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1 Introduction

What is the underlying gauge symmetry of our Universe? Existing observations are con-
sistent with an SU(3)×U(1) structure at low energies. However, there may be additional
unbroken gauge symmetries accompanied by yet undetected massless vector bosons. To
have escaped detection, the visible sector’s contribution to the unbroken symmetry’s con-
served current must be absent or at least extremely suppressed.1 In this work, we focus on
the former case such that the only direct interaction of the new massless boson with the
visible sector is through its kinetic mixing with electromagnetism. Unfortunately, barring
any additional interactions, such a massless “dark photon” or A′ is completely decoupled

1With the inclusion of right-handed neutrinos U(1)B−L can be gauged, but the corresponding gauge
coupling must be minuscule [1, 2]. The other known candidates are the non-anomalous currents associated
with differences in lepton number, but these currents are broken by the observed neutrino masses even if
neutrinos are Dirac fermions [3].
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from the visible sector since its effects are indistinguishable from a redefinition of the usual
electromagnetic coupling.

It is a natural possibility that the dark sector is non-minimal, such that the A′ is
not the only low-energy degree of freedom. In fact, a massless dark photon can become
physically observable if there exists additional matter content, denoted as χ, that is directly
charged under the dark U(1). In this case, the kinetic mixing between the dark and visible
sectors has the well-studied effect of endowing χ with a parametrically small but potentially
detectable electromagnetic charge, commonly referred to as a “millicharge”. A cosmological
population of such millicharged particles (mCPs) interacts with both sectors, indirectly
coupling the dark and visible photons. Such interactions can leave striking signatures in
the cosmic microwave background (CMB) and are the focus of this work.

Measurements of the CMB by the COBE [4] and WMAP satellites [5] ushered in the era
of precision cosmology, confirming that photons have free-streamed after decoupling from
the thermal plasma in the hot early universe. In the process, their energy spectrum has
preserved a nearly-perfect thermal blackbody, while the small anisotropies have continued
to grow, giving rise to the large-scale structure that we see today. While recent efforts by,
e.g., Planck [6] and ACT [7] have continued to measure these anisotropies with increasing
levels of precision over a handful of frequency regions, the most precise observations of the
monopole spectrum were made over three decades ago by the FIRAS instrument aboard the
COBE satellite [4], finding agreement with an ideal blackbody to within ∼ 1% throughout
the entire frequency range consisting of 43 frequency bins.

Measurements of the CMB spectrum have been used as a probe of a variety of new
physics scenarios, including density perturbations during inflation [8, 9] and energy injec-
tion from decaying or annihilating relics [10, 11] (see, e.g., ref. [12] and references within).
In this work, we focus on new physics that is weakly-coupled to electromagnetism that may
slightly distort the CMB spectrum away from that of a blackbody. At redshifts z . O

(
106),

the decoupling of photon number-changing processes means that non-standard processes
that add or remove photons may lead to observable deviations that persist to the present
time. The absence of such spectral distortions in the COBE/FIRAS dataset place some
of the strongest bounds on models of light weakly-coupled physics beyond the Standard
Model (SM) [12]. For instance, the ionized plasma in the early universe modifies the pho-
ton’s dispersion relation, which gives rise to a redshift-dependent effective photon mass
spanning Meff(z) ∼ 10−14 eV − 10−5 eV during redshifts of z ∼ 0 − 106, respectively. If,
during its redshift evolution, the value of Meff(z) approaches the mass mA′ of a dark pho-
ton, the probability for γ ↔ A′ interconversion is resonantly enhanced. This has been used
to place stringent upper bounds on the photon’s coupling to massive dark photons [13–19].

An analogous effect occurs for massless dark photons in a background of mCP relics
if the A′ acquires an in-medium contribution to its effective mass, M ′eff(z), which is com-
parable to the SM plasma’s contribution to Meff(z). As we show in this work, even cosmo-
logical populations of mCPs that make up a tiny subcomponent of dark matter (DM) or
dark radiation (DR) can induce γ → A′ conversion in the early universe. In this way, the
COBE/FIRAS measurement places a powerful bound on the existence of new unbroken
gauge symmetries. In addition, in theories of massive dark photons, the effects of mCPs
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can even open up distinct regions of the dark photon parameter space by preventing epochs
of resonant conversion. This possibility implies an increased importance of terrestrial ex-
periments, whose sensitivity to dark photons is unaffected by the presence of such mCPs.
We note that mCP-induced γ → A′ signals were previously investigated in ref. [20], which
focused on ultralight mCP DM. We expand upon and go beyond this work by investigat-
ing a larger set of models (including heavier mCP DM, massless DR, and massive dark
photons) and we improve upon such calculations by estimating the region where mCP
self-interactions can significantly effect γ ↔ A′ conversion.

We begin in section 2 by giving a pedagogical overview of γ → A′ transitions. In
section 3, we discuss the imprints of such transitions on the CMB spectrum in regards
to the COBE/FIRAS dataset. In sections 4.1 and 4.2, we illustrate how COBE/FIRAS
excludes a large portion of the simplest parameter space for thermal millicharged DM
(mCDM) and feebly-coupled millicharged DR (mCDR), respectively. Next, in section 5,
we show how a cosmological population of mCDM can open up regions of parameter space
for ultralight dark photons, further motivating terrestrial searches for such new long-range
forces. Finally, in section 6 we conclude and discuss future directions. We also provide a
series of appendices that contains additional calculational details.

2 In-medium resonant transitions

We begin by providing a pedagogical discussion of mCP-induced γ ↔ A′ interconversion.
More complete derivations are provided in appendices A and B. Our starting point is the
model of a massless, kinetically-mixed, dark photon, such that the interaction Lagrangian
at low energies is described by [21]

L ⊃ ε

2 F
µν F ′µν + eAµ j

µ + e′A′µ j
′µ ⊃ eAµ (jµ + qχ j

′µ) + e′A′µ j
′µ . (2.1)

Here, ε � 1 is the kinetic mixing parameter, F (′)
µν the field-strengths, j(′)

µ the current
densities, and e(′) the gauge couplings, where quantities without or with a prime correspond
to the Aµ or A′µ field, respectively. In the second equality, we have diagonalized the kinetic
mixing term up to O

(
ε2
)
by the field-redefinition A′µ → A′µ + εAµ. In this basis, the SM

current jµ solely couples to the visible photon, whereas the dark current j′µ couples both to
the dark photon (with strength e′) and to the SM photon (with strength ε e′). Thus, dark
sector particles χ directly charged under the A′ appear as though they are millicharged
under normal electromagnetism with an effective charge of size qχ ≡ ε e′/e.

Although massless dark photons are completely decoupled from the SM in vacuum,
resonant γ ↔ A′ transitions are possible in a background of mCPs. This process is due to
the SM electromagnetic field driving collective oscillations in the mCP plasma, which in
turn generate dark electromagnetic fields (and vice-versa). This transfer of electromagnetic
energy is maximally likely when the dispersion relations of the initial and final states are
matched [22]. Although the per-particle probability for γ → A′ is identical to that of
A′ → γ, we focus strictly on signals arising from γ → A′ oscillations in this work. This
is because in most of the parameter space of interest, the SM energy density dominates

– 3 –



J
H
E
P
0
5
(
2
0
2
3
)
0
4
6

over that of the dark sector, enhancing the total rate of photon-disappearance over that of
photon-appearance (in section 4 we explicitly comment on the parameter space in which
this approximation does not hold). To calculate this conversion probability, we study
the coupled equations of motion of the SM-like and dark photon-like states. Taking the
momentum vector k to be real, the conversion rate into dark photons is governed by the
imaginary component of the frequency ω of the SM-like state. As derived in appendix A,2

the Fourier-transformed equations of motion for the spatial transverse and longitudinal
field components are

(ω2 − k2)
(
ÃT

Ã
′
T

)
'
(
M2

eff + ε2M ′ 2eff εM
′ 2
eff

εM ′ 2eff M ′ 2eff

)(
ÃT

Ã
′
T

)
,

ω2
(
ÃL

Ã
′
L

)
'
(
M2

eff + ε2M ′ 2eff εM
′ 2
eff

εM ′ 2eff M ′ 2eff

)(
ÃL

Ã
′
L

)
,

(2.2)

where the Lorenz gauge condition fixes the zeroth components of the fields. Meff and M ′eff
denote effective SM and dark plasma masses, respectively, and take the form,

M2
eff≡

ω2
p,e

1+iΓ/ω−
ω2
p,HI

E2
0/ω

2−1
, M ′2eff≡ω′2p ×

(1+2iΓ′/ω)−1 (non-relativistic mCPs)
3/2 (relativistic mCPs, Γ′�ω)

.

