understanding of interfacial structure. It was found that surface
 197 adsorption is still present in some of the systems with organic
 198 anions and can play a dominant role in interfacial behavior.
 199 This is highlighted in the differences observed in capacitance
 200 curves and spectroscopically between the ChAc systems where
 201 adsorption is dominant and ChTFSI where anion adsorption is
 202 not seen. It was also found that the strong H-bonding
 203 interactions in the Ch₂Ox:EG can inhibit changes in interfacial
 204 charge density. This report contributes to the fundamental
 205 understanding of the impact of HBAs on both bulk properties
 206 and electrical double layer in DESs and concentrated H-
 207 bonded electrolytes as they relate to electrochemical
 208 applications.

209 ■ MATERIALS

210 Choline chloride, ChCl (99%), and anhydrous ethylene glycol,
 211 EG (99.8%), were purchased from Acros Organics. Choline
 212 acetate, ChAc (98%), and choline bis(trifluoromethylsulfonyl)-
 213 imide, ChTFSI (99%), were obtained from Iolitec. Choline
 214 oxalate (Ch₂Ox) was synthesized using an acid–base reaction
 215 between choline hydroxide (Sigma-Aldrich, 46 wt % in water)
 216 and oxalic acid. Oxalic acid was dissolved in a minimal amount
 217 of methanol and was added dropwise to the choline hydroxide
 218 solution in a 200 mL round-bottom flask. The solution was
 219 stirred and heated at 60 °C for 24 h. Residual solvent was
 220 evaporated off using a rotary evaporator at 60 °C. The
 221 resultant yellow solid was dried under vacuum for 24 h at 70
 222 °C. For confirmation of synthesis, the sample was analyzed by
 223 NMR (see ¹H NMR and ¹³C NMR, Figures S1 and S2,
 224 respectively). Elemental analysis of Ch₂Ox was performed by

225 combustion ion chromatography (Atlantic Labs) to determine 226
 halide content. Halide impurity was determined to be below 226
 the detection limit of combustion ion chromatography 227
 (<0.25%). Nitrogen gas (99.998%) was received from Airgas. 228
 Gold quartz QM crystals (0.25 mm thick, 99.998%) were 229
 purchased from Fil-tech. Silver wire (1 mm in dia. 99.999%) 230
 was purchased from Alfa Aesar. The deuterated solvent 231
 DMSO-*d*₆ (10 mL, 99.9%) was purchased from Cambridge 232
 Isotope Laboratories, Inc. NMR tubes (5 mm OD; 7" L; wall 233
 thickness: 0.38 mm) with coded closed caps were purchased 234
 from Bruker.

235 To prepare the electrolytes, ChAc, Ch₂Ox, and ChTFSI 236
 were dried under vacuum at 80 °C for 24 h. EG was dried 237
 using molecular sieves prior to use (water content ~ 100 238
 ppm). The water contents of the mixtures were determined 239
 using Karl–Fisher titration and are included in Table 1. All 240
 mixtures were prepared by mixing the components under a dry 241
 argon environment (VTI glovebox, H₂O < 1 ppm, O₂ < 1 242
 ppm) at 80 °C for 1 h. Samples were then allowed to cool to 243
 room temperature and further deaerated by bubbling dry 244
 nitrogen before any of the measurements.

245 ■ PHYSICAL PROPERTY MEASUREMENTS

246 A Rheosense viscometer was used to measure the viscosity of 247
 the samples; an enclosed temperature controller (viscosity ± 248
 2% and temperature ± 0.1 K) was used to adjust the 249
 temperature of the sample in 5 °C increments. Conductivity 250
 measurements were taken using a dual platinum electrode cell 251
 (MMA 500 from Biologic INC) inside the RheoSense 252
 temperature control unit (±0.1 K). The samples were 253
 equilibrated at each temperature for 15 min prior to 254
 measurement. Density measurements were taken by an 255
 Anton Paar density meter (DMA 4500 M, accuracy of ±0.03 256
 K and ±0.00005 g/cm³) using temperature steps of 5 °C. 257
 Density, viscosity, and conductivity measurements were 258
 replicated three times at a given temperature for each system, 259
 and the average is reported.

260 Surface tension measurements were determined using a 261
 Kruss shape drop analyzer. The pendant drop method was 262
 used to determine the bulk surface tension of each mixture. A 1 263
 mL syringe with a 1.8 mm diameter blunt-tip needle was used 264
 to ensure a large drop size. The surface tension can be related 265
 to the hole size (hole theory of diffusion) in each fluid, which 266
 is associated with the mobility of ions in concentrated liquid 267
 systems.²¹ The average radius of holes in concentrated 268
 electrolytes is determined from the measured surface tension 269
 (γ) using eq 1.⁴⁶

$$270 4\pi(r)^2 = 3.5 \frac{k_B T}{\gamma} \quad (1) \quad 271$$

272 where r is the average hole size, k_B is the Boltzmann constant, 272
 and T is the absolute temperature.

274 ■ CHARACTERIZATION OF HYDROGEN BONDING

275 Fourier Transform Infrared Spectroscopy. A Thermo 276
 276 Scientific Nicolet iSS50 FTIR was used to perform Fourier 277
 277 transform infrared (FTIR) spectroscopy measurements on the 277
 278 bulk electrolyte solutions to probe the changes in the H- 278
 bonding with HBA:HBD composition of the samples. All of 279
 279 the measurements were performed at room temperature 280
 (about 22 °C). Spectra were collected at 0.5 cm⁻¹ resolution 281
 by taking an average of 32 scans.

283 Proton and Pulse-Field Gradient Nuclear Magnetic
284 Resonance Spectroscopy.¹H NMR data were measured on
 285 a 500 MHz Bruker Ascend HD NMR to measure the extent of
 286 spectral shifts due to H-bonding. The sample temperature was
 287 controlled by the inner heating–cooling units to be 22 °C. The
 288 NMR samples for normal ¹H NMR were prepared by mixing
 289 0.2 mg of samples in 0.6 mL of DMSO-*d*₆, and then loaded
 290 into the NMR tube. For the study of chemical shifts with
 291 different salt-HBD compositions, a coaxial tube set was used to
 292 prevent the mixing of salt-HBDs with the secondary solvent
 293 (DMSO-*d*₆), which may change the solvation environment.
 294 This procedure also eliminates the possibility of salt
 295 precipitation in dimethyl sulfoxide (DMSO). About 0.4 mL
 296 of the sample was loaded into the outer cell within the Ar
 297 atmosphere. An inner cell with DMSO/DMSO-*d*₆ (5/95 v/v)
 298 was then inserted into the outer cell containing the sample.
 299 The use of DMSO-*d*₆ is necessary for NMR frequency signal
 300 locking, and the addition of 5% DMSO (2.58 ppm) acts as the
 301 inner reference for the chemical shifts.

302 ■ COMPUTATIONAL METHODS

303 Structure and Frequencies. Quantum mechanics calcu-
 304 lations were carried out in the Gaussian16 program⁴⁷ using the
 305 three-parameter Becke model with the Lee–Yang–Par-
 306 modification (B3LYP)⁴⁸ functional for exchange and correla-
 307 tion and the 6–311G++(d,p)⁴⁹ basis set. Structures of the
 308 isolated components and HBA:HBD mixtures and the
 309 associated electronic energies were obtained using geometry
 310 optimizations with default convergence criteria. To represent
 311 the concentrations used in the experimental studies for
 312 ChCl:EG, ChTFSI, ChAc:EG, and Ch₂Ox:EG, the number
 313 of EG molecules was increased from 1 to 4 while maintaining
 314 one Ch⁺–anion[–] pair. Frequency calculations were carried out
 315 at the same level of theory to obtain Raman spectroscopic data.
 316 Raman frequencies were scaled by a factor of 0.964⁵⁰ for the
 317 ChTFSI system to compare with experimentally obtained
 318 spectra. Frequencies were not scaled for the ChAc system in
 319 accordance with the literature.⁵¹

320 Differential and Integral Analysis of Solvation. Two
 321 methods were used to determine the energy difference
 322 associated with adding a new EG to the solvent systems,
 323 following a similar methodology described by Penley et al.⁵²
 324 The integral binding energy refers to the energy needed to add
 325 *n* EGs to a salt pair, e.g., ChAc + 2 EG → ChAc:EG (1:2). The
 326 more positive integral binding energy leads to a more
 327 thermodynamically stable system. In contrast, the differential
 328 binding energy is the energy to add one EG at a time, e.g.,
 329 ChAc:EG (1:1) + EG → ChAc:EG (1:2). A positive
 330 differential binding energy indicates that it is thermodynam-
 331 ically favored for another EG molecule to be added to the H-
 332 bond network. The differential binding energy is useful for
 333 assessing the feasibility of different coordination structures
 334 with EG, whereas the integral binding energy is useful for
 335 assessing the relative stability of the H-bonding network.

