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Abstract
A system for the lateral transfer of information from end-to-
end neural networks recognizing articulatory feature classes to
similarly structured networks recognizing phone tokens is here
proposed. The system connects recurrent layers of feature de-
tectors pre-trained on a base language to recurrent layers of a
phone recognizer for a different target language, this inspired
primarily by the progressive neural network scheme. Initial ex-
periments used detectors trained on Bengali speech for four ar-
ticulatory feature classes—consonant place, consonant manner,
vowel height, and vowel backness—attached to phone recogniz-
ers for four other Asian languages (Javanese, Nepali, Sinhalese,
and Sundanese). While these do not currently suggest consis-
tent performance improvements across different low-resource
settings for target languages, irrespective of their genealogic
or phonological relatedness to Bengali, they do suggest the
need for further trials with different language sets, altered data
sources and data configurations, and slightly altered network
setups.
Index Terms: articulatory feature detection, transfer learning,
progressive neural networks

1. Introduction
Systems that detect individual sub-phone features in speech,
such as the placement of vocal tract elements and the airstream
mechanism when producing a phone, can be attractive as sup-
plementary sources of information for speech recognition. Just
as other linguistic domain knowledge can improve a recog-
nizer’s outputs, so too can the incorporation of knowledge about
the way individual speech sounds are articulated (and, by ex-
tension, the factors that lead to allophony and other consistent
sound changes in a given language) improve the overall process
of recognizing spoken words. Such knowledge is often useful
for target languages without much training data to begin with.

The detection of a particular articulatory feature, or of a
specific feature in a feature class, may be considered an indi-
vidual task to which a model may be fitted. Since identifying a
number of distinct articulatory features present in a phone (es-
sentially accomplishing several base tasks) can aid the direct
identification of said phone (a target task), the argument may be
made that feature detectors trained on one language may aid the
general recognition of phones in another. If a given language
has a voiced bilabial stop, for example, and there are models
that can distinguish each of these feature values in other lan-
guages well, then this knowledge about features ideally should
be usable in the development of a phone recognizer in that given
language.

These are the primary motivations behind the development
of the proposed system. It attempts to transfer information
between the recurrent layers at equal depths of similarly con-
structed models, from articulatory feature detectors trained on a

“higher-resourced” language to phone recognizers for a “lower-
resourced” one, using a scheme inspired by progressive neural
networks. The setup does not quite resemble that of a ‘teacher-
student’ relationship, in that the resulting recognizer continues
to rely on feature detectors in evaluation, but is meant to en-
courage the recognizer network to learn only information not
otherwise discerned on an articulatory feature basis.

The rest of this paper proceeds as follows. Section 2 pro-
vides context on the general tasks of articulatory feature detec-
tion and end-to-end transfer learning. Section 3 outlines the ar-
chitecture used in these experiments and provides information
about the datasets for the five languages under consideration.
Section 4 presents initial results from the experiments and com-
ments on performance differences between the baselines and the
progressive networks. Section 5 provides concluding remarks.

2. Background
2.1. Articulatory feature detection

Systems which rely on articulatory features have taken numer-
ous forms, often similar to those of accompanying networks
trained to recognize phones. Some have trained separate multi-
class classifiers for different articulatory feature groups, con-
catenating their outputs with standard mel-frequency cepstral
coefficients (MFCCs) as input to a fully-connected network
targeting English speech [1]. Others, not primarily relying on
recurrent neural networks (RNNs), have trained individual bi-
nary articulatory feature detectors using purely fully-connected
networks targeting Bengali speech [2]. Yet others have used
convolutional neural networks (CNNs) to construct feature de-
tectors for place and manner of articulation [3] targeting Dutch
speech, obtaining slight performance increases compared to a
multi-layer perceptron (MLP) baseline.

A more recent transformer-based network was developed to
identify multiple articulatory features all at once in the sounds
of Burmese, Khmer, Nepali, and Sinhalese (both individually
and as part of a multilingual recognition system). This network
yielded among the lowest character error rates (CERs) in a mul-
tilingual setting, particularly when compared to similar systems
that identified words, characters, or cross-language-normalized
phones [4].