(2.3)
In eq. (2.3), the three plasma frequencies, ωp,e, ωp,HI, and ω′p are induced by free electrons,
electrons bound in neutral hydrogen, and (free) mCPs, respectively, where in general the
visible or dark sector plasma frequency is given by

ω(′) 2
p ≡ 4πα(′) ∑

i

Q2
i ni

〈vi − v3
i /3

pi

〉
. (2.4)

The sum in eq. (2.4) is over all species i in the visible or dark sector, with charge Qi, number
density ni, velocity vi, and momentum pi, and the brackets correspond to an average over
each species’ phase-space [24]. The energy scale E0 ' α2me/2 is the characteristic binding
energy of neutral hydrogen. The momentum exchange rates, Γ and Γ′, result from Coulomb
Scattering, e−p → e−p and χ+χ− → χ+χ−, in the SM and dark plasmas, respectively,
and suppress the effective plasma masses if they are large compared to ω. The rate Γ
for collisions between SM particles can safely be ignored, whereas Γ′ arises from mCP self-
interactions due to A′ exchange and suppresses the dark plasma contribution to the effective
A′ mass if Γ′ � ω. Parametrically, we expect that for non-relativistic mCPs the rate is
related to the number density and velocity by Γ′ ∼ α′ 2nχ/(m2

χv
3
χ), while for relativistic

mCPs it’s related to the dark temperature Tχ by Γ′ ∼ α′ 2Tχ. Since Γ′ is enhanced by a
small mCP velocity, it can be substantial in the non-relativistic limit. We come back to
this point in section 4.1. For relativistic mCPs, our interest will be in dark sectors that
are weakly self-coupled and less dense than the photon bath, such that Γ′ � ω and can be

2The derivation in the appendix assumes a non-relativistic plasma, but comparing with the calculation
done using thermal field theory [23, 24], we conclude the result shown here applies to both relativistic and
non-relativistic mCP relics.
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neglected (this was implicitly assumed in eq. (2.3) in the second line of the expression for
M ′ 2eff).

Diagonalizing eq. (2.2) in the ε � 1 limit, the dispersion relation of the SM-like
eigenstate is

ω2 − k2 'M2
eff + Πγ→A′ (transverse)

ω2 'M2
eff + Πγ→A′ (longitudinal)

, Πγ→A′ ≡ ε2
M ′ 2effM

2
eff

M2
eff −M ′ 2eff

. (2.5)

We focus solely on the second term Πγ→A′ on the r.h.s. of the dispersion relation above
since it is responsible for the γ → A′ transition. Decomposing ω and Πγ→A′ into their real
and imaginary components, we can solve eq. (2.5) for the real and imaginary components
of ω. In the limit that k � Meff,M

′
eff (which is the one of interest to us), the physical

solution of the imaginary component of ω is

Im(ω) ' −
∣∣∣∣ Im(Πγ→A′)

2Re(ω)

∣∣∣∣ (2.6)

for transverse or longitudinal modes.3 From this point forward, we shorten our notation
and ω should be taken to mean the real part Re(ω) unless specified otherwise. As in, e.g.,
refs. [2, 25, 26], this can be used to determine the photon phase space density fγ , which
evolves according to

∂fγ
∂t
' 2fγ Im(ω) ' −fγ

∣∣∣∣ Im(Πγ→A′)
ω

∣∣∣∣ . (2.7)

To evaluate eq. (2.7), we decompose M2
eff and M ′ 2eff into their real and imaginary compo-

nents4 and plug them into eq. (2.5), which gives

∂fγ
∂t
' −πε

2 fγ
ω

Re(M2
eff)2 δ

(
Re(M2

eff)− Re(M ′ 2eff)
)
, (2.8)

where we approximated Re(M2
eff) ' Re(M ′ 2eff) (i.e., near resonance) and used the narrow

width approximation assuming Im(M2
eff), Im(M ′ 2eff) � Re(M2

eff),Re(M ′ 2eff). Eq. (2.8) is the
main result of this section, which we will use to calculate the rate for γ → A′ transitions in
the early universe. Since we take the electron and mCP fluids to be weakly coupled, this
transition rate is resonantly enhanced when ω2

p ∼ ω′ 2p , where

ω2
p ' ω2

p,e − (ω/E0)2 ω2
p,HI (2.9)

3The absolute value sign arises because we consider only the solution which depletes the SM-like state
(populates the dark photon state).

4Using eq. (2.3) we find,

Re(M2
eff) =

ω2
p,e

1 + (Γ/ω)2 −
ω2
p,HI

E2
0/ω2 − 1 , Im(M2

eff) = −
ω2
p,e (Γ/ω)

1 + (Γ/ω)2 .

For the dark plasma, these depend on the nature of mCPs. E.g., for a non-relativistic mCP plasma,

Re(M ′ 2
eff) =

ω′ 2p
1 + (2Γ′/ω)2 , Im(M ′ 2

eff) = −
ω′2p (2Γ′/ω)

1 + (2Γ′/ω)2 .
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is the approximate total contribution to the SM plasma mass. From this point forward,
we abbreviate our notation such that M2

eff and M ′ 2eff should be taken to mean the real parts
Re(M2

eff) and Re(M ′ 2eff), unless specified otherwise. We also note that in our calculation
we ignore fluctuations in the SM and mCP densities, leaving the investigation of such
inhomogeneities to future work.

3 Imprints on the CMB

Armed with the expression for the photon to dark photon conversion rate in eq. (2.8),
we now discuss the imprint of γ → A′ transitions on the CMB spectrum and how non-
observation of such signals bounds the strength of these processes. To begin, it is helpful
to rewrite eq. (2.8) in a form that is more applicable to signals arising in the early universe.
This can be done by changing variables from time t to cosmological redshift z and then
integrating over z, which gives the fractional change to the CMB spectrum observed at a
frequency ω0 = ω/(1 + z) today

∆fγ(ω0)
fγ(ω0) ' −

πε2

ω0

∑
zres

M ′ 2eff
(1 + z)2H

∣∣∣∣d logω2
p

dz
− d logM ′ 2eff

dz

∣∣∣∣−1 ∣∣∣∣∣
z=zres

, (3.1)

where H is the Hubble parameter and the sum is over all such redshifts zres at which the
resonance ω2

p 'M ′ 2eff occurs (we remind the reader that compared to the discussion above,
we have shortened our notation such that only the real part is included in M ′ 2eff).

Note that replacing M ′ 2eff → m2
A′ in eq. (3.1) recovers the familiar expression typically

used to derive γ → A′ transitions for massive dark photons in the absence of mCPs [13–19].
More generally, when mA′ & M ′eff, one should replace M ′ 2eff → M ′ 2eff + m2

A′ . In this sense,
at early times when the density of mCPs is potentially sizeable, M ′eff plays the role of an
effective redshift-dependent dark photon mass. In our analysis below, we use eq. (3.1)
to determine limits or projections from existing and future measurements of the CMB
spectrum.

In general, multiple resonances can contribute to the sum in eq. (3.1). In the absence of
mCPs, as studied previously in, e.g., refs. [13–19],M ′ 2eff → m2

A′ implies that the smallest zres
typically dominates since (1 + z)2H is a rapidly growing function of redshift. In contrast,
when the A′ effective mass is dominated by the mCP contribution, M ′ 2eff ∝ ω′ 2p (z) also
scales rapidly with redshift due to the enhancement of the mCP density at earlier times.
For example, we find that for adiabatic transitions induced by non-relativistic mCPs during
matter domination, the sum of eq. (3.1) is dominated by the largest zres.

In the early universe, the thermal blackbody distribution of photons is maintained
by their tight coupling to the SM plasma such that any deviation away from equilibrium
at high redshift is quickly erased by rapid collisions. However, the decoupling of photon
number-changing reactions (in the form of double Compton scattering) at redshifts of
z . 2 × 106 implies that late-time deviations away from equilibrium can persist to the
present time (see, e.g., ref. [11]). The best existing bound on such spectral distortions of
the CMB arises from previous measurements by the FIRAS spectrometer aboard the COBE
satellite. The CMB blackbody as observed by COBE is presented at the level of observed
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intensity Iobs, or power per unit frequency per unit area per solid angle. Approximating
the unperturbed SM photon intensity as a perfect blackbody at temperature T0 ' 2.7 K,
the perturbed intensity I(ω0, T0) as observed today is

I(ω0, T0) ' ω3
0/2π2

eω0/T0 − 1

(
1 + ∆fγ(ω0)

fγ(ω0)

)
. (3.2)

For a particular mCP population, we calculate the predicted intensity I(ω0, T0) and com-
pare to the observed intensity Iobs(ω0) from COBE [4] by means of the χ2 test statistic

χ2 =
∑
i

(
Iobs(ωi)− I(ωi, T0)

σ(ωi)

)2
, (3.3)

where the sum over i corresponds to the set of measured frequency bins ωi with corre-
sponding intensity uncertainty σ(ωi). Note that eq. (3.3) is an approximation, as a more
exact treatment would involve a convolution of the instrumental response function over
the frequency range of each individual bin. We have verified that eq. (3.3) agrees with
performing a full convolution to within O(10%).

In determining limits on models of mCP relics, we allow the temperature T0 to be a free
parameter determined by minimizing the χ2. This is necessary since the CMB monopole is
altered in the presence of an electromagnetically-coupled dark sector. We will also illustrate
the projected sensitivity of a more precise measurement of the CMB spectrum, as can
be achieved by the proposed PIXIE satellite [4]. Following the discussion in ref. [15], we
construct a χ2 for PIXIE by assuming 400 angular frequency bins of resolution 2π×15 GHz
spanning the range 2π × 30 GHz− 2π × 6000 THz with an intensity resolution of σ(ωi) '
5 × 10−26 W/Hz/m2/sr. Compared to the FIRAS instrument, this corresponds to an
O(10) increase in the number of frequency bins and an O

(
103) − O(105) enhancement in

the intensity resolution.
The large density of mCP relics in the early universe can lead to resonant production

of dark photons if M ′ 2eff(zres) ' ω2
p(zres) at redshift zres. In this work, we focus on mCPs

that constitute a small fraction of the total dark matter (mCDM) or radiation (mCDR)
energy densities. For a fixed comoving number of weakly-coupled mCPs, the redshift
dependence of the dark plasma frequency squared scales as the number density of mCDM
or as the average momentum squared of mCDR. As a result, we can characterize the effect
of mCPs as,

M ′eff(z) ∝ (1 + z)n , n =

3/2 (mCDM)
1 (mCDR)

. (3.4)

In the left panel of figure 1, we show the redshift evolution of Meff ' ωp (green lines) and
M ′eff (dotted blue and red lines). The redshift evolution power index n defines the type of
mCP dark sector. If no mCPs are present, then for a massive dark photon Meff ' mA′ is
independent of redshift (dotted black line). For the SM contribution, we show ωp for two
representative values of the frequency ω (solid and dashed green lines). For larger values
of ω, ω2

p is driven to negative values for particular redshift regions by the neutral hydrogen
density (see eq. (2.9) and footnote 4). As mentioned above, for redshifts z & 2 × 106,
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double Compton scattering is efficient and thus erases any deviations of the SM photon
spectrum away from that of an ideal blackbody. This region is shaded black in the left
panel of figure 1.