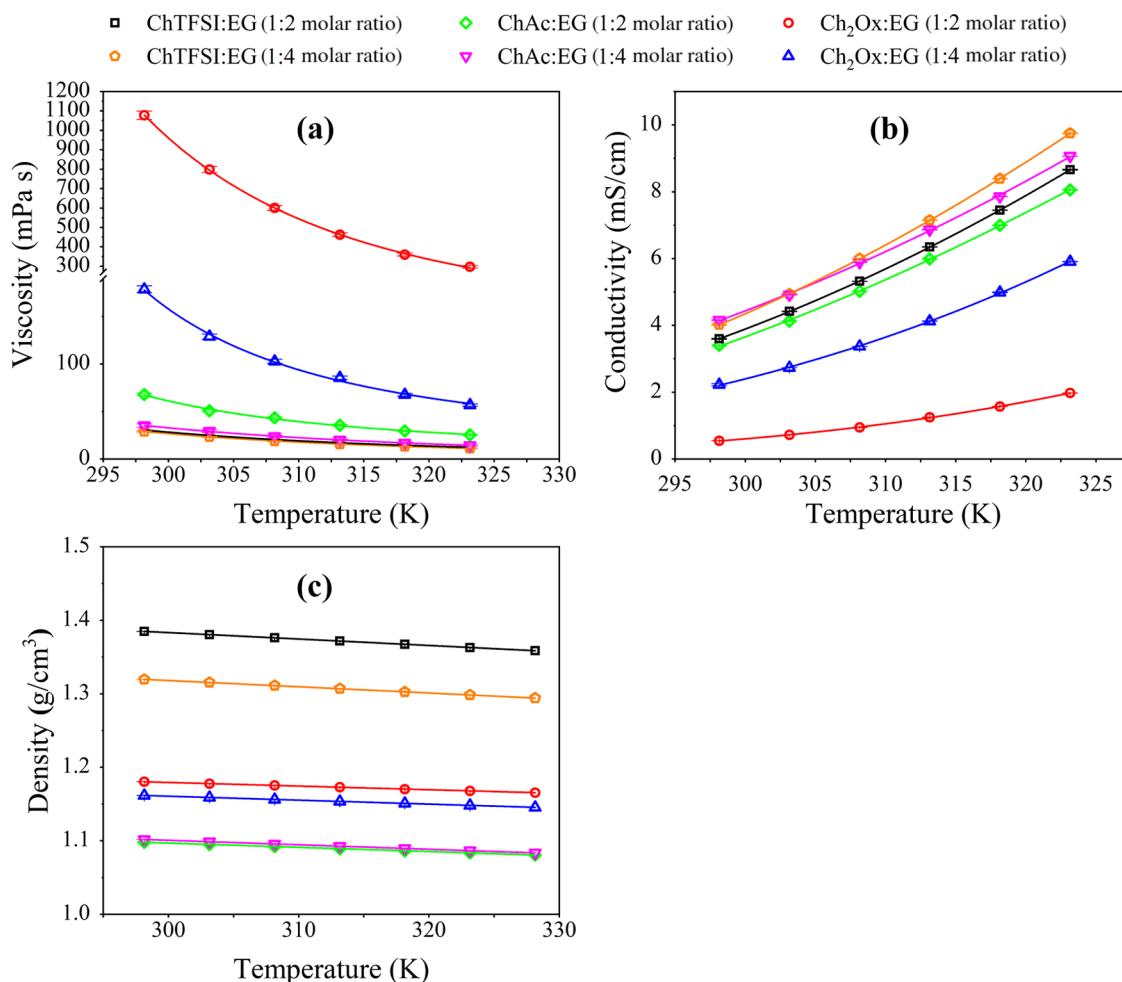
336 ■ ELECTROCHEMICAL MEASUREMENTS

337 Electrochemical measurements were performed in a dry
 338 positive-pressure nitrogen glovebox (Terra Universal) at
 339 room temperature (22 °C) using a Biologic SP-200
 340 potentiostat. Working electrodes of glassy carbon (GC disk;
 341 2 mm dia) and gold (Au disk; 1.6 mm dia) were used for all
 342 electrochemical measurements. Electrodes were polished for 2

343 min with microdisks coated in 5 μm alumina for GC, and for 344
 345 Au, 3 μm diamond, followed by 5 μm alumina. Electrodes were 344
 345 rinsed with deionized water immediately following polishing. 345
 346 Measurements were iR-corrected using the resistance deter- 346
 347 mined from a single-frequency (2500 Hz) impedance 347
 348 measurement. Cyclic voltammetry (CV) starting at open- 348
 349 circuit potential (OCP) at a scan rate of 20 mV/s (5 cycles) 349
 350 was employed to determine electrochemical windows; 350
 351 potentials are reported using a cutoff current density of 0.02 351
 352 mA/cm². A T-cell configuration was used consisting of the 352
 353 working electrode, Pt wire counter electrode (1 mm dia), and 353
 354 Ag quasi-reference electrode (1 mm dia). EIS was used to 354
 355 determine the differential capacitance. A three-electrode setup 355
 356 was used with a 5 mL sample volume consisting of working 356
 357 electrode, carbon felt (2.5 cm²) counter electrode, and Ag 357
 358 quasi-reference electrode (1 mm dia). EIS measurements were 358
 359 performed using a frequency range of 500 kHz to 100 mHz 359
 360 with an amplitude of 20 mV. EIS was taken at equally spaced 360
 361 potentials starting from OCP and moving to increasingly 361
 362 negative potentials. The potential was then returned to OCP 362
 363 using chronoamperometry for 30 min before starting a second 363
 364 sweep of EIS scans at positive potentials, similar to the 364
 365 procedure used by Klein et al.⁵³ to determine differential 365
 366 capacitance in ILs. 366

Differential Capacitance. The measured impedance 367
 368 encompasses all capacitive and resistive processes in the 368
 369 system. To identify the frequency range associated with the 369
 370 charging/discharging of the double layer, the complex 370
 371 capacitance plane, *C* (imaginary *C*' versus real *C*' capacitance), 371
 372 as defined in eq 2 was examined, similar to previous studies for 372
 373 ionic liquids^{53,54} and DESs.¹² 373

$$C = C' + iC'' = \frac{1}{i\omega Z} = -\frac{iZ'}{\omega(Z'^2 + Z''^2)} - \frac{Z''}{\omega(Z'^2 + Z''^2)} \quad (2) \quad 374$$


375 where *Z'* and *Z''* are the real and imaginary components of 375
 376 impedance, respectively. In the complex capacitance repre- 376
 377 sentation, a clear shoulder is observed, which corresponds to 377
 378 the formation of the electrical double layer, fitting this range to 378
 379 an equivalent circuit of a resistor in series with a constant 379
 380 phase element excludes slow processes captured at low 380
 381 frequencies. Differential capacitance was calculated using the 381
 382 fit parameters in eq 3. 382

$$C = \text{Average} \left[\frac{Q\omega_i^{a-1}}{\sin\left(\frac{a\pi}{2}\right)} \right] \quad (3) \quad 383$$

384 where *Q* and *a* are fit parameters and ω_i is the angular 384
 385 frequency (Hz). In the case of U-shaped capacitance, a 385
 386 modified Gouy–Chapman equation (eq 4) was used to model 386
 387 capacitance in DESs as a diffuse layer of charge.¹² 387

$$C_{\text{GC}} = C_d \times \cos h \left(\frac{\alpha u}{2} \right) \quad (\text{Modified Gouy} - \text{Chapman}) \quad (4) \quad 388$$

389 where *C_{GC}* is the Gouy–Chapman³⁶ capacitance, *C_d* is the 389
 390 Debye capacitance ($C_d = \frac{\epsilon^*}{4\pi\lambda_D}$, where ϵ^* is the effective 390
 391 dielectric constant for the medium and λ_D is the Debye 391
 392 length), α is the ion interaction term, and *u* is the 392

Figure 1. Temperature dependency of (a) viscosity, (b) conductivity, and (c) density of the Ch Anion:EG solvents at both 1:2 and 1:4 molar ratios. Viscosity and conductivity data were fit using Vogel–Fulcher–Tammann (VFT) theory (tabulated data are included in Table S1, and fit parameters are listed in Table S2).

393 dimensionless potential ($u = e\phi/k_b T$, where ϕ is the electrode
394 potential with respect to the reference).

395 **Constant Potential Electrolysis (CPE).** To probe
396 possible degradation of ChAc:EG (1:2) electrolyte close to
397 the anodic/cathodic limits and confirm the electrolyte stability
398 during EIS and SERS measurements, CPE was also performed.
399 Experiments were conducted in a single-compartment cell with
400 a three-electrode configuration. An Au surface (geometric
401 surface area of 0.38 cm^2) was used as the working electrode
402 with a Pt mesh as the counter electrode and Ag quasi-reference
403 electrode (1 mm diameter). Potentials within the electro-
404 chemical window and close to the anodic and cathodic limits,
405 as determined from CV, were applied for 2400 s. The
406 headspace of the compartment was continuously purged
407 during CPE with inert carrier gas (He) at a rate of 10 mL/
408 min, to transport volatile reaction products from the cell to the
409 online gas chromatograph, GC (7890B, Agilent Technologies).
410 The GC is equipped with two thermal conductivity detectors
411 (TCDs) for detecting CO and H_2 , and one flame ionization
412 detector (FID) for detecting hydrocarbons. The GC was
413 calibrated using a standard gas mixture consisting of CO, CO_2 ,
414 CH_4 , C_2H_4 , and C_2H_6 (0.0999 mol % for each component)
415 balanced by He (Airgas, an Air Liquide Company) under
416 standard conditions (1 atm, 298 K) to quantify gaseous
417 degradation products. Automatic injections were performed at

20 and 40 min during the CPE experiment. Following CPE,
418 the electrolyte was collected for analysis by ^1H and ^{13}C NMR
419 to examine degradation products in the liquid phase.
420

■ POTENTIAL-DEPENDENT SURFACE-ENHANCED RAMAN SPECTROSCOPY (SERS) 421

422 An electrochemical cell, adapted from Klein et al.,⁴⁵ with an Au
423 QCM crystal as the working electrode (0.2 cm^2), a coiled silver
424 wire counter electrode, and a silver wire quasi-reference
425 electrode (1 mm dia.) was used to collect Raman spectra under
426 applied potential. The Au crystal was electrochemically
427 roughened with a 0.1 M KCl solution using 24 cycles of a
428 voltammetric sequence: starting with a chronoamperometry
429 (CA) at -0.3 V (vs Ag quasi-reference) for 30 s, followed by
430 linear sweep voltammetry (LSV) from -0.3 to 1.2 V , then a
431 CA at 1.2 V for 1.2 s and an LSV from 1.2 to -0.3 V , a final
432 CA returned to -0.3 V for 30 s.^{55,56} The spectra were collected
433 using a Horiba Xplora One Raman system with a 785 nm
434 excitation laser at a spectral range of 600 – 2300 cm^{-1} (1 cm^{-1}
435 resolution) with a $20\times$ magnification objective, 500 mm hole,
436 200 nm slit, 10 s exposure time, and five accumulations.
437 Localized Raman spectra were also obtained for smaller ranges
438 of wavenumbers for spectral regions where significant
439 potential-dependant change was observed to gain increased
440 resolution (0.7 cm^{-1} resolution). SERS measurements were
441