2.2. Transfer learning for end-to-end systems

Pursuing a transfer learning approach when developing an auto-
matic speech recognition (ASR) system provides a better initial
state for training such a system on low-resource languages. Not
only does this better starting point hasten reaching an optimal
state in the network, information about phenomena common to
the language of the base system and a new language may be
imparted to the new system during training. On this basis a
number of different strategies have been employed to transfer
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knowledge between end-to-end systems.
Attempts at fine-tuning non-recurrent, non-attention-based

models for speech recognition have often taken considerably
different forms. A comparison of a fully-connected network
retrained on a new language’s speech—either the output layer
alone with the target language’s data, or the entire network with
both languages’ data—showed lower CERs with the latter con-
figuration on varied corpora [5]. Sometimes with input and
hidden layers (shared across languages) subject to weighting,
both while training in the multilingual setting and during spe-
cialized adaptation for a new language, slight improvements in
word error rate (WER) could be obtained when supplemented
with low-rank factorization of hidden layers [6]. After freezing
some layers of a wav2letter system, the loss incurred could rival
but also still be slightly larger than the loss when retraining an
entire network [7].

Similar diversity in the setup of recurrent systems has led
to varied outcomes in retraining as well. Experiments sug-
gest that even for very small target language datasets, the CER
when retraining all hidden layers of a recognizer on a target
language is reduced compared to training the network in a mul-
tilingual setting. [8]. Additionally, the training of a multi-
lingual connectionist temporal classification (CTC)-based net-
work on a set of languages through ‘fusing’ parameters from
a network pre-trained on other languages [9] produced mixed
WERs improvements across target languages depending on the
specific places of fusion chosen—either at the output (weight-
ing the output of the pre-trained model compared to the new
network), throughout the new network’s hidden layers (using
the pre-trained model’s parameters as static additions to those
in the new network), or only at the gating mechanisms of the
layers.

3. Methods
3.1. Architecture

The primary components of the individual feature detectors and
phone recognizers here are networks based on the Deep Speech
2 architecture [10]. These networks are thus constructed with
two two-dimensional convolutional layers at the input (the “2-
layer 2D” configuration from p. 9 of the original paper), fol-
lowed by five 1024-length long short-term memory (LSTM)
blocks, followed by a single fully connected layer generating
softmax probabilities for individual features at the output (see
the left portion of Figure 1).

The progressive network configuration here [11] treats the
detection of individual features as prior tasks, with information
obtained (given a particular input) to be transferred to the tar-
get task of phone detection (given the same input). All model
weights from prior tasks are frozen, while backpropagation
within the phone recognition network is otherwise allowed.

Given outputs h(f)
i ∈ R1024 from the ith recurrent layer of

the detector for feature f , the inputs zi+1 ∈ R1024 to layer i+1
of the phone recognizer are formed as follows:

zi+1 = Wi+1(h
(phone)
i +

∑

f∈{place,manner,height,backness}
h
(f)
i )

Here the additions are performed element-wise, and Wi ∈
R1024×1024 acts as a gating mechanism to control how much
detector information is propagated to higher recurrent layers of
the recognizer network (see the right portion of Figure 1). The
choice of a single gating matrix at each layer originates in [12],

Figure 1: Diagram of the architectures described. To the left
of the dashed line is the feature detector architecture, similar
in composition to Deep Speech 2. To the right of the dashed
line is the progressive network arrangement of feature detectors
and phone recognizer, where the gating layers higher up in the
network have the same structure as the expanded layer after the
first set of LSTMs. Dotted elements have their weights frozen.

where a similar progressive network scheme was used to aug-
ment end-to-end speech recognizers in a monolingual setting.

3.2. Data

The experiments described here use large speech corpora pro-
vided by Google for the Indo-Aryan languages Bengali (bn),
Nepali (ne), and Sinhalese (si) and for the Malayo-Polynesian
languages Javanese (jv) and Sundanese (su) [13]. A separate
dataset from Google provides, for each of these languages, lex-
icons with expansions of various text tokens into phone streams
and phoneset information [14].

Due to the presence of the aforementioned lexicons, a sepa-
rate grapheme-to-phoneme (G2P) converter for these languages
was not used in preprocessing. (A few entries in these lexicons
did not actually have phone information, requiring these to be
filled in manually.) Filtering the corpora for those sentences
all of whose tokens were in their respective languages’ lexi-
cons yielded more than 100h of data for Bengali, Javanese, and
Sinhalese, but less than that amount (around 60h) for Nepali
and Sundanese. As a result, the Nepali and Sundanese data are
treated as purely “low-resource” scenarios in these experiments.