The redshift dependence of ωp and M ′eff can be used to determine the resulting mod-
ifications to the CMB spectrum, as detailed above. Note that M ′eff(z) is specified by its
current z = 0 value M ′eff(0) and its redshift scaling n. In this sense, M ′eff(0) is a useful
effective parameter. For the remainder of this section, we therefore choose to present lim-
its on the dark sector model space in terms of ε and M ′eff(0) for theories of massless dark
photons (n = 0), mCDM (n = 3/2), and mCDR (n = 1). In the next section, we will
illustrate more explicitly how such limits are placed within the detailed model space of
mCP relics, i.e., how specific models and cosmologies map onto Meff(0) and n. The limits
as derived from FIRAS are shown in the right panel of figure 1 in the parameter space
spanned by the dark photon kinetic mixing parameter ε and M ′eff(0) for models of massless
dark photons and mCDM (blue) or mCDR (red). For simplicity, we have ignored the mCP
self-scattering rate Γ′ such that M ′eff ∼ ω′p (we discuss this in more detail in section 4). For
comparison we also depict the bounds on models of massive dark photons absent of mCPs
(black), as calculated previously [13–15]. In deriving these limits, we have evaluated the χ2

test statistic from eq. (3.3) after marginalizing over the current CMB temperature T0 for a
particular choice of model parameters. In this three-dimensional parameter space spanned
byM ′eff(0), ε, and T0, the excluded regions are shown for χ2−χ2

min = 7.82, corresponding to
a 95% confidence limit, where χ2

min is the minimum value of χ2 within the entire parameter
space shown.

FIRAS is sensitive to values of the kinetic mixing as small as ε ∼ 10−7 in each of
the models highlighted in figure 1. In models of mCDM, both the dark sector and SM
plasma masses scale as M ′eff ∝ ωp ∝ z3/2 at high redshift. As a result, for sufficiently
large values of M ′eff(0), the condition M ′eff ' ωp is never satisfied and hence resonant A′

production does not occur. This corresponds to the sharp edge near M ′eff(0) ∼ 10−14 eV
in the blue shaded region in the right panel of figure 1. On the other hand, for mCDR
M ′eff ∝ (1 + z) implies that resonances always occur for sufficiently large values of M ′eff(0).
However, since any distortions induced by γ → A′ transitions that occur before z ' 2×106

are quickly suppressed by double Compton scattering, the red shaded region in the right
panel of figure 1 does not extend well past M ′eff(0) ∼ 10−11 eV.

From the left panel of figure 1, we see that for sufficiently small effective dark photon
masses, M ′eff(0)� 10−14 eV, resonant transitions are possible only for ω/T & few, in which
case neutral hydrogen (corresponding to the second term of eq. (2.9)) is able to suppress
the visible plasma frequency down to ωp 'M ′eff in a narrow range of redshift. In this small
M ′eff limit, we find that the conversion probability is well approximated by

lim
M ′eff(0)�10−14 eV

∆fγ(ω0)
fγ(ω0) = − π ε2M ′ 4eff(0)

(2− δ)H0 Ω1/2
m

C
11/2−4n+δ

2−δ
2

C
15/2−4n

2−δ
1

ω
9−8n+3δ

2−δ
0 , (3.5)

where n is defined in eq. (3.4), C1 ≡ 3.5× 10−32 eV2, C2 ≡ 1.9× 10−30, δ ≡ 0.19, H0 is the
present-day value of the Hubble parameter, and Ωm ' 0.3 is the fractional cosmological
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Figure 1. Left: the redshift evolution of the effective Standard Model photon mass Meff ' ωp for
two different choices of the frequency to temperature ratio, ω/T � 1 (solid green) and ω/T = 5
(dashed green), as well as the effective dark photon massM ′eff for a massless dark photon interacting
with millicharged dark matter (dotted blue) or dark radiation (dotted red). For comparison we also
show M ′eff = mA′ , corresponding to a massive dark photon absent of millicharged relics (dotted
black). Level crossings corresponding to points at which M ′eff ' ωp induce γ → A′ transitions that
distort the CMB spectrum. Transitions at redshift z & 2 × 106 (shaded black region) are quickly
erased by rapid photon number-changing reactions. Right: constraints derived from COBE/FIRAS
measurements of the CMB spectrum in the parameter space spanned by the dark photon kinetic
mixing parameter ε and the current z = 0 value of the effective dark photon mass M ′eff(0) for
models of massless dark photons and millicharged dark matter (blue) or dark radiation (red). For
comparison we also show the bounds on models of massive dark photons absent of millicharged
relics (black), which agrees with the previous results of, e.g., refs. [13–15].

matter density. Thus, in this low mass range, the limit on kinetic mixing scales as ε ∝
M ′ −2

eff (0), as evident by the left-most part of the exclusion contours in the right panel of
figure 1. Alternatively, for very large values of M ′eff(0), resonant γ → A′ transitions occur
deep into radiation domination. In this case, we find that the conversion rate is instead
approximated by

lim
M ′eff(0)�10−14 eV

∆fγ(ω0)
fγ(ω0) = − ε2

3− 2n

√
45

4π g∗
mplM

2
eff(0)

ω0 T 2
0

, (3.6)

where g∗ is the number of effective relativistic degrees of freedom in the SM bath at zres.
eq. (3.6) implies that in this high mass range, the limit on kinetic mixing is independent
of M ′eff(0), as evident by the right-most part of the exclusion contours in the right panel of
figure 1.

4 Constraining millicharged relics

In the previous section, we calculated limits as a function of ε and M ′eff(0) for models
of mCDM and mCDR (see the right panel of figure 1). These bounds can be translated
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straightforwardly into the mCP parameter space spanned by ε, the mCP mass mχ, and
the dark gauge coupling e′, assuming a fixed cosmological history. In this section, we
investigate how these bounds apply to the simplest cosmologies of mCP dark sectors.

4.1 Subcomponent of millicharged Dark Matter (mCDM)

Let us begin by investigating the case of a millicharged dark matter (mCDM) subcompo-
nent. The effective dark photon mass arising from such a population of mCPs, assuming
that their self-interactions are negligible (Γ′ � ω), is approximately

M ′eff '
(4πα′ nχ

mχ

)1/2
∼ 10−17 eV× (1 + z)3/2

(
α′

10−4

)1/2( mχ

1 GeV

)−1( fDM
10−2

)1/2
, (4.1)

where α′ = e′ 2/4π is the dark fine structure constant and in the second equality we have
normalized the mCP number density nχ by the fractional contribution fDM = mχ nχ/ρDM
to the total DM energy density ρDM . In the following, we only consider fDM . 0.4 ×
10−2, since for such fractions the stringent CMB bounds on DM-baryon scattering do not
apply [27–32].

One of the simplest scenarios of mCDM corresponds to when mCPs arise as a thermal
relic of the early universe. This naturally occurs for qχ & 10−7 × (mχ/GeV)1/2, such that
annihilations of electrons into mCPs equilibrate the SM and dark sectors at early times.
In this case, the depletion of the thermal mCP density is typically governed by the freeze-
out of annihilations into massless dark photons, χ+χ− ↔ A′A′, which easily dominates
over annihilations into pairs of SM particles for e′/e � ε (this is the case for the entire
parameter space of interest). These processes deplete the total mCDM density to fractional
DM abundances fDM for couplings of roughly

α′ ∼ 10−4 ×
(
fDM
10−2

)−1/2 ( mχ

1 GeV

)
. (4.2)

To derive eq. (4.2), we employ the standard freeze-out estimate 〈σv〉χ+χ− ∼ α′2/m2
χ ∼

1/(Teqmpl), where Teq ∼ 1 eV is the temperature at matter radiation equality andmpl is the
Planck mass. In our analysis, we go beyond this order of magnitude estimate and employ a
semi-analytic solution to the Boltzmann equation, as in refs. [33–35]. As discussed above,
this mCP density contributes an in-medium correction to the dark photon’s dispersion
relation. For values of the dark coupling fixed to the freeze-out estimate in eq. (4.2), the
A′ effective mass at redshift z is approximately

M ′eff ∼ 10−17 eV× (1 + z)3/2
(

mχ

1 GeV

)−1/2 ( fDM
10−2

)1/4
. (4.3)

Using this expression, we can use FIRAS data to place limits on thermal freeze-out cos-
mologies of mCDM. More specifically, for a given mass mχ and fractional abundance fDM,
we fix α′ according to the cosmologically-motivated value in eq. (4.2), which in turn is used
to determine the dark photon’s effective mass, as in eq. (4.3). The rest of the procedure
is the same as that described in section 3 to place an upper limit on the kinetic mixing
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ε, which can be reexpressed as a limit on the effective charge qχ = ε e′/e. The resulting
FIRAS limits are shown as solid blue lines in figure 2 for the parameter space spanned by
qχ and mχ and particular choices of fDM = 0.4 × 10−2 (top-left panel), 10−4 (top-right
panel), and 10−5 (bottom panel).