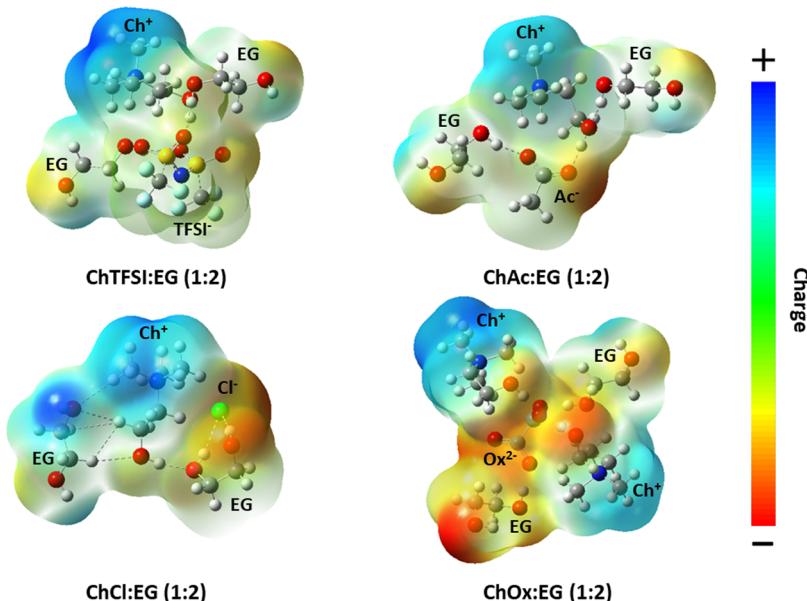
442 taken in the same potential range used for EIS measurements.
 443 Potential steps were taken across the electrochemical window
 444 of each mixture starting at OCP and stepping first to more
 445 positive potentials, then returning to OCP before the second
 446 step to negative potentials. Each potential was held for 5 min
 447 before taking the spectrum. Spectra were baseline-corrected
 448 using linear line subtraction.

449 ■ RESULTS AND DISCUSSION

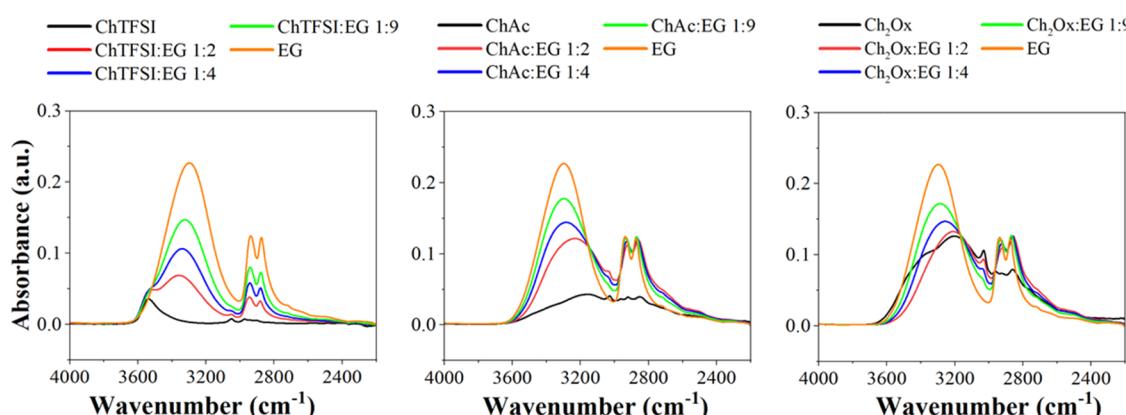
450 The temperature-dependent viscosities, conductivities, and
 451 densities of each solvent are shown in Figure 1. The
 452 $\text{CH}_2\text{Ox:EG}$ solvent (both 1:2 and 1:4 molar ratios) shows
 453 significantly higher viscosity and lower conductivity compared
 454 to CHTFSI:EG and CHAc:EG . For example, the viscosity of 1:2
 455 $\text{CH}_2\text{Ox:EG}$ was found to be 1070 cP compared to 68 cP for 1:2
 456 CHAc:EG and 30 cP for 1:2 CHTFSI:EG at 25 °C. Despite the
 457 similar structures of CH_2Ox and CHAc , the increased charge
 458 density of Ox^{-2} and the divalent nature compared to Ac^- as
 459 well as the greater number of H-bonds that CH_2Ox can form
 460 with EG lead to stronger intermolecular interactions. The
 461 stronger H-bonding network of $\text{CH}_2\text{Ox:EG}$ solvate is further
 462 justified by DFT calculations.

463 As seen in Table 2, the calculated integral binding energy of
 464 the $\text{CH}_2\text{Ox:EG}$ (13.26 eV) is higher than CHAc:EG (5.83 eV),

Table 2. Integral Binding Energies Calculated by DFT for the Salt:EG Solvate Clusters


system	composition	integral binding energy (eV)
ChTFSI:EG	1:1	5.06
	1:2	5.45
	1:3	5.92
	1:4	
ChCl:EG	1:1	4.91
	1:2	5.36
	1:3	5.95
	1:4	6.54
CHAc:EG	1:1	5.35
	1:2	5.83
	1:3	6.14
	1:4	6.91
$\text{CH}_2\text{Ox:EG}$	1:1	13.41
	1:2	13.26
	1:3	13.71
	1:4	14.09

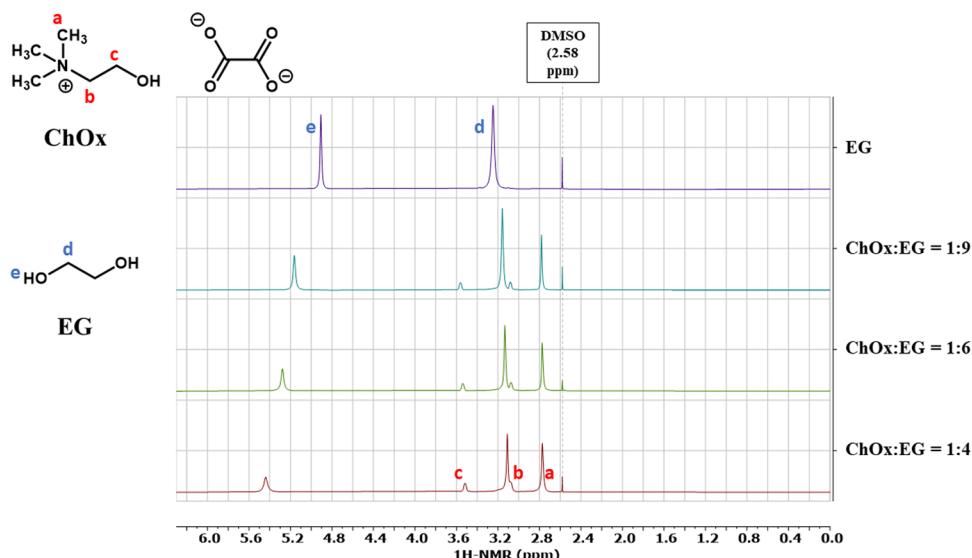
465 thus suggesting a more rigid H-bonding network of $\text{CH}_2\text{Ox:EG}$
 466 since the increase in integral binding energy indicates increased
 467 thermodynamic stability. The structural representations of all
 468 of the salt:EG clusters and the calculated charge densities are
 469 shown in Figure 2. Differential binding energies (Table S3)
 470 were positive for all systems, indicating that each addition of
 471 EG was thermodynamically favorable. The average H-bond
 472 length in $\text{CH}_2\text{Ox:EG}$ solvate cluster was 1.60 Å, while it was
 473 1.80 Å in CHAc:EG . The shorter H-bond lengths and the
 474 increased charged density support the rigidity of the solvate
 475 clusters and the measured high viscosities as well as the low
 476 conductivities in Ox^{-2} -containing systems. The binding energy
 477 for 1:2 CHTFSI:EG (5.45 eV) was lower than those of Ac and
 478 Ox^{-2} systems in support of the measured lower viscosities. On
 479 the other hand, it was higher than that of 1:2 CHCl:EG (5.36
 480 eV). The Cl system has a higher viscosity (48 cP at 25 °C)
 481 than the TFSI-based system and slightly lower viscosity than


482 the Ac system. Previously, we demonstrated that replacing Cl^-
 483 with TFSI^- anion can weaken the Coulombic interactions and
 484 promote fluidity.²¹ Therefore, the lower binding energy for 1:2
 485 CHCl:EG is rather unexpected. This may be because DFT
 486 calculations only account for enthalpic contributions to the
 487 binding energies without capturing the entropic effects that
 488 may be induced by the fluorinated groups in TFSI^- . From the
 489 measurement of the surface tension and the estimated hole
 490 sizes (listed in Table S4), it is seen that CHTFSI:EG has the
 491 largest hole size (1.7 Å), consistent with both the decrease in
 492 bonding strength between molecules and the low viscosities
 493 measured for these mixtures compared to the rest of the
 494 systems. Despite the differences in viscosity and bonding
 495 strength, the hole size does not change significantly between
 496 the 1:4 CHAc:EG (1.51 Å) and $\text{CH}_2\text{Ox:EG}$ (1.55 Å), and they
 497 are similar to previously reported values for ethaline (1.48
 498 Å).²¹ This is because the species that would replace the voids
 499 are larger in this system than ethaline; thus they are not as
 500 dynamic as ethaline. The 1:2 $\text{CH}_2\text{Ox:EG}$ system has the
 501 smallest hole size (1.42 Å) in agreement with the increased
 502 bonding strength between the salt and EG.