As there are no existing splits of the speech corpora into
training, development, and test sets to the best of the authors’
knowledge, these were generated for these experiments. In
particular, the Bengali, Javanese, and Sinhalese datasets were
split into 80h training sets, 10h development sets, and 10h
testing sets (hereafter ”80h/10h/10h”). For the low-resource
settings, the Javanese and Sinhalese datasets were also split
into 20h/2.5h/2.5h and 10h/1.25h/1.25h sets, where each of the
components of each split is a randomized subset of the cor-
responding component in the 80h/10h/10h sets of the respec-
tive languages. The Nepali and Sinhalese datasets were sim-
ilarly split into 20h/2.5h/2.5h and 10h/1.25h/1.25h sets, each
taking randomized subsets of the corresponding component of
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feature class possible values

place bilabial, labiodental, dental, alveolar,
postalveolar, palatal, velar, glottal

manner stop, affricate, fricative,
nasal, approximant, lateral

height close, nearclose, closemid, mid,
openmid, nearopen, open

backness front, central, back
Table 1: Articulatory feature distinctions targeted by each fea-
ture detector.

position CER WER
place 5.165 31.969

manner 6.165 33.823
height 5.967 33.076

backness 5.052 33.969
Table 2: Evaluation results for the Bengali feature detectors
after training on the 80h/10h/10h split.

an 80%/10%/10% split of that language’s data. (All of these
may be provided on request.)

The primary categories of articulatory feature laid out in
this data are place, manner, and voicing for consonants, and
height, length, backness, and roundedness for vowels. The com-
ponents of four of these categories are listed in Table 1; the rest
are binary features.

The phoneset information for each of the languages con-
tains mappings of their phone sets to those features for which
distinctions are important. All five languages, for example, have
mappings of phones to place and manner for consonants and
height and backness for vowels. The information for all lan-
guages but Bengali also contains mappings for the vowel length
binary feature (long or short). The information for Javanese,
Nepali, and Sundanese also contains mappings to a binary fea-
ture for schwa-like quality, applied to the mid-central vowel in
Javanese and Sundanese (as a distinct feature from the others
for vowels) and a low front vowel in Sinhalese (as an optional
component of the length feature for vowels).

4. Results
The models described in this section were all trained using the
CTC loss criterion, with best path decoding for all outputs.
Each was trained for 40 epochs with a minibatch size of 20
and a learning rate of 1.5 ∗ 10−4, annealing this rate by 1.01
after each epoch and using a momentum of 0.9. Inputs to these
models were raw spectrograms with a 20ms window size and
a 10ms stride (resulting in a 161 × 100 input per second of
16KHz-sampled audio).

The notion of “character” with respect to CER refers to
a single phone, feature token, or space, and that of “word”
with respect to WER in these results refers to a sequence of
phones/feature tokens delimited by spaces; no transformation
of the output into sequences of graphemic units using the lexi-
cons of the target language was performed.

All experiments were performed using the PyTorch deep
learning library [15, 16] on an Nvidia GeForce RTX 2080 Ti
GPU.

10h/1.25h/1.25h 20h/2.5h/2.5h 80h/10h/10h
jv 17.483/58.834 12.382/45.722 11.305/38.603
si (*) 18.830/69.949 11.935/50.127
ne 22.213/74.249 17.034/62.183 n/a
su 3.992/14.552 2.848/9.603 n/a

Table 3: Evaluation results (CER/WER) for the regular phone
detectors in the target languages using the test component of the
split listed. (*) indicates non-convergence of the model after 40
epochs.

4.1. Feature detectors

Bengali was chosen as the “high-resource” language for which
feature detectors would be trained; this allowed for comparisons
of recognizer performance using these detectors with two re-
lated languages and two unrelated ones, or alternately with two
other “high-resource” and two “low-resource” languages on ac-
count of the available data. Articulatory feature detectors were
trained with the full 80h/10h/10h split in that language.

The output alphabet for the feature detectors consisted of
individual letters representing the members of the feature class,
plus either “V” (if a vowel is detected and the feature in question
only concerns consonants) or “C” (vice versa), as well as the
space character. Feature detectors were trained only on those
feature classes common to all languages, partly for consistency
in this respect and partly—in the context of excluding all other
binary features—in the interest of considering classes for which
differences in observed values across languages is possible.