Note that eq. (4.3) implies that there are no resonant γ ↔ A′ transitions for fixed
fDM and very light mCPs, since in this case M ′eff & ωp at all redshifts for sufficiently
small masses. This corresponds to the sharp edge at the left-most part of the sensitivity
regions in figure 2, which scales with the DM fraction as ∝ f

1/2
DM (this is visually apparent

within the mass range shown only for the top-left panel of figure 2). In our calculations,
we have checked that the mCP self-interaction rate satisfies Γ′ � ω across the entire
parameter space shown, allowing us to approximate M ′eff ' ω′p. Projections from the
proposed PIXIE satellite are also shown in dashed blue (see section 3 for additional details),
which can improve upon the reach compared to FIRAS by roughly two orders of magnitude
in the effective charge qχ. Also shown in figure 2 as a dotted black line is the value
of the kinetic mixing parameter that is motivated by simple models of radiatively-induced
coupling, corresponding to ε = ee′/16π2 or equivalently qχ = α′/4π [21]. Various theoretical
constructions can populate models above or below this line. For instance, dark sectors
involving an enhanced dark charge/flavor number correspond to qχ � α′/4π, whereas non-
abelian dark sectors or those generating multi-loop kinetic mixing correspond to qχ �
α′/4π [56, 57].

Previously investigated limits, such as those derived from cosmology, astrophysics, and
terrestrial searches are shown in gray. The darkest gray regions are excluded from accelera-
tor and neutrino experiment searches [36–44, 46]. The next lightest gray shaded regions are
excluded from considerations of stellar energy loss [37, 47, 48], SN 1987A [50], and early uni-
verse probes of the modification to the effective number of neutrino species ∆Neff (resulting
from the massless dark photon’s contribution to the radiation energy density) [47, 53]. We
note that for certain regions of parameter space mCPs remain thermalized with the SM at
sufficiently low temperatures such that this energy density in dark photons is comparable
to that of the SM photon density. As mentioned above in section 2, in this case the inverse
process A′ → γ can become comparable or dominate over γ → A′, modifying the form of
the spectral distortions discussed so far. We refrain from performing a careful estimate
of such effects since this part of parameter space is typically in tension with cosmological
probes of ∆Neff. This can be seen as the dotted part of the otherwise solid “FIRAS” line
in figure 2, which highlights where our calculated limits overlap this region of parameter
space and thus are expected to be modified.

In the light dashed gray regions, we show limits from searches for energy depositions
from mCDM scattering on terrestrial detectors, such as underground and surface-level
DM direct detection experiments [49, 52] and the balloon- and rocket-based calorimeter
experiments RRS and XQC [51]. It is important to note that such signals require mCDM
to reside locally in the Milky Way, whereas signals of spectral distortions rely on the
cosmological presence of mCPs at early times. Along these lines, previous studies have
suggested that in this parameter space supernovae remnants may have evacuated mCDM
from the galactic disk, rendering terrestrial DM searches insensitive to mCP relics [54, 55,
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Figure 2. Existing limits (solid blue) and future projections (dashed blue) on millicharged dark
matter from existing and upcoming measurements of the CMB spectrum by COBE/FIRAS and
PIXIE, respectively. Other constraints are shown as shaded gray regions [36–53]. Limits that rely
on the assumption that millicharged dark matter resides in the galactic disk are shown as light
dashed gray regions [49, 52, 54, 55]. The parameter space is presented as a function of effective
millicharge qχ = ε e′/e and dark matter mass mχ. The dark gauge coupling is fixed as a function
of the dark matter mass, assuming a standard thermal freeze-out abundance from χ+χ− → A′A′,
according to eqs. (4.2) and (4.3). Along the dotted black line, ε = ee′/16π2 is fixed to the value
expected in a minimal model of radiatively-induced kinetic mixing. In each panel, we take the
millicharge relics to constitute a fraction fDM = 0.4× 10−2 (top-left panel), 10−4 (top-right panel),
and 10−5 (bottom panel) of the total dark matter abundance.

58]. In this case, FIRAS is the strongest probe of the simplest incarnations of mCDM for
mχ & 1 GeV and 10−5 . fDM . 10−2.

The above discussion demonstrates that measurements of the CMB spectrum are sen-
sitive to new sets of models involving massless dark photons and thermal mCP relics. The
latter assumption was critical in fixing the value of α′ and allowing us to restrict to the
three-dimensional parameter space spanned by qχ, mχ, and fDM. One could alternatively
consider other thermal histories that would produce a sizable mCP number density with
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larger α′ (e.g., if there exists a particle-antiparticle asymmetry in the mCP population).
This would further enhance the importance of CMB spectrum measurements relative to
the other constraints shown in gray in figure 2.

Before proceeding, we note that ref. [20] recently investigated similar constraints on
bosonic mCDM. That work focused on much lighter (� 1 MeV) and much more weakly cou-
pled (qχ � 10−10) mCPs produced from the misalignment mechanism before the end of in-
flation and did not consider the potentially important effects arising from self-interactions.
Although self-interactions are irrelevant in our work, in the ultralight bosonic regime of
ref. [20] the increased number density and phase space occupancy may lead to enhanced
self-scattering that can suppress the effective dark photon mass, as in eq. (2.3). A detailed
investigation of such effects in the ultralight parameter space is beyond the scope of this
work.

4.2 Millicharged Dark Radiation (mCDR)

In this section, we investigate constraints on relativistic mCPs, which contribute to the
cosmological radiation energy density. In this limit, the mCP mass is assumed to be
sufficiently small to be irrelevant, such that from eq. (2.4) the dark plasma frequency
is approximately ω′ 2p ' (8π/3)α′nχ〈1/pχ〉, where the momentum pχ in the brackets is
averaged over the mCP phase space [24]. From eq. (2.3), this gives rise to an effective A′

mass-squared of5

M ′ 2eff ' 4π α′ nχ〈1/pχ〉 . (4.4)

For instance, the phase space of an mCDR sector made up of a particle-antiparticle pair
of a complex scalar or a Dirac fermion described by a temperature Tχ � mχ leads to
M ′ 2eff ' (2π/3)α′ T 2

χ . It is often convenient to parametrize Tχ in terms of the effective
additional neutrino degrees of freedom ∆Neff in mCDR,

Tχ =
( 4

11

)1/3 (7
4

)1/4(∆Neff
gχ∗

)1/4
Tγ , (4.5)

where gχ∗ is the effective relativistic degrees of freedom of the mCDR and Tγ is the temper-
ature of the SM photon bath [59]. Planck observations of the CMB, in combination with
other cosmological and astrophysical datasets, restrict the level of additional free-streaming
dark radiation to be ∆Neff . 0.3 [6]. For concreteness, we focus our attention on fermionic
mCDR for the remainder of this section (similar expressions hold for scalar mCDR). In
this case, the effective dark photon mass evolves as a function of redshift as

M ′eff ∼ 10−12 eV× (1 + z)
(∆Neff

0.3

)1/4 ( qχ
10−14

) (10−7

ε

)
(Fermi-Dirac) . (4.6)

To derive this expression, we used that e′ = eqχ/ε and normalized qχ to be slightly smaller
than the strongest existing upper bounds on massless mCPs (qχ . 2× 10−14), arising from
considerations of stellar energy loss [37, 47, 48].

5Here, we neglect mCDR self-interactions and set Γ′ = 0 since relativistic scattering is not enhanced by
a small relative velocity.
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Figure 3. Existing limits (solid) and future projections (dashed) on millicharged dark radiation
from existing and upcoming measurements of the CMB spectrum by COBE/FIRAS and PIXIE,
respectively. Here, we assume that the millicharge phase space is well-approximated by a thermal
Fermi-Dirac distribution. Left: the parameter space is presented as a function of effective ad-
ditional neutrino degrees of freedom in millicharged particles ∆Neff and kinetic mixing ε for two
representative values of the effective charge qχ = 2×10−14 (red) and 2×10−15 (orange). Note that
∆Neff can be translated into a dark sector-to-Standard Model temperature ratio Tχ/Tγ , as shown
on the right axis. For each choice of qχ, we show a horizontal band corresponding to the amount of
millicharged dark radiation predicted to be produced by freeze-in via plasmon decay, γ∗ → χ+χ−.
Also shown as a shaded gray region or dotted gray line are existing constraints or future projections
on additional dark radiation from CMB observations by Planck [6] and CMB-S4 [60], respectively.
Right: the parameter space is presented as a function of the effective millicharge qχ = ε e′/e and
kinetic mixing ε fixing ∆Neff = 10−2 (blue) and 10−6 (green). The shaded gray region is excluded
from considerations of stellar energy loss [37, 47, 48].