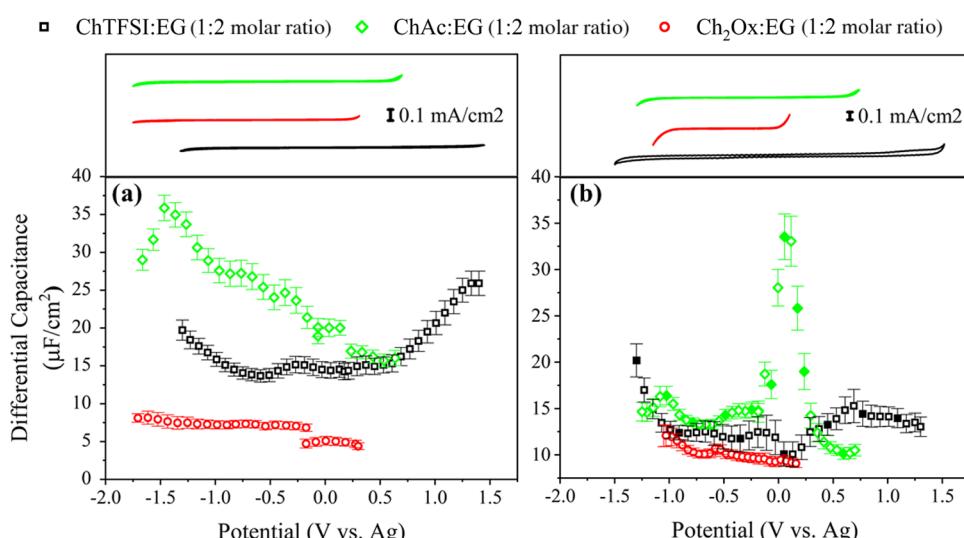
503 The bulk densities of the anion mixtures with EG followed
 504 the trend of $\text{CHAc} < \text{CH}_2\text{Ox} < \text{CHTFSI}$. The increase in density
 505 from the Ac^- to Ox^{-2} systems is due to the stronger H-
 506 bonding interactions present in the $\text{CH}_2\text{Ox:EG}$ system
 507 resulting in tighter packing. Densities were highest for the
 508 CHTFSI mixtures despite having weaker intermolecular
 509 interactions. The large differences in molecular weight between
 510 the TFSI^- anion (280.1 g/mol) and the Ox^{-2} (88.0 g/mol)
 511 and Ac^- (59.0 g/mol) appear to be significant enough to
 512 overcome the differences in bonding strength between the
 513 systems.

514 FTIR spectroscopy was used to study the H-bonding
 515 behavior for different compositions of the salts in EG. The
 516 spectral region corresponding to the OH stretch of the samples
 517 is shown in Figure 3. The full spectra recorded are provided in
 518 Figure S3, and the characteristic peaks are listed in Table S5.
 519 The specific vibrational modes were identified with the help of
 520 the frequencies calculated by DFT (Figures S4–S6 show the
 521 calculated and measured IR spectra). The peak at 3300 cm^{-1}
 522 seen for EG is associated with $\nu(\text{OH})$; the broadness of the
 523 peak is due to extensive intermolecular H-bonding between the
 524 EG–EG molecules. The addition of the salts disrupts the EG–
 525 EG bonding and results in a decrease in peak intensity with
 526 increasing salt concentration. Similar changes in FTIR spectra
 527 have been observed for mixtures of CHCl and EG.³¹ For both
 528 CHAc and CH_2Ox addition, a redshift is seen in the $\nu(\text{OH})$
 529 peak, commonly seen for H-bonded molecules⁵⁷ (e.g., $\text{O}-\text{H}\cdots\text{O}$
 530 HBA), where the electron density from the HBA transfers to
 531 the O–H antibonding orbital causing the bond to weaken and
 532 lengthen. The peak shift is more pronounced in the oxalate
 533 systems (91 cm^{-1} shift for 1:2 mixture as seen in Figure 3,
 534 right) than those with acetate (61 cm^{-1} shift for 1:2 mixture as
 535 seen in Figure 3, middle). The larger shift indicates stronger
 536 interactions of the Ox^{-2} anion with EG, consistent with the
 537 increases in experimental viscosities and the stronger binding
 538 energies calculated by DFT. In contrast, CHTFSI addition to
 539 EG results in a blueshift (60 cm^{-1} shift for 1:2 molar ratio) due
 540 to the weakened H-bonding. The blueshift is caused by O–H
 541 bond contraction; this “improper” hydrogen bond is observed
 542 in complexes in systems with weaker H-bonding, even in
 543 systems dominated by dispersion forces.⁵⁷ The blueshift from

Figure 2. Representative structures of choline salts solvated by two EG molecules. The charge density in terms of the electrostatic potential is shown for all structures with blue representing a relatively positive charge and red representing relative negative charge distribution on a scale of $\pm 7.7 \times 10^{-2}$ V. Atom colors: blue = nitrogen; red = oxygen; green = chloride; yellow = sulfur; gray = carbon; light gray = hydrogen, cyan = fluorine.


Figure 3. FTIR spectra of ChTFSI:EG (left), ChAc:EG (middle), and Ch₂Ox:EG (right) with 1:2, 1:4, and 1:9 molar compositions. As references, spectra of the Ch salts and EG are included in each panel.

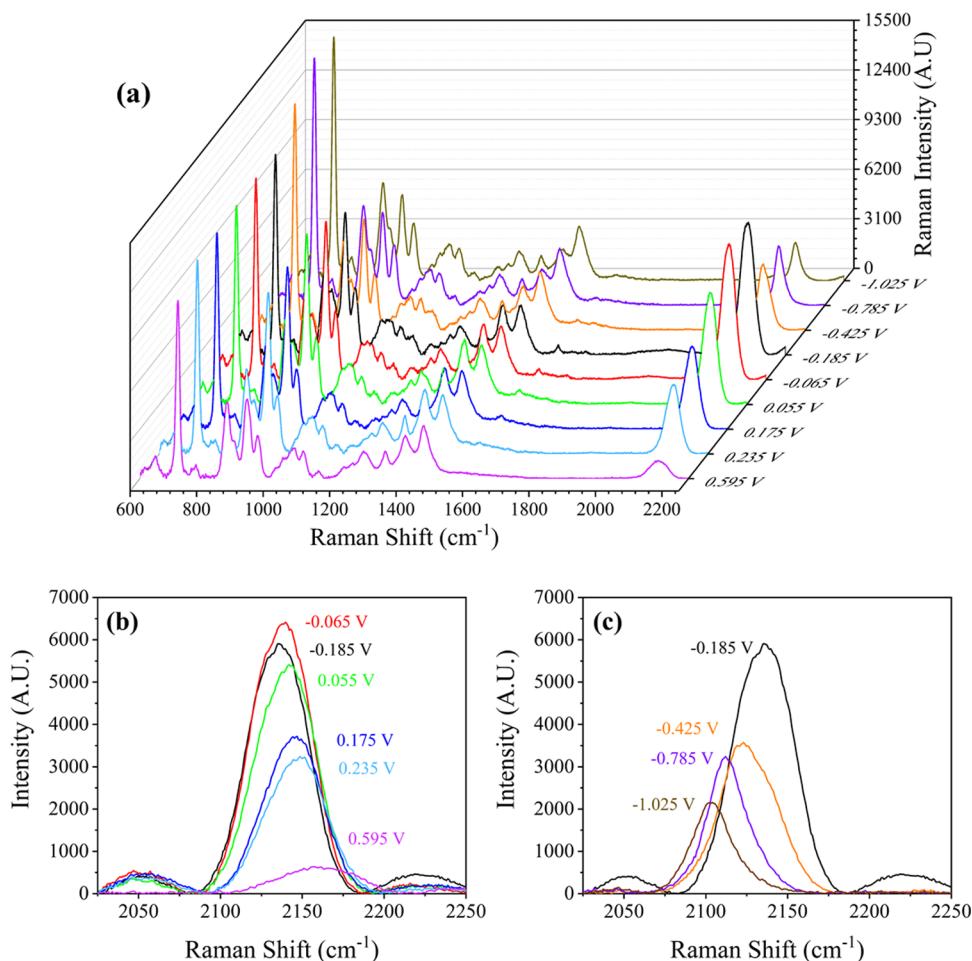
544 H-bonding arises from the O–H bond shortening caused by
 545 TFSI, which is a weaker HBA due to its delocalized charge.
 546 ¹H NMR was also used to assess changes in H-bonding with
 547 composition, specifically focusing on the changes in the
 548 hydroxyl protons. NMR spectra of Ch₂Ox:EG systems are
 549 shown in Figure 4, while those for ChAc and ChTFSI systems
 550 are included in Figures S7–S8. The chemical shift of the
 551 hydroxyl proton (denoted “e”) on the EG is shifted
 552 significantly downfield due to H-bonding with increased Ac[–]
 553 and Ox^{–2} concentrations. Strong H-bonding interactions
 554 deshield the hydroxyl proton by reducing its electron density
 555 and lengthening the O–H bond, consistent with what was
 556 observed with FTIR. An upfield shift is seen for the hydroxyl
 557 proton in the TFSI[–] systems as the salt concentration
 558 increases. The upfield shift is a result of the TFSI[–] anion
 559 disrupting the extensive self-H-bonding of the EG; a similar
 560 trend was observed in ChCl systems with both Gly and EG as
 561 the HBA.²⁸


562 The interfacial densities are probed by the measurement of
 563 differential capacitance to gain insights into the general

564 electrode–electrolyte interfacial structure. To determine the 564
 565 electrochemical window to perform the capacitance measure- 565
 566 ments, CVs were performed (Figure 5, top). Differential 566
 567 capacitance curves of 1:2 mixtures as a function of applied 567
 568 potential are shown in Figure 5 (bottom) for GC (a) and Au 568
 569 (b) working electrodes. Data for the 1:4 molar ratio mixtures 569
 570 are included in Figure S9, exhibiting similar behavior to the 1:2 570
 571 systems.