Results for these are shown in Table 2. Although the values
reported in [12] for place and manner detectors are not directly
comparable to the ones reported here, they at least suggest that
articulation information is being acquired well.

4.2. Baselines

Baseline phone recognizers were then trained for each of the
splits outlined in the previous section for the four remaining
languages. The output alphabet for these was a set of unique
Unicode symbols representing different International Phonetic
Alphabet (IPA) phones, as well as the space character.

The baselines using the 80h/10h/10h split for Javanese and
Sinhalese were initially separately trained 1) to produce tokens
from the union of the phone sets for all five dataset languages
and 2) to produce tokens from the phone set of the specific lan-
guage whose data was being used. Because better CERs were
achieved for Javanese with the latter phone set (11.305 ver-
sus 24.605) and Sinhalese with the former set (11.935 versus
25.505), these were used when training all systems for those
respective languages and their genealogical relatives.

Results for all of these baselines are shown in Table 3. The
particularly low error rates for Sundanese are most likely due to
the data distribution (more on this in the Discussion).

4.3. Progressive networks

Phone recognizers of the same structure as the baseline were
trained in the progressive network scheme using all four
of the Bengali-trained articulatory feature detectors and the
10h/1.25h/1.25h and 20h/2.5h/2.5h splits. Results for all of
these are shown in Table 4.
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10h/1.25h/1.25h 20h/2.5h/2.5h
jv 22.247/69.259 13.608/48.790
si 28.247/85.461 20.110/72.369
ne (*) 18.138/65.919
su 43.926/59.501 3.169/10.345

Table 4: Evaluation results (CER/WER) for the progressive
network-based phone detectors in the target languages us-
ing the test component of the split listed. (*) indicates non-
convergence of the model after 40 epochs.

4.4. Discussion

With the sole exception of one language-dataset size pair (since
the baseline in that case did not even converge), the progressive
network scheme did not yield improvements in performance
compared to the baselines; the degradation in performance actu-
ally appears more pronounced with smaller training data sizes,
notwithstanding the considerably larger error increases with re-
spect to Nepali and Sundanese.

The sources of performance degradation for these setups are
likely as numerous as the number of these setups themselves.
It is most likely that the two most consequential issues in the
cross-lingual setting were 1) the inclusion of the recurrent out-
puts from the recognizer network in the progressive network
gating and 2) areas of non-overlap between the Bengali phone
set and the phone sets of the target languages. In particular, 1)
may have prevented the proper weighting of focus on individ-
ual layer outputs, and 2) may have led to a loss of generality
with respect to what the feature detectors identified about their
feature classes in training.

The choices of dataset and source of phone transcriptions
may have also led to some degradations in the low-resource set-
ting. The overwhelming majority of Sundanese sentences, for
example, had the same two overall syntactic forms, such that a
model failure with respect to one of those sentence forms would
lead to a drastic error rate increase. The average utterance and
phone transcription length of Nepali utterances was also much
shorter than those for the other four languages. More generally,
the phone transcriptions in the provided lexicons may not fully
represent the diversity in speakers’ pronunciations of word to-
kens in the respective datasets—this especially on account of
the variety in dialects within each of the languages.

5. Conclusions
An attempt at building a model to transfer previously learned
information about individual articulatory feature classes to new
models for phone recognition has been described. The experi-
ments using this model, however, do not yet support the idea of
a performance improvement in the cross-lingual low-resource
setting, which may be due to any of various problem sources.

Addressing those issues described in the Discussion would
be the most immediate way forward from here. Small archi-
tectural changes, such as gating the recurrent outputs of each
feature detector layer separately, may be most warranted. Pro-
viding data from a set of languages for feature detector train-
ing, this data being cleaner and more diverse in content than
the datasets used here, may improve the accuracy and general-
izability of the detector outputs. More comprehensive measures
at tackling the information transfer problem more generally
may include introducing binary feature detectors, re-attempting
these experiments using attention-based networks, reconstitut-

ing these experiments as fine-tuning tasks, and using more lin-
guistically diverse datasets in training (not necessarily entirely
overlapping with the languages used here).
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