The discussion above details the mapping of the mCDR model parameters to the
effective A′ mass. In figure 3, we use this mapping to recast the mCDR bounds from
figure 1 to the mCP parameter space. For an mCDR population well-described by a thermal
Fermi-Dirac distribution, the model is completely specified by ∆Neff (or equivalently the
temperature ratio Tχ/Tγ) and the couplings ε and qχ. In the left panel of figure 3, we
fix the effective charge qχ to be either the largest value allowed by existing constraints on
ultralight mCPs (red) [37, 47, 48], or an order of magnitude smaller (orange), and show the
existing limits or future projections from COBE/FIRAS (solid lines) and PIXIE (dashed
lines), respectively, as a function of ∆Neff and ε. Note that on the right vertical axis, for
each choice of ∆Neff we show the corresponding value of the mCP-to-photon temperature
ratio Tχ/Tγ . Also shown as a shaded gray region or dotted gray line are existing constraints
or future projections on additional dark radiation from CMB observations by Planck and
CMB-S4, respectively [6, 60]. Instead, in the right panel we fix ∆Neff to two representative
values of 10−2 (blue) or 10−6 (green) and display the parameter space spanned by the
couplings qχ and ε. The shaded gray region is excluded from considerations of stellar
energy loss [37, 47, 48].

Figure 3 illustrates that spectral measurements of the CMB are sensitive to even tiny
amounts of additional radiation consisting of extremely feebly-coupled mCPs. In light of
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these findings, it is worth investigating the simplest cosmologies that give rise to such
small amounts of additional dark radiation, analogous to the philosophy outlined above in
section 4.1. Infrared “freeze-in” is an especially compelling example of such a cosmology,
as it is insensitive to much of the dynamics in the early universe and provides a semi-
predictive mapping between qχ and ∆Neff [61]. In particular, the abundance of ultralight
mCPs has an irreducible contribution from the decay of SM plasmons γ∗ → χ+χ− with a
rate controlled by the size of qχ [62]. As discussed in appendix C, we find that the comoving
number of mCDR produced from such freeze-in processes is approximately

Y (FI)
χ = n

(FI)
χ

sγ
' 3× 10−12 ×

(
qχ

10−14

)2
, (4.7)

where sγ ' 1.7 × T 3
γ is the entropy density of the visible sector at a temperature Tγ

below the electron mass threshold. The corresponding energy density in this mCDR is
approximately

∆N (FI)
eff ' 2× 10−11 ×

(
qχ

10−14

)2
. (4.8)

The horizontal bands in the left panel of figure 3 show this predicted value of ∆Neff from
freeze-in for qχ = 2× 10−14 (red) or qχ = 2× 10−15 (orange), assuming that freeze-in from
plasmon decay is the only process contributing to the cosmological abundance of mCDR.
Hence, for these choices of qχ, regions above the corresponding horizontal lines require
additional dynamics in the early universe to produce mCPs, whereas regions below require
new processes that deplete the mCP abundance below that generated by plasmon decay.

Figure 3 assumes that the mCP phase space is well-described by a thermal Fermi-
Dirac distribution. However, this is not guaranteed to be the case. For instance, the
resulting freeze-in contribution to the effective dark photon mass depends crucially on the
post-production evolution of the mCP phase space. This is due to the fact that the typical
energy pχ ∼ Tγ of an ultra-relativistic mCP produced from plasmon decay is large compared
to what would be expected from its number density, i.e., 〈pχ〉3/n(FI)χ ∼ 1/Y (FI)

χ � 1; in
other words, the phase space is highly non-thermal [62]. As a result, this high-momentum
phase-space tail suppresses the contribution to the effective A′ mass in eq. (4.4), compared
to a thermal distribution. Assuming that this phase space remains unaltered after freeze-in,
we find that the in-medium contribution to the dark photon mass is

M ′eff ' 3× 10−17 eV× (1 + z)
(

qχ
10−14

)2 (10−7

ε

)
(freeze-in) . (4.9)

In appendix C, we derive eq. (4.9) by directly solving the Boltzmann equation.
The late-time phase space is significantly modified if dark sector number-changing and

scattering processes become efficient, such as χ+χ− → A′A′, χA′ → χA′, and χA′ → χA′A′.
Since χ+χ− → A′A′ is the dominant process, we conservatively estimate that the freeze-in
phase space is significantly modified provided that α′ 2 n(FI)χ /T 2

γ � H, where n(FI)χ is the
number density of mCPs generated from plasmon decay. From this estimate, we find that
the distribution of an mCDR population initially populated from freeze-in is significantly
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Figure 4. Limits (solid) and projections (dashed) on millicharged dark radiation that is produced
through freeze-in via plasmon decay γ∗ → χ+χ−, as in eqs. (4.7)−(4.9), from existing and upcom-
ing measurements of the CMB spectrum by COBE/FIRAS and PIXIE, respectively. The results
are shown assuming that either the millicharged particle phase space distribution is unperturbed
compared to that generated from freeze-in production (cyan) or that self-interactions drive the
phase space towards that of a thermal Fermi-Dirac distribution (red). In the orange shaded re-
gion, χ+χ− → A′A′ reactions modify the dark sector phase space before the last resonant γ → A′

transition; outside this region self-thermalization requires the presence of additional unspecified in-
teractions within the dark sector. The shaded gray region is excluded from considerations of stellar
energy loss [37, 47, 48].

altered before a temperature Tγ for couplings of

qχ � 10−11 ×
(

ε

10−7

)2/3 ( Tγ
keV

)1/6
. (4.10)

When eq. (4.10) is satisfied, the mCDR population begins to approach that of a thermal
Fermi-Dirac distribution. We leave a more complete calculation to determine the precise
behavior of the mCP phase space to future work. If self-thermalization occurs, the temper-
ature Tχ of this newly equilibrated population is determined by energy conservation, i.e.,
n
(FI)
χ Tγ ∼ T 4

χ . We therefore estimate that the resulting in-medium contribution to the A′

mass is enhanced compared to that of eq. (4.9) by

M ′eff(self-thermalized) ∼M ′eff(freeze-in)×
(
Y (FI)
χ

)−1/4
, (4.11)

where Y (FI)
χ � 1 is the yield determined by eq. (4.7). As expected, self-thermalization of

the dark sector parametrically increases the dark photon’s effective mass.
Figure 4 investigates the minimal cosmological scenario where freeze-in from plasmon

decay is solely responsible for the production of mCPs. Hence, the initial density is fixed
as a function of qχ by eq. (4.7). We then calculate the resulting constraints and projections
from COBE (solid lines) and PIXIE (dashed lines) for two scenarios: where this mCP
population either self-thermalizes (red) or retains its original distribution (cyan). In the
region labelled “ΓSelf-therm & H”, χ+χ− → A′A′ modifies the mCP phase space before the
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latest resonantly enhanced γ → A′ transition occurs. Below this region, additional forms of
self-interactions are required to self-thermalize the dark sector. From figure 4 we note that
the irreducible contribution to the mCP density from plasmon decay is typically too small
to give rise to sufficiently large spectral distortions as to be competitive with existing stellar
constraints. Regardless, PIXIE would be sensitive to new freeze-in parameter space in the
case that the mCDR self-thermalizes through some unspecified additional self-interaction.

5 Opening up the parameter space for massive dark photons

Above, we investigated the prospects of detecting unbroken symmetries using the presence
of mCPs. In doing so, we placed new limits within the mCP parameter space, assuming
the simplest cosmologies for mCDM and mCDR. Alternatively, one may ask how the
usual bounds on massive dark photons as derived from γ → A′ oscillations are altered
in the presence of mCP relics. More specifically, we seek to evaluate the robustness of
such bounds in regards to minor modifications to the cosmic history. In the presence of
mCPs, massive dark photons have two contributions to their effective mass, which can be
incorporated by replacing M ′ 2eff → m2

A′ +M ′ 2eff in the results presented above, where mA′ is
the usual in-vacuum dark photon mass and M ′eff is the in-medium mCP contribution. The
redshift dependence of M ′eff depends on whether or not the mCP relics are relativistic (see,
e.g., eq. (3.4)). As we discuss below, the steep scaling M ′eff ∝ (1 + z)3/2 for non-relativistic
mCPs implies that mCDM can significantly weaken existing cosmological constraints on
massive dark photons. On the other hand, the weaker scaling M ′eff ∝ (1 + z) for relativistic
mCPs implies that mCDR typically only strengthens such bounds. Since this latter point
was already investigated in section 4.2, we focus solely on mCDM in this section.

The mCDM contribution to the dark photon effective mass M ′eff has the same redshift
scaling as the free electron contribution to the SM photon plasma mass ωp. Furthermore,
since the effect of neutral hydrogen is only to reduce ωp, if M ′eff is sufficiently large it will
entirely prevent resonant γ → A′ transitions from being imprinted on the CMB. This
effect is most pronounced for very light mCDM, since M ′eff scales inversely with the DM
mass for fixed mCP fractional density fDM. We hence choose to focus on the light (sub-
MeV) mCDM parameter space, since this maximizes the possible modifications to the
dark photon’s effective mass. The relevant mCP parameter space is displayed in the left
panel of figure 5. As opposed to the mχ & MeV parameter space investigated in section 4.1,
cosmological and astrophysical bounds on sub-MeV mCPs requires much smaller couplings,
qχ . 10−9 [50, 53]. Also unlike in section 4.1, here we refrain from specifying a particular
cosmological production mechanism for the mCDM. In fact, for the choices of e′ = eqχ/ε

that we consider below, a symmetric mCDM population in the early universe would have
either annihilated away via χ+χ− → A′A′ to negligible densities for ε . 10−6, or would have
been overproduced by γ∗ → χ+χ− for ε & 10−6. Hence, we implicitly assume the presence
of additional dynamics corresponding to, e.g., an initial cosmological mCP asymmetry or
an additional mCP annihilation channel, depending on the particular value of ε.