572 In our previous work, we used a modified Gouy–Chapman 572
 573 fit, modeling the interface as a diffuse layer of charge for 573
 574 capacitance data in ChCl-based electrolytes.¹² We discovered 574
 575 that the hydrogen-bonded electrolyte (ChCl:EG) shows 575
 576 similar behavior to the dilute electrolytes on nonmetallic 576
 577 (GC) electrodes. A shallow U-shaped capacitance indicated 577
 578 Ch⁺ accumulation upon negative polarization and Cl[–] at 578
 579 positive polarization. Capacitance changes at positive potential 579
 580 were weaker due to the Cl[–] anion maintaining solvation with 580
 581 EG in the interface much better than the bulky Ch⁺ cation. 581
 582 More complex capacitive behavior was observed on metallic 582
 583 electrodes (Au) due to the surface adsorption and formation of 583

Figure 4. ^1H NMR of Ch_2Ox :EG mixtures at 1:4, 1:6, and 1:9 compositions. DMSO peak is the reference at 2.58 ppm. Spectra of EG is included as an additional point of reference.


Figure 5. Electrochemical window (top) and differential capacitance curves (bottom) of the 1:2 salt:EG mixtures at GC (a) and Au (b) surfaces. CVs were performed at a scan rate of 20 mV/s. Data points with filled symbols in (b) correspond to potentials used for SERS measurements in Figure 6.

an Au–Cl surface layer. In this work, Ch-based solvents with varied anions in the HBA and analogues to ChCl were used to investigate the capacitive behavior without strongly adsorbed Cl^- . As seen in Figure 5, the ChTFSI systems exhibited a dampened U-shaped differential capacitance on both GC and Au electrodes, similar to the general potential dependence seen for ethaline on a GC surface with minimal differences between -0.5 and 0.0 V.¹² Ch^+ accumulation occurs upon negative polarization in the same way as in ChCl :EG mixtures. The steeper rises in capacitance at positive polarization in TFSI^- systems are due to a decrease in bonding strength between the EG–EG molecules, allowing for more anions to migrate to the electrode interface. The similarity in capacitance between GC and Au surfaces suggests that strong surface adsorption of the anion is less of a dominating factor for ChTFSI:EG solvent on metallic electrodes.

Capacitance was fit using the modified Gouy–Chapman in eq 4 (fit curves are in Figure S10). ChTFSI:EG solvents have

interaction parameters, $\alpha = (0.020, 0.021)$ for 1:2 and 1:4 molar ratios, respectively. Compared to ChCl :EG mixtures ($\alpha = 0.011, 0.012$),¹² TFSI systems had larger α , indicating a decrease in short-range interactions in the solvent due to the bulky TFSI^- anion having delocalized charge density. The weaker bonding due to the TFSI^- anion exhibits behavior more similar to dilute systems. α does not vary significantly between the 1:2 and 1:4 EG mixtures, suggesting that the interaction strength between ions is concentration-independent for these compositions. Debye capacitances for the systems were $C_d = (0.96, 0.99 \mu\text{F})$, larger than those of Cl systems $C_d = (0.60, 0.63 \mu\text{F})$,¹² suggesting an increase in the dielectric constant of the interface or a decreasing Debye length.

The ChAc:EG systems exhibit an increase in capacitance at negative potentials on a GC electrode, originating from the Ch^+ accumulation in the interface. A maximum is reached only in the more concentrated 1:2 molar ratio mixture around -1.4 V, which could be due to steric limitations of the Ch^+ at the

Figure 6. SERS spectra of ChAc:EG (1:2) on an electrochemically roughened Au surface. A wavelength of 785 nm excitation laser and a spectral range of 600–2300 cm⁻¹ were used. (a) Raw Raman curves with respect to applied potential. Localized Raman for the region of 2000–2250 cm⁻¹, corresponding to C–O surface interaction at (b) positive and (c) negative polarization, respectively.

620 surface. No clear increase in capacitance is seen at positive
621 potentials, similar to what we observe on GC for Cl systems,
622 which could be due to the presence of EG at the interface.¹²
623 Surface-adsorbed EG has been confirmed with PM-IRRAS at
624 GC surfaces in DES, particularly at positive potentials.³¹ On
625 the Au surface, however, there is not any significant capacity
626 increase upon negative polarization due to Ch⁺ accumulation.
627 Instead, a complex capacitive behavior was observed with a
628 maximum at 0.055 V upon positive polarization, suggesting the
629 dominance of anion behavior or some other change in the
630 interface. Similar deviations in capacitive behavior have been
631 observed for ethaline between GC and Au surfaces, which was
632 attributed to the chemisorption of Cl⁻ and the formation of a
633 surface layer.¹² Interestingly, despite the chemical similarities
634 with the ChAc, the Ch₂Ox system does not present the same
635 behavior. We attribute the difference to the more restricted
636 voltage-induced structuring of Ox⁻² solvates since they are
637 compact enough to begin with as shown by tighter bond
638 lengths from DFT and increased viscosities. The strong
639 interaction between Ox⁻² and EG molecules limits mobility
640 and restructuring, whereas it is more likely for Ac⁻ to desolvate
641 and surface adsorb. The possibility of surface adsorption of
642 Ac⁻ is further investigated using SERS.
643 SERS was performed to directly probe the surface layer
644 under polarization. SERS curves for ChAc:EG (1:2) are shown
645 in Figure 6, and normalized curves are included in Figure S11.

Potentials of interest were selected based on the differential 646 capacitance curves from EIS (filled symbols in Figure 5b). An 647 example SERS potential sequence for the ChAc:EG 1:2 is 648 included in Figure S12. Table 3 summarizes the vibrational 649 assignments for both the experimental and theoretical Raman 650 spectra in comparison to the literature. Raman modes were 651 calculated using DFT to aid in peak assignment and show 652 relative agreement with experimental modes (see Figure S13). 653 Some deviation is seen between peak placement observed 654 between experiment and theory, which is common and arises 655 from the nature of DFT, as frequencies are calculated for the 656 isolated molecules with no surface to interact with. Ch₂Ox:EG 657 mixtures could not be measured using SERS due to their dark 658 red-brown color, which led to overloading of the signal. 659

The most significant change in spectral feature is for the 660 peak occurring between 2103 and 2158 cm⁻¹, as seen in Figure 661 6a. This peak located at 2140 cm⁻¹ is only seen in experiments 662 but not in DFT calculations, suggesting that it arises from a 663 surface interaction, possibly of Ac⁻ forming a COO⁻–Au 664 complex, as interpreted in Table 3 or a new species forming at 665 the interface (e.g., gaseous CO) at this potential.⁴¹ Physically 666 dissolved carbon monoxide cannot be present at the beginning 667 of the measurements since the electrolyte was degassed prior 668 to measurements and no electrochemical bias was applied to 669 the electrolyte before its use in EIS and SERS measurements. 670 Additionally, the peak is not observed on the same roughened 671

Table 3. Raman Vibrational Peak Assignments for ChAc:EG and ChTFSI:EG Systems^a

experimental (cm ⁻¹)	DFT (cm ⁻¹)	peak assignments	literature (cm ⁻¹)
ChAc:EG			
715	701	ν (N(CH ₃) ₃) _s	711, ²¹ 716 ⁵¹
862	862	ν (CN) _{as}	877 ²¹
927	945	ν (C—C) (acetate)	928–926 ^{58,59}
956	963	ρ (CH ₃)	956 ⁵¹
1060	1057	ν (C—OH)	1065 ²¹
1094	1085	ν (CH ₂)	1092 ²¹
1273	1262	τ (CH ₂)	1295–1305 ⁶⁰
1340	1360	ν (CH ₃) _{as}	1344 ⁵⁸
1398	1410	ν (CO)	1400, ⁶¹ 1413 ⁵⁸
1454	1457	ω (CH ₂)	1442 ²¹
		ω (CH ₃)	1445 ⁵¹
2103–2158			
ChTFSI:EG			
710	729	ν (N(CH ₃) ₃) _s	711, ²¹ 716 ⁵¹
737	742	breathing mode	739, ²¹ 743 ⁶²
864	863	ν (CN) _{as}	877 ²¹
951	942	ρ (CH ₃)	956 ⁵¹
1133	1118	ν (SO ₂) _s	1133 ²¹
		ν (N—S) _{as}	1136 ⁶²
1239	1208	ν (CF) _s	1241 ²¹
			1242 ⁶²
1451	1419	ω (CH ₂)	1463 ²¹
		ω (CH ₃)	

^aAbbreviations: ν , stretch; ω , wagging; τ , twisting; ρ , rocking; s , symmetric; as , antisymmetric.

Au surfaces in other systems, ruling out the peak being residual from the processing of the surface. Since the peak we observe is present before any polarization is applied, it is unlikely to be a result of carbon monoxide from electrolyte degradation. This is further probed by electrolysis experiments as discussed later. The intensity of the peak at 2140 cm⁻¹ is strongest between 0.425 and 0.235 V, consistent with the potential region where complex capacitive behavior is observed in Figure 5b. While prior SERS literature with aqueous electrolytes reports vibrations at 1400 cm⁻¹ for the acetate at lower concentrations,⁶¹ and none around 2140 cm⁻¹, we observe close correlations of this additional peak with other Ac⁻ vibrations. Specifically, 923 cm⁻¹ (ν (C—C)) and 1397 cm⁻¹ (ν (CO)) decrease with stronger polarization, following a similar trend to the 2140 cm⁻¹ peak (Figure S14). Therefore, our interpretation is that this is more likely due to the specific surface interaction of Ac⁻ through its —COO⁻ functionality. Stark shifts are seen in Figure S15 for the COO⁻—Au peak with applied potential with a shift rate of 32 cm⁻¹/V, indicating interactions of the Ac⁻ with the electrode surface. The measured shift rate is higher than the typical range of 5–20 cm⁻¹/V due to the strong Ac⁻—EG interactions through H-bonding.⁶³ As seen in Figure 6b, there is a blueshift from 2135 to 2158 cm⁻¹ for COO⁻—Au with increased positive polarization, which indicates increased interactions for the Au surface and the Ac⁻ anion. The redshift from 2135 to 2103 cm⁻¹ in Figure 6c upon negative polarization, accompanied by reduced intensity is indicative of the lengthening of the Au—Ac⁻ bonds.

A general decrease in Ac⁻ peak intensities is seen as the potential was swept from OCP to more negative potentials as a

result of the Ac⁻ getting replaced by the Ch⁺ cation. Figure S14 shows intensity changes with potential for the vibrational modes of the Ch⁺ and the Ac⁻. On the other hand, as the potential was swept in the positive direction, the Ac⁻ peak intensities also decrease, resulting in maximum intensity around OCP. The governing mechanism for this phenomenon is not clear from these experiments alone; however, a possible explanation is the reorientation of the Ac⁻ and different coordination to the surface such as the switch between binding to the surface through both oxygens to a single oxygen.

Other spectral changes were the increases in intensities for the peaks of 715, 862, and 1094 cm⁻¹ corresponding to the ν (N(CH₃)₃)_s, ν (CN)_{as}, and ν (CH₂) of the cation, upon increasingly negative potentials applied from OCP. This trend was more prominent between −0.425 and −1.025 V. This further supports the discussion of the excess Ac⁻ on the surface being displaced with Ch⁺ upon negative polarization. The combined SERS and EIS results indicate that surface adsorption is playing a dominant role in charge density at the interface in the ChAc system. This is likely true for other organic-based anions.

To eliminate the possibility of CO formation upon applied potentials in EIS and SERS, additional CPE experiments were performed. Figure S16 shows chronoamperometric plots of the deaerated ChAc:EG at 0.055 V, 0.7 V, −1.25 V (vs Ag), and −2.5 V (vs Ag), where no electrolyte degradation was detected, except at −2.5 V, which is beyond the stability window as seen in the CV in Figure 5. The same can be confirmed from TCD and FID response of GC where no gaseous products were detected at 0.055, 0.7, and −1.25 V (Figure S17). The ¹H and ¹³C NMR spectra of ChAc:EG before and after 40 min electrolysis at 0.055, 0.7, and −1.25 V (vs Ag) also show no change and no measurable degradation products in the liquid phase (Figures S18–S19). On the other hand, the CPE experiments at −2.5 V (vs Ag) showed electrolyte breakdown with current density exceeding 8 mA/cm². This was accompanied by methane and ethane formation as detected by online GC (Figure S17), from the electrochemical oxidation of Ac⁻ at very high negative potentials.⁶⁴ These results suggest that the peak seen in SERS at 2140 cm⁻¹ is unlikely to be due to CO.

In comparison to the acetate system, characteristic peaks for the 1:2 ChTFSI:EG 1:2 tabulated in Table 3 show little change in peak intensity and location under polarization. Raw and normalized curves for 1:2 ChTFSI:EG can be found in Figures S20–S21. Raman frequencies calculated by theory show relatively good agreement with experimental modes as seen in Figure S22. Unlike the ChAc systems, there was no evidence of potential-dependent surface adsorption in the ChTFSI:EG system in SERS spectra. This is consistent with the similarity observed between differential capacitance on GC and Au surfaces, suggesting surface adsorption is not dominant. Anion choice is very important when developing H-bonded electrolytes as surface-adsorbed species can drastically impact kinetics in electrochemical applications.

CONCLUSIONS

A fundamental understanding of interface structure and the bulk properties of DESs and similar concentrated hydrogen-bonded electrolytes is essential for their applications in electrochemical processes. In this work, how the anion of the choline salt impacts the bulk properties and interfacial structure of H-bonded electrolytes is shown. The charge

765 density on the ions was found to significantly impact the
766 strength of H-bonding and ion interactions in these mixtures.
767 Calculated energetics of anion solvation and complexation
768 using DFT showed the strength of bonding in the anion
769 systems follows the trend ChTFSI < ChAc < Ch₂Ox. Systems
770 with increased binding energies exhibited increases in viscosity
771 and decreases in conductivity.

772 It was found that surface adsorption is still present in
773 systems with organic anions, playing a dominant role in
774 interfacial behavior. The complex capacitive behavior for
775 ChAc:EG systems on Au surfaces was determined to be due to
776 the adsorption of the acetate anion and was confirmed with
777 SERS. The observed Ac⁻ adsorption is similar to adsorption of
778 the COO⁻ group of the small-molecule additive nicotinic acid
779 used to displace Cl⁻ in ethaline to achieve mirror quality
780 deposits of Zn.² The need for additives to yield smooth
781 uniform deposits can be eliminated by Cl-free DESs. Further
782 studies investigating electrodeposition in the ChAc:EG systems
783 could be valuable for realizing smooth coatings.

784 In systems where anion adsorption is not dominant, a broad
785 U-shaped capacitance was measured for the H-bonded
786 concentrated electrolyte that seems to be behaving similar to
787 dilute systems. It was also found that the strong bonding
788 interactions in the Ch₂Ox:EG inhibit changes in interfacial
789 charge density and prevent surface adsorption of Ox⁻². The
790 anion size, ion charge density, and interaction strength in
791 concentrated H-bonded electrolytes influence ion packing,
792 dynamics, and interfacial behavior. This understanding is
793 necessary for advancing electrolytes to improve kinetics and
794 electrodeposit morphology in electrochemical processes.

795 ■ ASSOCIATED CONTENT

796 ■ Supporting Information

797 The Supporting Information is available free of charge at
798 <https://pubs.acs.org/doi/10.1021/acs.jpcc.2c01901>.

799 NMR and FTIR spectra of the synthesized samples;
800 tabulated densities, surface tension, viscosity, and
801 conductivity along with fitting parameters; DFT different-
802 ential binding energies; differential capacitance curves
803 for the 1:4 mixtures; modified Gouy–Chapman fits;
804 additional SERS analysis; and electrochemical degra-
805 dation analysis ([PDF](#))

806 ■ AUTHOR INFORMATION

807 Corresponding Author

808 **Burcu Gurkan** – *Chemical and Biomolecular Engineering,*
809 *Case Western Reserve University, Cleveland, Ohio 44106,*
810 *United States;* orcid.org/0000-0003-4886-3350;
811 *Email:* beg23@case.edu

812 Authors

813 **William Dean** – *Chemical and Biomolecular Engineering,*
814 *Case Western Reserve University, Cleveland, Ohio 44106,*
815 *United States*
816 **Drace Penley** – *Chemical and Biomolecular Engineering, Case*
817 *Western Reserve University, Cleveland, Ohio 44106, United*
818 *States*
819 **Yun-Yang Lee** – *Chemical and Biomolecular Engineering,*
820 *Case Western Reserve University, Cleveland, Ohio 44106,*
821 *United States;* orcid.org/0000-0002-4165-0857

Raziye Ghahremani – *Chemical and Biomolecular* 822
Engineering, Case Western Reserve University, Cleveland, 823
Ohio 44106, United States 824
Saudagar Dongare – *Chemical and Biomolecular Engineering,* 825
Case Western Reserve University, Cleveland, Ohio 44106, 826
United States 827

Complete contact information is available at: 828
<https://pubs.acs.org/10.1021/acs.jpcc.2c01901> 829

830 Author Contributions

W.D. performed experiments and analyzed results for physical 831
property, electrochemical, and spectroscopic measurements. 832
D.P. performed DFT calculations to determine binding 833
energies and vibrational Raman frequencies. Y.-Y.L. assisted 834
in synthesis and performed NMR measurements. R.G. assisted 835
in the experimental analysis of physical properties. S.D. 836
performed the degradation experiments and analysis. B.G. 837
contributed to the design of experimental plans and discussion 838
of the results. The manuscript was written through 839
contributions of all authors. All authors have approved the 840
final version of this manuscript. 841

842 Notes

The authors declare no competing financial interest. 843

844 ■ ACKNOWLEDGMENTS

845 This project was supported by the Breakthrough Electrolytes 845
846 for Energy Storage (BEES), an Energy Frontier Center of the 846
U.S. Department of Energy. Award No. DE-SC0019409. 847
847 Theoretical calculations were performed using the High- 848
849 Performance Computing Resource in the Core Facility for 849
Advanced Research Computing at Case Western Reserve 850
850 University. D.P. was supported by the National Science 851
851 Foundation, Chemical, Bioengineering, Environmental and 852
Transport Systems under award number 1903259. The authors 853
thank Case Applied Raman Laboratory for access to the 854
854 Horiba 785 nm instrument. 855

856 ■ REFERENCES

- (1) Endres, F.; Abbott, A.; MacFarlane, D. R. *Electrodeposition from Ionic Liquids*; Wiley-VCH: Weinheim, 2008.
- (2) Alesary, H. F.; Cihangir, S.; Ballantyne, A. D.; Harris, R. C.; Weston, D. P.; Abbott, A. P.; Ryder, K. S. Influence of Additives on the Electrodeposition of Zinc from a Deep Eutectic Solvent. *Electrochim. Acta* **2019**, *304*, 118–130.
- (3) Abbott, A. P.; El Ttaib, K.; Frisch, G.; McKenzie, K. J.; Ryder, K. S. Electrodeposition of Copper Composites from Deep Eutectic Solvents Based on Choline Chloride. *Phys. Chem. Chem. Phys.* **2009**, *11*, 4269–4277.
- (4) Zhang, L.; Zhang, C.; Ding, Y.; Ramirez-Meyers, K.; Yu, G. A Low-Cost and High-Energy Hybrid Iron-Aluminum Liquid Battery Achieved by Deep Eutectic Solvents. *Joule* **2017**, *1*, 623–633.
- (5) Yamagata, M.; Tachikawa, N.; Katayama, Y.; Miura, T. Electrochemical Behavior of Several Iron Complexes in Hydrophobic Room-Temperature Ionic Liquids. *Electrochim. Acta* **2007**, *52*, 3317–3322.
- (6) Schaltin, S.; Li, Y.; Brooks, N. R.; Sniekers, J.; Vankelecom, I. F. J.; Binnemans, K.; Fransaer, J. Towards an All-Copper Redox Flow Battery Based on a Copper-Containing Ionic Liquid. *Chem. Commun.* **2016**, *52*, 414–417.
- (7) Lloyd, D.; Vainikka, T.; Ronkainen, M.; Kontturi, K. Characterisation and Application of the Fe(II)/Fe(III) Redox Reaction in an Ionic Liquid Analogue. *Electrochim. Acta* **2013**, *109*, 843–851.
- (8) Xu, Q.; Qin, L. Y.; Ji, Y. N.; Leung, P. K.; Su, H. N.; Qiao, F.; Yang, W. W.; Shah, A. A.; Li, H. M. A Deep Eutectic Solvent (DES)

883 Electrolyte-Based Vanadium-Iron Redox Flow Battery Enabling
884 Higher Specific Capacity and Improved Thermal Stability. *Electro-
885 chim. Acta* **2019**, *293*, 426–431.