Fixing mχ = 50 keV, qχ = 10−9, and fDM = 10−2 in eq. (4.1), we have that the
mCDM contribution to the effective A′ mass at redshift z = 0 isM ′eff(0) ∼ few×10−14 eV×
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Figure 5. The modification of bounds on massive dark photons in the presence of millicharged
particle dark matter subcomponents, fixing the fractional abundance to fDM = 0.4%. Left: the
three chosen benchmark points in the millicharged particle parameter space, spanned by the charge
qχ and mass mχ. These three benchmark points are chosen in light of known outstanding questions
regarding the robustness of stellar energy loss constraints [37, 47, 48]. Point A (magenta star) is
not excluded by any existing constraints. Point B (cyan star) lies within the mass range where
calculations of stellar energy loss require a precise modeling of the stellar temperature profile.
Point C (blue star) corresponds to much smaller masses such that millicharged particle production
is not exponentially sensitive to the stellar temperature; however, for such large couplings, the
gyroradius of a millicharged particle within the stellar magnetic field is much smaller than the
stellar radius, thus requiring a dedicated analysis beyond present estimates [48, 63]. Right: bounds
from COBE/FIRAS on massive dark photons for each of the model points shown in the left panel
(points A, B, and C correspond to the shaded magenta, cyan, and blue regions, respectively).
For reference, we also show the usual bound assuming a negligible density of millicharged relic
particles (dashed black). In shaded and dotted gray, we also show existing constraints from previous
tests of Coulomb’s law [64–66] and a future projection of the DarkSRF light-shining-through-wall
experiment at Fermilab [67], respectively.

(10−7/ε) which is slightly greater than ωp at z = 0 and is hence large enough to prevent
γ → A′ resonant transitions at all redshifts. In this section, we study the influence of
mCDM on the parameter space of massive dark photons fixing qχ = 8× 10−10 (the largest
cosmologically-allowed coupling in this low mass parameter space [53]), fDM = 0.4% (the
largest allowed fraction for tightly-coupled mCDM [28, 30]), and the mCP mass to one
of three values: mχ = 60 keV (scenario A), mχ = 10 keV (scenario B), or mχ = 1 keV
(scenario C). These points are shown as the pink, cyan, and blue stars in the left panel
of figure 5, respectively. As seen from figure 5, Point A is allowed by all existing bounds
and represents the most conservative choice of model parameters. Points B and C lie
within regions of parameter space that are naively excluded by considerations of stellar
energy loss [37, 47, 48]. However, there exist two reasons to question the robustness of
such bounds on models of mCPs since there are outstanding questions regarding their
reliability in light of stellar modeling of temperature profiles and magnetic fields. First,
for masses mχ & 10 keV, mχ is greater than the characteristic temperature of stellar
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cores, such that emission of mCPs is exponentially sensitive to the modeling of the stellar
interior. This motivates the investigation of parameter point B. Second, for couplings
qχ & 10−11, the gyroradius of an mCP in the presence of stellar magnetic fields is typically
much smaller than the size of the star [48], in which case mCPs do not freely propagate
outwards, possibly resulting in modifications to the naive bound [63]. This motivates the
investigation of parameter point C.

The COBE/FIRAS limits on massive dark photons from γ → A′ oscillations are shown
in the right panel of figure 5 as a function of the dark photon in-vacuum mass mA′ and
the kinetic mixing ε for our three chosen mCDM scenarios. For comparison, in dotted
black we also show the standard bound assuming no cosmological abundance of mCPs [13–
15]. Since the mCP contribution to the effective A′ mass scales as M ′eff ∝ e′ ∝ qχ/ε, for
fixed millicharge qχ mCPs prevent resonant γ → A′ transitions entirely for sufficiently
small ε (corresponding to sufficiently large e′). On the other hand, for fixed qχ resonant
transitions are induced for sufficiently large ε with a probability that depends on the size
of ε and M ′eff (see eq. (3.1)). Relatedly, in addition to weakening the bounds on massive
dark photons at small ε, the presence of mCPs strengthens limits at small dark photons
masses, which are otherwise unbounded. These effects are most pronounced for parameter
point C, corresponding to the lowest mCP mass considered. We note that we do not
consider regions of parameter space corresponding to couplings below upper bounds derived
from stellar energy loss, qχ . 10−14 [37, 47, 48], although in principle a smaller qχ could
be compensated for by a smaller mCP mass, e.g., mχ � 1 eV. In this case additional
complications potentially arise from large self-interactions (thereby suppressing the mCP
contribution to M ′eff) and cosmological instability from parametric resonance [68] (which
suppresses the overall mCDM density).

Interestingly, the existence of light mCPs can significantly weaken cosmological bounds
on massive dark photons at small values of ε. In such regions of parameter space, terrestrial
searches for dark photons thereby play an increasingly important role. In the right panel
of figure 5, the shaded gray region corresponds to a limit derived from a terrestrial test
of Coulomb’s law [64–66]. Also shown as dotted gray is the projected sensitivity of the
light-shining-through-wall experiment DarkSRF at Fermilab [67]. In this sense, figure 5
highlights the importance to investigate parameter space that is cosmologically excluded in
only the simplest model constructions; slight variations to the model can open up previously
bounded parameter space, motivating direct terrestrial probes that are largely insensitive
to the same model variations.

Before concluding this section, we note that it is worthwhile to consider additional
dynamics in the dark sector, beyond that of freely ionized mCPs, since slight modifications
to the models investigated above might allow for larger changes to the existing limits
on massive dark photons. Along these lines, we have also investigated scenarios where
oppositely-charged mCPs bind into neutral states either due to A′-exchange or through
some additional unspecified interactions within the dark sector [69–72]. Analogous to
the second term in the first equation of eq. (2.3), dark bound states can be incorporated
into our analysis by making the following modification to the effective dark photon mass,
M ′ 2eff → ω′ 2p,HI/(1− E′ 20 /ω

2), where ω′p,HI is the dark plasma frequency and E′0 the binding
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energy associated with such “dark hydrogen”. We find that dark hydrogen’s ability to
weaken existing bounds on massive dark photons is suppressed compared to models of free
mCPs, as considered previously in this section. To see this, note that at large z, when
ω = ω0(1+z)� E′0, M ′ 2eff → ω′ 2p,HI and thus the effect of such particles on the effective dark
photon mass is no different than that of freely ionized mCPs. However, at much later times
when ω � E′0, M ′ 2eff → −ω′ 2p,HI (ω/E′0)2. Hence, the typical effect of dark bound states is
to induce a transition rather than forbid one. As a result, such models are more severally
bounded than free mCPs. We leave a more detailed investigation to future work.

6 Conclusions

In this paper, we studied the prospects of detecting massless dark photons through a
population of cosmic relics charged under the corresponding U(1) gauge symmetry. Such
relics can make up a small fraction of the universe’s energy budget but still substantially
alter the massless dark photon dispersion relation by inducing a redshift-dependent dark
plasma mass. If during the cosmic history, this effective mass is comparable to the Standard
Model photon plasma mass, then a kinetic mixing between the sectors will induce γ ↔ A′

interconversion. Most importantly, photons from the cosmic microwave background can
convert to dark photons, introducing detectable spectral distortions in their spectrum.

We began by presenting a pedagogical introduction to the millicharged particle-induced
γ ↔ A′ resonant interconversion and the resulting distortion of the CMB away from a
blackbody spectrum. We then applied the results to both dark matter and dark radiation.
For a dark matter subcomponent generated from thermal freeze-out, we showed that the
bounds on millicharged particles from CMB spectral distortions are complimentary to
stellar and cosmological limits. Furthermore, for heavier dark matter, spectral distortions
can close parameter space corresponding to the “overburden region” where dark matter is
strongly interacting in the (1−100) GeV range and direct detection bounds are substantially
weakened. For millicharged dark radiation, we find that FIRAS is sensitive to tiny energy
densities, well below current cosmological limits on additional neutrino degrees of freedom.
Furthermore, a future satellite experiment similar to the proposed PIXIE mission would be
capable of probing the abundance of millicharged particles generated from freeze-in. In the
final part of our paper, we discussed how bounds on massive dark photons are altered in the
presence of cosmic relics, finding modifications to previously computed bounds that assume
the absence of a millicharged particle background. Our results stress the importance of
terrestrial experiments as probes of dark photons, since they are less sensitive to the cosmic
history of our Universe.