886 (9) Zhang, C.; Qian, Y.; Ding, Y.; Zhang, L.; Guo, X.; Zhao, Y.; Yu,
887 G. Biredox Eutectic Electrolytes Derived from Organic Redox-Active
888 Molecules: High-Energy Storage Systems. *Angew. Chem., Int. Ed.*
889 **2019**, *58*, 7045–7050.

890 (10) Hansen, B. B.; Spittle, S.; Chen, B.; Poe, D.; Zhang, Y.; Klein, J.
891 M.; Horton, A.; Adhikari, L.; Zelovich, T.; Doherty, B. W.; et al. Deep
892 Eutectic Solvents: A Review of Fundamentals and Applications. *Chem.
893 Rev.* **2021**, *121*, 1232–1285.

894 (11) Abbott, A. P.; Boothby, D.; Capper, G.; Davies, D. L.; Rasheed,
895 R. K. Deep Eutectic Solvents Formed between Choline Chloride and
896 Carboxylic Acids: Versatile Alternatives to Ionic Liquids. *J. Am. Chem.
897 Soc.* **2004**, *126*, 9142–9147.

898 (12) Dean, W.; Klein, J.; Gurkan, B. Do Deep Eutectic Solvents
899 Behave Like Ionic Liquid Electrolytes? A Perspective from the
900 Electrode-Electrolyte Interface. *J. Electrochem. Soc.* **2021**, *168*, 026503.

901 (13) Hammond, O. S.; Bowron, D. T.; Edler, K. J. Liquid Structure
902 of the Choline Chloride-Urea Deep Eutectic Solvent (Reline) from
903 Neutron Diffraction and Atomistic Modelling. *Green Chem.* **2016**, *18*,
904 2736–2744.

905 (14) Zhang, Y.; Poe, D.; Heroux, L.; Squire, H.; Doherty, B. W.;
906 Long, Z.; Dadmun, M.; Gurkan, B.; Tuckerman, M. E.; Maginn, E. J.
907 Liquid Structure and Transport Properties of the Deep Eutectic
908 Solvent Ethaline. *J. Phys. Chem. B* **2020**, *124*, 5251–5264.

909 (15) Alfurayj, I.; Fraenza, C. C.; Zhang, Y.; Pandian, R.; Spittle, S.;
910 Hansen, B.; Dean, W.; Gurkan, B.; Savinell, R.; Greenbaum.; et al.
911 Solvation Dynamics of Wet Ethaline: Water Is the Magic Component.
912 *J. Phys. Chem. B* **2021**, *125*, 8888–8901.

913 (16) Shaheen, N. A.; Ijjada, M.; Vukmirovic, M. B.; Akolkar, R.
914 Mechanism of Electrochemical Oxidation of Nitroxide Radicals in
915 Ethaline Deep Eutectic Solvent. *J. Electrochem. Soc.* **2020**, *167*,
916 143505.

917 (17) Abbott, A. P.; Barron, J. C.; Ryder, K. S.; Wilson, D. Eutectic-
918 Based Ionic Liquids with Metal-Containing Anions and Cations.
919 *Chem. – Eur. J.* **2007**, *13*, 6495–6501.

920 (18) Ibrahim, R. K.; Hayyan, M.; AlSaadi, M. A.; Ibrahim, S.;
921 Hayyan, A.; Hashim, M. A. Physical Properties of Ethylene Glycol-
922 Based Deep Eutectic Solvents. *J. Mol. Liq.* **2019**, *276*, 794–800.

923 (19) Guo, W.; Hou, Y.; Ren, S.; Tian, S.; Wu, W. Formation of Deep
924 Eutectic Solvents by Phenols and Choline Chloride and Their
925 Physical Properties. *J. Chem. Eng. Data* **2013**, *58*, 866–872.

926 (20) Abbott, A. P.; Harris, R. C.; Ryder, K. S.; D'Agostino, C.;
927 Gladden, L. F.; Mantle, M. D. Glycerol Eutectics as Sustainable
928 Solvent Systems. *Green Chem.* **2011**, *13*, 82–90.

929 (21) Klein, J. M.; Squire, H.; Dean, W.; Gurkan, B. E. From Salt in
930 Solution to Solely Ions: Solvation of Methyl Viologen in Deep
931 Eutectic Solvents and Ionic Liquids. *J. Phys. Chem. B* **2020**, *124*,
932 6348–6357.

933 (22) Du, C.; Zhao, B.; Chen, X.-B.; Birbilis, N.; Yang, H. Effect of
934 Water Presence on Choline Chloride–Urea Ionic Liquid and
935 Coating Platings from the Hydrated Ionic Liquid. *Sci. Rep.* **2016**, *6*,
936 No. 29225.

937 (23) Shah, D.; Mjalli, F. S. Effect of Water on the Thermo-Physical
938 Properties of Reline: An Experimental and Molecular Simulation
939 Based Approach. *Phys. Chem. Chem. Phys.* **2014**, *16*, 23900–23907.

940 (24) Gurkan, B.; Squire, H.; Pentzer, E. Metal-Free Deep Eutectic
941 Solvents: Preparation, Physical Properties, and Significance. *J. Phys.
942 Chem. Lett.* **2019**, *10*, 7956–7964.

943 (25) Zhang, Q.; De Oliveira Vigier, K.; Royer, S.; Jérôme, F. Deep
944 Eutectic Solvents: Syntheses, Properties and Applications. *Chem. Soc.
945 Rev.* **2012**, *41*, 7108–7146.

946 (26) Shen, D.; Steinberg, K.; Akolkar, R. Avoiding Pitfalls in the
947 Determination of Reliable Electrochemical Kinetics Parameters for
948 the Cu²⁺ → Cu¹⁺ Reduction Reaction in Deep Eutectic Solvents. *J.
949 Electrochem. Soc.* **2018**, *165*, E808–E815.

950 (27) Zhen, F.; Percevault, L.; Paquin, L.; Limanton, E.; Lagrost, C.;
951 Hapiot, P. Electron Transfer Kinetics in a Deep Eutectic Solvent. *J. Phys.
952 Chem. B* **2020**, *124*, 1025–1032.

953 (28) Spittle, S.; Poe, D.; Doherty, B.; Kolodziej, C.; Heroux, L.;
954 Haque, M. A.; Squire, H.; Cosby, T.; Zhang, Y.; Fraenza, C.; et al. Evolution
955 of Microscopic Heterogeneity and Dynamics in Choline Chloride-Based
956 Deep Eutectic Solvents. *Nat. Commun.* **2022**, *13*, 956 No. 1081.

957 (29) Shen, D.; Vukmirovic, M. B.; Akolkar, R. Understanding the
958 Role of Complexation in the Charge-Transfer Kinetics of the Cu²⁺ → Cu¹⁺
959 e ↔ Cu¹⁺ Redox Reaction in Ethaline Deep Eutectic Solvent. *J. Electrochem. Soc.* **2019**, *166*, E526–E532.

960 (30) Shen, X.; Sinclair, N.; Wainright, J.; Akolkar, R.; Savinell, R. F.
961 Evaluating and Developing a Reliable Reference Electrode for Choline
962 Chloride Based Deep Eutectic Solvents. *J. Electrochem. Soc.* **2020**, *167*,
963 086509.

964 (31) Vieira, L.; Schennach, R.; Gollas, B. In Situ PM-IRRAS of a
965 Glassy Carbon Electrode/Deep Eutectic Solvent Interface. *Phys. Chem. Chem. Phys.* **2015**, *17*, 12870–12880.

966 (32) Chen, Z.; McLean, B.; Ludwig, M.; Stefanovic, R.; Warr, G. G.;
967 Webber, G. B.; Page, A. J.; Atkin, R. Nanostructure of Deep Eutectic
968 Solvents at Graphite Electrode Interfaces as a Function of Potential. *J. Phys. Chem. C* **2016**, *120*, 2225–2233.

969 (33) Figueiredo, M.; Gomes, C.; Costa, R.; Martins, A.; Pereira, C.
970 Silva, F. Differential Capacity of a Deep Eutectic Solvent Based on
971 Choline Chloride and Glycerol on Solid Electrodes. *Electrochim. Acta* **2009**, *54*, 2630–2634.

972 (34) Gouy, M. Sur La Constitution de La Charge Électrique à La
973 Surface d'un Électrolyte. *J. Phys. Theor. Appl.* **1910**, *9*, 457–468.

974 (35) Chapman, D. L. LI. A Contribution to the Theory of
975 Electrocapillarity. *Lond. Edinb. Dublin Philos. Mag. J. Sci.* **1913**, *25*,
976 475–481.

977 (36) Wu, J.; Zhou, R.; Radjenovic, P. M.; Liu, S.; Wu, D.; Li, J.; Mao,
978 B.; Yan, J. Electrochemical Impedance Spectroscopy and Raman
979 Spectroscopy Studies on Electrochemical Interface between Au(111)
980 Electrode and Ethaline Deep Eutectic Solvent. *Electrochim. Acta* **2021**,
981 390, 138859.

982 (37) Wu, J.; Liu, S.; Tan, Z.; Guo, Y.; Zhou, J.; Mao, B.; Yan, J.
983 Effect of Hydrogen Bond Donor Molecules Ethylene Glycerol and
984 Lactic Acid on Electrochemical Interfaces in Choline Chloride Based-
985 Deep Eutectic Solvents. *J. Chem. Phys.* **2021**, *155*, 244702.

986 (38) Atilhan, M.; Aparicio, S. Deep Eutectic Solvents on the Surface
987 of Face Centered Cubic Metals. *J. Phys. Chem. C* **2016**, *120*, 10400–
988 10409.

989 (39) Mamme, M. H.; Moors, S. L. C.; Terryn, H.; Deconinck, J.;
990 Ustarroz, J.; De Proft, F. Atomistic Insight into the Electrochemical
991 Double Layer of Choline Chloride-Urea Deep Eutectic Solvents:
992 Clustered Interfacial Structuring. *J. Phys. Chem. Lett.* **2018**, *9*, 6296–
993 6304.

994 (40) Abbott, A. P.; Barron, J. C.; Frisch, G.; Ryder, K. S.; Silva, A. F.
995 The Effect of Additives on Zinc Electrodeposition from Deep Eutectic
996 Solvents. *Electrochim. Acta* **2011**, *56*, 5272–5279.

997 (41) Li, J. F.; Huang, Y. F.; Ding, Y.; Yang, Z. L.; Li, S. B.; Zhou, X.
998 S.; Fan, F. R.; Zhang, W.; Zhou, Z. Y.; Wu, D. Y.; et al. Shell-Isolated
999 Nanoparticle-Enhanced Raman Spectroscopy. *Nature* **2010**, *464*,
1000 392–395.

1001 (42) Wang, Y.-H.; Liang, M.; Zhang, Y.; Chen, S.; Radjenovic, P.;
1002 Zhang, H.; Yang, Z.; Zhou, X.; Tian, Z.; Li, J. Probing Interfacial
1003 Electronic and Catalytic Properties on Well-Defined Surfaces by
1004 Using In Situ Raman Spectroscopy. *Angew. Chem., Int. Ed.* **2018**, *57*,
1005 11257–11261.

1006 (43) Jeanmaire, D. L.; Van Duyne, R. P. Surface Raman
1007 Spectroelectrochemistry: Part I. Heterocyclic, Aromatic, and Aliphatic
1008 Amines Adsorbed on the Anodized Silver Electrode. *J. Electroanal. Chem. Interfacial Electrochem.* **1977**, *84*, 1–20.

1009 (44) Li, J.-F.; Ding, S.; Yang, Z.; Bai, M.; Anema, J. R.; Wang, X.;
1010 Wang, A.; Wu, D.; Ren, B.; Hou, S.; Wandlowski, T.; Tian, Z. Q.
1011 Extraordinary Enhancement of Raman Scattering from Pyridine on

1018 Single Crystal Au and Pt Electrodes by Shell-Isolated Au Nano-
1019 particles. *J. Am. Chem. Soc.* **2011**, *133*, 15922–15925.

1020 (45) Klein, J. M.; Squire, H.; Gurkan, B. Electroanalytical
1021 Investigation of the Electrode-Electrolyte Interface of Quaternary
1022 Ammonium Ionic Liquids: Impact of Alkyl Chain Length and Ether
1023 Functionality. *J. Phys. Chem. C* **2020**, *124*, 5613–5623.

1024 (46) Bockris, J. O.; Reddy, A. K. N. *Modern Electrochemistry*; Bockris,
1025 J. O., Ed.; Springer, 1998; Vol. 1, DOI: DOI: [10.1007/b114546](https://doi.org/10.1007/b114546).

1026 (47) Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.;
1027 Robb, M.; Cheeseman, J. R.; Scalmani, G.; Barone, V.; Petersson, G.;
1028 Nakatsuji, H. et al. *Walling-Gaussian 16*, Revision C.01; Gaussian, Inc.:
1029 Wallin, 2016.

1030 (48) Lee, C.; Yang, W.; Parr, R. G. Development of the Colle-
1031 Salvetti Correlation-Energy Formula into a Functional of the Electron
1032 Density. *Phys. Rev. B* **1988**, *37*, 785–789.

1033 (49) Ditchfield, R.; Hehre, W. J.; Pople, J. A. Self-Consistent
1034 Molecular-Orbital Methods. IX. An Extended Gaussian-Type Basis for
1035 Molecular-Orbital Studies of Organic Molecules. *J. Chem. Phys.* **1971**,
1036 *54*, 724–728.

1037 (50) Palafox, M. A. DFT Computations on Vibrational Spectra:
1038 Scaling Procedures to Improve the Wavenumbers *Phys. Sci. Rev.* **2018**,
1039 *36* DOI: [10.1515/psr-2017-0184](https://doi.org/10.1515/psr-2017-0184).

1040 (51) de Souza, I. F. T.; Ribeiro, M. C. C. A Raman Spectroscopy and
1041 Rheology Study of the Phase Transitions of the Ionic Liquid Choline
1042 Acetate. *J. Mol. Liq.* **2021**, *322*, 114530.

1043 (52) Penley, D.; Vicchio, S. P.; Getman, R. B.; Gurkan, B. Energetics
1044 of Li⁺ Coordination with Asymmetric Anions in Ionic Liquids by
1045 Density Functional Theory. *Front. Energy Res.* **2021**, *9*, 570.

1046 (53) Klein, J. M.; Panichi, E.; Gurkan, B. Potential Dependent
1047 Capacitance of [EMIM][TFSI], [N 1114][TFSI] and [PYR 13]-
1048 [TFSI] Ionic Liquids on Glassy Carbon. *Phys. Chem. Chem. Phys.*
1049 **2019**, *21*, 3712–3720.

1050 (54) Lockett, V.; Sede, R.; Ralston, J.; Horne, M.; Rodopoulos, T.
1051 Differential Capacitance of the Electrical Double Layer in
1052 Imidazolium-Based Ionic Liquids: Influence of Potential, Cation
1053 Size, and Temperature. *J. Phys. Chem. C* **2008**, *112*, 7486–7495.

1054 (55) Wang, W.; Huang, Y.; Liu, D.; Wang, F.; Tian, Z.; Zhan, D.
1055 Electrochemically Roughened Gold Microelectrode for Surface-
1056 Enhanced Raman Spectroscopy. *J. Electroanal. Chem.* **2016**, *779*,
1057 126–130.

1058 (56) Gao, P.; Gosztola, D.; Leung, L.-W. H.; Weaver, M. J. Surface-
1059 Enhanced Raman Scattering at Gold Electrodes: Dependence on
1060 Electrochemical Pretreatment Conditions and Comparisons with
1061 Silver. *J. Electroanal. Chem. Interfacial Electrochem.* **1987**, *233*, 211–
1062 222.

1063 (57) Joseph, J.; Jemmis, E. D. Red-, Blue-, or No-Shift in Hydrogen
1064 Bonds: A Unified Explanation. *J. Am. Chem. Soc.* **2007**, *129*, 4620–
1065 4632.

1066 (58) Ito, K.; Bernstein, H. J. The Vibrational Spectra of the Formate,
1067 Acetate, and Oxalate Ions. *Can. J. Chem.* **1956**, *34*, 170–178.

1068 (59) Gultekin, D.; Akbulut, H. *Raman Studies of ZnO Products*
1069 *Synthesized by Solution Based Methods*; Polish Academy of Sciences,
1070 2016; Vol. 129, pp 803–805. DOI: DOI: [10.12693/APhysPo-1A.129.803](https://doi.org/10.12693/APhysPo-1A.129.803).

1071 (60) In-Vien, D.; Colthup, N. B.; Fateley, W. G.; Grasselli, J. G. B. T.
1072 *The Handbook of Infrared and Raman Characteristic Frequencies of*
1073 *Organic Molecules*; Academic Press: San Diego, 1991; p iii. DOI:
1074 DOI: [10.1016/B978-0-08-057116-4.50001-8](https://doi.org/10.1016/B978-0-08-057116-4.50001-8).

1075 (61) Delgado, J. M.; Orts, J. M.; Pérez, J. M.; Rodes, A. Sputtered
1076 Thin-Film Gold Electrodes for in Situ ATR-SEIRAS and SERS
1077 Studies. *J. Electroanal. Chem.* **2008**, *617*, 130–140.

1078 (62) Liu, T. *Electrodeposition de Couches Minces Métalliques à*
1079 *Partir de Solutions de Liquides Ioniques Pour Des Applications*
1080 *Électroniques. L'archive ouverte pluridisciplinaire HAL 2015*, HAL Id:
1081 tel-01142699.

1082 (63) Bhattacharyya, D.; Videla, P. E.; Cattaneo, M.; Batista, V. S.;
1083 Lian, T.; Kubiak, C. P. Vibrational Stark Shift Spectroscopy of
1084 Catalysts under the Influence of Electric Fields at Electrode–Solution
1085 Interfaces. *Chem. Sci.* **2021**, *12*, 10131–10149.

1086 (64) Peng, X.; Omasta, T.; Zhao, X.; Mustain, W. E. Electrochemical 1087
1088 Pathways for Electrochemical Oxidation of Acetic Acid. *ECS Trans.* **2018**, *85*, 29–34.
1089