We conclude here by commenting on several possible future developments. First, we
note that in our analysis, we treated the universe as homogeneous. Inhomogeneities in
the Standard Model plasma (as previously considered in refs. [17, 18] for massive dark
photons) or in the dark plasma can also induce resonant oscillations during low redshifts.
This motivates future work to model both the electron and millicharged particle density
fluctuations and their impact on CMB spectral distortions. Second, in our study of dark
radiation, we considered two possible extremes for the phase space distribution: a thermal
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phase space peaked at pχ ∼ Tχ and a freeze-in phase space peaked at pχ ∼ Tγ . The γ → A′

transition probability depends sensitively on the millicharged particle phase space density
and hence plays an important role in deriving the corresponding constraints. Incorporating
the phase space evolution due to self-interactions requires solving the full set of Boltzmann
equations, which we leave to future work. Lastly, dark sector self-interactions can also
suppress the dark plasma mass (as evident from eq. (2.3)), which in turn suppresses the
likelihood of γ → A′ oscillations. This effect is potentially important for ultralight mil-
licharged particles [20], where the large phase space density may lead to Bose-enhanced
processes. We leave a detailed study of this regime to future work.
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A Fluid derivation of γ and A′ dispersion relations

In this appendix, we derive the equations of motion for the SM and dark photon fields,
as shown in eq. (2.2). Here, for simplicity we take the mCPs to be non-relativistic. The
starting point of our calculation is thus to write down the coupled equations of motion
for the SM plasma (consisting of free electrons, protons, and neutral hydrogen) and the
mCP plasma (consisting of dark sector particles χ± that are oppositely charged under the
dark photon) in the early universe. Since the proton-to-electron mass ratio is very large,
we only include the free and bound electron contributions to the SM plasma. In the fluid
approximation, the equation of motion for the free electrons is given by the non-relativistic
limit of the Euler equation [22, 73]

∂tve ' −
e

me
E − Γ ve , (A.1)

where ve is the bulk velocity of the free electron fluid, E is a background electric field,
and Γ is the collisional drag-rate between electrons and heavier SM species (i.e, the inverse
timescale for an electron to exchange an O(1) fraction of its momentum).6 In the Lorentz

6In writing down eq. (A.1), we have neglected subleading terms that are higher order in the electron
velocity, such as those arising from magnetic fields.
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oscillator model, the electrons eb bound in neutral hydrogen are instead treated as a har-
monic oscillator driven by the background electric field and with a restoring force governed
by the characteristic binding energy of hydrogen E0 ' α2me/2 (not to be confused with
the electric field),

ẍeb + E2
0 xeb ' −

e

me
E , (A.2)

where xeb is the position of a bound electron. For the dark fluid, we take the mCPs to
be free ionized particles since in the parameter space of interest, the mCP self-coupling e′

is not sufficiently large to efficiently form dark bound states. Working in the diagonalized
basis in which j′µ couples to the linear combination A′µ + εAµ, as in the second equality of
eq. (2.1), the bulk velocities of the χ± fluids evolve analogous to eq. (A.1) as

∂tv± ' ±
e′

mχ
(E′ + εE)− Γ′ (v± − v∓) , (A.3)

where Γ′ is the collisional drag-rate between the χ+ and χ− fluids. Taking the difference
of the v+ and v− components of eq. (A.3) and defining the relative mCP bulk velocity
vχ ≡ v+ − v−, we thus have

∂tvχ '
2e′

mχ
(E′ + εE)− 2Γ′ vχ . (A.4)

Finally, we supplement the above fluid equations with the electromagnetic equations of
motion. In Lorenz gauge (∂µAµ = ∂µA

′µ = 0) and once again working in the diagonal
basis in which the photon field Aµ couples to both the visible and dark currents, these are
given by

∂2Aµ = jµ + ε j′µ , ∂2A′µ = j′µ . (A.5)

In order to proceed, we solve eqs. (A.1), (A.2), and (A.4) for the velocities ve, veb , and
vχ, respectively, and use these to evaluate the SM and dark current densities j and j′ in
eq. (A.5). This leaves a coupled set of equations for A and A′, which can be diagonalized
to give the dispersion relations for the SM-like and dark-like photon fields. This is simplest
to do in Fourier space7 in which case we find that the free electron, bound electron, and
mCP bulk velocities are

ṽe ' −
ie Ẽ

me ω (1 + iΓ/ω) , ṽeb '
iω e Ẽ

me (E2
0 − ω2)

, ṽχ '
2ie′ (Ẽ′ + εẼ)

mχ ω (1 + 2iΓ′/ω) . (A.6)

In eq. (A.6) and in the remainder of this section, all quantities are evaluated in Fourier
space and assumed to be functions of k and ω (Fourier transforms are denoted by a tilde).8

eq. (A.6) can then be used to determined the spatial part of the currents j = −e (neve +
nHIveb) and j′ = e′nχvχ/2, where ne, nHI, and nχ = nχ+ + nχ− are the free electron,

7We adopt the convention that the Fourier transform f(k, ω) of a function f(x, t) satisfies f(x, t) ∝∫
d3k dω ei(k·x−ωt) f(k, ω).
8Note that ve and veb have the opposite sign for Γ � ω � E0; as a result, free and bound electrons

typically have opposite effects on the dispersion relation of the SM photon.
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bound electron (approximately equal to the neutral hydrogen HI density), and total mCP
number densities. In particular, we find

j̃ ' i

ω
M2

eff Ẽ , j̃
′ ' i

ω
M ′ 2eff (Ẽ′ + εẼ) , (A.7)

where we have defined the effective plasma masses (see the dispersion relations in eq. (A.10)
below)

M2
eff ≡

ω2
p,e

1 + iΓ/ω −
ω2
p,HI

E2
0/ω

2 − 1
, M ′ 2eff ≡

ω′ 2p
1 + 2iΓ′/ω . (A.8)

Above, ω2
p,e = e2ne/me and ω2

p,HI = e2nHI/me are the contributions to the SM photon
plasma frequency from free electrons and electrons bound in neutral hydrogen, respectively,
whereas ω′ 2p = e′ 2nχ/mχ is the mCP contribution to the dark photon plasma frequency.
Note that in the limit that the free electron collisional rate is small and the hydrogen
binding energy is large (i.e., Γ � ω � E0), then M2

eff ' (1.4 × 10−21 eV2) (np/cm−3) −
(7.4× 10−24 eV2) (ω/eV)2(nHI/cm−3).

Before substituting eq. (A.7) into the source terms of Maxwell’s equations in eq. (A.5),
we wish to express all electromagnetic fields in terms of the electromagnetic potentials Aµ

and A′µ, including the electric fields that appear in eq. (A.7). To do this, we decompose
the vector potentials into transverse and longitudinal components, Ã = ÃT + (k/k) ÃL
with k · ÃT = 0, which along with the Lorenz gauge condition yields Ã0 = (k/ω) ÃL. This
implies that the electric field E = −∇A0 − ∂tA is decomposed in terms of transverse and
longitudinal components as

Ẽ = iω

[
ÃT +

(
1− k2

ω2

)
k
k
ÃL

]
, (A.9)

and similarly for the dark electric field E′. Finally, using eqs. (A.7) and (A.9) in the Fourier
transform of eq. (A.5), we find

(ω2 − k2)
(
ÃT

Ã
′
T

)
'
(
M2

eff + ε2M ′ 2eff εM
′ 2
eff

εM ′ 2eff M ′ 2eff

)(
ÃT

Ã
′
T

)
,

ω2
(
ÃL

Ã
′
L

)
'
(
M2

eff + ε2M ′ 2eff εM
′ 2
eff

εM ′ 2eff M ′ 2eff

)(
ÃL

Ã
′
L

)
,

(A.10)

which is the starting point shown in eq. (2.2) of the calculation in section 2. Note that while
this calculation was performed for non-relativistic mCPs, it can be simply generalized to
relativistic mCPs provided that self-interactions are negligible. This corresponds to setting
Γ′ = 0 and modifying M ′ 2eff ' ω′ 2p →M ′ 2eff ' (3/2)ω′ 2p [23, 24, 74], as in eq. (2.3).

B Alternative derivations of the resonant transition rate

In section 2 (and appendix A) we worked in frequency-space to derive the form for the
resonantly enhanced γ → A′ transition rate, commonly referred to as the Landau-Zener
formula [75, 76]. In this section, we provided two alternative derivations of this result, using
either a quantum mechanical formulation (that works explicitly in terms of time instead of
frequency), or the Boltzmann equation. For simplicity, we focus on the transition between
transverse modes.
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B.1 Schrödinger equation

We begin with the traditional time domain method which was first developed by Landau
and Zener [75, 76], and later used within the context of neutrino physics [77, 78] (see
also the discussion in ref. [18]). Working in the ultrarelativistic and collisionless limit,
the dispersion relation of eq. (2.2) corresponds to (up to an arbitrary phase) the following
Schrödinger-type time-dependent equation

i∂t

(
AT

A′T

)
'
(
ξ η

η −ξ

)(
AT

A′T

)
, (B.1)

where ξ = (Meff−M ′eff)/4ω and η = εMeff/2ω (we remind the reader that we have shortened
our notation such that only the real part is included in M2

eff and M ′ 2eff). Now, expanding
AT and A′T in terms of the instantaneous basis of the O

(
ε0
)
Hamiltonian, we have

AT = cγ(t) e−i
∫ t
−∞ dt′ ξ(t′)

, A′T = cA′(t) e
i
∫ t
−∞ dt′ ξ(t′)

. (B.2)

To determine the time-dependent coefficients cγ and cA′ , we substitute eq. (B.2) into
eq. (B.1), which yields the following differential equations,

i∂tcγ = η cA′ e
2i
∫ t
−∞ dt′ξ(t′)

, i∂tcA′ = η cγ e
−2i
∫ t
−∞ dt′ξ(t′)

. (B.3)

Since eq. (B.3) is symmetric under cγ ↔ cA′ , it follows that conversion probability satisfies
Pγ→A′ = PA′→γ . Assuming an initially negligible dark photon density, γ → A′ dominates
over the inverse process, corresponding to the initial condition cγ(−∞) = 1, cA′(−∞) = 0.
For ε � 1, cγ(t) ' 1 and the γ → A′ transition probability at t = ∞ (to leading order in
ε) is approximately

Pγ→A′ ' |cA′(∞)|2 '
∣∣∣∣∣η
∫ +∞

−∞
dt′e

−2i
∫ t′
−∞ dt′′ξ(t′′)

∣∣∣∣∣
2

. (B.4)

This integral can be evaluated using the saddle point approximation, which gives

Pγ→A′ '
∑
tres

π η2
∣∣∣∣dξdt

∣∣∣∣−1∣∣∣∣
tres

, (B.5)

where the sum includes all times tres at which ξ(tres) = 0. Using the definitions of η and
ξ, we find that eq. (B.5) gives Pγ→A′ agrees with −∆fγ/fγ , where ∆fγ/fγ is given by
integrating eq. (2.8) over time.

In order to calculate Pγ→A′ to the all orders in ε, we utilize the Dykhne-Davis-Pechukas
(DDP) method [79–83]. This gives

Pγ→A′ = 1−
∏
tres

e−
1
ω

Im
∫ tc

0 dt (Π+−Π−) , (B.6)

where

Π± = M2
eff +M ′ 2eff

2 ± 1
2

√√√√(d (M2
eff −M ′ 2eff

)
dt

∣∣∣∣
tres

)2
t2 + 4 ε2M4

eff (B.7)
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Figure 6. The time evolution (in terms of the dimensionless time variable t̃) of the transverse field
components AT and A′T , as described by the two-level system of eq. (B.1). Numerical solutions of
eq. (B.1) are shown as red and blue lines, for the SM-like and dark-like photon states, respectively.
Along the dashed gray lines, we show the late-time semi-analytic estimate, provided by eq. (B.9).
Resonant enhancement occurs at t̃ = 0, corresponding to Meff 'M ′eff near the vertical gray line.

and

tc = 2i εM2
eff

∣∣∣∣∣d
(
M2

eff −M ′ 2eff
)

dt

∣∣∣∣∣
−1 ∣∣∣∣∣

tres

. (B.8)

Performing the time integral in eq. (B.6) from t = 0 to t = tc, we find that the transition
probability to all orders in ε is

Pγ→A′ ' 1− exp
(∑
tres

π η2
∣∣∣∣dξdt

∣∣∣∣−1∣∣∣∣
tres

)
. (B.9)

The probability for γ → γ is given by Pγ→γ = 1− Pγ→A′ .
In figure 6, we compare the numerical solution of eq. (B.1) (|cγ |2 in red and |cA′ |2 in

blue) to the semi-analytic approximation of eq. (B.9) (dashed gray lines). In the figure, we
have defined the dimensionless quantities t̃ ≡ t |dξ(tres)/dt|−1/2 and η̃ ≡ η |dξ(tres)/dt|−1/2.
The resonantly enhanced transitions occurs when M2

eff ' M ′ 2eff , denoted as t̃ ' 0 near
the vertical gray line. Before this time, |cγ | ' 1 and |cA′ | ' 0. Near the resonance,
photons convert to the dark photons. After the resonance, cγ and cA′ oscillate around the
asymptotic value given in eq. (B.9).

B.2 Boltzmann equation

In this section we provide an alternative derivation of the γ → A′ transition rate, utilizing
an explicit calculation involving the Boltzmann equation. The modification of the SM
photon phase space density fγ due to γ → A′ is described by

1
a3
∂
(
a3fγ

)
∂t

' −fγ Γγ→A′ , (B.10)
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where a is the scale factor,

Γγ→A′ = gA′

2ωγ

∫
d3kA′

2ωA′ (2π)3 (2π)4 δ(4) (kγ − kA′)
∣∣Mγ→A′

∣∣2 , (B.11)

ωi, ki, and fi are the energy, momentum, and phase space density of species i, |MA′→γ |2

is the squared matrix element for A′ → γ averaged over initial and final spin, gA′ = 2 is
the number of internal A′ spin degrees of freedom, and we have taken fA′ ' 0 [59].

From ref. [84], we have thatMγ→A′ = εM2
eff ε

i
µ(kγ) εjµ(kA′), where ε(k)i are polarization

vectors. Averaging over the SM and dark photon polarizations, this gives
∣∣Mγ→A′

∣∣2 →
ε2M4

eff/2, such that eq. (B.10) can be rewritten as

1
a3
∂
(
a3fγ

)
∂t

' −fγ
π ε2M4

eff
2ω2

γ

δ (ωγ − ωA′) , (B.12)

where ωγ ' kγ + M2
eff/2kγ , ωA′ ' kA′ + M ′ 2eff/2kA′ , and kγ = kA′ by energy-momentum

conservation. Hence, we finally arrive at

1
a3
∂
(
a3fγ

)
∂t

' −π ε
2 fγ
ωγ

M4
eff δ

(
M2

eff −M ′ 2eff
)
, (B.13)

which agrees with eq. (2.8) in the limit that we can ignore variations to the scale factor
during the moment of resonance.

C Freeze-in of mCDR

In section 4.2, we discussed signals arising from massless dark photons in the presence of
mCDR. In particular, we discussed the minimal cosmology in which the mCDR energy
density is frozen in from plasmon decay, γ∗ → χ+χ−. In this section, we provide a detailed
derivation of the number density, nχ, energy density, ρχ, and resulting effective dark photon
mass,M ′eff, produced from mCDR freeze-in. In doing so, we follow the calculations detailed
previously in refs. [33, 34, 62].

Our starting point is the Boltzmann equation for massless mCPs produced from plas-
mon decay γ∗ → χ+χ− [59],

∂fχ+

∂t
−H pχ+

∂fχ+

∂pχ+
'
gγ gχ−

2pχ+

∫
d̄3kγ
2ωγ

d̄3pχ−

2pχ−
fγ (2π)4δ(4)

(
kγ − pχ+ − pχ−

)
|M|2, (C.1)

where |M|2 is the matrix element for plasmon decay (averaged over initial and final states),
d̄3p ≡ d3p/(2π)3, and we have neglected the inverse process χ+χ− → γ∗. This can conve-
niently rewritten in terms of the plasmon decay rate Γγ∗→χ+χ− as

∂fχ+

∂t
−H pχ+

∂fχ+

∂pχ+
' nγ
gχ+

〈
dΓγ∗→χ+χ−

d̄3pχ+

〉
, (C.2)

where nγ ' (gγ ζ(3)/π2)T 3 is the plasmon number density and the brackets corresponds
to a thermal average over the plasmon phase space. For the remainder of this section,
we focus exclusively on the decay of transverse plasmons (gγ = 2), since the longitudinal
contribution is subleading [62]. Furthermore, for fermionic mCDR we set gχ+ = gχ− = 2.
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C.1 mCP number density

Integrating eq. (C.2) over the mCP phase space and defining the total mCP number density
as nχ = nχ+ + nχ− , we have

ṅχ + 3Hnχ = 2nγ
〈

Γγ∗→χ+χ−

〉
, (C.3)

where from ref. [62] the thermally-averaged decay rate is approximately

〈
Γγ∗→χ+χ−

〉
' π (eqχ)2

144 ζ(3)
M2

eff
Tγ

. (C.4)

Assuming an initially negligible abundance of mCDR, eq. (C.3) can then be solved in terms
of the comoving mCP number density (yield) Yχ = nχ/sγ at late times,

Yχ '
∫ ∞

0
dTγ

2nγ
sγH Tγ

〈
Γγ∗→χ+χ−

〉
' 3.3× 10−12

(
qχ

10−14

)2
. (C.5)

C.2 mCP energy density

Multiplying eq. (C.2) by pχ and then integrating over the mCP phase space yields the
following equation for the total mCP energy density

ρ̇χ + 4Hρχ = nγ
〈
ωγ Γγ∗→χ+χ−

〉
, (C.6)

where 〈
ωγ Γγ∗→χ+χ−

〉
' (eqχ)2

12π M2
eff . (C.7)

Analogous to Yχ, we define the quantity Aχ ≡ ρχ/s4/3
γ . Similar to the previous subsection,

eq. (C.6) can then be solved to determine Aχ at late times

Aχ =
∫ ∞

0
dT

nγ

s
4/3
γ H Tγ

〈
ωγ Γγ∗→χ+χ−

〉
. (C.8)

We evaluate eq. (C.8) numerically in order to determine the additional number of effective
neutrino degrees of freedom in mCDR. This gives

∆Neff ' 2× 10−11
(

qχ
10−14

)2
. (C.9)

C.3 Dark plasmon mass

From eq. (4.4), the effective dark photon mass arising from mCDR is

M ′ 2eff '
8α′

π

∫ ∞
0

dpχ pχ fχ . (C.10)

Multiplying eq. (C.2) by 1/pχ and then integrating over the mCP phase space gives

∂M ′ 2eff
∂t

+ 2HM ′ 2eff = 16πα′ nγ

〈
Γγ∗→χ+χ−

ωγ

〉
, (C.11)
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where 〈
Γγ∗→χ+χ−

ωγ

〉
' (eqχ)2

24π ζ(3)
M2

eff
T 2
γ

log
(
Tγ
Meff

)
. (C.12)

Solving eq. (C.11) for Bχ ≡M ′ 2eff/s
2/3
γ yields

Bχ ' 16πα′
∫ ∞

0
dTγ

nγ

s
2/3
γ H Tγ

〈
Γγ∗→χ+χ−

ωγ

〉
. (C.13)

The above expression can be evaluated numerically, which gives

M ′eff ' 3× 10−17 eV×
(

qχ
10−14

)2(10−7

ε

)
(1 + z) . (C.14)
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